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Abstract—Randomness beacons are services that periodically
emit a random number, allowing users to agree on the same
random outcome without trusting anyone: ideally, the random-
ness beacon is secure (cannot be influenced) and transparent
(can be monitored by users). Hence, such randomness beacons
can serve as an important primitive for smart contracts in a
variety of contexts. In this paper we aim to bridge the gap
between theory and practice of public beacon design inspired by
the unicorn protocol of Lenstra and Wesolowski using verifiable
delay functions. We first present a structured security analysis,
based on which we design, implement, and evaluate a trustworthy
and efficient randomness beacon allowing users to join at any
time. We then compare different implementation and deployment
options on distributed ledgers, and report on a Ethereum smart
contract-based lottery using our beacon.

Index Terms—Random beacon, transparency, smart contract

I. INTRODUCTION

A randomness beacon is a service emitting unpredictable
random values, defined in 1983 by Michael O. Rabin who
used it to add probabilistic security in several protocols [1].
The primary use for randomness beacons are in applications
where a group of users needs to agree on some random
outcome, but do not trust each other. In particular, the main
purpose of the randomness beacon is not necessarily to produce
“better” random numbers than, e.g., using /dev/urandom;
it merely allows users to agree on the same random outcome
without trusting anyone. Randomness beacons come with many
applications, including seeding the generation of elliptic curves,
preventing selfish mining, or secure elections, and are generally
seen as a “tool of democracy” [2].

While in early versions of randomness beacons, the beacon
operator itself needed to be trusted (i.e., it is an unbiased third
party), with obvious implications for security, recent literature
has sought to design beacons where the need to trust the beacon
operator is reduced or removed entirely.

In keeping with this trend, in this paper we design and
implement a randomness beacon that works on the most
pessimistic assumption possible: everybody (in particular, this
includes the beacon operator) is secretly colluding against the
user and is willing to invest money and resources towards
manipulating or biasing the randomness. Specifically, we seek
a design that minimizes the trust required by a user and also
allows each user to decide how much they want to trust the
beacon such that, a user will know that under self-chosen trust
assumptions, the randomness has not been manipulated.

Randomness beacons are of particular interest in the con-
text of distributed ledgers and smart contracts, steering the
interaction of mutually distrusting parties. In such scenarios
trustworthy randomness can speed up computations and break
symmetries. Although many potential implementations and
practical solutions are discussed in the literature on randomness
beacons, very few actual implementations of public, general-
purpose beacons have been published or made available.
Our Contributions. In this paper we bridge the gap between
theory and practical solutions by designing and implementing
a secure, trust-minimizing randomness beacon based on the
transparent authority model which relies on user input. It
is based on the unicorn protocol devised by Lenstra and
Wesolowski [2]. It allows users to join any time and at
low overhead. Our implementation relies on parallelized
computation, which minimizes the possibility of malicious
operation while avoiding idle periods. Furthermore and unlike
other approaches of transparent authorities, the beacon operator
in our beacon design has no private information: all inputs
are hashed and are released to the public in batches before
the computation. The beacon also offers users to make subtle
decisions on when to trust the output. Our beacon uses Merkle
trees as the data structure for inputs to reduce the computation
proof size. Our experiments with a first prototype demonstrate
the scalability of our approach. We further illustrate how
this beacon can be deployed on distributed ledger platforms.
We compare different (partial) on- and off-chain deployment
options and discuss our experience and evaluation of Ethereum
smart contracts for a lottery with our beacon.

To ensure reproducibility of our results as well as to
facilitate follow-up work, we share our implementations on
https://github.com/randomchain/randbeacon.

II. BASIC BEACON CONCEPTS

We first provide an overview along the two main concepts
of a beacon: input source(s) and beacon operation. The input
source(s) describes what input sources to use, while the beacon
operation describes the design of the protocol, i.e. how to
perform the computation and publish the output.

Input sources can be split into three categories. A beacon
can use its private source of data to produce randomness.
This potentially allows users to produce randomness of high
quality at a high rate, but denies users access to inspect the
process and thus requires users to trust the beacon and its
randomness. It does not align with our stated security goals,



since inputs cannot reliably be distinguished from carefully
crafted values that appear to be random. An example of this
input source model is the National Institute of Standards and
Technology (NIST) randomness beacon [3] which observes
quantum mechanical effects to produce what is claimed to be
high-quality randomness. As such, the users need to blindly
trust the beacon operator, i.e., NIST in this case [4], [5], [6].
Beacons based on publicly available sources cover input from
sources that are publicly available and which everyone can
agree on the value of, e.g., bitcoin block hashes or lottery
numbers. The users must trust the source to be sufficiently
random, which may be fine for the examples mentioned. Finally,
beacons can also rely on user input in which a user is allowed
to directly provide input to the beacon. The idea is that a user
provides a value that they believe is sufficiently random. The
beacon then performs an operation on the set of user-supplied
inputs, yielding an output that allows all users a) to verify
the inclusion of their input and b) to verify the validity of
the computation. If these are satisfied, the user knows that a
value they trust to be random has been part of the random
output generation. The computation performed by the beacon
should ensure that users cannot knowingly bias the output to
anyone’s disadvantage. As such, users know their input was
not knowingly “counteracted” by another user.

We can distinguish between three models for beacon opera-
tion, detailed below. In the autocratic collector model, a beacon
is run by a party which requires blind trust from the users. As
such, the computation is a black box with no possibility for
proof of honesty. An alternative is to use specialized MPC:
users utilize Multi-Party Computation (MPC) to collectively
produce randomness, typically from their own inputs. Given
an honest majority, this type of beacon produces randomness
that is not biased against the participants. Despite significant
work in the field, this approach is difficult to scale to large
groups since any addition or removal of a user requires a
new setup phase [7], [8]. This type of beacon is therefore not
well-suited for public settings, but might fit in a controlled
private context. Finally, in a transparent authority model, a
single entity collects inputs and publishes them with a focus
on transparency. Users can, by observing the beacon, verify
that it behaves according to the protocol. This does not directly
prevent Byzantine behavior, but rather makes it difficult to
hide such behavior. This type also supports a wide variety of
implementations, and can be scaled to a public setting.

We thus focus on transparent authorities and provide a
scalable implementation of such a randomness beacon.

III. DESIGN

Requirements This section lists the requirements for a
randomness beacon suitable for our security goals and the
threats that exist towards beacons. We decided on using the
transparent authority type of beacon, which requires a high
level of transparency, and as such we build requirements on
top of that.

• Transparent Operation Users should be able to oversee
that the beacon operates according to the protocol and thus

catch any deviations from it. Being able to verify whether
their own input has been used, allows users to determine
whether they should trust the output. Furthermore, users
should be able to repeat the process on their own
computers as a means of verification. This also requires
the process to be deterministic. However, the output should
still be unpredictable, even to the beacon operator.

• Open and Secure Protocol Anyone should be able to easily
contribute to the beacon protocol to influence the random
generation. There should be no requirements imposed on
users to limit their contribution rate besides denial of
service (DoS) protection. The protocol should be secure
meaning that even if only a single user is honest, the
output is still unpredictable.

• Timely Publishing The protocol should enforce that input,
output, and any data needed for verification of an output
is published as soon as possible to make the beacon more
transparent. By having a requirement of timeliness at the
protocol level, we restrict the time a malicious operator
has available to diverge from protocol before users will
suspect them.

• Practicality Scalability of all components is important
to be suitable for many use cases. Therefore, it should
scale to at least several thousand users contributing with
user input in every output. It will be beneficial to allow
different channels for input and output, both to make the
beacon easier to access for users, but also to make it
resilient to having any single channel attacked.

Security Design A major security concern is the operator’s
ability to predict or manipulate the output. Our solution for
this problem is to ensure that each published output is paired
with a commitment which can be used in the verification
of the beacon. As a novel design decision, the commitment
must contain all data required for the computation and all
inputs.1 The transparency allows any party to compute the
randomness alongside the beacon operator. It ensures that the
operator cannot cause much damage by withholding output or
by deciding not to open a traditional (e.g. hashed) commitment.
In essence, it reduces the “market value” of the output, making
it less attractive to leak output (i.e. sell early access to the
output) because everyone can just compute it. While it does
not prevent the operator of performing a withholding attack, it
minimizes the effects of it, as others can compute the output
from the commitment and still obtain an equally valid output.

To further decrease the possibilities of the operator trying
different commitments before releasing them, we use a ver-
ifiable delay function. Delay functions can be seen as black
box functions that require a given amount of time to run
and are inherently sequential, meaning they cannot benefit
from parallel execution. It ensures that the output cannot be
instantly computed, and that the operator cannot try more than
one commitment before running out of time. As such, the
operator is unable to perform the input manipulation attack

1In Unicorn [2], the beacon operator commits to an input that is revealed
when publishing the next output



in a meaningful way. In order to avoid excessive computation
by users performing verification, delay functions used in
randomness beacons should be hard to compute and easy
to verify, i.e., they must be asymmetrically hard. The delay
function also protects against last-draw attacks, where an
adversary attempts to bias the output by crafting an input to
produce favorable randomness. The adversary needs to compute
the result of adding a specific input as the last input.

We use the delay function sloth [2]. As mentioned earlier,
there is no secret input to the delay function in our design. Note
that in [2], a different attacker model is used. More precisely,
the beacon operator wanted to safeguard against adversaries
trying to manipulate the outcome. In this work, we consider
the beacon operator as potentially malicious. Therefore, we
proposed that the operator produced a commitment to a set of
inputs, while also revealing the inputs. This effectively means
that anyone can calculate the delay function, and potentially be
faster than the operator. We deemed that by having the operator
include a secret input, to prevent anyone from computing the
outcome before himself, the trust implications are too severe,
as a user would have to trust that the operator did not try
multiple secret values in parallel and chose the most beneficial
outcome. In our design, an adversary may know the outcome
earlier than an honest participant that waits for the beacon
operator to announce it. However, the adversary cannot bias
the outcome, as long as there is at least one honest party.

Rational Trust Assumptions In our approach we want to
push beyond the need for honest operators and naı̈ve users. To
achieve this we extend the work of [2] to quantify trusting the
beacon and determine thresholds for reasonable behavior when
using delay functions. This provides a measure of rational
trust, where users decide for themselves if what they observe
is adequate.

We present a property which, if satisfied, means a user can
trust that the beacon operator is not capable of fooling them.
This property is true if the user determines that nobody is able
to compute the delay function in the time between the users
input and the user receiving the beacon’s commitment to the
input for the delay function. This can be condensed to

tCOMMITMENT − tINPUT < TDELAY FUNCTION

where tINPUT is the time when the user sent the input,
tCOMMITMENT is when the user received the commitment,
and TDELAY FUNCTION is the fastest computation of the delay
function. So for users to be more likely to trust a beacon, the
time between sending the input and receiving the commitment
must be significantly smaller than the time between the
commitment and the output. In fact, it must be smaller than the
shortest time the user thinks the operator could compute the
delay function. This relation between the time taken to compute
the delay function and the time before a commitment is seen
allows users to flexibly adjust their willingness to trust the
outcome has not been biased against them. A similar threshold
is also described by [2], where they advise a ratio of no more
than one fifth of the computation time spent collecting inputs.
In their paper, the authors furthermore state that participants

will always try to minimize the time between their input and
the commitment. We see this as potentially problematic, since
such behavior can create congestion in the system, which might
result in some inputs not being used in the intended output
computation. This means that users whose inputs were not
included cannot trust the output of the given beacon iteration.

Parallelization Beacon operation must be sequential which
means that we must collect input before computing the delay
function. However, because we want to spend more time
computing than we are collecting input, a strictly sequential
beacon will contain dead spots where no user is submitting
input. This may be acceptable in some scenarios, but we want
to design a beacon which always accepts inputs and will not be
suspected of malicious operation. To achieve this we parallelize
the beacon protocol with a pipelined approach, meaning that
several delay functions run in parallel but offset in time and
on different input.

IV. PROTOTYPE IMPLEMENTATION

In this section we give a brief overview of the implementation
of our beacon design. Our prototype has been implemented
mainly using Python 3 with a few subcomponents written
in C for performance. The message passing infrastructure
of our SOA is implemented using the ZeroMQ framework
for asynchronous message passing and concurrency. We can
directly employ the “publish/subscribe” pattern provided by
ZeroMQ between computation nodes and publisher. This pattern
handles the message routing based on subscription prefixes,
resulting in less traffic on the network. Furthermore, the fan-in
for input collectors is implemented with a “push/pull” socket
pair which ensures fair operation, thereby avoiding starvation
of components. Lastly, ZeroMQ guarantees atomic delivery
of messages, which means that we can assume all parts of a
message or none at all.

To avoid implementing heavy service discovery functionality
and to simplify configuration, we deploy proxies at key points
in the pipeline: one between input collectors and the input
processor and one between computation and publishers.

Combining Inputs One of the most important tasks of our
implementation is to combine the (hashes of the) collected
input both as a preparation for the computation phase, but also
to derive commitment data that can be verified by users. As a
novel contribution, our implementation uses a Merkle tree for
this purpose. A Merkle tree is a special binary tree where the
value of each node is the hash of the concatenation of its two
children; here the leaf nodes are the hashes of user inputs and
the root node is then the condensed output.

Merkle trees as commitment data allows third-party appli-
cations to provide verification, since the inclusion of a given
leaf node in a Merkle tree can be verified by providing all
siblings to the nodes on the path up to the root. This greatly
limits the amount of data which the user needs to fetch and
process to O(log n) where n is the number of leaf nodes in a
Merkle tree. The commitment data consist of an ordered list
of the leaf nodes.



Algorithm 1 Specification of computational node outlining the communication
pattern with the input processor.

1 procedure INITIALIZATION( )
2 CONNECTTO(input processor, publishing proxy)
3 end procedure
4 procedure MAINLOOP( )
5 repeat
6 SENDTOINPUTPROCESSOR( READY )
7 if OK received before timeout then
8 W ← RECEIVEWORK( ) . blocking call
9 if W is valid then

10 SENDTOINPUTPROCESSOR( OK )
11 STARTCOMPUTATION(WINPUT)
12 SENDTOPUBLISH(WCOMMIT)
13 wait for computation to finish
14 C ← COLLECTCOMPUTATIONRESULT( )
15 SENDTOPUBLISH(COUTPUT, CPROOF)
16 else
17 SENDMESSAGE( ERROR )
18 end if
19 else
20 continue
21 end if
22 until the end of time
23 end procedure

Another property of the Merkle tree is that, like hashing a
concatenation of all collected inputs, each leaf node equally
affects the root node, due to the diffusion property of the
hashing algorithm. This means that any change to the set of
inputs changes the root node in the Merkle tree.

Parallel Computation As discussed, we need parallel and
time offset computations in the beacon. This is achieved
by letting the input processor handle the scheduling of
computations: The beacon is configured to process inputs at a
lower bounded interval, which means that the input processor
will send work at fixed times, given an available computation
component. It should be noted that if no such computational
component is available, the input processor will just continue
collecting input. If no computation service becomes available
within a given threshold, the input processor will give a warning
to the system operator.

The worker announcements and subsequent work assign-
ments are facilitated with ZeroMQ’s “router/dealer” socket
pair which allows asynchronous addressed messaging. When a
computational node connects to the input processor it sends
a READY message, receives an OK, and proceeds to wait for
incoming work; this process, accompanied by what follows
inside the computational node, can be seen in Pseudocode 1.
The input processor then keeps track of each announced worker,
and when the time comes, sends condensed processing output
and commitment data to the next free worker.

Delay Function For the computation phase we implement a
delay function based on sloth, the function proposed to be used
in the unicorn protocol [2]. The general idea behind sloth is
to iterate through modular square root permutations of a large
prime number and thereby construct a time hard algorithm,
while containing a trapdoor for fast reversal, i.e., verification.
Essentially, the verification calculates squares of the output
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Figure 1. (Left) 64 bytes message throughput per second of stream proxy,
with different numbers of pullers and pushers. (Right) Correlation between
number of leaves and the time it takes to build a Merkle tree with those leaves.

from the computation. When implementing delay functions
in systems that rely on their time guarantees, it is important
to focus on performance, since an obvious yet undeployed
optimization of execution time would compromise the “time
hardness” of the algorithm.

V. PERFORMANCE EVALUATION

We conducted several experiments to explore potential
system bottlenecks to gauge reasonable throughput. We also
investigate our chosen delay function sloth and different
configurations of it. All experiments are executed on a server
with an Intel Core i7-2600 CPU, which runs at 3.40 GHz. The
server has four cores and can hence run 4 simultaneous sloth
computations. We use SHA512 as the hashing algorithm in
both the Merkle tree and in the sloth delay function.

Bottleneck Analysis We examine the potential bottlenecks
which require the most effort to scale horizontally: the proxies
and the input processor.

1) Proxies.: As discussed, our beacon contains two proxies.
While the forward proxy between computation and publishers
is unproblematic in any real world randomness beacon de-
ployment (it only forwards outputs, commitments, and proofs),
the stream proxy situated between input collectors and input
processors may become a bottleneck, as it has to handle a
constant stream of input messages. Recall that this proxy
facilitates fan-in and fan-out pipelining with fair message
distribution using a round-robin strategy. Hence, we test the
throughput of the proxy in different configurations of input
collectors and input processors. For simplicity and benchmark
consistency, we utilize “dummy” components for this. The
input collectors are referred to as pushers and fan in at the
proxy, while the input processors are called pullers and fan
out. In the tests we transmit messages which resemble those of
an actual beacon in size, i.e. 64 bytes of application data plus
any ZeroMQ packaging; in this case one byte which serves as
a flags field, and one byte to denote the message length.

In Figure 1 we see how the aforementioned different
configurations affect the throughput of messages in the proxy.
Firstly, every combination shows a throughput of at least 200k
messages per second: likely sufficient even for popular real
world beacons. It is the scenario of one pusher to sixteen pullers
that results in the lowest throughput, which can be caused
by the overhead of the fair message distribution enforcement.
However, as we add pushers at sixteen pullers, a slight increase
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in throughput can be seen, suggesting that fair distribution is
easier with more suppliers. Another observation we can make
from Figure 1 is that increasing the number of pushers does
not affect the throughput as much as adding pullers does. This
evinces that fan-out is a muckiest more expensive task than
fan-in — a fortunate fact, since a deployment of our beacon
most likely consists of considerably more pushers than pullers.

We can conclude that the proxies in our system are unlikely
to be bottlenecks, and we should rather look further down the
pipeline for issues; hence we next examine the input processor.

2) Input Processor — Building Merkle Trees.: The most
expensive task in our input processor is building the Merkle
tree. This task is done periodically when it is time to compute
a new random output. It is critical that this computation is fast,
as this step can extend the time between the last seen input
and publishing the commitment. As such, we examine how the
number of leaves, i.e. inputs, affects the building time of the
Merkle tree. In Figure 1, a linear growth in build time is seen
as a factor of the number of leaves. The growth is slow and is
negligible in our beacon. Well over 2m leaves are needed to
result in a build time over 3s.

Admittedly, the build time could be a problem if significantly
many inputs are used. However, in this case one might
reimplement the input processor in a more performant language
than Python, e.g. C. In addition, the construction of Merkle
trees is trivially parallelized.

Sensitivity Analysis of sloth The computation and verifica-
tion time of the delay function, sloth, can be configured by
adjusting two parameters: (1) the number of bits of the prime
number used in the computation; and (2) the number of times
to iterate through the permutation process of said prime.

To evaluate the sloth delay function and its sensitivity on the
parameters, we run a series of tests of the algorithm. During
the tests we sample multiple rounds with random inputs and
take the average. Section V-2 illustrates the correlation between
the two parameters, and the time it subsequently takes to do a
computation with a given combination of bits and iterations.
An increase in the number of bits used for the prime number
results in an exponential growth of the computation time, while
an increase in number of iterations cause a linear growth.

While computation time is important for the delay function,
another significant metric is verification time — especially in
relation to the computation time. Section V-2 illustrates this

relationship, where the z-axis shows how many more times it
takes to compute the output relative to how long it takes to
verify. Although the data is more scattered than in the previous
figure, we see a trend where the growth of this factor levels
out just above one hundred. This means that in configurations
with more than roughly 3k iterations, the computation time
is always more than two orders of magnitude larger than the
verification time.

We also observe that the number of bits does not affect
the factor except for some irregularities in the data. These
irregularities are caused by the extra time it potentially can
take to initially find the prime number; an operation which can
vary in time depending on how close the numeric representation
of the hashed input string is to a prime. Since larger primes
(given by number of bits) can be more difficult to find, the
data fluctuates more at larger number of bits.

VI. BLOCKCHAIN APPLICATIONS AND IMPLEMENTATIONS

As a case study, we consider the application of our beacon
for distributed ledgers. Smart contracts between mutually
distrusting parties can benefit from unbiased trustworthy
randomness to speed up computations and break symmetries,
e.g., in games. Since openness to any users is key in our
design, an implementation providing randomness on a public
permissionless blockchain makes most sense. We first com-
pare different implementation options and the report on our
blockchain-based implementation.

Design Choices There are essentially two options for the
implementation:

• The actual beacon operator is run as a smart contract.
• The beacon operator runs separately from the blockchain,

but publishes some of its artifacts on the blockchain.
While a fully blockchain-based solution offers benefits in

terms of decentralization (no single point of trust/failure, more
robust to attacks including DoS, ...), this solution is costly
as each computation in the smart contract consumes virtual
currency. This ties the beacon into the monetary incentive
structures that dictate smart contract behavior. Due to the high
cost, this option requires many users to compensate for the
large on-chain computation cost.

The second implementation option offers several variants
with different trade-offs. E.g., the verification can be done
either on-chain in a smart contract, or by each interested user
on their own. This has the advantage that expensive on-chain
computations are avoided. Which artifacts and computation
are on-chain and what parameter size are appropriate is
an application-specific tradeoff between security and costs.
Using blockchain-based distributed hashtables or other storage
solutions such as IPFS (and e.g. storing only a pointer to the
off-chain data on-chain) can further reduce the monetary cost:
cost is proportional to the size of data stored on-chain (e.g., gas
cost in Ethereum). Despite storing data off-chain, if the pointer
is on-chain, we can still provide guarantees that tampering
with the commitment and output will be detected.

The time necessary for a proposed transaction to be in a
block that can be considered immutable may be highly variable



depending on the nature of the underlying blockchain. Since
the time interval between submitting an input and receiving a
commitment from the beacon operator is the basis of trust for
a user, the blockchain latency must be taken into account when
configuring the delay function. Moreover the variability of the
blockchain latency may tarnish the trust assumption of users.
In addition, since parts of the beacon would still be off-chain,
those parts will depend on an operator and are vulnerable to
DoS attacks.

We study a lottery application based on our beacon, and
to compare different implementations more systematically, we
consider the following 3 players:

• Owner - Runs the lottery (e.g. smart contract owner)
• User - Takes part in the lottery by sending a small payment

to the lottery smart contract
• Beacon - Beacon operator that provides a random value

for the drawing of a lucky winner
The main goal of the lottery owner is to shave off some of

the users’ participation payments as a reward. In other words,
not all of the user payments are given to the lucky winner,
some of it is transferred to the lottery owner. Users only want
to participate in a lottery when they have a reason to trust that
the random value provided by the beacon is not biased, i.e., if
they sent some input to the beacon to influence the generated
random value and received a commitment within their trust
time bound (on or off-chain).

We consider the following implementations, ordered accord-
ing to increasing on-chain smart contract complexity:
• Maximum off-chain (OFF): In this implementation all beacon-

related logic is off-chain: only the lottery logic is on-chain.
The users send their inputs to the beacon off-chain and obtain
the commitment off-chain. Thereafter they send the lottery
payment to the smart contract. When the off-chain beacon
value computation has finished, the lottery smart contract
fetches the value with an oracle. Using this value, it then
determines the winner of the lottery. Users can verify if the
beacon matches the commitment and complain off-chain and
decide not to trust this beacon in the future. This has no
influence on the outcome of the current draw of the lottery.
Both the owner and the winning user receive rewards through
the execution of the smart contract, while the beacon operator
is remunerated off-chain.

• Adding beacon incentive and on-chain commitment (ITV): To
allow the beacon operator to be compensated with the smart
contract, the following changes can be made to the simple
contract proposed above. In a first step, the beacon publishes
its public key and a nonce and locks some funds in the
smart contract. Users send their input to the beacon off-chain
and once they see their input included in the commitment,
they send (i) the Merkle tree root signed by the beacon
operator together with the nonce locked earlier and (ii) their
participation payment to the smart contract. In this scenario,
the beacon operator submits the next beacon value to the
smart contract directly or it fetched with an oracle call. The
verification of the correct execution of sloth on the Merkle
root is performed on-chain. The beacon loses its locked funds
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if verification fails. If the verification succeeds, the owner,
beacon and winner receive rewards.

• On-chain inputs (INP): This version moves the input inclu-
sion verification done by the user in the previous versions to
the smart contract. In this case the user can send their input
on-chain together with the lottery payment and it is then up to
the beacon operator to send the corresponding commitment in
time to avoid losing its locked funds. Thus the user does not
have to worry about the commitment after selecting an input.
Verification and reward distribution is analogous to ITV. To
reduce the cost for on-chain memory and computation, a
sequential commit representation is advantageous in this and
the following variant.

• Optimistic (OPT): Since verification is costly and needs to
be paid by the smart contract owner, the beacon operator and
the users, another option is to add a complaint phase instead
of carrying out the verification computation for every draw.
In this case, an entity can submit evidence within a certain
time frame to the smart contract that shows that the beacon
value has not been computed correctly. Upon the successful
verification of the evidence, this entity then receives part
of the beacon funds currently stored in the contract, the
beacon loses its funds and all users get reimbursed an equal
fraction of the remaining beacon funds and their lottery fees.
If the complaint phase expires without such evidence being
presented, the value is assumed to be valid and the winner,
owner and beacon operator are rewarded correspondingly.
The different variants as well as their advantages and

disadvantages are summarized in Table I.
Implementation and Evaluation We have implemented an

Ethereum smart contract for the OFF and ITV models (INP
and OPT are very similar to ITV from an implementation point
of view) on a private test network and analyzed the gas costs
for the implementations. In both the cases, the smart contract
uses an oracle service to obtain the necessary data from the
beacon.

Figure 3 shows the gas costs for fetching the value from the
beacon and drawing a winner for different number of users
in the lottery, for the OFF model. As expected, we observe a
linear increase of the gas cost with number of users.

The main implementation difference between the OFF and
the other variants is the fact that in the later, the verification
computation can be done on-chain. Thus we compute the
gas requirements for the verification (modular squaring for
sloth verification) in isolation. Using delay functions that
require modular squaring for verification in smart contracts
is discouraged [9], owing to the high gas consumption. But



Delay Function on-
chain

Delay Function off-chain, growing contract complexity

Step \Version Full on-chain beacon OFF ITV INP OPT
Preprocessing - - Beacon locks fund and

nonce on-chain (to be
released if not enough
users participate within
a certain time frame)

Like ITV Like ITV

User Input On-chain, together
with lottery fee
payment

Off-chain Off-chain On-chain, together
with lottery fee
payment

Like INP

Beacon
Commitment

Not necessary Off-chain. After users
see their input commit-
ted in time, they send
lottery fee payment

Users send Merkle
root obtained off-
chain (with beacon
signature on root and
nonce) with lottery fee
payment to contract

Commitment is stored
on-chain, if delivered
timely and including
all inputs in the com-
mitment, else users are
refunded and beacon
loses fund

Like INP

Beacon
Computation

On-chain Off-chain, independent
of lottery

Off-chain, after com-
mitment is stored on-
chain.

Like ITV Like ITV

Beacon Output On-chain Store beacon value on-
chain

Like OFF Like OFF Like OFF

Post-processing - User verify beacon and
complain off-chain,
may decide to not
trust this lottery in the
future (no influence on
outcome of this draw)

On-chain verification.
If verification is unsuc-
cessful, beacon forfeits
funds and users get lot-
tery fees back

Like ITV If evidence submitted
by user, on-chain veri-
fication, if successful,
users receive beacon
funds and lottery fees,
beacon forfeits funds

Reward Owner and winning
user receive rewards

Owner and winning
user receive rewards

Owner, beacon and
winning user receive re-
wards

Like ITV Like ITV

Pros Users do not have to
worry about verifica-
tion

Simple to implement,
low gas consumption

Beacon compensated
for its service

Beacon compensated,
user only needs to in-
teract with the contract

Beacon compensated,
verification only exe-
cuted on chain if some-
one complains

Cons Requires many users
to offset the on-chain
computation cost, sim-
pler and cheaper so-
lutions without delay
functions are possible
for this scenario

Owner and user must
know and adhere to
timing of beacon, trust
stems from incentives
to repeat lottery execu-
tion. Beacon operator
remunerated off-chain.

User interacts with off-
chain beacon operator
and smart contract. All
honest users submit the
same data. Verification
executed on-chain for
every draw

Verification executed
on-chain for every
draw, even though the
beacon would typically
be incentivised to be
honest in this scenario

User must execute ver-
ification off-chain fast
enough to react within
the complaint window

Table I. Lottery implementation options using the transparent randomness beacon.

the addition of a ’pre-compiled’ contract to perform modular
exponentiation as a part of EIP198 [10] significantly reduces
the gas cost required to perform verification. The gas needed
for modular exponentiation can be calculated based on the
formula given in [10].

Table II shows the gas requirements for sloth verification
performed for different sizes of witness, prime modulus and
number of iterations. The values in the last row of the table
show that for the largest evaluated witness and modulus sizes,
the sloth verification cost amounts to around 5 times the cost for
the rest of the smart contract with 70 users. For ITV and INP
the lottery smart contract owner must set the participation fee
high enough to be able to make a profit despite the verification
cost. In the OPT variant, the verification computations are only
executed on chain if someone submits a complaint. Thus with
OPT, the owner can set a much lower participation fee as long
as the locked funds by the beacon can cover the bounty and
the computation cost of a successfully verified complaint.

Note that in addition to the increase due to sloth verification
computation, the amount gas required for parsing, preprocessing

Size of Witness
(bits)

Size of Prime
Modulus (bits)

Iterations Gas

512 512 1024 159,129
1024 1024 1024 517,171
512 512 2048 368,844
1024 1024 2048 1,198,745

Table II. Verification gas cost for different parameter sizes.

and validating beacon inputs, commitments, output and proof
parameters including their signatures on chain has to be
considered. Parsing and preprocessing can be done in multiple
ways (e.g., by making multiple calls to the oracle to obtain
each value individually, or making a single call and parse the
returned data on-chain, and so on). It also depends on how
the beacon values are encoded when sent to the contract. In
addition to this, the gas costs to use the oracle service depends
on the amount of data fetched. However, this part of the gas
cost is dominated by far by the verification cost, so we do not
report on these numbers.

Discussion When using a blockchain to run (parts of) a
randomness beacon, the incentive structure of all involved



parties needs to be considered in a security analysis, which
may include miners in public permissionless blockchains. E.g.,
for the trust assumption of everyone being against the user, he
or she would have to mine blocks itself to guarantee interaction
with the beacon, which is a steep requirement.

We also note that using smart contracts interacting with an
off-chain beacon, a beacon can also be used on a deeper level of
a distributed ledger, namely as a means to speed up consensus
with shared randomness. If all the members in a distributed
environment trust and agree on the random value generated by
the beacon, it can be used to select leaders, committees and/or
rank block proposals in an otherwise trust-lacking blockchain
scenario. Recent consensus algorithms leverage this idea [11],
[12] with MPC beacon generation. If and how a transparent
authority beacon can be applied in this context is an interesting
open question.

VII. RELATED WORK

Randomness beacons have been studied intensively in the
literature already, see [2], [3], [7], [8], [13], [14], [15], [16],
[17], [18], [9] to list but a few example. An interesting example
of a MPC protocol is Drand [8], which relies on a distributed
randomness beacon daemon [8]. However, in contrast to our
approach, Drand requires knowledge of all participating nodes
at the setup phase (initiated by a single leader). This makes
Drand static, i.e. new nodes cannot join an already running
protocol. Another interesting solution is the “zoo approach”, [2],
a protocol reminiscent of a beacon which collects data from a
variety of sources before running them through sloth. Sloth is a
strictly sequential function which is orders of magnitude faster
to inverse for verification. The time-hardness prevents last-draw
attacks, as attackers have to dedicate large amounts of time to
compute how to bias the output, during which new inputs can
render their efforts pointless. The sloth delay function is a also
key part of our randomness beacon. However, the supporting
structures driving the beacon are designed differently and we
analyse the security of both the protocol and the beacon operator
in more detail, in particular, we assume the beacon operator
can be malicious. A unicorn protocol is then used to combine
input collection from multiple sources and then compute the
output of a delay function. This protocol resembles that of the
transparent authority beacon computation model, and is done
by a single entity. Lenstra and Wesolowski suggest feeding
sloth with an aggregation of user inputs However, while they
guarantee random unpredictable outputs even if all other users
are malicious, they do not explore the scenario of a malicious
operator, who colludes with adversarial users. A final protocol
named trx is presented, which utilizes the output of the unicorn.

There exist other verifiable delay functions beyond sloth.
Bünz et al. [9] evaluate the computation and verification
of delay functions based on modular square roots and the
hashing functions Keccak-256 (SHA3) and SHA-256. Subse-
quently, [19] formalized the notion and present functions that
achieve an exponential gap between evaluation and verification
time. Note that sloth could be replaced by these functions in
our implementation and most likely achieve better performance.

Since the focus of this paper is on more general system aspects,
we omit an evaluation of these functions in this paper.

VIII. CONCLUSION

We designed, implemented and evaluated a randomness
beacon with sensible guarantees for any single user; i.e. given
their random input to the beacon, they can easily and rapidly
verify the computation, and decide if they deem it trustworthy.
To this end, we refined and extended the work in [2].Our
implementation allows all users to run the delay function in
parallel with the beacon operator, or to run it if the beacon
operator (maliciously or not) performs an output withholding
attack. Our beacon is attractive for applications based on
smart contracts and distributed ledgers with minimal trust
assumptions, illustrated with an Ethereum lottery application.
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