
1

How Understandable Are Pattern-Based Behavioral
Constraints for Novice Software Designers?

CHRISTOPH CZEPA, University of Vienna, Austria
UWE ZDUN, University of Vienna, Austria

This article reports a controlled experiment with 116 participants on the understandability of representative
graphical and textual pattern-based behavioral constraint representations from the viewpoint of novice
software designers. Particularly, graphical and textual behavioral constraint patterns present in the declarative
business process language Declare and textual behavioral constraints based on Property Specification Patterns
are the subjects of this study. In addition to measuring the understandability construct, this study assesses
subjective aspects such as perceived difficulties regarding learning and application of the tested approaches. An
interesting finding of this study is the overall low achieved correctness in the experimental tasks which seems
to indicate that pattern-based behavioral constraint representations are hard to understand for novice software
designers in the absence of additional supportive measures. The results of the descriptive statistics regarding
achieved correctness are slightly in favor of the textual representations, but the inference statistics do not
indicate any significant differences in terms of understandability between graphical and textual behavioral
constraint representations.
CCS Concepts: • Software and its engineering→ Formal language definitions.

Additional Key Words and Phrases: Controlled experiment, understandability, behavioral constraints, property
specification patterns, declarative business processes
ACM Reference Format:
Christoph Czepa and Uwe Zdun. 2019. How Understandable Are Pattern-Based Behavioral Constraints
for Novice Software Designers?. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2019), 39 pages.
https://doi.org/10.1145/3306608

1 INTRODUCTION
Since the early days of computer science, supporting the correctness of computer programs has
been a recurring research interest. In 1977, Pnueli introduced an approach for the verification of
sequential and parallel programs that is based on temporal reasoning [65]. His approach became
widely popular under the term Linear Temporal Logic (LTL). A plethora of different temporal
logics have been proposed since then. For example, in 1988, Clarke and Emerson [10] applied the
Computation Tree Logic (CTL), a branching time logic, for model checking of computer programs.
Both LTL and CTL are still very popular and supported as a specification language by many of
today’s model checkers (e.g., NuSMV by Cimatti et al. [9] and SPIN by Holzmann [39]).1

1http://nusmv.fbk.eu, http://spinroot.com

Authors’ addresses: Christoph Czepa, University of Vienna, Währingerstraße 29, Vienna, Vienna, 1190, Austria, christoph.
czepa@univie.ac.at; Uwe Zdun, University of Vienna, Währingerstraße 29, Vienna, Vienna, 1190, Austria, uwe.zdun@univie.
ac.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2019/1-ART1 $15.00
https://doi.org/10.1145/3306608

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3306608
http://nusmv.fbk.eu
http://spinroot.com
https://doi.org/10.1145/3306608

1:2 C. Czepa and U. Zdun

In 1998, Dwyer et al. [23, 24] proposed the Property Specification Patterns (PSP), a pattern-based
approach that abstracts underlying LTL, CTL, or other formal logic formulas.2 As the main reason
for collecting the patterns, the authors state that practitioners had been reluctant to apply formal
methods due to unfamiliarity with specification processes, notations, and strategies. Consequently,
the pattern catalog was primarily meant to enable ease of reuse of existing patterns. The proposed
set of patterns was evaluated against 555 specifications from more than 35 different sources, and
92.1% (511) of the considered specifications are covered by the proposed set of patterns. A survey
by Bianculli et al. [7] based on 104 scientific case studies reproduced these results.
Numerous studies make use of the PSP approach either directly or by extending the original

idea of pattern-based behavioral constraints. In the following, we will discuss a selection of them
to emphasize the importance and applicability of PSP for various purposes and to introduce the
Declare approach (cf. Pešić et al. [61]), a popular graphical behavioral constraint approach, which
has been greatly inspired by PSP.

Corbett et al. [12] apply PSP for the verification of Java programs. PSP can be used for modeling
requirements in requirements engineering (see e.g., Cheng & Atlee [8]). Hatcliff et al. [35] apply
PSP for the verification of component-based systems. Krismayer et al. [48] propose an approach
that mines constraints from event logs on the basis of PSP. Li et al. [49] use a structured textual
specification language based on PSP for the behavioral verification of webservices at runtime. Wong
and Gibbons [85] apply a superset of PSP to construct behavioral properties of BPMN (Business
Process Model and Notation) [59] models. Namiri and Stojanovic [58] propose a PSP-based approach
for modeling internal controls that are required by regulations (e.g., Sarbanes-Oxley Act of 2002) for
business process compliance. Elgammal et al. [25] adopted some of the Property Specification Patterns
in the Compliance Request Language (CRL). Dou et al. [22] extended the Object Constraint Language
(OCL) with support for temporal constraints based on PSP. The PROPEL (PROPerty Elicitation)
approach by Smith et al. [76] provides support for the specification of PSP-based constraints using
two different notations, namely an extended finite-state automaton representation and a structured
natural language representation. The PROPOLS approach for the verification of BPEL service
compositions schemas (cf. Yu et al. [86]) is based on PSP as well. Awad et al. [1] propose a PSP-based
visual language, called BPMN-Q, to express compliance requirements with visual shapes that are
similar to those used in imperative business process modeling.
Both the graphical declarative workflow approach Declare (formerly known as ConDec) by

Pešić et al. [61] and the graphical DecSerFlow (Declarative Service Flow Language) approach by van
der Aalst and Pešić [80] were strongly inspired by the PSP approach.3 Declare appears to be the
most wide-spread graphical behavioral constraint approach in business process management (cf.
Goedertier et al. [32], Schonenberg et al. [73], and van der Aalst et al. [81]), and its abstractions
are generic constraint language abstractions. That is, it can be seen as representative for, and
generalized to, a broad set of possible other graphical behavioral constraint languages.

1.1 Problem Statement
Behavioral constraint approaches are highly relevant in various domains, such as health care
(cf. Rovani et al. [71]), banking (cf. Bianculli et al. [7]), automotive (cf. Post et al. [66]), software
architecture (cf. Czepa et al. [14]), and business process management (cf. Elgammal et al. [25]),
to name but a few. Pattern-based behavioral constraints can be used to shield the user from the
complexity of formal temporal logics used in the context of formal verification methods such as
model checking (cf. Rozier [72] and Baier & Katoen [2]) and runtimemonitoring by nondeterministic

2http://patterns.projects.cs.ksu.edu
3http://www.win.tue.nl/declare/2011/11/declare-renaming/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://patterns.projects.cs.ksu.edu
http://www.win.tue.nl/declare/2011/11/declare-renaming/

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:3

finite automata (cf. De Giacomo et al. [19, 20]). Many textual and graphical pattern-based behavioral
constraint approaches exist (e.g., [1, 25, 80, 86]) which originated from PSP. However, current studies
predominantly focus on technical contributions in specific application areas. Only a few studies
focus on empirical evaluations of behavioral constraint representations [14, 21, 34, 64, 82, 87], and
even fewer of them are concerned with comparing graphical and textual behavioral constraint
representations specifically [33, 52]. Interestingly, the body of existing studies (cf. Section 8 which
discusses those related works in depth) yields contradictory results which indicates that the
understandability of pattern-based graphical and textual behavioral constraints is not yet well
understood. Two prior empirical studies (both reported in [16]) indicated that the pattern-based
PSP representation provides a high level of understandability (about 70 percent on average in
the specific setup of those studies), but these studies did not consider graphical pattern-based
behavioral constraints. As it is our experience from multiple industry projects that industry experts
in areas such as business process management tend to prefer graphical over textual constraint
representations when given the choice, it would be important to test if their gut feeling can be
empirically confirmed. Also, non-expert users seem to prefer graphical models over structured
text and textual descriptions when the goal is to understand a process (cf. Figl & Recker [30]). It is
yet unknown whether there are differences in understandability between graphical and textual
pattern-based behavioral constraint approaches. In addition, it is unknown whether there exist
problematic language elements that pose an obstacle for correct understanding of textual and
graphical pattern-based behavioral constraint representations. The discovery of such problematic
elements could provide a starting point for improving the comprehensibility of the representations
and making them more applicable in practice.

Studying the understandability of graphical and textual behavioral constraints is not only inter-
esting from a purely scientific point of view, but it is also important for industrial applications. For
example, from the cooperation with our industry partners (see e.g., [79]), their customers, and other
company representatives at conferences and workshops, we realized that the industry has a huge
demand for, and shows a strong interest in, behavioral constraint approaches that are applicable in
practice by supporting the comprehensible, fast and accurate adoption of compliance requirements,
as well as their automated enactment and verification. The pattern-based behavioral constraint
representations that we study in this article are well-suited for automated computer-aided verifica-
tion at runtime and design time, but vendors are still often reluctant to expose their customers to
such approaches. Our discussions with industry partners (see e.g. [77, 78]) indicate uncertainty
regarding how understandable the constraints are, and this could be among the reasons for this
reluctance.
In addition to triggering further empirical evaluations and thus new insights, empirical re-

search on behavioral constraints has the potential to influence practitioners in decision-making
for adopting a specific behavioral constraint language and in designing future industrial solutions.
Consequently, a farther-reaching goal for our research on behavioral constraint representations is
to pave the way for their future industrial or practical exploitation.

1.2 Research Objectives
This empirical study has the objective to investigate the understandability of representative graph-
ical and textual behavioral constraint representations. The understandability construct focuses
on how well (in terms of correct understanding) and fast (in terms of the response time) a partici-
pant understands a given behavioral constraint representation. Particularly, this empirical study
considers the Property Specification Patterns, which are the origin of numerous existing behavioral
constraint approaches (cf. Section 1), and the Declare approach, which seems to be the most pop-
ular graphical behavioral constraint approach in the field of business process management (cf.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 C. Czepa and U. Zdun

Goedertier et al. [32], Schonenberg et al. [73], and van der Aalst et al. [81]). We are not aware of
any other graphical behavioral constraint language being of similar relevance. Originally, Declare
was proposed in the domain of business process management (cf. Pešić & van der Aalst [62]) and
also applied in service-oriented computing (cf. van der Aalst & Pešić [80]), but there seem to be
no limiting factors for the application of Declare in different domains. Its graphical pattern-based
representation is versatile and transformable to underlying formal representations (e.g., LTL [54]
and event calculus [55]) for verification at design time (i.e., model checking) and runtime verification
in general. Declare is considered in three variants, namely as a purely graphical, a purely textual,
and a hybrid (mixed graphical/textual) behavioral constraint approach.
We state the experimental goal using the GQM (Goal Question Metric) goal template (cf. Basili

et al. [3]) as follows:
Analyze the textual Property Specifications Patterns (PSP) based representation approach, the
purely graphical Declare representation approach (DG), the purely textual Declare representation
approach (DT), and the hybrid (i.e., showing a textual label in addition to the graphical relation)
Declare representation approach (DGT)
for the purpose of their evaluation
with respect to their understandability
from the viewpoint of the novice software designer
in the context (i.e., environment) of the Distributed System Engineering and the Software
Engineering 2 courses at the University of Vienna, Austria.

1.3 Guidelines
Jedlitschka et al. [42] propose guidelines for reporting experiments, which had a strong influence
on the general structure of this article. Those guidelines integrate (among others) the “Preliminary
guidelines for empirical research in software engineering” by Kitchenham et al. [46] and standard
books on empirical software engineering (cf. Wohlin et al. [84], Juristo & Moreno [44]). Moreover,
the “Robust Statistical Methods for Empirical Software Engineering” by Kitchenham et al. [45] had
a strong impact on the statistical methods used for the evaluation of the gathered data.

2 BACKGROUND ON PATTERN-BASED BEHAVIORAL CONSTRAINT
REPRESENTATIONS

2.1 Property Specification Patterns
Dwyer et al. [23, 24] proposed the Property Specification Patterns (PSP), a collection of recurring
behavioral constraint patterns. Since the patterns cannot be directly used for formal verification,
there exist transformations to underlying formal representations (among them are Linear Temporal
Logic (LTL) [65] and Computation Tree Logic (CTL) [10] formulas) that can be found online.4 The
discovered patterns were categorized into Occurrence Patterns and Order Patterns:

• Occurrence Patterns:
– Absence: a never occurs
– Universality: a always occurs
– Existence: a occurs
– Bounded Existence: a occurs at most n times

• Order Patterns:
– Precedence: a precedes b
– Response: a leads to b

4http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:5

global

between s1 and s2

after s1 until s2

after s

before s

s1 s2
s1 s2s1 s1

s1 s2
s1 s2s1 s1

s

s

s

s

Fig. 1. Available scopes for Property Specification Patterns (shaded areas indicate the extent over which the
pattern must hold)

– 2 Cause-1 Effect Precedence Chain: (a, b) precedes c
– 1 Cause-2 Effect Precedence Chain: a precedes (b, c)
– 2 Stimulus-1 Response Chain: (a, b) leads to c
– 1 Stimulus-2 Response Chain: a leads to (b, c)

Each pattern has a scope. Figure 1 shows the available scopes and their area of effect:
• The global scope defines that a pattern must hold during the entire execution of a system. If
no scope is defined, this scope is implicitly assumed.

• The before scope before s [p] defines that a patternp must hold before the first occurrence
of s .

• The after scope after s [p] defines that a pattern p must hold after the first occurrence
of s .

• The between scope between s1 and s2 [p] defines that a pattern p must hold between
every s1 (i.e., starting the scope) that is followed by s2 (i.e., closing the scope).

• The after-until scope after s1 until s2 [p] defines that a pattern p must hold after
every s1 (i.e., starting the scope) by no later than s2 (i.e., closing the scope).

2.2 Declare
Declare (cf. Pešić & van der Aalst [61]), also known by the names DecSerFlow (cf. van der Aalst
& Pešić [80]) and ConDec (cf. Pešić & van der Aalst [62]), is a graphical declarative business
process modeling language and approach. There exist transformations of its high-level graphical
representations to Linear Temporal Logic (LTL) (cf. Pnueli [65] and Montali [54]) and Event Calculus
(EC) (cf. Kowalski & Sergot [47] and Montali et al. [55]). As of Declare Version 2.1.0, the available
constraint templates are organized as follows:5

• Existence Patterns (cf. Figure 2 for graphical representations):
– “at least”
∗ existence_n(A): State Amust occur at least n times.

– “at most”
∗ absence_n(A): State Amust occur at most n − 1 times.

– “exactly”
∗ exactly_n(A): State Amust occur exactly n times (i.e., not more, not less).

– “position”

5http://www.win.tue.nl/declare/download/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://www.win.tue.nl/declare/download/

1:6 C. Czepa and U. Zdun

(a)
existence_2(A)

(b)
absence_2(A)

(c)
exactly_2(A)

(d)
init(A)

(e)
error(A)

Fig. 2. Graphical representations of Existence patterns in Declare

(a) responded_existence(A, B) (b) co-existence(A, B)

(c) response(A, B) (d) precedence(A, B)

(e) succession(A, B) (f) alternate_response(A, B)

(g) alternate_precedence(A, B) (h) alternate_succession(A, B)

(i) alternate(A, B) (j) chain_response(A, B)

(k) chain_precedence(A, B) (l) chain_succession(A, B)

Fig. 3. Graphical representations of Relation patterns in Declare

∗ strong_init(A): Amust start and complete first.
∗ init(A): Amust start first, and it must complete first or remain active indefinitely.
∗ last(A): Amust be the last occurring element. There must not occur any other element
than A after A.

– error(A): This appears to be an auxiliary pattern to detect a completion of A that should
not occur if A has never been started.

• Relation Patterns (cf. Figure 3 for graphical representations):
– “no order”
∗ responded_existence(A, B): If stateA happens (at least once), then state B must have
happened (at least once) before state A or must happen after state A.

∗ co-existence(A, B): If stateA happens (at least once), then state Bmust have happened
(at least once) before state A or must happen after state A, and vice versa.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:7

(a) choice(A, B) (b) exclusive_choice(A, B)

(c)
exclusive_choice_2_of_3(A,
B, C)

Fig. 4. Graphical representations of Choice patterns in Declare

(a) not_co-existence(A, B) (b) not_succession(A, B)

(c) not_chain_succession(A, B)

Fig. 5. Graphical representations of Negative Relation patterns in Declare

– “order”
∗ “simple”

· response(A, B): Whenever stateA happens, state B must occur afterwards eventually.
· precedence(A, B): The occurrence of state A is a precondition for state B. State B is
only allowed to happen if state A has happened already.

· succession(A, B): Whenever state A happens, state B must occur afterwards even-
tually. The occurrence of state A is a precondition for state B. State B is only allowed
to happen if state A has happened already. That is, this pattern is a combination of
response and precedence.

∗ “alternate”
· alternate_response(A, B): Whenever state A happens, state B must occur after-
wards eventually, but A is not allowed to occur a second time until then.

· alternate_precedence(A, B): A must occur before the first B, then the occurrence
of another A is the precondition for the next B, and so forth.

· alternate_succession(A, B): This pattern is a combination of alternate_response
and alternate_precedence.

· alternate(A, B): After A there must not be another A indefinitely or until B occurs
∗ “chain”

· chain_response(A, B): Whenever state A happens, state B must occur next.
· chain_precedence(A, B): B can only be executed directly after A.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 C. Czepa and U. Zdun

· chain_succession(A, B): This pattern is a combination of chain_response and
chain_precedence.

• Choice Patterns (cf. Figure 4 for graphical representations):
– “simple”
∗ choice(A, B): State A or state B must occur. That is, either of them occurring alone
would satisfy this constraint, but both may occur anyway. For example, the traces [A, B],
[A], [B] would satisfy this constraint while an empty trace [] would cause a violation.

∗ choice_n_of_N(list[N]): This pattern is the generalization of choice where n,N ∈

N, N ≥ 2, and 1 ≤ n < N . For example, the traces [A, B, C], [A, B], [A, C], [B, C] would
satisfy the constraint choice_2_of_3(A,B,C) while the traces [], [A], [B], [C] would
cause violations.

– “exclusive”
∗ exclusive_choice(A, B): StateA or state B must occur, but not both. That is, either of
them occurring alone would satisfy this constraint, and the constraint would be violated
if both of them occur. For example, the traces [A], [B] would satisfy this constraint while
the traces [], [A, B] would cause violations.

∗ exclusive_choice_n_of_N(list[N]): Generalization of exclusive_choice where
n,N ∈ N, N ≥ 2, and 1 ≤ n < N . For example, the traces [A, B], [A, C], [B, C] would
satisfy the constraint exclusive_choice_2_of_3(A,B,C) while the traces [], [A], [B],
[C], [A, B, C] would cause violations.

• Negative Relation Patterns (cf. Figure 5 for graphical representations):
– “no order”
∗ not_co-existence(A, B): Either state A or state B can occur, but not both.

– “order”
∗ not_succession(A, B): Before state B there cannot be state A and after state A there
cannot be state B.

– “chain”
∗ not_chain_succession(A, B):A and B must not occur next to each other in this order.

3 EXPERIMENT PLANNING
3.1 Goals
The primary goal of the experiment is measuring the construct understandability of graphical and
textual pattern-based behavioral constraint representations by the correctness and response time of
the answers given by the participants.
Additionally, the experiment aims at studying the perceived learning difficulty, the perceived

difficulty regarding applying the learned behavioral constraint representation approach (i.e., the
perceived application difficulty), the personal interest in using the representation, the perceived
practical applicability, and the perceived potential for further improvement of the behavioral
constraint representations.

3.2 Experimental Units
All 116 participants were students at the University of Vienna, Austria, who enrolled in the courses
“Distributed System Engineering Lab (DSE)” and “Software Engineering 2 (SE2)” in the winter term
2017. This study aims at evaluating the understandability of pattern-based behavioral constraints
from the perspective of novice software designers, which makes undergraduate students suitable
test subjects. The attendance was optional and rewarded by extra credits (i.e., bonus points)
for the course based on the performance in the experiment (i.e., the achieved correctness and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:9

completeness of time records). Alternatively, the students were given the chance to gain extra
credits in other lab activities by going beyond the normal course requirements (e.g., by implementing
more functionalities than required, or paying attention to excellent code quality). As required for a
valid controlled experiment setup, all participants were randomly allocated to the four experiment
groups (i.e., one for each of the four notations being studied).

3.3 Experimental Material & Tasks
In total, three documents were used per representation:

• An info sheet about the assigned behavioral constraint representation was made available to
the participants one week before the experiment execution for preparation purposes. The
descriptions used in these documents are based on the pattern descriptions provided by
Declare and the Property Specification Patterns.6 To keep the number of language elements to
remember approachable, the experiment design considers limitations in human capacity for
processing information (cf. Miller [53]). That is, the info sheets of all groups were limited to
introducing at most nine language elements. The experiment itself was similar to a closed
book exam, so no additional means of help were allowed. This step was taken to ensure
unbiased testing of the participants’ understanding of the textual terms and graphical shapes
of a notation under the exclusion of potential effects resulting from looking up graphical
shapes or textual terms.

• A question sheet consisting of general questions on the background of the participant (age,
gender, level of education, years of work experience, etc.), the experimental tasks, and a
Likert scale-based questionnaire to gain insights on how the different representations are
subjectively perceived (e.g., perceived learning difficulty) was handed out at the beginning of
the experiment session.

• An answer sheet accompanied the question sheet for marking the answers to the questions of
the experimental tasks. This document makes an automated evaluation by the e-learning
platform Moodle possible.7

For the creation of the tasks of the experiment, we used an algorithm that randomly generates
traces and computes the correct truth value of a constraint (i.e., fitting to the trace) automatically. The
implementation makes use of the Event Processing Language (EPL) [27] to encode the behavioral
constraint patterns in the Complex Event Processing (CEP) engine Esper.8 Truth values were
automatically randomly altered to another truth value to create both wrong and correct answer
choices. After that automated generation of the task, we manually checked each answer choice to
make sure that correct and incorrect answer choices will be treated in the right way (i.e., wrong
answer choices are treated as incorrect and correct answer choices are indeed treated as correct)
during the automated processing by Moodle.
In total, there were 18 experimental tasks, each consisting of a behavioral constraint, and the

instruction to select the correct answers in the answer sheet and to keep time records. Per task
six multiple choice answer options were available, each of them consisting of an execution trace
and a (correct or incorrect) truth value. For each option the participant had to decide whether it is
correct or incorrect (i.e., whether the truth value is correct for the given trace). Figure 6 shows the
first task for each of the four groups, which is based on the Succession pattern. Please note that the
instruction text and the table for time tracking is only shown in Figure 6 (a) and omitted in (b), (c),
and (d). In case a participant works on a task several times, the time tracking table offers not just

6http://www.win.tue.nl/declare/, http://patterns.projects.cs.ksu.edu/
7http://moodle.org
8http://www.espertech.com/esper/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://www.win.tue.nl/declare/
http://patterns.projects.cs.ksu.edu/
http://moodle.org
http://www.espertech.com/esper/

1:10 C. Czepa and U. Zdun

Table 1. Realization of Declare patterns by combining available PSP patterns

Declare Constraint PSP Constraint

choice(A, B) A occurs or B occurs

exclusive_choice(A, B) (A occurs and B never occurs) or (B occurs and A never
occurs)

responded_existence(A, B) before A [B occurs] or after A [B occurs]

co-existence(A, B) (A occurs and B occurs) or (A never occurs and B never
occurs)

not_succession(A, B) before B [A never occurs] and after A [B never occurs]

not_co-existence(A, B) after A [B never occurs] and after B [A never occurs]

a single column, but four columns with four separate start and end times. Instead of letters that
may be suggestive of a chronological order of events by the alphabetical order (after “A” comes “B”)
of the used letters, we use the abstract concepts “space” and “time” (cf. behavioral constraints in
Figure 6), which do not indicate any kind of chronological order. In Figure 6 (a), the answer choices
c) and d) are correct.
In case of monitoring a behavioral constraint in a system at runtime, it might be the case that

it is not only of interest if a specification is satisfied or violated but also whether further state
changes are possible that could resolve or cause a violation of a specification. That is, the state of
a specification can be either temporary (i.e., the state may change) or permanent (i.e., the state
may not longer change). Consequently, to enable a more fine-grained analysis of the participants’
understanding of behavioral constraints in the experiment, we employ the concept of runtime
states (cf. Bauer et al. [4, 5]) which support four truth value states. In particular, a behavioral
constraint at runtime is either temporarily satisfied, temporarily violated, permanently
satisfied, or permanently violated. Several existing studies make use of the concept of four
LTL truth value states (cf. Pešić et al. [60], De Giacomo et al. [18], Maggi et al. [51], Falcone et
al.[28], Joshi et al. [43], Morse et al. [56], to name but a few).

To reduce chances of misbehavior, the order of the answer choices was randomized between the
experimental groups (cf. Figure 6 (a)-(d)). That is, the answer choices remained the same in each
group, only their order of presentation was different. Moreover, in the design of the experiment,
orientation variations (i.e., the connector shapes were also presented rotated 180 degrees) in the
pattern presentation (cf. Figure 7 and Figure 6 (b)) were considered since the orientation possibly
has an impact on understandability. However, with regards to orientation variations, the results
did not reveal any conclusive impact on understandability.

Since the Succession pattern is not explicitly covered in PSP, it was realized by a combination of
the Response and Precedence patterns (cf. Figure 6 (a)). Table 1 summarizes other Declare patterns
that are represented in PSP by combining available PSP patterns.
To support a replication of the study, we made the experimental material available online (cf.

Czepa & Zdun [15]).

3.4 Hypotheses, Parameters, and Variables
Primarily, this controlled experiment focuses on the following hypotheses:

• H0,1 : There is no difference in terms of understandability between the representations.
• HA,1 : The approaches differ in terms of their understandability.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:11

1) Please keep time records and select the correct answer(s) for the following constraint description:

Start Times (hh:mm:ss)

Task Duration: End Times (hh:mm:ss)

Durations (mm:ss)

(space leads to time) and (space precedes time)

a) At the end of trace [space, time, space, space, other] the truth value is permanently violated.

b) At the end of trace [space, time, time, other, other] the truth value is permanently satisfied.

c) At the end of trace [space, other, space, other, time] the truth value is temporarily satisfied.

d) At the end of trace [time, space, time, space, space] the truth value is permanently violated.

e) At the end of trace [time, space, other, other, other] the truth value is temporarily satisfied.

f) At the end of trace [other, space, time, space, other] the truth value is temporarily satisfied.

(a) PSP group (with instructions and time record table)

1) Please keep time records and select the correct answer(s) for the following constraint description:

Start Times (hh:mm:ss)

Task Duration: End Times (hh:mm:ss)

Durations (mm:ss)

a) At the end of trace [space, other, space, other, time] the truth value is temporarily satisfied.

b) At the end of trace [time, space, other, other, other] the truth value is temporarily satisfied.

c) At the end of trace [space, time, time, other, other] the truth value is permanently satisfied.

d) At the end of trace [time, space, time, space, space] the truth value is permanently violated.

e) At the end of trace [other, space, time, space, other] the truth value is temporarily satisfied.

f) At the end of trace [space, time, space, space, other] the truth value is permanently violated.

(b) DG group (instructions and time record table omitted)

1) Please keep time records and select the correct answer(s) for the following constraint description:

Start Times (hh:mm:ss)

Task Duration: End Times (hh:mm:ss)

Durations (mm:ss)

succession(space, time)

a) At the end of trace [space, time, space, space, other] the truth value is permanently violated.

b) At the end of trace [time, space, time, space, space] the truth value is permanently violated.

c) At the end of trace [space, other, space, other, time] the truth value is temporarily satisfied.

d) At the end of trace [space, time, time, other, other] the truth value is permanently satisfied.

e) At the end of trace [time, space, other, other, other] the truth value is temporarily satisfied.

f) At the end of trace [other, space, time, space, other] the truth value is temporarily satisfied.

(c) DT group (instructions and time record table omitted)

1) Please keep time records and select the correct answer(s) for the following constraint description:

Start Times (hh:mm:ss)

Task Duration: End Times (hh:mm:ss)

Durations (mm:ss)

a) At the end of trace [space, time, time, other, other] the truth value is permanently satisfied.

b) At the end of trace [time, space, other, other, other] the truth value is temporarily satisfied.

c) At the end of trace [space, time, space, space, other] the truth value is permanently violated.

d) At the end of trace [other, space, time, space, other] the truth value is temporarily satisfied.

e) At the end of trace [space, other, space, other, time] the truth value is temporarily satisfied.

f) At the end of trace [time, space, time, space, space] the truth value is permanently violated.

(d) DGT group (instructions and time record table omitted)

Fig. 6. Example of a task in all four group variants (more specifically: Task 1 - based on the Succession pattern)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 C. Czepa and U. Zdun

Fig. 7. Orientation variation in the presentation of the Succession pattern (i.e., the connector shape is rotated
180 degrees)

The understandability construct consists of two dependent variables, namely:
• the correctness achieved in trying to mark the correct answers, and
• the response time, which is the time it took to complete the 18 tasks.

These dependent variables are commonly used to measure the construct understandability
(cf. Feigenspan et al. [29] and Hoisl et al. [38]). The independent variable (also called factor) focuses
on the four behavioral constraint representations.

Secondarily, there are hypotheses that are concerned with the participants’ opinion on the tested
behavioral constraint representations:

• H0,2 : There is no difference in terms of perceived learning difficulty between the representa-
tions.

• HA,2 : The representations differ in terms of perceived learning difficulty.

• H0,3 : There is no difference in terms of perceived application difficulty between the represen-
tations.

• HA,3 : The representations differ in terms of perceived application difficulty.

• H0,4 : There is no difference in terms of personal interest in using the approach between the
representations.

• HA,4 : The representations differ in terms of personal interest in using the approach.

• H0,5 : There is no difference in terms of perceived practical application potential between the
representations.

• HA,5 : The representations differ in terms of perceived practical application potential.

• H0,6 : There is no difference in terms of perceived improvement potential between the repre-
sentations.

• HA,6 : The representations differ in terms of perceived improvement potential.

3.5 Experiment Design
Wohlin et al. [84] and Kitchenham et al. [46] recommend using a simple experiment design that is
appropriate for the goal of a study. In consequence, we applied a completely randomized design
with one alternative per participant, which is both a simple design and appropriate for the stated
goals (cf. Section 3.1). The participants are assigned to representations in an unbiased manner by
using a computerized random allocation to groups.

3.6 Procedure
In total, the experiment had a duration of 90 minutes. The experimental material, namely the
question and answer sheet, was provided in the form of printed documents, and the participants
were informed about the procedure of the experiment. That involved instructions on how to track
time, how to mark answers correctly on the answer sheet, and a pointer to the questionnaire on

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:13

0.00

0.05

0.10

0.15

0.20

0.25

20 25 30 35 40
Age [Year]

D
en

si
ty

DG DGT DT PSP

(a) Kernel density plot

●●

●

●

●

●

●

DG DGT DT PSP

20

25

30

35

40

A
ge

 [Y
ea

r]

(b) Box plot

Fig. 8. Participants’ age per group

the last page of the question sheet. During the whole experiment session, a clock was displayed by
a projector, and the participants were instructed to write down the displayed time when starting
and completing work on a task. Seating arrangements were made to limit chances for misbehavior.
To limit chances for experimenter bias, the experiment was designed as a multiple-choice test that
supports automated processing of the given answers by the e-learning platform Moodle. In case
of necessary manual interventions (e.g., imprecise markings that we had to clarify), we always
made use of the four eyes principle. Moreover, the time recordings and questionnaire answers were
processed manually and double-checked subsequently.

4 ANALYSIS
4.1 Data Set Preparation
The data set was prepared as follows: We had to remove the data of two participants from the data
set. One participant used an answer sheet of a different group, which could have been wrongly
assigned by the experimenters. To be on the safe side, we decided not to consider this answer
sheet as it might have led to confusion (e.g., the results might have accidentally been assigned to
the wrong group). The experiment procedure was rigorously implemented in accordance to the
planning described in Section 3. Unfortunately, one participant used unauthorized means of aid
during the experiment, which has led to the exclusion of this participant from the study. Missing
values (5.6% of the dependent variables excluding correctness) were substituted by the arithmetic
mean (in case of interval scale data) and median (in case of ordinal scale data) of the data attribute
per group.

4.2 Analysis of Previous Knowledge, Experience and Other Features of Participants
In Figure 8, a kernel density plot and box plot of the participants’ age per group is shown. The peak
density of the participants’ age is 23 years, and a high density can be found in the range between
21 and 25 years (cf. Figure 8 (a)). Only very few participants are older than 28 years (cf. Figure 8
(a)), some of them are shown as outliers in the box plot (cf. Figure 8 (b)). The graphical inspection
of the data indicates no major differences in the age distribution between the groups. Neither do
statistical significance tests indicate any significant differences between the experiment groups (all
p > 0.05; test applied: two-sided Cliff’s delta [11, 70]).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 C. Czepa and U. Zdun

female male

0

20

40

60

80

Gender

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group
DG
DGT
DT
PSP

(a) Gender

BSc none

0

25

50

75

Level of Computer Science Education

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group
DG
DGT
DT
PSP

(b) Level of Education in Computer Science

Fig. 9. Participants’ gender and level of computer science education per group

Figure 9 (a) shows a bar chart of the participants’ gender distribution. In total, there were 36
female (31.6%) and 78 male participants (68.4%). Inside of the groups, the gender distribution was
as follows:

• DG: 9 female (36%) and 16 male participants (64%)
• DGT: 9 female (31%) and 20 male participants (69%)
• DT: 6 female (20.7%) and 23 male participants (79.3%)
• PSP: 12 female (38.7%) and 19 male participants (61.3%)

No significant differences were found in gender distribution (all p > 0.05; test applied: two-sided
Cliff’s delta [11, 70]).
The participants’ level of education in computer science is shown in Figure 9 (b). Since the

courses we recruited the participants from are primarily targeting bachelor students, only 21.1%
of the participants hold a Bachelor of Science (BSc) degree in computer science. The distribution
between the groups was as follows:

• DG: 4 participants with BSc degree (16%) and 21 participants without any computer science
degree (84%)

• DGT: 7 participants with BSc degree (24.1%) and 22 participants without any computer
science degree (75.9%)

• DT: 5 participants with BSc degree (17.2%) and 24 participants without any computer science
degree (82.8%)

• PSP: 8 participants with BSc degree (25.8%) and 23 participants without any computer science
degree (74.2%)

Both the DGT group and PSP group have a slightly larger share of participants with a BSc degree
in computer science than the DG and DT groups, but no significant differences were found in level
of education between the groups (all p > 0.05; test applied: two-sided Cliff’s delta [11, 70]).
With regards to programming experience (cf. Figure 10), all groups have a high density in the

range of 1 to 4 years of experience. Only very few participants have less than 1 year or more than 4
years of programming experience. Overall, the groups are similar with regards to programming
experience. The steeper distribution shape of the DT group appears to be no major difference since
we could not find any significant difference in programming experience between the groups (all
p > 0.05; test applied: two-sided Cliff’s delta [11, 70]).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:15

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10
Programming Experience [Year]

D
en

si
ty

DG DGT DT PSP

(a) Kernel density plot

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

DG DGT DT PSP

0

2

4

6

8

10

12

P
ro

gr
am

m
in

g
E

xp
er

ie
nc

e
[Y

ea
r]

(b) Box plot

Fig. 10. Participants’ programming experience per group

0.0

0.1

0.2

0.3

0.4

0.0 2.5 5.0 7.5
Modeling Experience [Year]

D
en

si
ty

DG DGT DT PSP

(a) Kernel density plot

● ●

●

●

●

●

●

●

●

●

DG DGT DT PSP

0

2

4

6

8
M

od
el

in
g

E
xp

er
ie

nc
e

[Y
ea

r]

(b) Box plot

Fig. 11. Participants’ modeling experience per group

In the majority of cases, the participants’ modeling experience is between 1 and 3 years (cf.
Figure 11). There are no significant differences in modeling experience between the groups (all
p > 0.05when p-values are adjusted to takemultiple testing into account [6]); test applied: two-sided
Cliff’s delta [11, 70]).
Since the computer science curricula at the University of Vienna are designed for full time

studying, the majority of the participants have little to no work experience in the software industry.
Some of the students work beside studying or had been working for years in the software industry
prior to becoming a computer science student. These circumstances are very well reflected in
Figure 12. The industry experience of the different groups appears to be similarly low. There are
no significant differences in industry experience between the groups (all p > 0.05; test applied:
two-sided Cliff’s delta [11, 70]).

Almost all participants did not have any prior knowledge of graphical pattern-based behavioral
constraint approaches (e.g., Declare [61], Compliance Rule Graphs [50], or Dynamic Condition
Response Graphs [25]), and still a greatmajority of the participants did not have any prior knowledge
of textual pattern-based behavioral constraint approaches (e.g., Property Specification Patterns [24],

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 C. Czepa and U. Zdun

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0
Industry Experience [Year]

D
en

si
ty

DG DGT DT PSP

(a) Kernel density plot

●

●

●

●

●

●

●

●

●

●●

DG DGT DT PSP

0

2

4

6

8

10

In
du

st
ry

 E
xp

er
ie

nc
e

[Y
ea

r]

(b) Box plot

Fig. 12. Participants’ industry experience per group

no yes

0

30

60

90

Prior Knowledge (Graphical)

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group
DG
DGT
DT
PSP

(a) Graphical approaches

no yes

0

25

50

75

100

Prior Knowledge (Textual)

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group
DG
DGT
DT
PSP

(b) Textual approaches

Fig. 13. Participants’ prior knowledge of graphical and textual pattern-based behavioral constraint approaches
per group

or the Compliance Request Language [25]), as can be seen in Figure 13. The share of participants
with prior knowledge of pattern-based behavioral constraint approaches is as follows:

• DG: textual: 2 participants (8%), graphical: 0 participants (0%)
• DGT: textual: 5 participants (17.2%), graphical: 1 participant (3.4%)
• DT: textual: 4 participants (13.8%), graphical: 2 participants (6.9%)
• PSP: textual: 3 participants (9.7%), graphical: 1 participant (3.2%)

There are no significant differences with regards to prior knowledge of graphical and textual
pattern-based behavioral constraint approaches between the groups (all p > 0.05; test applied:
two-sided Cliff’s delta [11, 70]).
Overall, with the exception of minor differences, which are to be expected in a completely

randomized group allocation, the groups are well-balanced. We could not find any significant
differences. That is, there are no indications of disturbing effects on the dependent variables that
might have resulted from unbalanced groups.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:17

Table 2. Number of observations, central tendency and dispersion of the dependent variables correctness and
response time per group

DT DG DGT PSP

Total number of observations 29 26 29 32
Number of considered observations 29 25 29 31

C
or
re
ct
ne

ss

Arithmetic mean [%] 43.64 37.79 34.13 41.46
Standard deviation (SD) [%] 27.93 29.08 24.86 25.6

Median [%] 33.61 21.67 26.76 34.44
Median absolute deviation (MAD) [%] 28.55 17.57 16.89 28.28

Minimum [%] 8.33 6.67 1.85 10
Maximum [%] 98.61 98.15 97.22 91.67

Skew 0.48 0.8 1.17 0.51
Kurtosis −1.23 −0.89 0.53 −1.16

R
es
po

ns
e
T
im

e

Arithmetic mean [Minute] 36.28 35.56 33.87 33.09
Standard deviation (SD) [Minute] 12.88 13.08 9.87 8.85

Median [Minute] 36.14 35.85 32.58 33.43
Median absolute deviation (MAD) [Minute] 11.46 11.74 8.75 9.2

Minimum [Minute] 15.68 14.87 19.87 13.63
Maximum [Minute] 69.75 72.65 58.18 51.8

Skew 0.67 0.71 0.79 −0.01
Kurtosis −0.03 0.49 −0.08 −0.62

4.3 Descriptive Statistics of Dependent Variables
This section presents the descriptive statistics of the dependent variables. All gathered data have
been made publicly available (cf. Czepa & Zdun [15]).

Table 2 contains the number of observations, central tendency and dispersion of the dependent
variables correctness and response time per group. In consequence of the completely random alloca-
tion to groups, there were 29 participants in the DT group, 26 participants in DG, 29 participants in
DGT, and 32 participants in PSP. Due to irregularities (cf. Section 4.1), we had to exclude the data of
one DG participant and one PSP participant. With 43.64 and 41.46 percent, the correctness arithmetic
means of the DT and PSP groups, which are both purely textual, are between about 4 to 10 percent
higher than those of the DG (37.79 percent) and DGT (34.13 percent) groups. Also the median
correctness values of the PSP (34.44 percent) and DT (33.61 percent) groups are between about 7 to
12 percent higher than those of the DG (21.67 percent) and DGT (26.76 percent) groups. According
to the mean and median values, the response times appear to be slightly (about 2-3minutes) faster in
the PSP and DGT groups than in the DT and DG groups. Interestingly, many participants achieved
a rather low level of correctness while the response times are overall far below the 90 minutes limit
in all experiment groups. That is, time was no limiting factor and cannot be the cause of the low
achieved correctness scores. The results show large differences in range between the minimum and
maximum correctness. We commonly observed such large ranges in course exercises over the past
years. Consequently, the results of this study in that regard are aligned with these past observations.
Almost all skew values are positive, which indicates a right-tailed distribution. With a small negative
skew value of −0.01, the PSP response time distribution is rather symmetric. Kurtosis is another
measure for the shape of a distribution which focuses on the general tailedness. Positive kurtosis
values indicate skinny tails with a distribution toward the mean whereas negative kurtosis values
indicate fat tails. The majority of the kurtosis values of the correctness variable are negative. The

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 C. Czepa and U. Zdun

0.00

0.01

0.02

0.03

0 25 50 75 100
Correctness [%]

D
en

si
ty

DG DGT DT PSP

(a) Kernel density plot: Correctness

●
●

●

DG DGT DT PSP
0

20

40

60

80

100

C
or

re
ct

ne
ss

 [%
]

(b) Box plot: Correctness

0.00

0.01

0.02

0.03

0.04

20 40 60
Response Time [Minute]

D
en

si
ty

DG DGT DT PSP

(c) Kernel density plot: Response time

●

●
●

●

DG DGT DT PSP

20

30

40

50

60

70

R
es

po
ns

e
T

im
e

[M
in

ut
e]

(d) Box plot: Response time

Fig. 14. Kernel density plots and box plots of the dependent variables correctness and response time per group

sole exception is the DGT kurtosis value of 0.53, which clearly indicates a steeper distribution than
in the other groups. With kurtosis values close to zero, the DT (−0.03) and DGT (−0.08) response
time distributions are normal-tailed. In contrast, the DG response time distribution has a positive
value (0.49) indicating skinny tails, and the PSP response time distribution has a negative value
(−0.62) indicating fat tails.

In Figure 14, kernel density plots and box plots of the dependent variables correctness and response
time are shown. The correctness distribution of the DGT group is steeper than those of the other
groups (cf. Figure 14 (a)). There are three outliers in the DGT group indicating that only a few
participants were able to achieve high levels of correctness in this group (cf. Figure 14 (b)). The
outlier at 80.37% correctness had prior knowledge of graphical and textual behavioral constraint
approaches while the other two outliers with correctness values of 97.2% and 94.4% did not have
any prior knowledge of graphical and textual behavioral constraint approaches. According to the
kernel density plot in Figure 14 (c), both the DGT and PSP response time distributions appear to be
steeper than those of the other groups. In total there are four response time outliers, all of them in
the Declare groups (two in DGT and one each in DT and DG).

The scatter plots of the dependent variables correctness and response time do not show any clear
signs of correlation (cf. Figure 15). Moreover, the results of all Kendall’s rank correlation tau tests

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:19

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

y = 45− 0.047⋅ x, r 2 = 0.0004720

25

50

75

100

0 30 60 90
Response Time [Minute]

C
or

re
ct

ne
ss

 [%
]

(a) DT

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●●
●

y = 36+ 0.064⋅ x, r 2 = 0.0008330

25

50

75

100

0 30 60 90
Response Time [Minute]

C
or

re
ct

ne
ss

 [%
]

(b) DG

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●

y = 30+ 0.12⋅ x, r 2 = 0.002190

25

50

75

100

0 30 60 90
Response Time [Minute]

C
or

re
ct

ne
ss

 [%
]

(c) DGT

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

y = 62− 0.64⋅ x, r 2 = 0.04810

25

50

75

0 30 60 90
Response Time [Minute]

C
or

re
ct

ne
ss

 [%
]

(d) PSP

Fig. 15. Scatter plots of response time vs. correctness with linear trend lines, 95% confidence regions, and
coefficients of determination (r2)

Table 3. Kendall’s rank correlation tau of the dependent variables correctness and response time

DT DG DGT PSP

z −0.8067 0.2804 0.0939 −1.1395
p 0.4198 0.7792 0.9252 0.2545
tau −0.106 0.0401 0.0124 −0.1447

are non-significant (cf. Table 3). Consequently, there appears to be no correlation between those
dependent variables.
For a more detailed analysis of the correctness variable, we make use of a color scale plot (cf.

Figure 16) to identify potentially problematic language elements. Interestingly, relations in which
the order of the involved states is of importance (e.g., succession) result in lower mean correctness
values than patterns in which the order is not of importance (e.g., choice). Especially, the response
and succession patterns show a low level of correctness in all groups.

Figure 17 shows diverging stacked bar charts (cf. Heiberger & Robbins [36]) of all Likert responses.
In the following, we will discuss them:

• Statement 1: Studying the behavioral constraint representation approach has been
difficult. 48% of the PSP participants strongly agree or agree that the approach is difficult to
learn, followed by DT with 41%, and DGT with 38%. The share of strongly agree answers is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 C. Czepa and U. Zdun
O

ve
ra

ll
co

rr
ec

tn
es

s

higher

lower

Pattern DT PSP DG DGT Type Order Negation

NotCoExistence 48.97% 63.12% 43.34% 49.77% relation no yes

ExclusiveChoice 52.76% 46.77% 41.30% 39.40% choice no no

Choice 46.55% 40.33% 52.50% 40.09% choice no no

CoExistence 47.59% 50.97% 38.00% 35.87% relation no no

Precedence 45.26% 41.53% 41.00% 38.37% relation yes no

NotSuccession 43.56% 39.14% 34.27% 27.59% relation yes yes

RespondedExistence 45.26% 38.31% 32.00% 26.30% relation yes no

Response 30.03% 27.15% 30.17% 27.88% relation yes no

Succession 32.76% 25.81% 27.50% 21.98% relation yes no

higher lower
Overall correctness

Fig. 16. Color scale plot of mean correctness per pattern and representation (the greener the more correct,
the redder the less correct)

about two times higher in the PSP group than in the DGT and DG groups. The purely graphical
DG approach has the lowest percentage of (strongly) agree answers (36%). Interestingly, none
of the DT participants answered with strongly agree. According to the bar chart, the purely
graphical DG approach appears to be perceived slightly less difficult to learn than the other
approaches.

• Statement 2: Applying the knowledge about the behavioral constraint representa-
tion approach has been difficult. According to the gathered data, it appears to be more
difficult to apply the approaches than learning them. With 81%, the share of (strongly) agree
answers is higher in the PSP group than in the other groups, followed by the DGT group
with 76%. The DG (with 16% disagreeing and 64% (strongly) agreeing) and DT approaches
(with 14% (strongly) disagreeing and 69% (strongly) agreeing) are overall perceived a little
less difficult to apply than PSP (with 6% disagreeing) and DGT (with 3% disagreeing).

• Statement 3: I am personally interested in the approach and would like to use it in
the (near) future. With 59%, the majority of DT participants does not show any interest
in using the approach in the future. The share of neutral answers is largest in the PSP and
DGT groups (52% and 48%), which indicates that the participants of this group are rather
undecided. There is, however, a tendency towards (strongly) disagreeing with a share of
about 1/3 of the given answers in those groups. Also the DG group shows with a share of
40% (strongly) disagree answers a rather negative attitude towards adopting the approach.

• Statement 4: The behavioral constraint representation approach can be applied in
practice. With 55% (strongly) agreeing, the PSP group has the largest share of positive
answers. Interestingly, the share of strongly agree answers is smaller than in the other three
groups, and the PSP group has no strongly disagree answers at all. DG is second with 48%
positive and only 8% negative answers, followed by DT with 45% (strongly) agreeing and
8% (strongly) disagreeing. 55% of the DGT participants are undecided, but there is a clear
tendency towards (strongly) agreeing (38%).

• Statement 5: The behavioral constraint representation approach can be further im-
proved. The share of (strongly) agree answers is large (≥ 60%) in all groups. At the same
time, there are no strongly disagree answers and the share of disagree answers is very low
(6% in PSP and 3% in DT). The largest share of (strongly) agree answers is present in the DGT
group (72%).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:21

28%

21%

24%

29%

36%

38%

41%

48%

36%

41%

34%

23%

16%

3%

14%

6%

64%

76%

69%

81%

20%

21%

17%

13%

40%

31%

59%

32%

28%

21%

17%

16%

32%

48%

24%

52%

8%

7%

14%

10%

48%

38%

45%

55%

44%

55%

41%

35%

0%

0%

3%

6%

60%

72%

62%

65%

40%

28%

34%

29%

(Statement 5:) The behavioral constraint
representation approach can be further improved.

(Statement 4:) The behavioral constraint
representation approach can be applied in

practice.

(Statement 3:) I am personally interested in the
approach and would like to use it in the (near)

future.

(Statement 2:) Applying the knowledge about the
behavioral constraint representation approach has

been difficult.

(Statement 1:) Studying the behavioral constraint
representation approach has been difficult.

100 50 0 50 100

DG

DGT

DT

PSP

DG

DGT

DT

PSP

DG

DGT

DT

PSP

DG

DGT

DT

PSP

DG

DGT

DT

PSP

Percentage

Response strongly disagree disagree neutral agree strongly agree

Fig. 17. Diverging stacked bar charts of participants’ Likert responses

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 C. Czepa and U. Zdun

0.0

0.1

0.2

0.3

0.4

0.5

st
ro

ng
ly

 d
is

ag
re

e

di
sa

gr
ee

ne
ut

ra
l

ag
re

e

st
ro

ng
ly

 a
gr

ee

D
en

si
ty

DG DGT DT PSP

(a) Statement 1 (“difficult to learn”)

0.0

0.2

0.4

0.6

st
ro

ng
ly

 d
is

ag
re

e

di
sa

gr
ee

ne
ut

ra
l

ag
re

e

st
ro

ng
ly

 a
gr

ee

D
en

si
ty

DG DGT DT PSP

(b) Statement 3 (“personally interested
in using the approach”)

Fig. 18. Selected kernel density plots of Likert responses

Table 4. Shapiro-Wilk test of normality (* for α = 0.05, ** for α = 0.01)

DT DG DGT PSP

Correctness W = 0.90205
p = 0.008112 **

W = 0.84027
p = 0.001158 **

W = 0.90796
p = 0.01528 *

W = 0.86744
p = 0.001775 **

Response
Time

W = 0.98841
p = 0.9783

W = 0.95337
p = 0.2982

W = 0.95585
p = 0.2587

W = 0.93301
p = 0.06584

In addition to the visualization by diverging stacked bar charts in Figure 17, we are interested
in the shape of the distributions as well, as they are important for testing model assumptions of
statistical tests. Figure 18 shows kernel density plots of the Likert responses with especially striking
differences in distribution shape. In Figure 18 (a) the PSP and DG distribution shapes are less steep
than those of the other two approaches, and the PSP group has its peak at agree whereas the the DG
group has its peak at neutral. In Figure 18 (b), the DG distribution shape is rather flat in comparison
to the remaining distribution shapes. The DT group has its peak at disagree while the DGT and
PSP approaches show a similar distribution shape and location with a peak at neutral.

5 STATISTICAL INFERENCE
For proper hypothesis testing, it is important to select the most suitable method. Particularly, it
is preferable to choose the method with the greatest statistical power given the properties of the
data. Specific model assumptions must be met. A crucial model assumption of parametric testing
is normality. The graphical analysis by normal Q-Q plots (cf. Figure 19) and Shapiro-Wilk tests
of normality (cf. Table 4) suggest that the normality assumption does not hold in multiple cases.
Specifically, the normality assumption does not hold for the correctness variables of all groups.
Since there are indications of non-normality in the metric dependent variables correctness and
response time (cf. Section 4.3), the model assumptions for parametric testing are violated. Therefore,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:23

● ●
●

●

●
●

● ● ●
●

●●●
●●●

●

●

●

●

●

● ●

●

● ●

●
●

●

25

50

75

100

−2 −1 0 1 2
theoretical

sa
m

pl
e

(a) DT group

●

● ●

● ● ● ● ●

● ● ● ●
●

●
●

● ●

●

● ●

●

●

●

●

●

25

50

75

100

−2 −1 0 1 2
theoretical

sa
m

pl
e

(b) DG group

●

● ●
●

●

● ●
● ●

●
●●●●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

0

25

50

75

100

−2 −1 0 1 2
theoretical

sa
m

pl
e

(c) DGT group

●
●

●
● ● ● ●

●

●●
●●

●

●●●●●

●●

●

●● ● ●

●
●

● ● ●

●

25

50

75

−2 −1 0 1 2
theoretical

sa
m

pl
e

(d) PSP group

Fig. 19. Normal QQ plots of correctness data

parametric testing is ruled out. The non-parametric Kruskal-Wallis test assumes that the distribution
shapes do not differ apart from their central locations. The relevant descriptive statistics of the data
(cf. Section 4.3), namely the skew/kurtosis values and the kernel density plots, suggest differences
in the shape of distribution between the groups. Due to the properties of the data, we make use of
Cliff’s delta (cf. Cliff [11] and Rogmann [70]), a robust non-parametric test that is unaffected by
change in distribution and non-normal data. Neither of the test results is significant at the α = 0.05
level (cf. Table 5 and Table 6). Consequently, the null hypotheses H0,1 to H0,6 (cf. Section 3.4) cannot
be rejected.
The statistics software R was used for all statistical analyses.9 In particular, we used the fol-

lowing libraries in the course of our statistical evaluations: biotools [17], car [31], ggplot2 [83],
mvnormtest [75], mvoutlier [63], orddom [70], psych [68], usdm [57], and likert [41].

6 ANALYSIS OF FREE TEXT ANSWERS
In addition to the 18 experiment tasks and the Likert scale-based questionnaire, we asked three
free text questions to capture the thoughts of the participants regarding the studied and applied
behavioral constraint representation. These questions focused on the personal opinion of the
participants regarding positive (“likes”) and negative (“dislikes”) aspects of the assigned behavioral
constraint approach as well as suggestions for improvement. In particular, the following three
questions were asked:

• What do you like about the behavioral constraint representation approach?

9https://www.r-project.org/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://www.r-project.org/

1:24 C. Czepa and U. Zdun

Table 5. Cliff’s d of the dependent variables correctness and response time, two-tailed with confidence intervals
calculated for α = 0.05 (cf. Cliff [11] and Rogmann [70])

DT
vs.
DG

DT
vs.

DGT

DT
vs.
PSP

DG
vs.

DGT

DG
vs.
PSP

DGT
vs.
PSP

C
or
re
ct
ne

ss

p1 = P(X > Y) 0.5807 0.5898 0.515 0.4966 0.4335 0.4171
p2 = P(X = Y) 0 0.0024 0.0001 0.0013 0 0.0034
p3 = P(X < Y) 0.4193 0.4078 0.4849 0.5021 0.5665 0.5795

d −0.1614 −0.1819 −0.03 0.0055 0.1329 0.1624
sd 0.1599 0.151 0.1521 0.1629 0.16 0.1498
z −1.0089 1.2049 −0.1974 0.0339 0.8309 1.0839

CI low −0.4516 −0.4557 −0.3188 −0.3057 −0.1851 −0.1386
CI hiдh 0.1597 0.1233 0.2639 0.3156 0.4257 0.436

p 0.3177 0.2333 0.8442 0.9731 0.4098 0.2829

R
es
po

ns
e
T
im

e

p1 = P(X > Y) 0.5103 0.5565 0.5551 0.5421 0.5471 0.5006
p2 = P(X = Y) 0 0 0 0 0 0
p3 = P(X < Y) 0.4897 0.4435 0.4449 0.4579 0.4529 0.4994

d −0.0207 −0.113 −0.1101 −0.0841 −0.0942 −0.0011
sd 0.1597 0.1547 0.1521 0.1634 0.1605 0.1513
z −0.1296 −0.7299 −0.7242 −0.5149 −0.5867 −0.0073

CI low −0.3239 −0.399 −0.3919 −0.3875 −0.3917 −0.291
CI hiдh 0.2864 0.1932 0.1905 0.2357 0.2211 0.2889

p 0.8974 0.4685 0.4719 0.6088 0.5598 0.9942

• What do you dislike about the behavioral constraint representation approach?
• How would you improve the behavioral constraint representation approach?

Our analysis of the textual answers of the participants has been inspired by the summative
content analysis approach [40]. Since the majority of answers given by the participants is very
short and in note form, running a full-blown summative content analysis, which usually focuses
on journal manuscripts or specific content in textbooks, is impossible. Nevertheless, it is possible
to use the core idea of the technique, namely the counting of occurrences of specific content and
the interpretation of the context associated with its use. In the following, we present the results of
this analysis:

• 17.5% of all participants (13.8% in DT, 20% in DG, 17.2% in DGT, and 19.4% in PSP) have
shown interest in practical examples and case studies to deepen the knowledge and to grasp
the full potential of their assigned approach, especially when applied in real-world scenarios.

• 16.7% of all participants (20.7% in DT, 8% in DG, 27.6% in DGT, and 9.7% in PSP) stated that
they prefer a more formal definition of the available patterns (and scopes) of the assigned
behavioral constraint representation to alleviate ambiguities that are inherently present in
natural language.

• Three participants (9.7%) of the PSP group and one participant (3.4%) of the DT group reported
issues regarding understanding truth values, especially the difference between temporary
and permanent states, whereas one participant (3.4%) of the DGT group mentioned truth
values positively and another one negatively. Neither positive nor negative aspects regarding
truth values were mentioned by any participant of the DG group.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:25

Table 6. Cliff’s d of Likert scale responses, two-tailed with confidence intervals calculated for α = 0.05 (cf.
Cliff [11] and Rogmann [70])

DT
vs.
DG

DT
vs.

DGT

DT
vs.
PSP

DG
vs.

DGT

DG
vs.
PSP

DGT
vs.
PSP

St
at
em

en
t1

p1 = P(X > Y) 0.3779 0.3424 0.327 0.3255 0.3187 0.3382
p2 = P(X = Y) 0.3007 0.3163 0.287 0.2938 0.2594 0.2658
p3 = P(X < Y) 0.3214 0.3413 0.386 0.3807 0.4219 0.396

d −0.0566 −0.0012 0.059 0.0552 0.1032 0.0578
sd 0.1525 0.1451 0.1438 0.1524 0.1492 0.1451
z −0.3709 −0.0082 0.4099 0.3621 0.6919 0.3987

CI low −0.3443 −0.2802 −0.2223 −0.2419 −0.1919 −0.2255
CI hiдh 0.2409 0.278 0.3311 0.3429 0.3812 0.3322

p 0.7122 0.9935 0.6834 0.7187 0.492 0.6915

St
at
em

en
t2

p1 = P(X > Y) 0.3255 0.2224 0.2047 0.2386 0.2297 0.3203
p2 = P(X = Y) 0.349 0.3507 0.3926 0.3228 0.3509 0.3716
p3 = P(X < Y) 0.3255 0.4269 0.4027 0.4386 0.4194 0.3081

d 0 0.2045 0.198 0.2 0.1897 −0.0122
sd 0.1479 0.1361 0.1302 0.1452 0.1422 0.1386
z 0 1.5028 1.5205 1.3774 1.3338 −0.0883

CI low −0.2846 −0.0732 −0.0673 −0.096 −0.0993 −0.2787
CI hiдh 0.2846 0.4528 0.4372 0.4635 0.4491 0.2559

p 1 0.1385 0.1338 0.1743 0.1878 0.9299

St
at
em

en
t3

p1 = P(X > Y) 0.2621 0.2592 0.2681 0.36 0.3755 0.3604
p2 = P(X = Y) 0.2579 0.2414 0.2569 0.2648 0.2839 0.3281
p3 = P(X < Y) 0.48 0.4994 0.475 0.3752 0.3406 0.3115

d 0.2179 0.2402 0.2069 0.0152 −0.0348 0.0489
sd 0.1486 0.1443 0.1443 0.1543 0.1534 0.1407
z 1.4665 1.6649 1.4336 0.0983 −0.2271 −0.348

CI low −0.0865 −0.057 −0.0873 −0.282 −0.3258 −0.3164
CI hiдh 0.4851 0.4983 0.4679 0.3097 0.2621 0.2257

p 0.1485 0.1015 0.1571 0.9221 0.8212 0.7291

St
at
em

en
t4

p1 = P(X > Y) 0.3103 0.3377 0.2959 0.3517 0.3006 0.2781
p2 = P(X = Y) 0.3338 0.3389 0.3348 0.3642 0.3691 0.3448
p3 = P(X < Y) 0.3559 0.3234 0.3693 0.2841 0.3303 0.3771

d 0.0455 −0.0143 0.0734 −0.0676 0.0297 0.099
sd 0.1485 0.1433 0.1419 0.147 0.1459 0.141
z 0.3065 0.0996 0.5174 −0.4597 0.2034 0.702

CI low −0.2438 −0.2891 −0.2053 −0.3451 −0.2534 −0.1801
CI hiдh 0.3274 0.2627 0.3411 0.2208 0.3081 0.3633

p 0.7605 0.921 0.6069 0.6477 0.8396 0.4855

St
at
em

en
t5

p1 = P(X > Y) 0.3021 0.2354 0.3026 0.2152 0.2852 0.3348
p2 = P(X = Y) 0.4151 0.4269 0.4093 0.4414 0.4232 0.4472
p3 = P(X < Y) 0.2828 0.3377 0.2881 0.3434 0.2916 0.218

d −0.0193 0.1023 −0.0145 0.1283 0.0065 −0.1168
sd 0.1437 0.1358 0.1359 0.1403 0.1405 0.1302
z −0.1344 0.7529 −0.1063 0.9144 0.0459 −0.8969

CI low −0.2949 −0.1674 −0.276 −0.1523 0.2651 −0.3615
CI hiдh 0.2592 0.3577 0.2491 0.3897 0.2771 0.143

p 0.8936 0.4547 0.9156 0.3647 0.9635 0.3735

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 C. Czepa and U. Zdun

• Two participants (6.9%) of the DGT group and one participant (3.4%) of the DT group stated
that they would have wanted access to the learning material during the experiment, because
they had problems memorizing the meaning of the behavioral constraint patterns.

• 40% of the DG group participants reported problems regarding the graphical notation while
8%mentioned positive aspects. Two DG participants mentioned that the exclusive choice and
choice symbols are hard to differentiate. Another participant stated that the not_succession
pattern was difficult to grasp and remember. One participant reported that it was difficult to
remember the order associated with relation patterns. Making use of more symbols rather
than using combinations of symbols was proposed by one participant. The feedback of the
remaining participants was more general in nature (e.g., “syntax is confusing” or “meaning
of signs is hard to understand”). Merely a single participant stated that the shapes used in
the graphical representation are clear and easy-to-read. Another participant mentioned his
personal preference towards graphical approaches in general.

• The share of DGT participants reporting problems with their assigned representation is
24.1%. Similar to the feedback of one DG participant, one participant would prefer using more
shapes for a better differentiation of the patterns. Another participant found the naming of
the patterns unclear. In this regard, another participant suggested to use terms present in
boolean algebra (e.g., “or” instead of “choice”). The rest of the comments are more general
in nature (e.g., “not intuitive”). Two participants (6.9%) mentioned the graphical operators
positively (“I liked the graphic representation, as the graphics contained some semantic
information about the constraint” and “easy to understand representation in form of simple
symbols”).

• 20.7% of the DT participants mentioned negative aspects about their assigned textual repre-
sentation while 10.3% mentioned positive aspects. Like one of the DGT participants, one DT
participant desires clearer naming of the patterns. Another participant mentioned that the
naming of the patterns is appropriate. Interestingly, one participant stated problems regarding
understanding the meaning of the direction of statements (e.g., whether succession(A, B)
means A succeeds B or B succeeds A). Originally, we had assumed that the direction would
be understood by the reading direction implicitly. However, just a single participant reported
this issue, so it is highly questionable whether this is a general issue. Two participant reported
difficulties regarding using the approach due to “a lot of similarities between the constraints”,
which makes them hard to distinguish. Two participants suggested adding a negation operator
to the constraint language to support negations for each of the available patterns. Another
participant liked that there exists a specific pattern for “every case”, but at the same time
criticized that the number of constraints is growing rapidly if the implementation of new
scenarios becomes necessary. One participant liked the function-like style of the approach,
which is familiar to programmers.

• 19.4% of the PSP participants criticized some aspects of their assigned representation while
9.8% mentioned positive aspects. One participant would prefer a “more sophisticated visual-
ization” instead of the textual representation. Another participant was fond of the natural
language approach, but criticized the lack of syntax highlighting in the experiment. We
wanted to present all four tested representations by similar means to avoid bias towards
a specific representation, so syntax highlighting was omitted in the PSP task descriptions
intentionally. In actual implementations of the PSP approach, syntax highlighting or similar
techniques are usually supported (e.g., Czepa et al. [13]). One participant liked the use of
boolean connectors, but would have wanted to see the actual symbols instead of words (e.g.,
∧ for and). A similar comment was made by another participant who suggests “writing in a
more mathematical way”. Another participant would have wanted to see the xor operator

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:27

in use. The difference between the between and after-until scopes was mentioned as
“difficult to understand” by one participant. Another participant mentioned that the scopes
and patterns are clearly understandable.

7 DISCUSSION
7.1 Evaluation of Results and Implications
While the descriptive statistics and the results of the analysis of free text answers appear to be
slightly in favor of the textual approaches, the results of the inference statistics do not indicate any
significant difference between the tested representations. That is, the following null hypotheses
cannot be rejected:

• H0,1 : There is no difference in terms of understandability between the representations.
• H0,2 : There is no difference in terms of perceived learning difficulty between the representa-
tions.

• H0,3 : There is no difference in terms of perceived application difficulty between the represen-
tations.

• H0,4 : There is no difference in terms of personal interest in using the approach between the
representations.

• H0,5 : There is no difference in terms of perceived practical application potential between the
representations.

• H0,6 : There is no difference in terms of perceived improvement potential between the repre-
sentations.

However, it is striking that the achieved correctness is rather low on the average. From a prior
experiment on the understandability of textual behavioral constraint approaches (cf. Czepa &
Zdun [16]), it is evident that higher correctness values (about 70% on the average in PSP) are
achievable if access to learning material and other material (e.g., hand-written notes) is granted
during the experiment session. That is, it appears to be difficult to deduce the meaning of pattern-
based behavioral constraints from their textual and/or graphical representations without additional
support. As additional support was given for none of the groups, we do not think that this aspect
could have influenced the relative outcomes of the experiment. In this regard, it might be possible
that both approaches could benefit from a greater degree of additional support in a similar fashion.
The analysis of the given free text answers regarding positive/negative aspects and suggestions for
improvement with regard to the achievable correctness levels (cf. Section 6) provides additional
evidence. Consequently, there are two angles for improvement, namely the representation itself (i.e.,
finding better graphical and/or textual representations) and the support provided (i.e., supportive
means provided by a behavioral constraint modeling tool).

7.2 Threats to Validity
All known threats that might have an impact on the validity of the results are discussed in this
subsection.

7.2.1 Threats to Internal Validity. Threats to internal validity can be described as unobserved
variables that might have an unwanted influence on an experiment’s result by disturbing the causal
relationship of independent and dependent variables. There exist several threats to the internal
validity of this experiment, which must be discussed:

• History effects refer to events that occur in the environment and change the conditions of
a study. The short duration of the study limits the possibility of changes in environmental
conditions, and we did not observe any such, but we cannot entirely rule out any such effect,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 C. Czepa and U. Zdun

prior to the study taking place. However, in such a case, it would be extremely unlikely that
the scores of one group are more affected than another, because of the random allocation of
participants to groups.

• Maturation effects refer to the impact that time has on an individual. Since the duration of
the experiment was short, maturation effects are considered to be of minor importance, and
we did not observe any such effects.

• Testing effects comprise learning effects and experimental fatigue. Learning effects were
avoided by testing each person only once. Experimental fatigue is concerned with occur-
rences during the experiment that exhaust the participant either physically or mentally. The
participants did not report, and we did not observe, any signs of fatigue.

• Instrumental bias occurs if the measuring instrument (i.e., a physical measuring device or the
actions/assessment of the researcher) changes over time during the experiment. We tried
to avoid instrumental bias by using an experimental design that enables an automated and
standardized processing of the test results.

• Selection bias is present if the experimental groups are unequal before the start of the experi-
ment (e.g., severe differences in relevant experience, age, or gender). Usually, selection bias
is likely to be more threatening in quasi-experimental research. By using an experimental
research design with the fundamental requirement to randomly assignment participants to
the different groups of the experiment, we can avoid selection bias to a large extent. Moreover,
our evaluation of the composition of the groups (regarding age, gender, experience/education
in different dimensions) did not indicate any major differences.

• Experimental mortality is only likely to occur if the experiment lasts for a long time because
the chances for dropouts increase (e.g., participants moving to another geographical location).
Due to the short time frame of this study, experimental mortality was not an issue at all.

• Diffusion of groups occurs if a group of the experiment is contaminated in some way by
another experiment group. We tried to mitigate this threat by asking the participants not to
disclose or discuss anything related to the experiment before the experiment session. Since
the participants share the same social group, and they are interacting outside the research
process as well, we cannot entirely rule out a cross-contamination between the groups.

• Compensatory rivalry is present if participants of a group put in extra effort when they have
the impression that the representation of another group might lead to better results than
their own. This threat is mitigated by insisting on nondisclosure.

• Demoralization could occur if a participant is assigned to a specific group that she/he does
not want to be part of. We did not observe any signs of demoralization such as increased
dropout rates or complaints regarding group allocation.

• Experimenter bias refers to undesired effects on the dependent variables that are unintention-
ally introduced by the researcher. The experiment was designed in a way that limits chances
for this kind of bias. In particular, all participants received a similar training and worked on
the same set of tasks (i.e., only the constraint representation differs). Moreover, the results of
the controlled experiment were processed automatically in a standardized procedure.

• Self-selection bias: The possibility of self-selection bias appears to be negligible as merely
three students participated in alternative activities.

• Impact of preparation: We designed the preparation material in such a way to keep the
necessary effort involved in learning the patterns at a doable level for each participant.
In accordance with Miller’s law [53], at most nine language elements were presented in
each experiment group. Consequently, the learning effort was minimal, which strongly
mitigates the risk of insufficient preparation. Moreover, instead of directly asking the degree
of effort spent on preparation, which might lead to insincere answers (i.e., a participant

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:29

might expect to be punished for not preparing well), we tried to check indirectly by asking
how difficult the studying of the approach was. We assumed that a participant who did not
prepare himself/herself will not have a strong opinion on that topic and tick the neutral item
or abstain. Subsequently, we removed the data of these participants from the data set and
performed hypotheses testing. As in the full data set, no test result was significant. That is,
even if participants who possibly did not prepare themselves are not considered, the results
still apply.

7.2.2 Threats to External Validity. The external validity of a study focuses on its generalizability.
In the following, we discuss potential threats that hinder a generalization. Different types of
generalizations must be considered:

• Generalizations across populations: By statistical inference, we try to make generalizations
from the sample to the immediate population. We do not intend to claim generalizability
across populations without further empirical evidence. This study has a strong focus on
the understandability of the tested representations from the viewpoint of novice software
designers. We acknowledge that expert users who are familiar with Declare and/or Property
Specification Patterns potentially perform better.

• Generalizations across groups: Since the experiment groups focus on specific behavioral
constraint representations, options for variation are limited. Nevertheless, in future stud-
ies, it might be interesting to introduce new or amended representations (e.g., a graphical
representation that is based on DGT, but using just a single relation shape).

• Generalizations across settings/contexts: The participants of this study are students who
enrolled in computer science courses at the University of Vienna, Austria. Apparently, a
majority of the students are Austrian citizens, but there is a large presence of foreign students
as well. Surely, it would be interesting to repeat the experiment in different settings/contexts
to evaluate the generalizability in that regard. For example, repeating the experiment with
English native speakers might lead to different (presumably better) results since English
terms are used in the textual/hybrid constraint representations.

• Generalizations across time: In general, it is hard to predict whether the results of this study
hold over time. For example, if teaching of graphical or textual behavioral constraint ap-
proaches is intensified in the computer science curricula at the University of Vienna, then the
students would bring in more expertise, which likely would have an impact on the results.

7.2.3 Threats to Construct Validity. There are potential threats to the validity of the construct that
must be discussed:

• Inexact definition & Construct confounding: This study has a primary focus on the construct
understandability, which is measured by the dependent variables correctness and response
time. This construct is exact and adequate. Several existing studies use this construct and its
variables (cf. Feigenspan et al. [29] and Hoisl et al. [38]).

• Mono-method bias: To measure the correctness of answers, the evaluation by an automated
method appears to be the most accurate measure as it does not suffer from experimenter bias
or instrumental bias. Keeping time records was the personal responsibility of each participant
due to organizational reasons. The participants were instructed extensively on how to keep
time records, and they were informed that accurate time record keeping will have a positive
impact on the final grading. We also made clear that the overall response time has no influence
on the grading to avoid time stress. We did not detect any irregularities (e.g., overlapping time
frames or long pauses) in those records. Nonetheless, this measuring method leaves room
for measuring errors, and an additional or alternative measuring method (e.g., performing

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:30 C. Czepa and U. Zdun

the experiment with an online tool that handles record keeping) would reduce this threat.
The additional task of keeping accurate time records might have had a negative impact on
performing the actual experiment tasks, but no participant reported any such effect.

• Reducing levels of measurements: Both the correctness and response time are continuous
variables. That is, the levels of measurements are not reduced. The Likert scales (also called
agree-disagree rating scales) used in this study offer 5 answer categories rather than 7 or 11,
because the latter produce data of lower quality according to Revilla et al. [69].

• Group-sensitive factorial structure: In some empirical studies a specific assigned experiment
group might sensitize participants to develop a different view on a construct. Since we did
not ask questions regarding the subjective level of understandability, but tried to measure
the actual level of understandability objectively, this threat appears to not be present at all.
The questionnaire at the end of the question sheet is neither meant nor used to measure the
understandability construct, but used to measure other aspects. Here, we tried to mitigate
this threat by focusing on one-dimensional constructs (i.e., the multi-dimensional construct
perceived difficulty is split up into perceived learning difficulty and perceived application
difficulty).

7.2.4 Threats to Content Validity. Content validity is concerned with the relevance and representa-
tiveness of the elements of a study for the construct that is measured:

• Relevance: All tasks of this study are based on recurring behavioral constraint patterns that are
present in existing graphical and textual behavioral constraint approaches (cf. [24, 25, 61, 80]).

• Representativeness: A representative subset of existing behavioral constraint patterns was used
for designing the tasks of the experiment. In this study we focused on a set of commonly used
binary relations (cf. [24, 25, 61, 80]). Unary constraints are common as well, but we decided to
omit them due to their simplicity. It is also worth noting that some behavioral constraints in
Declare are not covered in the Property Specification Patterns, and vice versa. In particular, the
scopes of PSP are not part of Declare, the chain patterns have a different meaning in Declare
and PSP, and Declare supports additional behavioral constraints (i.e., alternate, negative
relation and choice patterns). Nevertheless, some of the Declare patterns which are not
explicitly covered by PSP can be realized by combinations of Property Specification Patterns.
Others, like the alternate patterns of Declare are not covered by the originally proposed PSP
collection. Naturally, it would have been possible for us to extend both Declare and PSP
with new patterns including new graphical and textual elements, but proposing new pattern
representations was not the goal of this empirical study, so the established as-is state of these
approaches was covered.

7.2.5 Threats to Conclusion Validity. Retaining outliers might be a threat to conclusion validity.
However, all outliers appear to be valid measurements, so deleting them would pose a threat to
conclusion validity as well. We performed a thorough investigation of model assumptions before
applying the most suitable statistical test with the greatest statistical power, given the properties of
the acquired data. That course of action is considered to be extremely beneficial to the conclusion
validity of this study.

8 RELATEDWORK
We are not aware of any existing empirical studies that investigate the differences in understand-
ability of representative graphical and textual behavioral constraint languages in a similar way and
depth as the presented study does.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:31

We also would like to mention that there exists a huge body of studies on understandability
of models that are merely remotely related to our work. For example, a study by Reijers and
Mendling [67] investigates the understandability of classical flow-driven business process models.
Interestingly, professionals could not be distinguished from the students of two participating
universities, and the students of one university performed even better than professionals. However,
since that study considers flow-driven business processes only, the results are hardly transferable
to behavioral constraints that are declarative in nature.
In the following, we focus on studies that are highly related to the presented work, namely

studies that are concerned with the understandability of behavioral constraints.

8.1 Empirical Studies on the Understandability of Behavioral Constraint
Representations in Software Architecture and Software Engineering

There exist only very few studies on analyzing and comparing different behavioral constraint
languages in the field of software architecture and engineering.

An eye-tracking experiment with 28 participants by Sharafi et al. [74] on the understandability
of graphical and textual software requirement models did not reveal any statistically significant
difference in terms of correctness of the approaches, which is in line with the results of our study.
However, software requirement models and behavioral constraints are merely distantly related. The
study also reports that the response times of participants working with the graphical representations
were slower. Interestingly though, the participants preferred the graphical notation.

Czepa et al. [14] compared the understandability of three languages for behavioral software
architecture compliance checking, namely the Natural Language Constraint language (NLC), the
Cause-Effect Constraint language (CEC), and the Temporal Logic Pattern-based Constraint language
(TLC), in a controlled experiment with 190 participants. The NLC language is simply using the
English language for software architecture descriptions. CEC is a high-level structured architectural
description language that abstracts the Event Processing Language [27] and enables nesting of
cause parts, that observe an event stream for a specific event pattern, and effect parts, that can
contain further cause-effect structures and truth value change commands. TLC is a high-level
structured architectural description language that abstracts behavioral patterns. Interestingly,
the statistical inference of this study suggests that there is no difference in understandability of
the tested languages. This could indicate that the high-level abstractions employed bring those
structured languages closer to the understandability of unstructured natural language architecture
descriptions. Moreover, it might also suggest that natural language leaves more room for ambiguity,
which is detrimental for its understanding. Potential limitations of that study are that its tasks are
based on common architectural patterns/styles (i.e., a participant possibly recognizes the meaning
of a constraint more easily by having knowledge of the related architectural pattern) and the
rather small set of involved behavioral constraint patterns (i.e., only very few behavioral constraint
patterns were necessary to represent the architecture descriptions).

Hoisl et al. [38] conducted a controlled experiment on three notations for scenario based model
tests with 20 participants. In particular, they evaluated the understandability of a semi-structured
natural language scenario notation, a diagrammatic scenario notation, and a fully-structured textual
scenario notation. According to the authors, the purely textual semi-structured natural language
scenario notation is recommended for scenario-based model tests, because the participants of this
group were able to solve the given tasks faster and more correctly. That is, the study might indicate
that a textual approach outperforms a graphical one for scenario based model test, an effect that
our study did not discover for behavioral constraints. However, the validity of the experiment is
limited by its sample size and the lack of statistical hypothesis testing.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:32 C. Czepa and U. Zdun

A controlled experiment carried out by Heijstek et al. [37] with 47 participants focused on
finding differences in understanding of textual and graphical software architecture descriptions.
Interestingly, participants who predominantly used textual architecture descriptions performed
significantly better, which suggests that textual architectural descriptions could be superior to
their graphical counterparts. In our study, which has a focus specifically on textual and graphi-
cal behavioral constraints instead of software architecture descriptions, such an effect was not
measurable.

8.2 Empirical Studies on the Understandability of Behavioral Constraint
Representations in Business Process Management

In the field of business process management, there exist studies that evaluate the understandability
of declarative business processes which are composed of a set of behavioral constraint patterns.
These studies are highly related to our work since they investigate the understandability of pattern-
based behavioral constraints in the context of declarative business processes.

Weber et al. [82] carried out a controlled experiment (with 25 and 16 participants) on the impact
of varying the levels of pattern-based behavioral constraints in planning and executing a journey.
In particular, one group was exposed to only 2 behavioral constraints while another had to take
12 behavioral constraints into account. Interestingly, their statistical analysis does not show any
significant difference in understanding. That might indicate that potential users handle varying
constraint numbers well, but there also might not be enough measurable difference between 2
and 12 constraints. It would be interesting to evaluate how users cope with larger numbers of
constraints (e.g., 25, 50, 100) as well. Moreover, the small sample sizes are a threat to validity of this
study.

Zugal et al. [87] investigate the understandability of hierarchies in declarative business processes
in an experiment with 9 participants. The results of their research indicate that hierarchies must be
handled with care. While information hiding and improved pattern recognition are considered to be
positive aspects of hierarchies since the mental effort for understanding a process model is lowered,
the fragmentation of processes by hierarchies might lower overall understandability of the process
model. Another important finding of their study is that users appear to approach declarative process
models in a sequential manner even if the user is definitely not biased by previous experiences
with sequential business process models (e.g., BPMN [59]). They conclude that the abstract nature
of declarative process models does not seem to fit the human way of thinking. Moreover, they
observed that the participants of their study tried to reduce the number of constraints to consider
by putting away sheets that describe irrelevant sub-process or by using the hand to hide parts of
the process model that are irrelevant. The validity of this study is strongly limited by the extremely
small sample size.

Haisjackl et al. [34] investigate the users’ understanding of declarative business process models
that are composed of a set of ten behavioral constraint patterns with 9 participants. The evaluation
seems to be based on the same experimental data as in the work by Zugal et al. [87]. Like in that
work, they point out that users tend to read such models sequentially despite the declarative nature
of the approach. The larger a model, the more often are hidden dependencies overlooked, which
indicates increasing numbers of constraints lower understanding. Moreover, they report that single
constraints are overall well understood, but there seem to be problems with understanding the
precedence constraint. As the authors point out, this kind of confusion could be related to the
graphical arrow-based representation of the constraints where subtle differences decide on the
actual meaning. That is, the arrow could be confused with a sequence flow as present in flow-driven,
sequential business processes. As previously stated for the work by Zugal et al. [87], the validity of
this study is possibly strongly affected by the small sample size.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:33

Haisjackl & Zugal [33] investigated differences between textual and graphical declarative work-
flows using the Declare notation in an empirical study with 9 participants. The evaluation seems
to be based on the same experimental data as in the work by Zugal et al. [87] and Haisjackl et
al. [34]. This study is highly related to our work presented in this article. The authors state that
the results of their study indicate that the graphical representation are advantageous in terms of
perceived understandability, error rate, duration, and mental effort, but this conclusion seems to be
based merely on descriptive statistics (i.e., arithmetic means and counting occurrences). The lack
of hypothesis testing and the small number of participants are severe threats to the validity of this
study.

An approach by De Smedt et al. [21] tries to improve the understandability of declarative business
process models by revealing hidden dependencies. They conduced an experiment with 95 students.
The result suggests that explicitly showing hidden dependencies enables a better understanding of
declarative business process models.
A study by Pichler et al. [64] compares the understandability of imperative and declarative

business process modeling notations. This study indicates that imperative process models are
significantly more understandable than declarative models, but the authors also state that the
participants had more previous experience with imperative process modeling than with declarative
process modeling. Moreover, the sample size (28 participants) is rather small, which is a threat to
validity of this study.

Mendes Cunha et al. [52] try to improve declarative business process modeling by taking the
comments of 4 persons into consideration. The resulting language is based on the same behavioral
constraint patterns, but it proposes different graphical notations. Obviously, the small number of
participants and the lack of evaluation of the proposed alternative graphical elements are serious
threats to validity.

9 CONCLUSION AND FUTUREWORK
9.1 Summary
The results of this controlled experiment study with 116 participants did not reveal any significant
difference in understandability nor in any other tested aspects (i.e., perceived learning difficulty,
perceived application difficulty, personal interest in using the representation, perceived practical
applicability, perceived potential for further improvement of the behavioral constraint representa-
tions) between graphical, textual, and hybrid behavioral constraint representations. Merely the
descriptive statistics and the results of the analysis of free text answers are slightly in favor of
the tested textual behavioral constraint approaches. The achieved correctness is rather low on the
average in all experiment groups. A prior experiment on the understandability of textual behavioral
constraint approaches (cf. Czepa & Zdun [16]) yielded higher correctness values (about 70% on the
average in PSP) when access to learning material and other material (e.g., hand-written notes) is
granted during the experiment session. That is, it appears to be difficult to deduce the meaning of
pattern-based behavioral constraints from their textual and/or graphical representations without
additional support. The analysis of the given free text answers regarding positive/negative aspects
and suggestions for improvement (cf. Section 6) provides additional evidence in that regard.

9.2 Impact
Since there appears to be no significant difference in understandability of textual and graphical
behavioral constraint approaches, the results of this empirical study might indicate that the tested
representations can be used interchangeably. However, a major obstacle in this regard could be the
overall low level of achieved correctness, which must be further investigated. In response to the low

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:34 C. Czepa and U. Zdun

Fig. 20. Alternative response notation stating the temporal order of the involved elements explicitly by labels

level of achieved correctness, this study indicates two angles for further research and improvement
of textual and graphical behavioral constraint representations, namely the representation itself
(i.e., finding better graphical and/or textual representations) and the technology support provided
(i.e., the support provided by a behavioral constraint modeling tool or by analysis, refactoring, and
debugging tools).

Our carefully designed and conducted empirical study can work as a solid foundation for further
empirical evaluations of pattern-based behavioral constraint representations and their future
development.

9.3 Future Work
The experiment could be repeated with different user groups (e.g., industrial practitioners) to gain
further insights in the understandability of the representation from different perspectives. Other
experiments could be run to further investigate the results. Experiments with different symbols
in graphical behavioral constraint representations and variations of the terms used in textual
approaches are also opportunities for future research. For example, a new representation could
be introduced to the current experimental setup that streamlines the hybrid Declare approach
(DGT) by reducing the number of available connector shapes to a single shape, just like relations
in an ontology. For the evaluation of the understandability of interrelated behavioral constraint
collections or the creation process of such, qualitative studies that are based on eye-tracking and
think-aloud protocols [26] would further evolve the body of knowledge. Moreover, the presented
study focuses on the understandability of already given textual and graphical behavioral constraints,
so conducting an experiment on the understandability related to authoring textual and graphical
constraints would be another interesting possibility for future research. In this regard, adequate
tool support is assumed to be a major topic. The results of this experiment indicate that behavioral
constraints in which the order of the involved states is of importance are particularly difficult to
understand, so these elements should receive special attention. To improve the understandability
of these constraints, a behavioral constraint editor could, for example, provide a tooltip with an
animation that illustrates the temporal order of the involved elements (e.g., showing sample traces
with the corresponding truth value state). Also, the textual terms and/or graphical elements of
the representations should be revisited. For example, the response pattern (both in the textual
and/or graphical form) can be easily misunderstood as a strict sequence (e.g., as known from
procedural/imperative modeling languages). Such ambiguities must be avoided to achieve higher
levels of understanding. An alternative textual representation of the response pattern, which might
leave less room for misunderstandings by emphasizing the temporal order, could be A at time
ta requires B at time tb > ta. The corresponding amended Declare notation of the response
pattern is shown in Figure 20. Such amendments can be the starting point for further empirical
evaluations with the goal to improve the understandability of behavioral constraint representations.

ACKNOWLEDGMENTS
This work was partially funded by: FFG (Austrian Research Promotion Agency) project CACAO,
no. 843461; FWF (Austrian Science Fund) project ADDCompliance: I 2885-N33

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:35

REFERENCES
[1] Ahmed Awad, Matthias Weidlich, and Mathias Weske. 2011. Visually specifying compliance rules and explaining

their violations for business processes. Journal of Visual Languages and Computing 22, 1 (2011), 30 – 55. https:
//doi.org/10.1016/j.jvlc.2010.11.002 Special Issue on Visual Languages and Logic.

[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Representation and Mind Series). The MIT
Press.

[3] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal Question Metric Approach. In Encyclopedia
of Software Engineering. Wiley.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2010. Comparing LTL Semantics for Runtime Verification. J.
Log. and Comput. 20, 3 (June 2010), 651–674. https://doi.org/10.1093/logcom/exn075

[5] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime Verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20, 4, Article 14 (Sept. 2011), 64 pages. https://doi.org/10.1145/2000799.2000800

[6] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[7] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti. 2012. Specification patterns from research to industry: A case study
in service-based applications. In Proceedings of the 34th International Conference on Software Engineering (ICSE ’12).
968–976. https://doi.org/10.1109/ICSE.2012.6227125

[8] B. H. C. Cheng and J. M. Atlee. 2007. Research Directions in Requirements Engineering. In Future of Software Engineering
(FOSE ’07). 285–303. https://doi.org/10.1109/FOSE.2007.17

[9] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto
Sebastiani, and Armando Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Proceedings
of the 14th International Conference on Computer Aided Verification (CAV ’02). Springer-Verlag, London, UK, UK, 359–364.
http://dl.acm.org/citation.cfm?id=647771.734431

[10] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic. In Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–71.

[11] N. Cliff. 1993. Dominance statistics: Ordinal Analyses to Answer Ordinal Questions. Psychological Bulletin 114 (1993),
494–509.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and Hongjun Zheng. 2000. Bandera: Extracting
Finite-State Models from Java Source Code. In Proceedings of the 22nd International Conference on Software Engineering
(ICSE ’00). 439–448. https://doi.org/10.1145/337180.337625

[13] Christoph Czepa, Huy Tran, Uwe Zdun, Thanh Tran, Erhard Weiss, and Christoph Ruhsam. 2016. Ontology-Based
Behavioral Constraint Authoring. In 2nd International Workshop on Compliance, Evolution and Security in intra- and
Cross-Organizational Processes (CeSCoP ’16), 20th IEEE International Enterprise Computing Workshops (EDOCW ’16).
http://eprints.cs.univie.ac.at/4754/

[14] Christoph Czepa, Huy Tran, Uwe Zdun, Thanh Tran, Erhard Weiss, and Christoph Ruhsam. 2017. On the Understand-
ability of Semantic Constraints for Behavioral Software Architecture Compliance: A Controlled Experiment. In IEEE
International Conference on Software Architecture (ICSA ’17). http://eprints.cs.univie.ac.at/5059/

[15] Christoph Czepa and Uwe Zdun. 2018. On the Understandability of Graphical and Textual Pattern-Based Behavioral
Constraint Representations [Data set]. https://doi.org/10.5281/zenodo.1209839

[16] Christoph Czepa and Uwe Zdun. 2018. On the Understandability of Temporal Properties Formalized in Linear Temporal
Logic, Property Specification Patterns and Event Processing Language. IEEE Transactions on Software Engineering
(2018), 1–1. https://doi.org/10.1109/TSE.2018.2859926

[17] A. R. da Silva, G. Malafaia, and I. P. P. de Menezes. 2017. Biotools: An R Function to Predict Spatial Gene Diversity via
an individual-based approach. Genetics and Molecular Research 16 (2017).

[18] Giuseppe De Giacomo, Riccardo DeMasellis, Marco Grasso, Fabrizio Maria Maggi, andMarcoMontali. 2014. Monitoring
Business Metaconstraints Based on LTL and LDL for Finite Traces. In Business Process Management, Shazia Sadiq,
Pnina Soffer, and Hagen Völzer (Eds.). Springer International Publishing, Cham, 1–17.

[19] Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. 2014. Reasoning on LTL on Finite Traces: Insensitivity
to Infiniteness. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI ’14). AAAI Press,
1027–1033. http://dl.acm.org/citation.cfm?id=2893873.2894033

[20] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI ’13). AAAI Press, 854–860.
http://dl.acm.org/citation.cfm?id=2540128.2540252

[21] Johannes De Smedt, Jochen De Weerdt, Estefanía Serral, and Jan Vanthienen. 2016. Improving Understandability
of Declarative Process Models by Revealing Hidden Dependencies. In Advanced Information Systems Engineering:
28th International Conference, CAiSE ’16, Ljubljana, Slovenia, June 13-17, 2016. Proceedings, Selmin Nurcan, Pnina
Soffer, Marko Bajec, and Johann Eder (Eds.). Springer International Publishing, Cham, 83–98. https://doi.org/10.1007/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1016/j.jvlc.2010.11.002
https://doi.org/10.1016/j.jvlc.2010.11.002
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1109/ICSE.2012.6227125
https://doi.org/10.1109/FOSE.2007.17
http://dl.acm.org/citation.cfm?id=647771.734431
https://doi.org/10.1145/337180.337625
http://eprints.cs.univie.ac.at/4754/
http://eprints.cs.univie.ac.at/5059/
https://doi.org/10.5281/zenodo.1209839
https://doi.org/10.1109/TSE.2018.2859926
http://dl.acm.org/citation.cfm?id=2893873.2894033
http://dl.acm.org/citation.cfm?id=2540128.2540252
https://doi.org/10.1007/978-3-319-39696-5_6
https://doi.org/10.1007/978-3-319-39696-5_6

1:36 C. Czepa and U. Zdun

978-3-319-39696-5_6
[22] Wei Dou, Domenico Bianculli, and Lionel Briand. 2014. OCLR: A More Expressive, Pattern-Based Temporal Extension

of OCL. InModelling Foundations and Applications, Jordi Cabot and Julia Rubin (Eds.). Springer International Publishing,
Cham, 51–66.

[23] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1998. Property Specification Patterns for Finite-state
Verification. In Proceedings of the Second Workshop on Formal Methods in Software Practice (FMSP ’98). ACM, New York,
NY, USA, 7–15. https://doi.org/10.1145/298595.298598

[24] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in Property Specifications for Finite-state
Verification. In Proceedings of the 21st International Conference on Software Engineering (ICSE ’99). ACM, New York, NY,
USA, 411–420. https://doi.org/10.1145/302405.302672

[25] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou. 2016. Formalizing and applying
compliance patterns for business process compliance. Software & Systems Modeling 15, 1 (2016), 119–146. https:
//doi.org/10.1007/s10270-014-0395-3

[26] K. Anders Ericsson and Herbert A. Simon. 1984. Protocol Analysis; Verbal Reports as Data. Bradford books/MIT Press,
Cambridge, MA.

[27] EsperTech Inc. 2017. EPL Reference. http://www.espertech.com/esper/release-6.0.1/esper-reference/html/event_
patterns.html. Last accessed: January 16, 2019.

[28] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius Bozga, and Saddek Bensalem. 2015. Runtime Verification
of Component-based Systems in the BIP Framework with Formally-proved Sound and Complete Instrumentation.
Softw. Syst. Model. 14, 1 (Feb. 2015), 173–199. https://doi.org/10.1007/s10270-013-0323-y

[29] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze, Raimund Dachselt, Maria Papendieck,
Thomas Leich, and Gunter Saake. 2013. Do background colors improve program comprehension in the #ifdef hell?
Empirical Software Engineering 18, 4 (2013), 699–745.

[30] Kathrin Figl and Jan Recker. 2016. Exploring cognitive style and task-specific preferences for process representations.
Requirements Engineering 21, 1 (01 Mar 2016), 63–85. https://doi.org/10.1007/s00766-014-0210-2

[31] John Fox and Sanford Weisberg. 2011. An R Companion to Applied Regression (second ed.). Sage, Thousand Oaks CA.
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

[32] Stijn Goedertier, Jan Vanthienen, and Filip Caron. 2015. Declarative business process modelling: principles and
modelling languages. Enterprise Information Systems 9, 2 (2015), 161–185. https://doi.org/10.1080/17517575.2013.830340

[33] Cornelia Haisjackl and Stefan Zugal. 2014. Investigating Differences between Graphical and Textual Declarative Process
Models. In Advanced Information Systems Engineering Workshops: CAiSE ’14 International Workshops, Thessaloniki,
Greece, June 16-20, 2014. Proceedings, Lazaros Iliadis, Michael Papazoglou, and Klaus Pohl (Eds.). Springer International
Publishing, Cham, 194–206. https://doi.org/10.1007/978-3-319-07869-4_17

[34] Cornelia Haisjackl, Stefan Zugal, Pnina Soffer, Irit Hadar, Manfred Reichert, Jakob Pinggera, and Barbara Weber. 2013.
Making Sense of Declarative Process Models: Common Strategies and Typical Pitfalls. In Enterprise, Business-Process and
Information Systems Modeling: 14th International Conference, BPMDS ’13, Valencia, Spain, June 17-18, 2013. Proceedings,
Selmin Nurcan, Henderik A. Proper, Pnina Soffer, John Krogstie, Rainer Schmidt, Terry Halpin, and Ilia Bider (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 2–17. https://doi.org/10.1007/978-3-642-38484-4_2

[35] J. Hatcliff, Xinghua Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath. 2003. Cadena: An Integrated Development, Anal-
ysis, and Verification Environment for Component-Based Systems. In Proceedings of the 25th International Conference
on Software Engineering (ICSE ’03). 160–172. https://doi.org/10.1109/ICSE.2003.1201197

[36] Richard Heiberger and Naomi Robbins. 2014. Design of Diverging Stacked Bar Charts for Likert Scales and Other
Applications. Journal of Statistical Software, Articles 57, 5 (2014), 1–32. https://doi.org/10.18637/jss.v057.i05

[37] W. Heijstek, T. Kuhne, and M. R. V. Chaudron. 2011. Experimental Analysis of Textual and Graphical Representations
for Software Architecture Design. In 2011 International Symposium on Empirical Software Engineering and Measurement.
167–176. https://doi.org/10.1109/ESEM.2011.25

[38] B. Hoisl, S. Sobernig, and M. Strembeck. 2014. Comparing Three Notations for Defining Scenario-Based Model Tests:
A Controlled Experiment. In QUATIC’14. 95–104.

[39] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Transactions on Software Engineering 23, 5 (May 1997),
279–295. https://doi.org/10.1109/32.588521

[40] Hsiu-Fang Hsieh and Sarah E. Shannon. 2005. Three Approaches to Qualitative Content Analysis. Qualitative Health
Research 15, 9 (2005), 1277–1288. https://doi.org/10.1177/1049732305276687

[41] Jason Bryer, Kimberly Speerschneider. 2016. likert: Analysis and Visualization Likert Items. https://CRAN.R-project.
org/package=likert. Last accessed: January 16, 2019.

[42] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. 2008. Reporting Experiments in Software Engineering. In
Guide to Advanced Empirical Software Engineering, Forrest Shull, Janice Singer, and Dag I. K. Sjøberg (Eds.). Springer
London, London, 201–228. https://doi.org/10.1007/978-1-84800-044-5_8

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-39696-5_6
https://doi.org/10.1007/978-3-319-39696-5_6
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/s10270-014-0395-3
https://doi.org/10.1007/s10270-014-0395-3
http://www.espertech.com/esper/release-6.0.1/esper-reference/html/event_patterns.html
http://www.espertech.com/esper/release-6.0.1/esper-reference/html/event_patterns.html
https://doi.org/10.1007/s10270-013-0323-y
https://doi.org/10.1007/s00766-014-0210-2
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://doi.org/10.1080/17517575.2013.830340
https://doi.org/10.1007/978-3-319-07869-4_17
https://doi.org/10.1007/978-3-642-38484-4_2
https://doi.org/10.1109/ICSE.2003.1201197
https://doi.org/10.18637/jss.v057.i05
https://doi.org/10.1109/ESEM.2011.25
https://doi.org/10.1109/32.588521
https://doi.org/10.1177/1049732305276687
https://CRAN.R-project.org/package=likert
https://CRAN.R-project.org/package=likert
https://doi.org/10.1007/978-1-84800-044-5_8

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:37

[43] Yogi Joshi, Guy Martin Tchamgoue, and Sebastian Fischmeister. 2017. Runtime Verification of LTL on Lossy Traces.
In Proceedings of the Symposium on Applied Computing (SAC ’17). ACM, New York, NY, USA, 1379–1386. https:
//doi.org/10.1145/3019612.3019827

[44] Natalia Juristo and Ana M. Moreno. 2010. Basics of Software Engineering Experimentation (1st ed.). Springer.
[45] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stuart Charters, Shirley Gibbs,

and Amnart Pohthong. 2016. Robust Statistical Methods for Empirical Software Engineering. Empirical Software
Engineering (2016), 1–52.

[46] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones, David C. Hoaglin, Khaled El
Emam, and Jarrett Rosenberg. 2002. Preliminary Guidelines for Empirical Research in Software Engineering. IEEE
Transactions on Software Engineering 28, 8 (Aug. 2002), 721–734. https://doi.org/10.1109/TSE.2002.1027796

[47] Robert Kowalski and Marek Sergot. 1986. A Logic-Based Calculus of Events. New Generation Computing 4, 1 (01 Mar
1986), 67–95. https://doi.org/10.1007/BF03037383

[48] Thomas Krismayer, Rick Rabiser, and Paul Grünbacher. 2017. Mining Constraints for Event-based Monitoring in
Systems of Systems. In Proceedings of the 32nd International Conference on Automated Software Engineering (ASE ’17).
IEEE Press, Piscataway, NJ, USA, 826–831.

[49] Zheng Li, Jun Han, and Yan Jin. 2005. Pattern-Based Specification and Validation of Web Services Interaction Properties.
In Service-Oriented Computing (ICSOC ’05), Boualem Benatallah, Fabio Casati, and Paolo Traverso (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 73–86.

[50] Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and Peter Dadam. 2011. Monitoring Business Process Compliance
Using Compliance Rule Graphs. In On the Move to Meaningful Internet Systems (OTM ’11), Robert Meersman, Tharam
Dillon, Pilar Herrero, Akhil Kumar, Manfred Reichert, Li Qing, Beng-Chin Ooi, Ernesto Damiani, Douglas C. Schmidt,
Jules White, Manfred Hauswirth, Pascal Hitzler, and Mukesh Mohania (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 82–99.

[51] Fabrizio Maria Maggi, Michael Westergaard, Marco Montali, and Wil M. P. van der Aalst. 2012. Runtime Verification of
LTL-Based Declarative Process Models. In Runtime Verification, Sarfraz Khurshid and Koushik Sen (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 131–146.

[52] Lilian Mendes Cunha, Claudia Cappelli, and Flávia Maria Santoro. 2017. Semiotic Engineering to Define a Declarative
Citizen Language. In Human Interface and the Management of Information: Supporting Learning, Decision-Making
and Collaboration: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017,
Proceedings, Part II, Sakae Yamamoto (Ed.). Springer International Publishing, Cham, 503–515. https://doi.org/10.1007/
978-3-319-58524-6_40

[53] George Miller. 1956. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information. , 81–97 pages.

[54] Marco Montali. 2010. The ConDec Language. In Specification and Verification of Declarative Open Interaction
Models: A Logic-Based Approach. Springer Berlin Heidelberg, Berlin, Heidelberg, 47–75. https://doi.org/10.1007/
978-3-642-14538-4_3

[55] Marco Montali, Fabrizio M. Maggi, Federico Chesani, Paola Mello, and Wil M. P. van der Aalst. 2014. Monitoring
Business Constraints with the Event Calculus. ACM Trans. Intell. Syst. Technol. 5, 1, Article 17 (Jan. 2014), 30 pages.
https://doi.org/10.1145/2542182.2542199

[56] Jeremy Morse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. 2015. Model Checking LTL Properties over ANSI-C
Programs with Bounded Traces. Softw. Syst. Model. 14, 1 (Feb. 2015), 65–81. https://doi.org/10.1007/s10270-013-0366-0

[57] Babak Naimi, Nicholas a.s. Hamm, Thomas A. Groen, Andrew K. Skidmore, and Albertus G. Toxopeus. 2014. Where is
positional uncertainty a problem for species distribution modelling. Ecography 37 (2014), 191–203. https://doi.org/10.
1111/j.1600-0587.2013.00205.x

[58] Kioumars Namiri and Nenad Stojanovic. 2007. Using Control Patterns in Business Processes Compliance. In Web
Information Systems Engineering – WISE ’07 Workshops, Mathias Weske, Mohand-Saïd Hacid, and Claude Godart (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 178–190.

[59] OMG. 2011. BPMN 2.0. http://www.omg.org/spec/BPMN/2.0/PDF. Last accessed: January 16, 2019.
[60] Maja Pešić, Dragan Bošnački, and Wil M. P. van der Aalst. 2010. Enacting Declarative Languages Using LTL: Avoiding

Errors and Improving Performance. In Model Checking Software, Jaco van de Pol and Michael Weber (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 146–161.

[61] Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. 2007. DECLARE: Full Support for Loosely-Structured
Processes. In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC ’07).
IEEE Computer Society, Washington, DC, USA, 287–. http://dl.acm.org/citation.cfm?id=1317532.1318056

[62] M. Pesic and W. M. P. van der Aalst. 2006. A Declarative Approach for Flexible Business Processes Management. In
Business Process Management Workshops, Johann Eder and Schahram Dustdar (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 169–180.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/978-3-319-58524-6_40
https://doi.org/10.1007/978-3-319-58524-6_40
https://doi.org/10.1007/978-3-642-14538-4_3
https://doi.org/10.1007/978-3-642-14538-4_3
https://doi.org/10.1145/2542182.2542199
https://doi.org/10.1007/s10270-013-0366-0
https://doi.org/10.1111/j.1600-0587.2013.00205.x
https://doi.org/10.1111/j.1600-0587.2013.00205.x
http://www.omg.org/spec/BPMN/2.0/PDF
http://dl.acm.org/citation.cfm?id=1317532.1318056

1:38 C. Czepa and U. Zdun

[63] Peter Filzmoser and Moritz Gschwandtner. 2017. mvoutlier: Multivariate Outlier Detection Based on Robust Methods.
https://CRAN.R-project.org/package=mvoutlier. Last accessed: January 16, 2019.

[64] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and Hajo A. Reijers. 2012. Imperative versus
Declarative Process Modeling Languages: An Empirical Investigation. In Business Process Management Workshops:
BPM ’11 International Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part I, Florian
Daniel, Kamel Barkaoui, and Schahram Dustdar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 383–394.
https://doi.org/10.1007/978-3-642-28108-2_37

[65] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (SFCS ’77). IEEE Computer Society, Washington, DC, USA, 46–57. https://doi.org/10.1109/SFCS.1977.
32

[66] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski. 2012. Automotive Behavioral Requirements
Expressed in a Specification Pattern System: A Case Study at BOSCH. Requir. Eng. 17, 1 (March 2012), 19–33.
https://doi.org/10.1007/s00766-011-0145-9

[67] H. A. Reijers and J. Mendling. 2011. A Study Into the Factors That Influence the Understandability of Business Process
Models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41, 3 (May 2011), 449–462.
https://doi.org/10.1109/TSMCA.2010.2087017

[68] William Revelle. 2017. psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern
University, Evanston, Illinois. https://CRAN.R-project.org/package=psych R package version 1.7.5.

[69] Melanie A. Revilla, Willem E. Saris, and Jon A. Krosnick. 2014. Choosing the Number of Categories in Agree-Disagree
Scales. Sociological Methods & Research 43, 1 (2014), 73–97. https://doi.org/10.1177/0049124113509605

[70] J. J. Rogmann. 2013. Ordinal Dominance Statistics (orddom): An R Project for Statistical Computing package to
compute ordinal, nonparametric alternatives to mean comparison (Version 3.1). Available online from the CRAN
website http://cran.r-project.org/.

[71] Marcella Rovani, Fabrizio M. Maggi, Massimiliano de Leoni, and Wil M.P. van der Aalst. 2015. Declarative Process
Mining in Healthcare. Expert Syst. Appl. 42, 23 (Dec. 2015), 9236–9251. https://doi.org/10.1016/j.eswa.2015.07.040

[72] Kristin Y. Rozier. 2011. Survey: Linear Temporal Logic Symbolic Model Checking. Comput. Sci. Rev. 5, 2 (May 2011),
163–203. https://doi.org/10.1016/j.cosrev.2010.06.002

[73] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil van der Aalst. 2008. Process Flexibility: A
Survey of Contemporary Approaches. In Advances in Enterprise Engineering I, Jan L. G. Dietz, Antonia Albani, and
Joseph Barjis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–30.

[74] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y. G. Guéhéneuc. 2013. An empirical study on the efficiency of
graphical vs. textual representations in requirements comprehension. In 21st International Conference on Program
Comprehension (ICPC ’13). 33–42. https://doi.org/10.1109/ICPC.2013.6613831

[75] Slawomir Jarek. 2012. mvnormtest: Normality test for multivariate variables. https://CRAN.R-project.org/package=
mvnormtest. Last accessed: January 16, 2019.

[76] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. 2002. PROPEL: An Approach Supporting
Property Elucidation. In Proceedings of the 24th International Conference on Software Engineering (ICSE ’02). ACM, New
York, NY, USA, 11–21. https://doi.org/10.1145/581339.581345

[77] Thanh Tran, ErhardWeiss, Alexander Adensamer, Christoph Ruhsam, Christoph Czepa, Huy Tran, and Uwe Zdun. 2016.
An Ontology-Based Approach for Defining Compliance Rules by Knowledge Workers in Adaptive Case Management.
In 5th International Workshop on Adaptive Case Management and other Non-workflow Approaches to BPM (AdaptiveCM
’16), 20th IEEE International Enterprise Computing Workshops (EDOCW ’16). http://eprints.cs.univie.ac.at/4753/

[78] Thanh Tran, Erhard Weiss, Christoph Ruhsam, Christoph Czepa, Huy Tran, and Uwe Zdun. 2015. Embracing Process
Compliance and Flexibility through Behavioral Consistency Checking in ACM: A Repair Service Management Case. In
4th International Workshop on Adaptive Case Management and other Non-workflow Approaches to BPM (AdaptiveCM ’15)
(Business Process Management Workshops 2015). http://eprints.cs.univie.ac.at/4409/

[79] Thanh Tran, Erhard Weiss, Christoph Ruhsam, Christoph Czepa, Huy Tran, and Uwe Zdun. 2015. Enabling Flexibility
of Business Processes by Compliance Rules: A Case Study from the Insurance Industry. In 13th International Conference
on Business Process Management (BPM ’15). http://eprints.cs.univie.ac.at/4399/

[80] W. M. P. van der Aalst and M. Pesic. 2006. DecSerFlow: Towards a Truly Declarative Service Flow Language. In Web
Services and Formal Methods: Third International Workshop, WS-FM ’06, Vienna, Austria, September 8-9, 2006 Proceedings,
Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–23.
https://doi.org/10.1007/11841197_1

[81] Wil M. P. van der Aalst, Michael Westergaard, and Hajo A. Reijers. 2013. Beautiful Workflows: A Matter of Taste?
In The Beauty of Functional Code: Essays Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday, Peter
Achten and Pieter Koopman (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 211–233. https://doi.org/10.1007/
978-3-642-40355-2_15

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://CRAN.R-project.org/package=mvoutlier
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/s00766-011-0145-9
https://doi.org/10.1109/TSMCA.2010.2087017
https://CRAN.R-project.org/package=psych
https://doi.org/10.1177/0049124113509605
http://cran.r-project.org/
https://doi.org/10.1016/j.eswa.2015.07.040
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1109/ICPC.2013.6613831
https://CRAN.R-project.org/package=mvnormtest
https://CRAN.R-project.org/package=mvnormtest
https://doi.org/10.1145/581339.581345
http://eprints.cs.univie.ac.at/4753/
http://eprints.cs.univie.ac.at/4409/
http://eprints.cs.univie.ac.at/4399/
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/978-3-642-40355-2_15
https://doi.org/10.1007/978-3-642-40355-2_15

Understandability of Graphical/Textual Pattern-Based Behavioral Constraints 1:39

[82] Barbara Weber, Hajo A. Reijers, Stefan Zugal, and Werner Wild. 2009. The Declarative Approach to Business Process
Execution: An Empirical Test. In Advanced Information Systems Engineering: 21st International Conference, CAiSE ’09,
Amsterdam, The Netherlands, June 8-12, 2009. Proceedings, Pascal van Eck, Jaap Gordijn, and Roel Wieringa (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 470–485. https://doi.org/10.1007/978-3-642-02144-2_37

[83] Hadley Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org
[84] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and Anders Wesslén. 2000. Experimenta-

tion in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell, MA, USA.
[85] Peter Y. H. Wong and Jeremy Gibbons. 2009. Property Specifications for Workflow Modelling. In Integrated Formal

Methods, Michael Leuschel and Heike Wehrheim (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 56–71.
[86] Jian Yu, Tan Phan Manh, Jun Han, Yan Jin, Yanbo Han, and Jianwu Wang. 2006. Pattern Based Property Specification

and Verification for Service Composition. In Web Information Systems – WISE ’06: 7th International Conference on
Web Information Systems Engineering, Wuhan, China, October 23-26, 2006. Proceedings, Karl Aberer, Zhiyong Peng,
Elke A. Rundensteiner, Yanchun Zhang, and Xuhui Li (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 156–168.
https://doi.org/10.1007/11912873_18

[87] Stefan Zugal, Pnina Soffer, Cornelia Haisjackl, Jakob Pinggera, Manfred Reichert, and BarbaraWeber. 2015. Investigating
expressiveness and understandability of hierarchy in declarative business process models. Software & Systems Modeling
14, 3 (01 Jul 2015), 1081–1103. https://doi.org/10.1007/s10270-013-0356-2

Received ; revised ; accepted

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1007/978-3-642-02144-2_37
http://ggplot2.org
https://doi.org/10.1007/11912873_18
https://doi.org/10.1007/s10270-013-0356-2

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Guidelines

	2 Background on Pattern-Based Behavioral Constraint Representations
	2.1 Property Specification Patterns
	2.2 Declare

	3 Experiment Planning
	3.1 Goals
	3.2 Experimental Units
	3.3 Experimental Material & Tasks
	3.4 Hypotheses, Parameters, and Variables
	3.5 Experiment Design
	3.6 Procedure

	4 Analysis
	4.1 Data Set Preparation
	4.2 Analysis of Previous Knowledge, Experience and Other Features of Participants
	4.3 Descriptive Statistics of Dependent Variables

	5 Statistical Inference
	6 Analysis of Free Text Answers
	7 Discussion
	7.1 Evaluation of Results and Implications
	7.2 Threats to Validity

	8 Related Work
	8.1 Empirical Studies on the Understandability of Behavioral Constraint Representations in Software Architecture and Software Engineering
	8.2 Empirical Studies on the Understandability of Behavioral Constraint Representations in Business Process Management

	9 Conclusion and Future Work
	9.1 Summary
	9.2 Impact
	9.3 Future Work

	Acknowledgments
	References

