
Detecting and Identifying Data Drifts in Process
Event Streams Based on Process Histories

Florian Stertz, Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science, Vienna, Austria
{firstname.lastname}@univie.ac.at

Abstract. Volatile environments force companies to adapt their pro-
cesses, leading to so called concept drifts during run-time. Concept drifts
do not only affect the control flow, but also process data. An example are
manufacturing processes where a multitude of machining parameters are
necessary to drive the production and might be subject to change due to
e.g., machine errors. Detecting such data drifts immediately can help to
trigger exception handling in time and to avoid gradual deterioration of
the process execution quality. This paper provides online algorithms for
concept drift detection in process data employing the concept of process
histories. The feasibility of the algorithms is shown based on a prototyp-
ical implementation and the analysis of a real-world data set from the
manufacturing domain.

Keywords: Process technology, Online process mining, Concept Drifts

1 Introduction

Flexibility and change are still among the most pressing challenges for processes
[12]. This holds particularly true for data-driven process executions in volatile en-
vironments such as manufacturing processes [11]. Manufacturing processes con-
trol and are controlled by a multitude of data, e.g., machining parameters and
sensor data that constantly monitor the state of the process and the machines.
Changes in these parameters are common due to, for example, environmental
changes or errors, and can be of tremendous importance for the quality of the
process and the product. Similar requirements hold for patient treatments where
shifts in vital parameters have to be detected immediately. Hence it is of great
importance to be able to detect changes in the data attributes of processes,
specifically during run-time, i.e., based on process event streams.

This necessitates making a next step in detecting and evaluating so called
concept drifts [6]. So far concept drift refers to changes in the control flow of
the process that are discovered based on process execution logs. In [14], we
have provided algorithms for detecting and representing concept drifts in control
flow from event streams. This work aims at detecting changes in process data,
called data drift in the following, from process event streams at run-time. This
is necessary as detecting data drifts from process execution logs ex-post might
be too late in order to take necessary actions in many cases.

"The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-21297-1_21."

Generally, data drifts can be categorised following the same guidelines gath-
ered from [6]: data drifts can have recurring effects as well as incremental effects
or just reflect sudden changes in the business process logic. As said before, data
drifts are also to be detected during run-time and not ex post.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: Transport

time: 17-02-1990
resource: Driver

speed: 100

Fig. 1. Process model with data attributes of event Transportation

Figure 1 shows a process example from the logistics domain. A product is
picked up by a delivery service, transported and delivered to the customer. The
data attributes for the event transportation are timestamp, name of the event,
resource that is executing this event, and average speed. Suddenly this attribute
of newer events changes as the driver is now driving significantly slower on aver-
age. The reason for this can be manifold, like a construction site on the road, or
even a construction site on a different road, which causes the normal route to be
jammed. The control flow of this process is not changed, but the data attributes
show a drift in the execution of the process, a data drift. Detecting such drifts
early helps tremendously in finding errors and bottlenecks that suddenly occur.
A data drift could also reflect the natural evolution of a process, e.g, instead of
only doctors, nurses administer drugs as well, due to a legislation change. This
would be reflected in a new organisational role for this event.

Similarly to control flow drifts [6], data drifts can have different effects, i.e.,
recurring as well as incremental effects or they just reflect sudden changes in
the business process logic. Moreover, data drifts must be detected during run-
time and not ex post for many application domains where immediate action
is required. Finally, data-intense processes are often emitting a huge amount
of events in high frequency. All these challenges will be tackled along the fol-
lowing research questions: RQ1 How to detect data drifts from process event
streams online, i,e., during run-time? and RQ2 Which types of data drifts can
be identified from event streams? How to define and identify them?

Note that the problem is two-fold as reflected by the research questions: In
RQ1 it is detected that a data drift has just happened. RQ2 and RQ3 aim at iden-
tifying the type of the data drift, e.g., recurring. For addressing RQ1, the already
established concept of process histories [14], is extended to store informa-
tion on process data attributes and to allow the detection of data drifts. These
drifts are identified using outlier detection on the values of a data attribute. The
approach can independent of the contol flow of the process if instead of a model,
only event attribute pairs are saved. This would yield the disadantage of not
seeing the data drifts as the evolution of a process without the process history.
RQ2 yields a formal definition for the data drift types. RQ3 is tackled by an
algorithm that determines the type of a data drift based on process histories.

Summarizing, this paper provides definitions for extended process histories and
data drifts as well as two algorithms. One of them synthesizes the extended pro-
cess history in order to detect the data drift and the other one determines its
type. The definitions and algorithms form the conceptual artefacts of this paper.
They are evaluated through a prototypical implementation and application to a
real-world data set from the manufacturing domain.

The paper is structured into the following sections. Section 2 provides fun-
damentals. In Sect. 3 the definition of data drift types and two new algorithms
are presented. This section is followed by the evaluation in Sect. 4. In Sect. ??,
related work is discussed and an outlook and summary are provided in Sect. 5.

2 Fundamentals and Related Work

We recap the fundamentals on process mining and event streams, especially
events containing data attributes using related work. Process histories, previ-
ously defined in [14], are extended to comprehend viable data attributes into the
process history and to detect new types of drift, so called data drifts.

Process mining covers three tasks [3]: process discovery, the mining of a
process model based on a process execution log, process conformance checking,
which calculates the fitness of a process instance to a process model, and process
enhancement, which allows to improve already discovered models. A process
execution log consists of a log root node. A log may contain an arbitrary number
of process instances, so called traces and these traces have an arbitrary number
of activities, so called events. Process execution logs use the XES format [1].

The main contribution of this work focuses on events and their data at-
tributes. Common attributes would be the point of time when an event has
been executed, a organisational resource that has executed the event, or other
arbitrary data attributes, e.g., the cost of an activity.

Process mining is usually applied ex post. This means that process models are
discovered offline after their execution and storage in a process execution log, like
the α-miner [10], which transfroms a directly follows translation[15] out of the
log into a Petri Net. To negate this disadvantage, so called online process mining
algorithms [15,14] have been developed. The main difference is the input data.
While the offline algorithms use a process execution log file, online algorithms
use an event stream as input.

An event stream represents a continuous flow of sequentially processes events
and can be used to discover process models [7,15] as well to synthesise process
histories [14]. A process history contains every viable business process model,
that has been detected using an event stream. A viable model is defined, if
it fits the currently relevant traces significantly better than the old model. To
calculate the viability of process models, conformance checking techniques are
applied. So far, only control flow drifts are captured in a process history, in fact
data attributes are rarely considered except some exceptions like the decision
mining algorithm[13]. In order to enable the detection of data drifts, we define
the data-extended process history as follows.

Definition 1 (Data-extended Process History). Let P be a process and
ES the corresponding process event stream. A data-extended process history
HP :=< M0,M1, ...,Mn−1,Mn, .. > is a list of viable process models Mn, n ∈ N
that have been discovered for P from ES with Mn being the current model for
P . M ∈ HP is defined as

M :=< E,< (e0, A
c
0), . . . , (ek, A

c
k) >>, ei ∈ E with

– E ⊆ ES is the set of all events in M;
– ei ∈ E : ei = (lei , Ai), i.e., an event stores its label lei and the set of data

attributes Ai;
– For ei, A

c
i ⊆ Ai denotes the sub set of attributes from Ai that have caused

the data drift.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

timestamp: [arbitrary]
resource: [Driver,100%]
speed: [90,110]

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

timestamp: [arbitrary]
resource: [Driver,100%]
speed: [20,80]

Mn

Mn-1

Fig. 2. Process History showing a data drift in the attribute speed.

Figure 2 shows the extended process history for the example of Fig. 1.
The control flow of the models Mn and Mn−1 is not changed, but still a new
model has been detected because of a data drift in the event Transport. As
can be seen, the lower bound for the average speed in Mn−1 equals 90 and
the upper bound equals 110. A number of outliers have been detected, e.g,
40, 40, 40, 40, 50, 50, 50, 60, 60, 60, 60, 50, 50, and 50. This results in the new lower
bound 20 and the upper bound 80. The data extension does not interrupt the
detection of control flow drifts as presented in [14]. The process history is used
in Alg. 1 in Sect. 3 to detect data drifts and append new process models that
show no difference at the control flow, but at the data level.

For the algorithm the data structure trace map is used. A trace map repre-
sents key value pairs as a hash-map. Hereby, the trace id, e.g., “Process instance
1” is used as a key. Using such unique identifiers bears advantages regarding
the look up time of certain values. The corresponding value would be the trace,
that has been detected in the event stream. In addition, the data attributes are
now stored as well for each event in the trace map. In the following algorithms,
this map is synthesised using an event stream. This stream has the advantage
that every time an event is detected, it is processed immediately, so all the data
elements of this event will be saved in the trace map. To detect the currently
relevant traces in an event stream, the sliding window approach is used. This

means that only k traces are considered for the detection of drifts. If a new trace
is detected and there are already k traces in the trace map, the oldest trace is
removed and the new trace is stored.

Concept/Data Drifts: [5] differentiates four types of concept drifts at con-

trol flow level. 1 are incremental drifts, which consist of small changes to the

business process model, like a new event or a removed event. 2 are recurring
drifts, which show typical seasonal effects, like in a hotel for example. The busi-
ness process logic differs from winter to summer and alternates back to winter.

3 are gradual drifts, that represent a change in the business process logic,

where process instances of the old logic are still being executed. 4 are sudden

drifts, which are the direct opposite to 3 , i.e., no process instances of the old
logic are still being executed.

A concept drift cannot be a sudden drift and a gradual drift at the same time.
All other combinations like a sudden recurring incremental drift, are possible.
These concept drifts at the control flow level can also be defined and detected
at the data level, which is explained in detail in Sect. 3. Concept drifts on the
data level are called data drifts in this work.

The concept of process histories (cf. Def. 1) enables the detection of all four
types of data drifts and of the point in time when they occurred in the process
history, which is explained in the next section.

3 Detecting and Identifying Data Drifts

In this section, the synthesis of data-extended process histories as basis for de-
tecting and identifying data drifts is elaborated.

3.1 Detecting Data Drifts

Assume a data-extended process history HP =< M0, ...,Mn > as defined in
Def. 1 with most current process model Mn and the corresponding trace map.
Following [14] the core idea of detecting drifts is to synthesize a new viable
process model Mn+1 in the data-extended process history in case changes to
the data attributes have happened. The difference between Mn and Mn+1 yields
the data drift and its type. As basis, for each new event in the stream, the
data attributes are checked for changes. In this work, changes in data attributes
are detected based on outlier detection in the data attribute values. For this
statistical methods will be used. However, it is not feasible to compare every
new event to all previous events in all traces as this might be too complex and
might lead to misleading results in terms of the drifts. Imagine that a change
happened in one event and later the inverse change occurs. Considering all traces
this change would not be detected as a drift. Hence, it is feasible to restrict the
set of considered events and traces. In [14], the idea of using a sliding window
on the traces has been proven promising and hence this concept will be applied
for the synthesis of data-extended process histories in the following as well.

Algorithm 1 implements the core ideas of using a sliding window on the
traces and outlier detection on the data attributes. As input an event stream,
ES, a window limit k and the thresholds φ and κ are required. The thresholds
are described in detail in the following paragraphs. The algorithm is used while
synthesising a process history. A data drift is detected after the detection of a
control flow drift; algorithms for detecting control flow drifts are provided in,
e.g., [14]. At the beginning of Alg. 1, process history HP is an empty list and
does not contain any process models. Also the trace map which is used in the
detection of data drifts does not contain any items in the beginning.

The sliding window technique, allows to identify currently significant traces
for the detection of new viable models, where k is the maximal number of traces
stored in the trace map. The data extension uses the same window for detecting
drifts in the data elements. Since outliers shall be detected, a certain amount of
values for a specific data element, respectively a certain number of an events,
needs to be detected for statistical analysis. The minimum number of events,
κ, is user defined and a value between 0 and k, since it is, except for a loop,
impossible to have more events stored, than there are traces in the trace map.

After the event has been stored in the trace map, the algorithm tries to detect
a data drift. A whole new range of drift types is possible if a concept drift and a
data drift occur simultaneously, which require a definition and an algorithm to
be detected. This approach is beyond the scope of this paper.

If the process history contains at least one model, a copy of the current model
and its events with attributes is created. At the start the list of data drifts

is an empty list and contains pairs of the drifting attribute and its corresponding
event. If the current model of the process history contains the currently processed
event, an iteration over the data attributes of this event starts. In this iteration,
a denotes a data attribute of currently processed event e. The next expression
checks, if a is an outlier to e of the current model.

For the outlier detection following methods are used. If the data attribute a
contains continuous data, the data could be transformed into a normal distri-
bution [8] and a range is calculated. We are using the box plot approach, since
it is very distribution independent. The whiskers, here used as lower and upper
bounds of limits for outlier detection, are placed at 1.5 times of the interquartile
range below the first quartile and 1.5 times of the interquartile range above the
third quartile. The implementation currently only supports continuous data. If
the data attribute a does not contain continuous data, we use the likelihood. If
for example, only 3 equally common values have been detected in the last model
for this attribute in 50 events, and a new value occurs, its likelihood is lower than
all of the known values. On the other hand, if there are 50 different values for
one attribute in 50 events, it could be deduced that this attribute is arbitrary.
A user input, defining the maximum distance between the new likelihood and
the average likehood of choices, is used as threshold, to detect outliers for this.
If this attribute is not in the last known model for event e, the outlier function
automatically returns true.

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...name: [Transport ,100%]

time: [arbitrary]
resource: [Driver,100%]
speed: [90,110]

Pick
Up

Attributes
...

Trans-
port

Pick
Up

Pick
Up

Trans-
port

Trans-
port

Attributes
...

Attributes
...

Attributes
name: Transport
time: 17-02-1990
resource: Driver
speed: 50

Attributes
name: Transport
time: 18-02-1990
resource: Driver
speed: 40

Attributes
name: Transport
time: 19-02-1990
resource: Driver
speed: 60

Event-
stream

New Interval: [30.0,70.0]

Pick
Up

Trans-
port Deliver

AttributesAttributes Attributes
... ...

name: [Transport ,100%]
time: [arbitrary]
resource: [Driver,100%]
speed: [30.0,70.0]

Mn

t1 t2 t3 t2 t3 t1

Mn-1

Fig. 3. Synthesising a process history with κ = 1 and φ = 1

In the next step an empty list list a is created and the variable as is ini-
tialised with 0. This variable counts how often event e is found in the trace map
containing a. The algorithm searches every trace in the trace map. If an event is
found that equals e and also has the same attribute a as an outlier, this attribute
is added to the list.

If the number of occurrences for attribute a in the trace map (as) is smaller
than κ, a data drift has been detected. Apparently this data attribute is not
used often enough to retrieve significant information and is removed from the
new model. The pair e,a is appended to the list of data drifts

Otherwise, the new range or likelihoods will be calculated using only the
information of outlying attribute values. It is then counted how often an attribute
of the trace map fits the new properties and is divided by the number of events e.
This yields a score value, which represents the percentage of fitting attributes for
the new properties. If this score is greater or equal than φ, the new properties are
added to the new model and the pair e,a is appended to the list of data drifts.
The threshold φ is in [0,1], where 0 would be everything and 1 would be only
considering scores, where 100% of the attributes match the new properties as a
data drift. Afterwards, Alg. 2 is executed, to detect the type of the data drift.

Figure 3, shows how an outlier is detected for the running example Fig. 1
and how and when a new model is appended. The range from 90 to 110 has
been detected earlier. In the event stream three new traces are occuring, each
of them having an outlier in the event Transport. With a sliding window size
of 3, only outliers are in consideration for new models. Each time an outlier is
detected, a new range is calculated if there are more or equal κ outlier in the
sliding window. When the third outlier is detected, this requirement is met and
the new range from 30 to 70 is calculated. Each of the currently viewed speed
values are fitting this range. A new model is appended to the process history.

Input: Event Stream ES (a series of events)
k (Limit for number of trace map items)
κ (Threshold for number of an attribute for consideration, [0,k])
φ (Threshold for distinction of a new viable data range [0,1])

Result: Process History HP (contains all viable process models in chronological order.)
HP = [], trace map<trace id,trace> = 0
for e in ES do

if trace map contains key e.trace id then
trace map[’e.trace id’].append(e)

else
if trace map.size ≥ k then

trace map.delete oldest
trace map.insert(e.trace id,e)

detect concept drifts based on workflow drifts();
if |HP | 6= 0 then

New Model = HP .last, list of data drifts = []
if HP .last.contains(e) then

for a in e do
if outlier(HP .last[e],a) then

list a = [], as = 0
for t in trace map.values do

for ev in t do
if ev == e and ev contains a then

as+=1;
if ev == e and outlier(HP .last[e],ev.a) then

list a.append(ev.a);
if as < κ then

if New Model[e] contains a then
New Model[e].remove(a);
list of data drifts.append({e,a});

break;
else

e size = 0; fitting e = 0; properties = calc properties(list a);
for t in trace map.values do

for ev in t do
if ev==e then

e size+=1;
if !outlier(properties,ev.a) then

fitting e+=1;
score = fitting e / e size;
if score ≥ φ then

New Model[e].a.properties = properties;
list of data drifts.append({e,a});

if |list of data drifts| >0 then
HP .append(New Model)

Algorithm 1: Algorithm to synthesise a process history

3.2 Data Drift Identification

Algorithm 1 detects data drifts in an event stream and creates new models for
the process history. Every time a new process model is appended to the process
history a data drift is detected. The four types of data drifts, in relation to a
process history, can be defined formally as follows:

Definition 2 (Data Drift Types). Let U be a given set of unfinished traces.
Moreover let H be a process history for a process P containing only data drifts,
which can be easily filtered by checking if the list of data drifts in a Model M
is 6= ∅. Let Hdd ⊆ H be the models of the process history containing data
drifts and for Mn =< E,< (e0, A

c
0), ..., (ek, A

c
k) >>∈ Hdd let Mn.drifts:=

< (e0, A
c
0), ..., (ek, A

c
k) > yield the list of event attribute pairs, containing the

attributes which have shown the data drift. Let φ ∈ [0, 1] , σ ∈ [0, 1] be thresh-

olds, the function outlier, defined for a model and a data attribute, yielding true
or false and the function similarity, defined for two attributes of an event, rang-
ing from 0 to 1. The following drift types are defined as follows:

– Incremental Drift if |H| ≥ 2 ∧ ∃ (e,A) ∈Mn.drifts, (A 6⊂Mn−1[e] ∧A ⊂
Mn[e]) ∨ (A 6⊂Mn[e] ∧A ⊂Mn−1)

– Recurring Drift if |H| ≥ 3∧ ∃ m ∈ N, 2 ≤ m ≤ n,Mn−m∀ ({e,A} ∈Mn.drifts,
similarity(Mn[e].A, Mn−m[e].A) ≥ σ

– Gradual Drift if |H| ≥ 2∧∃ t ∈ U , {e,A} ∈Mn.drifts, ¬outlier(Mn−1, t[e].A))
– Sudden Drift if ¬GradualDrift

As a fitness function the same technique as in [14] using conformance check-
ing with only considering moves in the log [2] is used. The similarity function
checks if the statistical properties are alike. For example, if the intervals have a
tremendous overlap or the distribution of likelihoods is similar.

It should be noted, that in this definition of data drift types, only the sud-
den and the gradual drift are distinct. It is possible for a data drift to be an
incremental drift and recurring drift at the same time, e.g., a new data attribute
has been detected in comparison to the last model, but this data attribute is
also available and similar to an even older model. In the following, Alg. 2, is
explained in detail and shows how to answer RQ3.

As input parameters a list of unfinished traces U for M0,Mn−1, a process
history HP and σ are required. σ describes the threshold for determining if two
statistical properties are alike and ranges from 0 to 1, where 0 determines any 2
properties as equal and 1 determines only exactly equal properties to be similar.

If there is only one process model in the new process history no data drift had
happened. The first distinction is made between a gradual drift and a sudden
drift. It has to be either of them, so if it is a gradual drift, it cannot be a sudden
drift and vice versa. For this, the algorithm iterates over the list of data drifts of
the current model. If there is a trace out of U for which its attributes and events
match an entry in the list and is not an outlier, if compared to the second to
last model, Mn−1, a gradual drift is detected, because there are still unfinished
traces, that corresponds to the older model. The outlier function is the same,
like in Alg. 1. The third position in the return vector is set to 1, which signals a
detected gradual drift. Likewise it can be determined if it is not a gradual drift,
a sudden drift is detected.

In the next step, the list of drift events is again iterated. If an attribute is
not found in the older model Mn−1 or if an attribute is not found in the current
model Mn, it can be deduced that the attribute has been added or removed
respectively. This indicates an incremental drift, represented by a change the
value of the first element to 1 of the return vector.

If there are at least 3 process models in the history, a recurring drift can be
detected. If there is at least one model from M0 to Mn−2 where all attributes
of the list of data drifts are similar, a recurring drift is detected. The resulting
vector is returned at the end containing the information on which data drift
could been detected. In the next section, the two algorithms are evaluated on a
real life log, using a log from the manufacturing domain.

Input: Traces u (list of unfinished traces), H (Process History),
ε (maximum error between similar statistical properties.)

Result: type vector[0,0,0,0] (Positions represent Drifts [Inc,Rec,Grad,Sudden], 1
represents this type of drift occurred.)

res = [0,0,0,0];
if |H| ≤ 1 then

return ”Error: No drift”
// M is an abstraction to directly access the models of H
for e,a in M.list of data drifts do

for t in U do
if !outlier(Mn−1,t[e].a) then

res[2] = 1 //Gradual Drift
break;

if res[2] 6= 1 then
res[3]=1; // Sudden Drift

for e,a in Mn.list of drift events do
if (!(Mn−1[e].contains a) then

res[0]=1; // Incremental Drift
if (!(Mn[e].contains a) then

res[0]=1; // Incremental Drift
if |H| ≥ 3 then

for m in (M0,Mn−2) do
bool found = false;
for e,a in Mn.list of drift events do

if similarity(Mn[e].a,m[e].a) < ε then
found = true;
break;

if found then
res[1]=1; // Recurring drift;

return res;

Algorithm 2: Algorithm to identify data drift.

4 Evaluation

For evaluating the approach, a prototypical implementation in Ruby [9] is used
and applied on a real world process execution log from the manufacturing do-
main. The underlying process executes the manufacturing of small metal parts
for different machines.

Algorithms 1 and 2, are integrated into the algorithms presented in [14],
however the work at hand is completely independent of the existing work. The
steps creating the trace map and using a sliding window have been merged from
the algorithm from [14] into Alg. 1 and Alg. 2 to save computation time.

The log files from the real world example are stored in XES format and
consist of 10 process instances containing 40436 events in total, but instead
of being serialised in XML, the log files are serialised in YAML [4]. There is
no information lost while transforming XML into YAML and vice versa. The
process execution log has been transformed into an event stream. The models in
the process history have been discovered, using the approach in [14].

For this evaluation we pick the event “AXIS/Z/aaTorque” and look at the
data attribute “value”. This event appears 4415 times in the log files in total and
is numeric. The only available non-numeric data attributes in this log file, reflect
either an enumeration, where only specific values are allowed or an arbitrary
value, which lets us only detect the moment this attribute has been detected
often enough to be in the process history, κ times.

M0 M1 M2

Fig. 4. Results reflecting the range of the torque value

The event “AXIS/Z/aaTorque” describes the positioning of the machine part
in the z axis. With the sliding window k set to 200 and κ to 100, the first boxplot,
seen in Fig. 4 (M0), has been detected. For the outlier detection, the length of
the whiskers, the interval [-11.05, 15.28] has been calculated. Using 0.9 for the
threshold φ, 2 data drifts have been detected, at the 123rd and 3187th time the
event appeared in the event stream, shifting the boxplot to Fig. 4 (M1) and
(M2) with the new intervals [-105.10, 38.75] and [-20.28, 89.99], two significant
changes in the business process logic. This could be caused by a different part
being produced in the machine using different values, or the replacement of a
part of the machine where the new part is using new parameters.

Using a less strict drift detection threshold φ with 0.8, 8 drifts have been
detected. The ranges of the intervals differ greatly, where only the fourth drift,
when the event appeared for the 1795th time and the last drift, when the event
appeared for the 2800th time could be suggested as a recurring drift. The in-
tervals [-105.10, 38.75] and [-117.42, 91.08] overlap about 68%. Since there is
always the same number of data attributes in the event, caused be the process
execution engine which saved these logs, the only incremental drift is always the
first on at the κth time the event occurs, since in the previous model the data
attribute is absent. All of these drifts are gradual drifts, because the drift never
occurred in the last appearance of an event of a process instance.

This evaluation was carried out with a proof of concept implementation to
visualise and present data drifts in a data attribute of an event and the de-
termination of its type. This procedure can be reproduced with any number of
attributes of events, yielding a new model with adjusted statistical properties
for the drifting attributes.

5 Summary and Outlook

This work introduces an extension to process histories to include data attributes
and to detect and identify data drifts from event streams. Data drifts are part
of the evolution of business process, therefore a data drift can be categorised
into the four categories of concept drifts., i.e., incremental, recurring, gradual,
and sudden. All four types can be detected and are formally defined. Two new
algorithms have been presented. The first one synthesises a process history with
data attributes. The other one allows to determine the type of data drift. The
evaluation shows promising results. Based on a prototypical implementation and

a real-world data set from the manufacturing domain it is possible to detect
data drifts. The future work includes a more user friendly implementation of the
algorithms and testing the algorithms on more data sets.

Acknowledgment

This work has been partly funded by the Vienna Science and Technology Fund
(WWTF) through project ICT15-072 and by the Austrian Research Promo-
tion Agency (FFG) via the Austrian Competence Center for Digital Production
(CDP) under the contract number 854187.

References

1. IEEE standard for extensible event stream (XES) for achieving interoperability in
event logs and event streams. IEEE Std 1849-2016 pp. 1–50 (Nov 2016)

2. Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

3. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

4. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml) version
1.1. yaml. org, Tech. Rep p. 23 (2005)

5. Bose, R.J.C., van der Aalst, W.M., Žliobaitė, I., Pechenizkiy, M.: Handling concept
drift in process mining. In: CAISE. pp. 391–405 (2011)

6. Bose, R.J.C., Van Der Aalst, W.M., Zliobaite, I., Pechenizkiy, M.: Dealing with
concept drifts in process mining. IEEE Trans. Neural Netw. Learning Syst. 25(1),
154–171 (2014)

7. Burattin, A., Sperduti, A., van der Aalst, W.M.: Heuristics miners for streaming
event data. arXiv preprint arXiv:1212.6383 (2012)

8. Chen, S.S., Gopinath, R.A.: Gaussianization. In: Advances in neural information
processing systems. pp. 423–429 (2001)

9. Matsumoto, Y., Ishituka, K.: Ruby programming language (2002)
10. Alves de Medeiros, A., Van Dongen, B., Van Der Aalst, W., Weijters, A.: Process

mining: Extending the alpha-algorithm to mine short loops. Tech. rep., BETA
Working Paper Series (2004)

11. Pauker, F., Mangler, J., Rinderle-Ma, S., Pollak, C.: centurio.work - modular secure
manufacturing orchestration. In: BPM Industry Track. pp. 164–171 (2018)

12. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

13. Rozinat, A., Aalst, W.M.P.: Decision mining in business processes. Beta, Research
School for Operations Management and Logistics (2006)

14. Stertz, F., Rinderle-Ma, S.: Process histories-detecting and representing concept
drifts based on event streams. In: CoopIS. pp. 318–335 (2018)

15. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.: Event stream-based pro-
cess discovery using abstract representations. Knowl. and Inf. Syst. 54(2), 407–435
(2018)

	Detecting and Identifying Data Drifts in Process Event Streams Based on Process Histories

