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Abstract
Sourav Chatterjee in 2014 proved consistency of any estimator using orthogonal least squares
(OLS) together with Lasso penalty under the conditions the observations are upper bounded,
with normal errors, and being independent of observations, with a zero mean and a finite
variance. Reviewing his elegant proof, we come to the conclusion that the prediction consistency
of OLS with Lasso can be proven even with fewer assumptions, i.e., without assuming normality
of the errors, knowing only they have a finite variance and zero mean. We give an upper
bound on the convergence rate of OLS-Lasso estimator for these errors. This upper bound is
not asymptotic and depends both on the number of regressors and on the size of the data set.
Knowing the number of regressors in a regression problem, one can estimate how large data
set is needed, to achieve a prediction error under a given value, and this in comparison to the
cited work, without solving the parameter estimation problem for fitting the errors to a normal
distribution. The result can encourage practitioners to use OLS Lasso as a convergent algorithm
for prediction with other than normal errors satisfying these milder conditions.
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1 Introduction
The estimation by linear ordinary least squares (OLS) has an advantage over the maximum likelihood
estimation that it is a convex optimization problem. According to the Gauss-Markov theorem, in a
linear regression model in which the errors are uncorrelated, have zero mean and equal variances,
the best linear unbiased estimator (BLUE) of the coefficients is given by the OLS estimator. "Best"
means giving the lowest variance of the estimate, as compared to other unbiased, linear estimators.
The errors do not need to be normal, nor do they need to be independent and identically distributed.
In other words, one can use OLS with uncorrelated errors which are not normal, only homoscedastic
with a finite variance and zero mean and still can get the BLUE estimator.

OLS combined with Lasso is also a very popular regression tool. Several researchers, for example
[1], [2] or [3] have recently shown, that measuring performance of the Lasso by prediction loss, only
a few assumptions are required for consistency, including the normality of the errors.

[4] proved that under the conditions the observations are upper bounded, with normal errors having
zero mean and being independent of observations and with constant variances is any estimator using
OLS together with Lasso prediction consistent.

Similarly as for OLS, we question whether for OLS with Lasso is the assumption of normal errors
necessary. In this paper we show that the normality of errors is for the convergence of prediction
error not necessary. We give an upper bound on estimated prediction error of OLS-Lasso where the
assumption of normality of the errors is not required.

Rates of convergence and strong consistency of the Lasso estimator with OLS and generally non-
normal errors was proven in a different way in [5]. Their approach does not consider prediction
consistency and their convergence rate is asymptotic, depending on the size of data set n. The
approach of S. Chatterjee, on which we base and we generalize, has an advantage for practitioners
that it gives an upper bound of OLS-Lasso estimator which is not asymptotic and depends both on
the number of regressors p and on the size of the data set n. Knowing the number of regressors p
in a regression problem one can therefore estimate how large data set should be selected, to achieve
a prediction approximation error under a given value. This we extend to the case of generally non-
normal errors and in comparison to [4], our upper estimate does not require to solve the parameter
estimation problem fitting the errors to a normal distribution.

2 Estimated Mean Squared Prediction Error
As in [4], we adopted also his notation and definitions in this paper. Let R denote the set of real
values. Assume that X1, . . . , Xp are random values and M is a constant so that

|Xj | ≤ M (almost surely) for all j = 1, . . . , p. (2.1)

We rewrite the problem of OLS with Lasso by means of the original formulation of Tibshirani in
his first paper on Lasso variable selection in [6] which is equivalent to the commonly used OLS with
Lasso with a penalization parameter in [4].

If the parameter vector γ∗ was known, the best predictor of Y based on Xj , j = 1, . . . , p would be
the linear combination

Y =

p∑
j=1

γ∗
jXj + ε. (2.2)

where
ε is independent of Xj for all j = 1, . . . , p. (2.3)
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Let Z denote the random vector (Y,X1, . . . , Xp). Let Z1, . . . ,Zn be i.i.d. copies of Z. We write
Zi = (Yi,Xi,1, . . . , Xi,p). The set of vectors Z1, . . . ,Zn is our data set.

Denote εi the error of approximation by data set (Yi,Xi,1, . . . , Xi,p), i.e.

εi := Yi −
p∑

j=1

γ∗
jXi,j . (2.4)

Since γ∗ is unknown, we estimate Ŷ from the data. The conditions (2.1), (2.2), the independence
of Z1, . . . ,Zn, the normality of errors in (2.4) and the sparsity condition that

∑n
j=1 |γ

∗
j | is not too

large, are the assumptions in the proof of [4].

Suppose that in vector Z the values of Y are unknown and we want to predict Y by means of
X1, . . . , Xp. If the parameter vector of the best estimator γ∗ = (γ∗

1 , . . . , γ
∗
p) was known, the best

predictor of Y based on X1, . . . , Xp would be the linear combination

Ŷ :=

p∑
j=1

γ∗
jXj . (2.5)

From data set Z1, . . . ,Zp we estimate γj
∗. We define mean squared prediction error of any estimator

γ̃ as expected squared error in estimating Ŷ using γ̃

MSPE(γ̃) := E(Ŷ − Ỹ )2, (2.6)

where Ỹ :=
∑p

j=1 γ̃jXj . Values γ̃1, . . . , γ̃p are computed from Zj , j = 1, . . . , p, and are therefore
independent of X1, . . . , Xp. It can be seen in [4] that

MSPE(γ̃) := E∥γ∗ − γ̃∥2Σ, (2.7)

where Σ is a covariance matrix of (X1, . . . , Xp) and ∥.∥Σ the norm (or seminorm) on Rp induced
by Σ, i.e. ∥x∥2Σ = xΣx.

Alternatively one can define estimated mean squared prediction error as

M̂SPE(γ̃) :=
1

n

n∑
i=1

(Ŷ − Ỹ )2 (2.8)

where Ŷi =
∑p

j=1 γ
∗
jXij and Ỹi =

∑p
j=1 γ̃jXij . Analogously as in the previous definition it can be

expressed as M̂SPE(γ̃) = ∥γ∗ − γ̃∥2
Σ̂

where ∥x∥2
Σ̂
= xΣ̂x and Σ̂ is the sample covariance matrix of

the covariates, i.e. the matrix whose (j, k)-th element is 1
n

∑n
i=1 XijXik [4].

3 Lemmas
Comparing to lemmas used in [4], our lemmas need weaker assumptions.

Lemma 3.1 (Hoeffding’s Lemma). [7] Let X be any real-valued zero-mean random variable such
that a ≤ X ≤ b almost surely. Then for all t ∈ R holds

E(e(tx)) ≤ e(
t2(b−a)2

8
).

Proof in [7].
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Lemma 3.2. (i) Let X be a bounded zero-mean random variable taking values in [−σ, σ], σ > 0
and let MX(t) := E(etX), t ∈ R be its moment generating fuction. Then for all t ∈ R holds

MX(t) ≤ e
σ2t2

2 .

(ii) Let X be a bounded random variable taking values in [a, b] with a ≤ 0 ≤ b and mean µ. Then

for all t ∈ R holds MX(t) ≤ e
t2(b−a)2

8 = eµt+
t2σ2

max
2 where σmax = b−a

2
.

(iii) For zero mean for all t ∈ R holds MX(t) ≤ e
t2(b−a)2

8 = e
t2σ2

max
2 .

Proof: (i) A direct consequence of the Hoeffding’s lemma. (ii) Random variable X with range
[a+µ, b+µ] can be transformed into a random variable Y = X−µ which has zero mean and range

[a, b]. MX(t) = etµMY (t) ≤ etµe
t2σ2

max
2 = eµt+

t2σ2
max
2 . (iii) is an obvious consequence of (ii) for

zero mean.

Lemma 3.3. Let ξi, i = 1, . . . ,m be random variables generated from interval [ai, bi] with ai < 0 <
bi with zero means. ξi need not be independent. Let L := ( bi−ai

2
). Then

E(max
i

|ξi|) ≤ L
√

2logm.

Proof: We follow the proof idea from [4] and at the same time apply Lemma 2 (iii). For any t ∈ R
holds for the moment generating function

Mξi(t) = E(etξi) = et
2(

bi−ai
2

)2/2 ≤ et
2L2/2.

Then for any t > 0 holds

E(max
i

|ξi|) =
1

t
E(log emaxi t|ξi|) ≤ 1

t
E(log

m∑
i=1

(etξi + e−tξi)).

The last inequality follows from the Jensen’s inequality, since Mξi(t) is convex.

1

t
log

m∑
i=1

E(etξi + e−tξi) ≤

≤ 1

t
log

m∑
i=1

(E(etξi) + E(e−tξi)).

≤1

t
log(2met

2L2/2).

The last term is equal to
log 2m

t
+

t2L2

2t
=

log(2m

t
+

tL2

2
.

For t =

√
2 log(2m)

L
we get

E(max
i

|ξi|) ≤ L
√

2logm.

4 Prediction Consistency of OLS-Lasso
Theorem 4.1. Assume the estimator γ̃K := {γ̃K

j }, j = 1, . . . , p is the minimizer of
∑n

i=1(Yi −
γ1Xi,1 − · · · − γpXi,p)

2 subject to constraint
∑p

j=1 |γj | ≤ K and satisfies conditions (2.1) - (2.3).

4



Hlaváčková-Schindler; BJMCS, 19(4), 1-7, 2016; Article no.BJMCS.29533

Assume the errors εi in (2.4) are i.i.d. with zero mean and variance σ2
i . Denote σmax = maxi |σi|.

Then for the estimated mean squared prediction error of the OLS-Lasso estimator holds

E(M̂SPE(γ̃K)) ≤
2σmaxKM

√
2 log(2p)√

n
. (4.1)

Proof of Theorem 4.1:
We follow the proof of Chatterjee up to the point of definition of Uj where we proceed in our way.

Denote
Y := (Y1, . . . , Yn), (4.2)

and
ỸK := (Ỹ K

1 , . . . , Ỹ K
n ), (4.3)

where

Ỹ K
i :=

p∑
j=1

γ̃K
j Xi,j . (4.4)

Similarly let

Ỹ K :=

p∑
j=1

γ̃K
j Xj . (4.5)

Recall condition (2.1) |Xi,j | ≤ M for all j = 1, . . . , p. For each j = 1, . . . , p let

Xj := (X1,j , . . . , Xn,j). (4.6)

Denote
Ŷ := (Ŷ1, . . . , Ŷn)

where

Ŷi :=

p∑
j=1

γ∗
jXi,j . (4.7)

Given Zi, define set C := {γ1X1 + · · ·+ γpXp : |γ1|+ · · ·+ |γp| ≤ K}. C is a compact convex subset
of Rn. By definition ỸK is a projection of Y on the set C. Since C is convex, it follows that for
all x ∈ C the vector (x− ỸK) must be at the obtuse angle to the vector Y − ỸK . In other words,

(x− ỸK).(Y − ỸK) ≤ 0.

The condition
∑p

j=1 |γj | ≤ K ensures that Ŷ ∈ C. Thus

(Ŷ − ỸK).(Y − ỸK) ≤ 0.

This can be rewritten as
∥Ŷ − ỸK∥2 ≤ (Y − Ŷ).(ỸK − Ŷ) =

=

n∑
T=1

εi(

p∑
j=1

(γ̃K
ij − γ∗

ij)Xi,j) =

n∑
T=1

(γ̃K
ij − γ∗

ij)(

n∑
i=1

εiXi,j) (4.8)

where εi := Ŷi − Ỹi. Denote Uj :=
∑n

i=1 εiXi,j .

The condition
∑p

j=1 |γj | ≤ K gives

∥Ŷ − Ỹ K∥2 ≤ 2K max
j=1,...,p

|Uj |. (4.9)
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About εi with i = 1, . . . , n it is assumed that E(εi) = 0 and variance σ2
i > 0. Let F be the σ-algebra

generated by A := {Xi,j , j = 1, . . . , p, i = 1, . . . , n} (i.e. F is a collection of subsets A, including
the empty subset, which is closed under complement, and is closed under union or intersection of
countably infinite many subsets).

Conditionally on F , Uj is an independent identically distributed random variable having a distribution
with zero mean and standard deviation

√
σ2
max

∑n
i=1 X

2
i,j .

Let EF denote the conditional expectation given F .

Then from Lemma 3.3 we get

EF ( max
j=1,...,p

(|Uj |) ≤ Mσmax

√
2n log(2p).

Using condition
∑p

j=1 |γj | ≤ K we get

∥Ŷ − Ỹ K∥2 ≤ 2KMσmax

√
2n log(2p)

and

E(M̂SPE(γ̃K)) ≤
2σmaxKM

√
2 log(2p)√

n
.

1. Based on the central limit theorem, we are aware that every variable that can be modelled
as a sum of many small independent, identically distributed variables with a finite mean and
variance is approximately normal. So Uj in Theorem 4.1 is approximately normal but this
does not have to be assumed a priori about errors εi.

2. Notice that εi do not have to have the same distribution for all i = 1, . . . , n.

Examples of non-normal distributions of errors satisfying the assumptions of Theorem 4.1 are
general elliptical distributions with a finite variance, as a special case is the Student’s t-distribution.
Generally, errors of any distribution from the location-scale family, for reference see for example [8],
having the location parameter zero and a non-negative scale parameter, satisfy Theorem 4.1.

Example 4.2. Consider errors εi in (2.4) having the Student’s t-distribution, εi ∼ t(0, ν) with

ν > 2, where t(εi) =
Γ( ν+1

2
)

√
νπΓ( ν

2
)
(1 +

ε2i
ν
)−

ν+1
2 . The mean of this distribution is zero and variance is

ν
ν−2

. Then for the estimated mean squared prediction error of estimator γ̃K
t from Theorem 4.1 with

the defined errors εi holds

E(M̂SPE(γ̃K
t )) ≤

2
√

ν
ν−2

KM
√

2 log(2p)
√
n

. (4.10)

Example 4.3. Consider errors εi in (2.4) having the Laplace distribution, εi ∼ L(0, b) with b > 0,

where f(εi|0, b) = 1
2b
e−

|εi|
b . The mean of this distribution is zero and variance is 2b2. Then for the

estimated mean squared prediction error of estimator γ̃K
L from Theorem 4.1 with the defined errors

εi holds

E(M̂SPE(γ̃K
L )) ≤

4bKM
√

log(2p)√
n

. (4.11)
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5 Conclusion
Having homoscedastic errors, the bound in Theorem 4.1 gives a practical hint, how for a predefined
approximation error of the OLS-Lasso estimator should the size of the data be set with respect
to the number of regressors p, knowing the constants K, M and the variance of errors; This in
comparison to [4], is without solving the parameter estimation problem to fit the errors to a normal
distribution. The result can encourage practitioners to use OLS Lasso as a convergent estimator
for a prediction with other than normal errors satisfying these milder conditions.
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