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Abstract—Comprehensive and continuous compliance monitor-
ing is crucial for many process scenarios, e.g., machine-spanning
production processes. However, business process execution data
is often scattered over several heterogeneous event sources and
needs to be seamlessly incorporated into the data structure of
the compliance checking system. The proposed COMS approach
offers the possibility to define business rules based on process
behaviour and the ability to handle events from different in-
formation system sources in an integrated way. COMS consists
of a generic event data structure to store process information,
a rule language, and matching concepts. COMS concepts are
prototypically implemented and evaluated based on a real-world
event stream from the manufacturing domain.

I. INTRODUCTION

Compliance monitoring is a major challenge for business
processes, particularly if the execution information is dis-
tributed over heterogeneous event sources [1], [2], for example,
in distributed supply chain scenarios [3]. It requires to ensure
and verify business rules over several event streams emitted
at runtime. Most compliance monitoring approaches define
a compliance language, but abstract from the data structure
in which the process information is provided by the event
stream [1]. This potentially causes uncertainty in matching
process and rule information caused by e.g., heterogeneous
labels or formats in [4]. Hence, an accessible integration
format is crucial to overcome uncertainty.

Figure 1 displays a loan application process which is
distributed across multiple systems. In this case a bank clerk
receives a loan application and therefore triggers the process
by creating a loan request. This process is then enacted on
process engine A, where the first process activity requires the
bank clerk to enter the customer data of the loan requester into
the system. Even though the input process is pervasive for the
bank clerk, the input is entered and processed on a worklist
component. Hereby the contextual information is sent from
process engine A to the worklist by invoking its service. After
the information is correctly entered it is returned to process
engine A. The same applies to the following solvency check
activity which triggers the creation of a process instance on
process engine B. In process engine B the solvency level is
either retrieved from the database, if current information is
available or from external sources.

Every step of the process execution generates multiple
events which stem from multiple information systems with
different characteristics. To monitor the process execution
all of these events may need to be taken into account to
assemble a holistic process context. Moreover, by now process
information as represented in the event stream of Fig. 1 needs
to be matched to a predefined data schema. This schema is
mostly either too specialised for a specific process engine or
too generic in a way that it holds only basic attributes of a
process instance. In [5], for example, a relational data schema
is specified, which considers a defined set of process attributes
and characteristics. Every bit of information which cannot be
matched to the data schema is omitted. While XES [6] is the
de-facto standard input file-format for process mining tools,
it is not well-suited for partial event streams from multiple
sources, which have to be processed at run-time. While many
XES concepts are universal, a generic event data structure (i.e.
not a file format) optimized for allowing for efficient access
to structured data sent and received by tasks is crucial.

Consider the following business rule imposed on the loan
example in Fig. 1: if the loan request is greater or equal to
one million, the solvency level of the customer needs to be
at least A, a manager needs to process the request, and the
solvency information must not be older than two days. In the
case of Fig. 1 the information necessary to check this rule
is distributed across multiple systems and hence requires the
provision of an integrated and accessible information based
on a generic event data structure. In modern compliance
management system, rules are separated from the process
model to foster re-usability and manageability of business
rules. Hereby the rule concept needs to be matched to the
process model. This matching has to be system independent to
support the integration of different process aware information
system. When matching rules and process models the event
and activity labels are probably not a strong identifier. Often
other aspects of an activity, e.g., the employed resources,
can be more relevant. Based on the problem statement three
research questions have been defined:

RQ1 What are the common properties of an event which is
produced during process execution? Do events and their
information adhere to a certain structure which is present
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Fig. 1. Loan Process Event Stream Emitted by Two Process Engines

in every event independent of a process engine?
RQ2 Which data structure allows for the most flexible repre-

sentation of individual events from distributed systems?
How can information from enacted business processes
be represented efficiently within a runtime compliance
monitoring system? Efficient means that the data should
be retrievable without traversing the data structure.

RQ3 What language concept enables the simplest but flexible
matching of business rules and process events? What is
an efficient and flexible way to define such an matching?

For tackling these questions, we develop a Compliance
Monitoring System (COMS). It consists, at first, of an ac-
cessible data structure to integrate process event streams
from multiple information systems (cf. Sect. II) that avoids
transformations as much as possible. This comes in hand with
a concept for matching business rules and process models be-
yond label matching that exploits the data exchanged between
the different event streams (cf. Sect. III) . The matching goes
beyond label matching; instead it matches process rules to
process instances based on semantics, e.g., based on the facts
which service is invoked by a single process instance activity
and the context of the invocation. The proposed artefacts
are technically evaluated based on the COMS prototypical
implementation and applied to a real-world data set from the
manufacturing domain in Sect. IV. Related work is discussed
in Sect. V and the paper concludes in Sect. VI.

II. GENERIC EVENT DATA STRUCTURE

In order to define a generic event data structure for rule
and process matching, first it needs to be determined how the

information of a process instance is produced and collected.
For a process engine, an event is typically produced when the
state of a process instance changes, for example, from state
“started” to state “finished”. Though different granularities of
possible states exist, the activities in every process engine
follow at least a basic instance activity life-cycle model. This
model particularly depends on how the underlying process
engine processes single activities. The model of possible states
is denoted as instance activity life-cycle model.

An instance activity life-cycle model describes the trans-
actions and communication which need to take place to
execute a single activity, e.g., a start event, assigning resources
to an activity, or the end event. In the following common
properties of 4 common life cycle models will be analysed
and subsequently transferred into an accessible data model.

MXML [7] defines a process log concept. It includes an in-
stance activity life-cycle concept, that does not define process
execution states explicitly, but defines the transitions between
them. The Business Process Analytics Format (BPAF)
[8] focuses on the instance activity life-cycle and defines
states rather than transitions. Additionally the BPAF model
offers a higher granularity of different possible activity states
compared to MXML. It also considers resource allocation as
states in the instance activity life-cycle model, as well as
seven possible end-states, of which MXML has two. Similar
to MXML, XES (eXtensible Event Stream) [6] describes a
language for process logging and aims to solve the problems
encountered in MXML. XES references the BPAF life-cycle
model as a possible model to describe an instance activity
life-cycle, but introduces its own instance activity life-cycle
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transitions model. It is similar to BPAF, but also describes
the transitions between states. These transitions are similar to
those in the MXML life-cycle model. The CPEE [9] life-
cycle model is a compound instance activity life-cycle model
which represents the instance activity life-cycle of the CPEE
process engine, including the life-cycle model of a worklist
component. The latter is a separate logical system and handles
the resource allocation of user based tasks. This makes the
system less monolithic as multiple worklists can be connected
to the process engine.

Besides the instance activity life-cycle, which is required
to correctly address the context of a single events, attributes
which need to be present in every event are a unique instance
identifier and an identifier for the process activity the event
relates to. This is required to correlate all events to a specific
process instance and activity. Those two classifiers need to
be included into every event otherwise an exact correlation of
related events is hardly possible for complex instance activity
life-cycle models.

In summary, a single event can be uniquely distinguished
based on the following characteristics:

• A unique instance identifier. Based on this identifier the
process instance can be uniquely identified.

• An identifier for the activity. A field or value which
identifies a activity within a specific instance.

• The source system. As multiple information systems can
be involved, this identifies the system the event stems
from.

• The event topic. Defines the parent state in which context
the event was raised.

• The event name. It defines the actual event such as
calling, assigned, etc. and has to be unique in combination
with the event topic within the instance activity life-cycle.

The definition of a source systems provides the possibility
to correlate the events of multiple information systems into
one process instance trace. Those information systems can
either share the same instance activity life-cycle or operate
on a different one. This leads to the hierarchic data structure
shown in Fig. 2. Every hierarchy level is fully dependent on
the combination of all hierarchy levels above. To represent
this hierarchical structure, the data structure is defined as
interleaved key-value pairs. Finally in the lowest level of the
data structure, the actual event data is stored as arbitrary
semi-structured information, i.e., no structural restriction to
the event itself arises.

Instance ID
Activity ID

Source System
Event Topic

Event Name
Event Data

Fig. 2. Data Structure

The example stream in Lst. 1 shows
parts of an event stream based on the
example in Fig. 1. Lst. 1 also depicts
that the actual data is saved in the leaf
called “Event Data”, as defined in Fig.
2. The other keys are primarily pointing
to the next key which narrows down the
specific classification of the event.

Listing 1. Event Stream Represented in Generic Event Data Structure
1 :08f4aa54−f73d−435a−b15f−a7e354d7706f:

2 :A1:
3 :engine:
4 :source: Process Engine A
5 :activity:
6 :calling:
7 UUID: 08f4aa54−f73d−435a−b15f−a7e354d7706f
8 label: Enter Data
9 endpoint: https://worklist.do

10 parameters:
11 arguments:
12 form: http://worklist.do/form/2f.html
13 role: Clerk
14 user: Hans Richter
15 :receiving:
16 label: Enter Data
17 endpoint: https://worklist.do
18 received:
19 − Form: http://worklist.do/form/2f.html
20 − Name: Hans Richter
21 − SSN: 213229008
22 − loan: 1000000
23 :Worklist:
24 :task:
25 :completed:
26 UUID: 08f4aa54−f73d−435a−b15f−a7e354d7706f
27 activityName: Enter Data
28 parameters:
29 Form: http://worklist.do/form/2f.html
30 Name: Hans Richter
31 SSN: 213229008
32 loan: 1000000
33 :b460f2ea−432a−49c4−8202−229e5dbee40c:
34 :A1:
35 :engine:
36 :source: Process Engine B
37 :activity:
38 :calling:
39 UUID: b460f2ea−432a−49c4−8202−229e5dbee40c
40 label: Retrieve from DB
41 endpoint: http://solvency.db
42 parUUID: 08f4aa54−f73d−435a−b15f−a7e354d7706f
43 parameters:
44 arguments:
45 Name: Hans Richter
46 SSN: 213229008
47 :receiving:
48 UUID: b460f2ea−432a−49c4−8202−229e5dbee40c
49 label: Retrieve from DB
50 endpoint: http://solvency.db
51 parUUID: 08f4aa54−f73d−435a−b15f−a7e354d7706f
52 received:
53 − Name: Hans Richter
54 − SSN: 213229008
55 − retrieved on: ’2018−03−17T11:21:37.213+02:00’

III. MATCHING BUSINESS RULES AND PROCESSES

Section III-A starts with a discussion of different approaches
for rule and process matching. The rule schema used for
flexible matching to processes is described in Sect. III-B.
Section III-C finishes with the checking mechanisms.

A. What to match?

A first idea could be to base rule and process matching on
unique IDs as every process activity has a unique id based
on which it can be distinguished. The mayor drawback in this
case is that this unique identifier is hard to maintain within
the business rule as well as the process repository. Moreover,
in case of process evolution it is hard to determine if the rule
still applies since a unique id neither represents the context of
an activity nor its execution.

Process matching, mining, and compliance are widely based
on label equivalence [10], i.e., two process activities or an
event and a process activity are considered as equal if their
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labels are equivalent. More flexibility was added by going
from label equivalence to label similarity based on string
similarity metrics such as string edit distance [11]. However,
label equivalence and similarity are not useful in the context of
multiple and heterogeneous data sources. Hence, in literature
it is proposed to shift from label equivalence to attribute
equivalence [10], i.e., qualifying a set of attributes of a process
activity or event that signifies the equivalence and hence
the matching. This is suitable for runtime evaluation as the
context of the activity can be determined even though the
full execution trace is not available. Examples for attributes
comprise resources, service endpoints, and service parameters.
In connection with service endpoints it has to be noted that
different web services URIs can offer identical web services.
Service parameters are sent to a web service during the service
call. As discussed in [10], these service parameters provide
attributes which describe the context of a service, e.g., the use
of a specific form in a specific web service.

The COMS matching approach works with attribute equiv-
alence. For this, in the data structure defined in Fig. 2 every
characteristics of an activity, which is included in the events,
is represented as an attribute. Due to the hierarchical structure,
instead of referring to a fixed attribute set, different attribute
levels can be considered for matching. More precisely, to
match the process rules to process activities a single identifier
or a combination of the above can be used. Moreover, the
matching semantics can be defined specifically for each rule
as described in the next section, i.e., based on a novel Match-
Condition-Action rule structure.

B. Rule Schema

In order to incorporate the flexible definition of the rule
matching into the rule the well-known principle of Event-
Condition-Action rules as, for example, used in previous work
[12] is adapted to a Match-Condition-Action rule. Here
the Match part defines how events are matched to process
activities contained in the rule, i.e., based to which attribute
set a matching can be successfully conducted. Consider the
rule (notation: YAML) as shown in Lst. 2. The Match part
of the rule defines on which business process activity the
rule applies. Multiple activities can be defined and then are
internally associated with a symbol, which is later used to
describe conditions which relate to multiple activities. Such
symbols are represented in Rows 2, 6, and 12 in Lst. 2. The
next section of the rule schema contains the conditions. They
are checked if an activity pattern (e.g., “A precedes B” [1])
matches the conditions in the match section of the rule. If a
match pattern is sufficiently fulfilled, a statement concerning
the compliance of the instance can be made. In the match part
as well as in the conditions part, logical operations can be used
to describe the connection between the different clauses. If the
connection is not explicitly defined, an “AND” connection is
assumed. A clause can span across multiple rows, but also can
be defined within one row. Depending on how the conditions
evaluate, the actions defined in the “if” or in the “ifnot”
part are executed. The “if” part applies if the outcome of

TABLE I
CLAUSE STRUCTURE

left hand side operator right hand side
system > topic > name > data == ”http://example.org/service”
system > topic > name > data <= 300
system > topic > name > time before system > topic > name > time

the evaluation of the conditions is true. The “ifnot” part is
applied if the conditions evaluate as false. The actions are
enacted as soon as a definitive outcome can been determined,
this can be the case even before every condition is evaluated.
For example if all conditions are conjunct, as soon as one
evaluates to FALSE, the outcome of the compliance rule is
FALSE.

Listing 2. Example Compliance Rule
1 match:
2 a :
3 − [”engine > activity > calling > endpoint”,”==”,”https://worklist.do”]
4 − [”engine > activity > calling > parameters > arguments > form”,
5 ”==”,”http://worklist.do/form/2f.html”]
6 b :
7 − [”engine > activity > calling > endpoint”,”==”,”http://engine.b”]
8 − [”engine > activity > calling > parameters > arguments”,
9 ”include?”,”SSN”],

10 − [”engine > activity > calling > UUID”,
11 ”==”, ”engine > activity > calling > parUUID”
12 c:
13 − [”engine > activity > calling > endpoint”,
14 ”==”,”http://solvency.db”]
15 − [”engine > source”,”==”,”Process Engine B”],
16 − [”engine > activity > calling > UUID”,
17 ”==”, ”engine > activity > calling > parUUID”
18 condition:
19 − [”a > engine > activity > receiving > received > loan”,”<=”,1000000]
20 − ”IMPLIES”
21 − ”(”
22 − [”a > worklist > user > take > Role”,”==”,”Manager”]
23 − [”b > engine > activity > receiving > received > solvency level”,
24 ”==”,”A”]
25 − [”c > engine > activity > calling > parameters > retrieved on”,
26 ”withindays”,2]
27 − ”)”
28 if: []
29 ifnot: [notify warn]

1) Rule Clauses.: The clauses express compliance con-
ditions. As seen in Lst. 2 clauses are defined in both the
Match and Condition section, as for example in Rows 3 or
17. In accordance with Compliance Monitoring Functionality
2 on “data” as set out in [1] we support unary and extended
conditions of the form “d � v” where d is a process data
element and � is a comparison operator. For unary conditions,
“v is some value of d’s domain” [1]. Examples are Clauses 1
and 2 in Tab. I. For extended conditions v refers to paths which
reference values within the data structure. Then basically two
values are processed against each other whereby one of them
constitutes a reference to the data structure. An example is
Clause 3 in Tab. I.

2) Referencing data structure values.: Based on the un-
derlying instance activity life-cycle model, COMS monitors
specific events which are defined in the rule clause. These
references are therefore paths which seek for the relevant event
data. The paths follow the same structure as shown in Fig 2
except for the first two hierarchy levels. They are abstracted
in the reference, as they identify the process activity instance
within the data structure.
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TABLE II
RULE REFERENCE STRUCTURE – EXAMPLES

source event topic event name event data structure

engine activity calling endpoint

engine activity calling parameters arguments form

engine dataelements change changed schadenssumme

worklist user take user

worklist user giveback cpee activity

a) Path.: The basic syntax for reference data val-
ues, described by a regular expression, is as follows:
/ˆ(\w|\s|\>)+\w+\$/

A sequence of characters is defined by a word as a start,
followed by a “>”, which operates as separator. This pattern
can be repeated multiple times and finally the query must
end with a word. Every element between the “>” character is
hereby an entity which is looked up. The first entity hereby
defines the element with the highest hierarchy, going deeper
with each given entity. Compared to the first three hierarchy
levels as displayed in Fig. 2, the level ”Event Data“ can have
an arbitrary depth. An example for this rule reference structure
is represented in Tab. II: the hierarchy elements in the three
leftmost columns relate to the event. The elements in the two
rightmost columns relate to the event data attributes.

C. Rule Checking

If the process matches the semantics defined in the match
section of a rule, the activity is mapped to a symbol. For
the rule example in Lst. 2, the symbols “a”, “b” and “c” are
later used in the conditions section, to define which condition
should be applied to which activity.

In order to express structural compliance conditions, cur-
rently, COMS supports selected LTL patterns [13], i.e., (even-
tual) existence of an activity, absence of an activity, and
a follows relations between activities. We have evaluated
the expressiveness of COMS rules along the “Compliance
Monitoring Functionalities framework (CMFF)” defined in [1].
COMS exhibits full coverage of CMF1 – 3 regarding data,
time, and resources. Due to the explicit support of the instance
activity life cycle, the execution CMF 4 – 6 are well-supported.
Regarding the user-oriented CMF 7 – 10 COMS particularly
supports root cause analysis as the source (system) of compli-
ance violations can be explicitly determined.

1) Conditions.: Rule queries within the conditions must
also include a reference to the matched activities. This ref-
erence is represented in the first entity of the rule query. For
example the rule query “a > worklist > user > take” within
Lst. 2 would reference the activity “a” defined in the “match”
part. Therefore the value will be retrieved from the activity
which matched the defined pattern in “a”. A rule file can
include multiple conditions. Conditions are, by default joined
with an ”AND“ operator. Additionally they can be connected
with an ”OR“ or an ”IMPLIES“ operator.

2) DSL.: To be able to define more complex conditions, in
the operator of a clause, a DSL is introduced. Besides the
basic operators ”==“, ”<=“, ”!=“, additional operators can
be used. These operators depend on the data type and allow

all operators for this type based on the ruby programming
language as well as the possibility to define custom operators.

3) Actions.: Depending on the outcome of the conditions
actions are executed. In case the overall condition evaluates as
true the ”if“ part is executed, otherwise the ”ifnot“ part will be
invoked. In the example rule in Lst. 2, the actions are defined
in Rows 28 and 29.

Actions are code which is supplied with the rules to the
compliance management system. It uses a blackboard con-
cept [14] to share data. As actions are executed they may
persist data on the blackboard (e.g. store an average of certain
values). Blackboard data may either be shared between all
event sources, or between all tasks/event sources inside an
instance (cmp. to Lst. 1):

Listing 3. Example Data represented in YAML
1 :08f4aa54−f73d−435a−b15f−a7e354d7706f:
2 :Enter Data: ...
3 :Retrieve from DB: ...
4 :Blackboard:
5 event: changed
6 values:
7 somevalue: 1
8 :Blackboard: (see above)

Changing a value on a blackboard generates an additional
event, that can be caught by the compliance management
system. Thus, as seen in Lst. 3, the blackboard is treated just
like any event source, being either equal to an activity (e.g.
”Enter Data”) or an instance (e.g. :08f4aa54. . . ).

D. Matching Performance

When looking at the way the data and the events are
structured, and the examples above, it becomes apparent that
the complexity of the rule-base and the events is fairly limited
(see also CRISP rule-base [15]). Thus we can optimise the
algorithm that compares the rules with the events.

To evaluate the defined rules, during initialisation all rules
are parsed and common clauses are joined into one matching
set. For example all rules with the clause [”engine > activity >

calling > endpoint”,”==”,”https://worklist.do”] will be joined, as shown
in Lst. 2. The resulting list of clauses point to each rule the
are contained in, and how many clauses each originating rule
contains.

Listing 4. Joining rules to matching sets
1 def join rules(rulesets)
2 matchbase = new Hash
3 foreach rule in ruleset
4 foreach clause in rule
5 matchbase[clause] << [rule id,number of clauses]
6 end
7 end
8 end

It is important to note, that there is no differentiation
between clauses in events and clauses in condition necessary,
as they all have to match in order for an action to be triggered.

The resulting match-base is a hash that can be accesses with
O(1) if the key is known. In an incoming event, which is used
to prepare a blackboard view, each value is a leaf, and the
path to each leaf is the key that can be used to access the the
condition and information about matching rules in the ruleset.
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Listing 5. Store matches of rules
1 def on event(event)
2 foreach leaf in event
3 if clause = matchbase[leaf] then
4 foreach ref in clause
5 matches[instance + task][ref−>rule id] << leaf
6 if count(
7 unique(
8 matches[instance + task][ref−>rule id]
9 )

10 ) == ref−>number of clauses
11 ACTION
12 end
13 end
14 end
15 end
16 end

As can be seen above, access to the match-base is constant,
the runtime of the algorithm is mostly dependent on the pieces
of information in each event.

IV. EVALUATION

The feasibility of COMS is demonstrated based on a
prototypical implementation, which is made available here1,
also including the logs used for the evaluation.

A. Evaluation of Applicability

The approach is also evaluated with respect to its appli-
cability based on a real world event stream of a manufac-
turing process operated at the Austrian Competence Center
for Digital Production (CDP)2. We analyze the event stream
emitted by a EMCO ”MaxxMill 500“ during the execution of a
process instance which orchestrates the milling of a part. After
triggering the manufacturing of the part, the process instance
running on the Cloud Process Execution Engine (CPEE) [9]
collects data from the mill from multiple sources/sensors
simultaneously. Through one sensor connected by the MT-
Connect3 [16] protocol it is possible to detect the overall
power consumption of the machine. The goal is, based on
energy consumption, to find out about (1) explicit machine
errors during milling and (2) to monitor the power level during
milling. While the mill has some explicit error states, it cannot
detect (a) when a milling tool breaks and (b) when the edge
of a milling tool rapidly deteriorates.

For the approach presented it this paper, it makes no
difference if the event stream origins from one source, or
many, as it is collected into one generic event data structure.

We created a set of rules (including custom actions) that
detect Errors (a) and (b) from the power levels during milling.
If the milling tool breaks (and falls off) the power levels show
a rapid decline, as there is no more resistance. If the milling
tools’ edge becomes suddenly blunt the power levels spike.
For both cases we want the process (and thus the milling) to
stop, so that the machine can be fixed. This minimises the
time wasted due to faulty milling tools. The realisation of this
scenario is based on events such as depicted in Lst. 6. The
unit for the value (power consumption) is watt.

1https://github.com/pakoe/coms
2http://www.acdp.at/
3http://www.mtconnect.org/

Listing 6. Aggregated Event Split Into Single Events
1 event:
2 cpee:lifecycle:transition: activity/receiving
3 list:
4 data receiver:
5 message:
6 mimetype: application/json
7 content:
8 ID: pac51 65
9 value: 1956.174

The realization was achieved by two simple rules. The
rule depicted in Lst. 7 monitors the operation of the milling
machine. In Rows 3 to 4 of Lst. 7, the milling task ”MaxxMill
500“ is identified based on the service invoked by the process
instance. All activities, in all instances which make use of the
”MaxxMill 500“ are monitored.

Listing 7. Sensor Data Rule 1
1 match:
2 − :a :
3 − [ ”engine > activity > done > endpoint”, ”==”, ”https://centurio.work/data

/mm500/signals/”],
4 − [ ”engine > source”, ”==”, ”MaxxMill 500”]
5 condition: [ [ ”a > engine > activity > receiving > received > message >

content > pac52 65 > value”, ”exits?” ] ]
6 if: [blackboardize power value]
7 ifnot: []

The condition evaluates if the power value is present in the
respective activity. If yes the value is saved to a blackboard
as described in Sec. III-C3 (see Lst. 8), which is accessible
across all process instances.

Listing 8. Action blackboardize power value
1 def blackboardize power value(ctx)
2 value = ctx.a.engine.activity.receiving.received.message.content.pac52 65.value
3 ctx.blackboard.values.last value = value
4 end

The change of a value within the blackboard then triggers
the rule depicted in Lst. 9.

Listing 9. Sensor Data Rule 2
1 match:
2 − :a : [ [ ”blackboard > event”, ”==”, ”changed” ] ]
3 condition:
4 − [ ”a > blackboard > values > last value”, ”<”, ”a > blackboard > values

> average low” ]
5 − [ ”a > blackboard > values > last value”, ”>”, ”a > blackboard > values

> average high” ]
6 if: [engine stop]
7 ifnot: [calculate average]

Its condition evaluates if the latest sensor is out a certain
power consumption band (lower bound, upper bound). If the
value is outside of the band, the machine is stopped. If the
value is within the defined band, the value contributes to the
average power consumption (see action depicted in Lst. 10).

Listing 10. Action calculate average
1 def calculate average(ctx)
2 ctx.blackboard.values.average =
3 ( ctx.blackboard.values.average ∗ ctx.blackboard.values.average count +
4 ctx.blackboard.values.last value) /
5 ( ctx.blackboard.values.average count + 1 )
6 ctx.blackboard.values.average count += 1
7 ctx.blackboard.values.average low = ctx.blackboard.values.average − 10
8 ctx.blackboard.values.average high = ctx.blackboard.values.average + 10
9 end

There are various benefits to this approach. As mentioned
above, errors can be detected and fixed early, which leads to
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higher Overall Equipment Effectiveness (OEE) [17]. While
this could be done through explicit process modelling, this
would require explicit tasks for sharing the average values,
which is not part of the business logic and complicates the
process model. Thus a specific advantage of our approach is,
that it is automatically affecting all current and future process
models which invoke the milling machine.

B. Evaluation of Computational Complexity

As elaborated above, based on the example rule-set we make
the following assumptions.

• Rule-sets are large, individual events are small.
• Actions are not allowed to trigger rules.
We then designed the data-structures around these decisions

to allow for an algorithm that can yield optimal performance
for the given problem. In comparison to more generic al-
gorithms like RETE, which support deeply intertwined rule-
bases, this allows for better runtime characteristics. In Tab. III,
we outline some popular solutions, which could achieve the
same results as our solution, and their runtime characteristics.

In the RETE Algorithm [18], the matchset is denoted as
productions C (see Lst. 2), while the event data (see Lst. 1) is
denoted as working memory W . Each individual line, in each
event is thus a working memory entry WME. In the simplest
case, whenever a new WME occurs, the runtime is C. However
in RETE, things might get worse, as for C it is assumed that
all elements of the matchset are strictly independent, basically
forming one rule. If they are not, then P = NP .

Our algorithm is designed with the following properties
(speaking in RETE terms):

• Each WME should be compared to C only once.
• Each element in C is independent, thus the problem is

not NP hard, no trigger cascades can occur.
• Matching C is O(1) as we can utilise a hash structure,

and do not have to deal with true conditions in the sense
of RETE.

The problem we tackled, could be solved in RETE, but the
runtime would be WC , whereas the runtime for the algorithms
shown in Lst. 5 is in the worst case W ∗ C (i.e. multilinear).
As concluded by [19] in Chapter 6.1, we assume restrictions
on W and C, which will lead to polynomial runtime in W
and C, while the RETE algorithm is able to tackle much more
complex problems, which can be linear in P .

A comparison of the algorithms shown Lst. 5 to techniques
utilised in Prolog, seems fairer. Tabling should yield similar re-
sults, to our approach, whereas standard search and backtrack
should be similar to the results given by RETE networks.

In Tab. III a summary of this discussion is shown, including
the names of popular RETE based engines. For the case of
Drools we assume that the Lazy RETE algorithm (asserting
possible solutions in the network) can lead to significantly
improved runtime, although its remains unclear if it can come
close to W ∗ C, as this step adds additional in relation to C

So a good solution in Prolog should perform as well as any
implementation that relies on the algorithm shown in Lst. 5. As

TABLE III
RUNTIME CHARACTERISTICS

Prolog Drools Jessy COMS

Tabling Search &
Backtrack Rete Lazy Rete Rete Hash Access

W ∗ C WC WC < WC WC W ∗ C

mentioned before, our prototypical implementation is a micro-
service with a REST interface relying on the Cloud Process
Execution Engine for the data-streams, which is tedious in
Prolog, but easy in any modern programming language.

V. RELATED WORK

The compliance of process models can be monitored online
based on on event streams [1]. Online conformance checking
[20] measures the conformance of process models with some
behaviour of interest (e.g., expressed by behavioural patterns)
based on events streams during runtime. COMS concepts can
be used to integrate event streams for compliance monitoring
and online conformance checking. As stated in [21] “[s]tate-of-
the-art conformance analysis techniques are typically optimised
and devised for one-time use”. While [21] advocates perfor-
mance gains by conformance approximation, COMS designs
its rules less expressive as declarative approaches such as
MobuconLTL and MobuconEC (cf. pattern-based analysis in
[1]), but “expressive enough” to be rapidly checked.

[22] proposes techniques “for aligning business process
compliance and monitoring requirements in dynamic [business
networks]”. However, the focus is not on the process and
rule matching at the data level. Choreography compliance
has been analysed in [23], [3]; the proposed compliability
criterion refers to the property that a collaboration can comply
with global and local compliance rules as well as assertions.
Again the data aspect has not been considered here. Event-
based compliance checking in business processes comprises
approaches for Complex Event Processing (CEP). In [24]
the events in the stream can be aggregated to match activ-
ities in the process model. [25] works in a similar way for
event stream integration for manufacturing processes. Both
approaches provide valuable mechanisms for aligning the pro-
cess and event stream level, however, do not directly address
uncertainty in the context of activity labels and different
formats. The same holds for previous work on matching
rules and processes [26], [12]. Several approaches address
the matching between process models, e.g., [27] and process
similarity (see survey in [11]). Here similarity between process
models is based on label equivalence or similarity measures
such as string edit distance. As suggested in [10] the presented
approach abstracts from label comparison and uses attribute
equivalence instead. The observation that a process activity
consist out of more than one event and therefore the consid-
eration of an instance activity lifecyle is also present in [28].
[28] applies a m:n mapping of events to predefined business
processes based on the activity labels and textual description.
Our work in contrast (1) operates at runtime and (2) utilises a
multitude of aspects, while in the context of this paper relying
on non-fuzzy properties of process execution, such as task IDs,
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endpoints and exchanged data.
COMS can be also compared to existing business rule

engines such as Drools [29]. In contrast to, e.g., Drools,
our approach models the process execution domain itself, with
multiple instances, activities, instance activity life-cycle stages
and event attributes. Therefore the domain does not have to be
modelled to save the data or make the information processable.
The structure of the rule clauses is to some point similar to
XPATH [30], this similarities arise as they both operate on
tree structured data. COMS processes the information not as
a whole, but incrementally, with every incoming event.

VI. CONCLUSION

The presented COMS framework supports flexible matching
of business rules and process events from multiple sources.
This, in turn, enables integrated compliance checking together
with resolving uncertainty caused by heterogeneous labelling
and different formats. COMS consists of a generic event
data structure for storing events, a generic rule language, and
concepts for matching process tasks and events. The evaluation
shows that it is applicable to real-world scenarios and the
concept is mature enough to be adapted to newly emerging
requirements. COMS creates an holistic approach, by defining
a fitting data structure for the process event streams and
offers a rule language which is designed to operate on this
structure. Future work will develop a graphical user interface
and investigate on how to involve users into process and rule
matching most efficiently. Moreover, we aim at conducting
further case studies, e.g., in the logistics domain.
Acknowledgements: This work has been partly funded by
the Vienna Science and Technology Fund (WWTF) through
project ICT15-072 and the Austrian Research Promotion
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