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Abstract. Microservices are becoming the de-facto standard way for
software development in the cloud and in service-oriented computing.
Service meshes have been introduced as a dedicated infrastructure for
managing a network of containerized microservices, in order to cope
with the complexity, manageability, and interoperability challenges in
especially large-scale microservice architectures. Unfortunately so far no
dedicated architecture guidance for designing microservices and choosing
among technology options in a service mesh exist. As a result, there is a
substantial uncertainty in designing and using microservices in a service
mesh environment today. To alleviate this problem, we have performed a
model-based qualitative in-depth study of existing practices in this field
in which we have systematically and in-depth studied 40 reports of estab-
lished practices from practitioners. In our study we modeled our findings
in a rigorously specified reusable architectural decision model, in which
we identified 14 architectural design decisions with 47 decision outcomes
and 77 decision drivers in total. We estimated the uncertainty in the
resulting design space with and without use of our model, and found
that a substantial uncertainty reduction can be potentially achieved by
applying our model.
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1 Introduction

Microservices are a recent approach for designing service architectures that
evolved from established practices in service-oriented architectures [13,17,28]. As
microservices, especially in large-scale systems, introduce many challenges and
high complexity in terms of manageability and interoperability, service meshes
[15] have been introduced as an infrastructure for managing the communica-
tion of containerized microservices and perform many related tasks. For this,
they usually use a network of lightweight proxies or sidecars that handle all the
communication burden [12,16]. As a result, the coupling between microservices
and of microservices to the infrastructure services can get drastically reduced.
This also eases establishing interoperability between microservices developed in
different programming languages and with different technologies. The proxies or
sidecars form a data plane that is typically managed by a control plane [22].



Unfortunately so far no dedicated architectural guidance exists on how to
design and architect microservices in a service mesh environment apart from
practitioner blogs, industry white papers, experience reports, system documen-
tations, and similar informal literature (sometimes called gray literature). This
includes that so far there is no guidance for users of service mesh technologies or
even their implementors to select the right design and technology options based
on their respective properties. Very often it is even difficult to understand what
all the possible design options, their possible combination, and their impacts on
relevant quality properties and other decision drivers are. As a result, there is
substantial uncertainty in architecting microservices in a service mesh environ-
ment, which can only be addressed by gaining extensive personal experience or
gathering the architectural knowledge from the diverse, often incomplete, and
often inconsistent existing practitioner-oriented knowledge sources.

To alleviate these problems, we have performed a qualitative, in-depth study
of 40 knowledge sources in which practitioners describe established practices. We
have based our study on the model-based qualitative research method described
in [26], which uses such documented practitioner sources as rather unbiased
knowledge sources and systematically codes them using established coding and
constant comparison methods [6] combined with precise software modeling, in
order to develop a rigorously specified software model of established practices
and their relations. This paper aims to study the following research questions:

– RQ1 What are the established practices that commonly appear in service
mesh based designs and architectures?

– RQ2 What are the dependencies of those established practices? Especially
which architectural design decisions (ADDs) need to be made in service mesh
based designs and architectures?

– RQ3 What are the decision drivers in those ADDs to adopt the practices?

In addition to studying and answering these research questions, we have es-
timated the decision making uncertainty in the resulting ADD design space,
calculated the uncertainty left after applying the guidance of our ADD model,
and compared the two. Our model shows a potential to substantially reduce the
uncertainty not only by documenting established practices, but also by organiz-
ing the knowledge in a model.

The remainder of this paper is organized as follows: In Section 2 we compare
to the related work. Section 3 explains the research method we have applied
in our study. Then Section 4 explains a precise specification of the service mesh
design decisions resulting from our study. The uncertainty estimation is discussed
in Section 5, followed by a discussion in Section 6 and conclusions in Section 7.

2 Related Work

Service meshes have been identified in the literature as the latest wave of ser-
vice technology [12]. Some research studies use service meshes in their solu-
tions. For example, Truong et al. [23] use a service mesh architecture to reduce



rerouting effort in cloud-IoT scenarios. Studies on generic architecture knowl-
edge specific to service meshes are rather rare in the scientific literature so far.
One example that considers them is TeaStore, which intrafficControlDecision-
troduces a microservice-based reference architecture for cloud researchers and
considers practices used in service meshes [4]. More sources can be found on
general microservice best practices. For instance, Richardson [20] provides a col-
lection of microservice design patterns. Another set of patterns on microservices
has been published by Gupta [8]. Microservice best practices are discussed in
[13], and similar approaches are summarized in a recent mapping study [18]. So
far, none of these approaches has put specific focus on the service mesh practices
documented in our study.

A field of study related to service mesh architectures are studies on microser-
vice decomposition, as this can lead to decision options and criteria related to
the topology of the service mesh. While the microservice decomposition itself
is studied in the scientific literature extensively (see e.g. [10,1,25]), its influence
on the design of the deployment in a service mesh and its topology are studied
only rarely. For instance, Zheng et al. [27] study the SLA-aware deployment of
microservices. Selimi et al. [21] study the service placement in a microservice
architecture. Both studies are not specific for service meshes, but could be ap-
plied to them. In contrast to our study which aims to cover a broad variety of
architecting problems, these studies only cover a very specific design issue in a
microservice architecture.

The model developed in our study can be classified as a reusable ADD model
[29]. Decision documentation models have been used by many authors before,
and quite a number of them are focused on services, such as those on service-
oriented solutions [29], service-based platform integration [14], REST vs. SOAP
[19], microservice API quality [26], big data repositories [7], and service discovery
and fault tolerance [9]; however, none of them considers service meshes yet.

3 Research Method

This paper aims to systematically study the established practices in the field of
service mesh based architectures. A number of methods have been suggested to
informally study established practices, including pattern mining (see e.g. [3]).
As in our work, we rather aim to provide a rigorously specified model of the es-
tablished practices, e.g., to support tool building or the definition of metrics and
constraints in our future work, we decided to follow the model based qualitative
research method described in [26]. It aims to systematically study the estab-
lished practices in a particular field and is based on the established qualitative
research method Grounded Theory (GT) [6] but in contrast to GT it produces
inputs for formal software modeling like model element or relation instances,
not just informal textual codes. Like GT, we studied each knowledge source in
depth. The method uses descriptions of established practices from the so-called
gray literature (i.e., practitioner reports, system documentations, practitioner
blogs, etc.). These sources are then used as unbiased descriptions of established



practices in the further analysis (in contrast to sources like interviews as used in
classic GT). We followed a similar coding process, as well as a constant compar-
ison procedure to derive our model as used in GT. In contrast to classical GT,
our research began with initial research questions, as in Charmaz’s constructivist
GT [2]. Whereas GT typically uses textual analysis, we used textual codes only
initially and then transferred them into formal UML models.

A crucial question in GT is when to stop this process; here, theoretical satura-
tion [6] has attained widespread acceptance in qualitative research: We stopped
our analysis when 5 to 7 additional knowledge sources did not add anything new
to our understanding of the research topic. As a result of this very conservative
operationalization of theoretical saturation, we studied a rather large number of
knowledge sources in depth (40 in total, summarized in Table 1), whereas most
qualitative research often saturates with a much lower number of knowledge
sources. Our search for knowledge sources was based on popular search engines
(e.g., Google, Bing), social network platforms used by practitioners (e.g., Twit-
ter, Medium), and technology portals like InfoQ and DZone.

Proof-of-Concept Implementation Our proof-of-concept implementation is
based on our existing modeling tool implementation CodeableModels1, a Python
implementation for precisely specifying meta-models, models, and model in-
stances in code with an intuitive and lightweight interface. We implemented
all models described in this paper together with automated constraint check-
ers and PlantUML code generators to generate graphical visualizations of all
meta-models and models.

Table 1: Knowledge Sources Included in the Study

Code Description Reference

S1 Istio Prelim 1.2 / Traffic Management (documentation) http://bit.ly/2Js3JXj

S2 Using Istio to support Service Mesh on Multiple . . . (blog) http://bit.ly/2FqMce5

S3 Service mesh data plane vs. control plane (blog) http://bit.ly/2EtC8z6

S4 The Importance of Control Planes with Service Meshes . . . (blog) http://bit.ly/2He7JYu

S5 Envoy Proxy for Istio Service Mesh (documentation) https://bit.ly/2HaNdrE

S6 Our Move to Envoy (blog) https://bit.ly/2Vyyefd

S7 Envoy Proxy 101: What it is, and why it matters? (blog) https://bit.ly/2HaNhYq

S8 Service Mesh with Envoy 101 (blog) https://bit.ly/2UjPuVn

S9 Microservices Patterns With Envoy Sidecar Proxy (blog) https://bit.ly/2tOWo9C

S10 Ambassador API Gateway as a Control Plane for Envoy (blog) http://bit.ly/2TuaZWj

S11 Streams and Service Mesh - v1.0.x | Kong . . . (documentation) http://bit.ly/2UGX7W1

S12 Istio Prelim 1.2 / Security (documentation) http://bit.ly/2HyOIkH

S13 Consul Architecture (documentation) https://bit.ly/2ITnhU2

S14 Global rate limiting — envoy . . . (documentation) http://bit.ly/2Js3JXj

S15 Cilium 1.4: Multi-Cluster Service Routing, . . . (blog) http://bit.ly/2Cv49pU

S16 Proxy Based Service Mesh (blog) https://bit.ly/2VzpbL2

S17 Smart Networking with Consul and Service Meshes (blog) http://bit.ly/2Uk14jg

S18 A sidecar for your service mesh (blog) http://bit.ly/2ThMrvF

1 https://github.com/uzdun/CodeableModels
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S19 Istio Prelim 1.2 / Multicluster Deployments (documentation) http://bit.ly/2udsxI3

S20 Microservices Reference Architecture from NGINX (blog) http://bit.ly/2U3tNw1

S21 Comparing Service Mesh Architectures (blog) http://bit.ly/2tQ2GWd

S22 Istio Multicluster on OpenShift – Red Hat OpenShift . . . (blog) https://red.ht/2FcMyn4

S23 Amazon ElastiCache for Redis FAQs (documentation) https://amzn.to/2TgGML8

S24 Service Mesh for Microservices (blog) http://bit.ly/2TCd6Is

S25 Designing microservices: . . . (documentation) http://bit.ly/2tPQkO4

S26 HashiCorp Consul 1.2: Service Mesh (blog) http://bit.ly/2Fnj1It

S27 Connect-Native App Integration (documentation) http://bit.ly/2NEDMlL

S28 Service discovery — envoy . . . (documentation) http://bit.ly/2Tfp59H

S29 Linkerd2 Proxy (open source implementation) https://bit.ly/2HaiFqa

S30 Multi Cluster Support for Service Mesh . . . (blog) http://bit.ly/2Jp6isS

S31 Linkerd Architecture (documentation) http://bit.ly/2Uki3lt

S32 Federated Service Mesh on VMware PKS . . . (blog) http://bit.ly/2TNRitD

S33 Consul vs. Istio (documentation) http://bit.ly/2Tdx5gd

S34 Guidance for Building a Control Plane to Manage Envoy . . . (blog) http://bit.ly/2CCAYRU

S35 Comparing Service Meshes: Linkerd vs. Istio . . . (blog) http://bit.ly/2TWQAtT

S36 Connect - Proxies - Consul by HashiCorp (documentation) http://bit.ly/2UViLWG

S37 Approaches to Securing Decentralised Microservices . . . (blog) http://bit.ly/2Wp50jn

S38 Istio Routing Basics – Google Cloud Platform . . . (blog) http://bit.ly/2OoR0Dn

S39 Integrating Istio 1.1 mTLS and Gloo Proxy . . . (blog) http://bit.ly/2UTpctm

S40 Kubernetes-based Microservice Observability . . . (blog) http://bit.ly/2FvE4aT

4 Service Mesh Design Decisions

Following our study results, we identified 14 ADDs for service meshes described
in detail below. Service Meshes are usually used together with a Container Or-
chestrator such as Kubernetes or Docker Swarm. That is, the services in the
mesh, the central services of the service mesh, and service mesh proxies are usu-
ally containerized and the containers are orchestrated. Very often service meshes
are used to deal with heterogeneous technology stacks. That is, a major goal is
that microservices can be written as HTTP servers with any programming lan-
guage or technology, and without modification these services get containerized
and managed in a mesh, including high-level services like service discovery, load
balancing, circuit breaking, and so on. In the first four sections, we describe
ADDs that characterize a service mesh as a whole. The remaining section de-
scribes ADDs that can be made for specific components of a service mesh.

4.1 Managed Cross-Service Communication Decision

As stated previously, a Service Mesh is composed of a set of networked proxies
or Sidecars that handle the communication between microservices [12,22]. The
decision regarding managed communication across the services in a Service Mesh
is made for the Service Endpoints of these microservices, as illustrated in Figure
1. Not using managed cross-service communication is a decision option for each
service endpoint but please note that this essentially means to not follow a service
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mesh architecture for the endpoint. Alternatively, we can select between the
two following design options: Service Proxy and API-Based Service Integration.
Service Proxy is the commonly supported option. If the Service Proxy is hosted
in a container that runs alongside the service container (i.e., in the same pod
of the Container Orchestrator), the service proxy is called a Sidecar Proxy. A
few service meshes offer the additional option API-Based Service Integration,
which means that the service uses a service mesh API to register itself in the
mesh and is then integrated without a dedicated proxy. The entire cross-service
communication handled by proxies or otherwise integrated services is called the
Data Plane of the Service Mesh. Centralized services of the service mesh are
usually called the Control Plane (discussed below).

The Service Proxy option has the benefit to make it easier to protect the
service from malicious or overloaded traffic by achieving access control, TLS
termination, rate limiting and quotas, circuit breaking, load balancing, and other
tasks; this is discussed in more depth in Section 4.5. Also, the independence
of the service from its proxy increases the extensibility and maintainability of
the service, which is, as a result, not aware of the network at large and only
knows about its local proxy. However, this option might produce additional
communication overheads and congestions. The major benefit of choosing an
API-Based Service Integration over a Service Proxy is that it makes the service
mesh less complex and there is less communication overhead. However, doing
so limits its extensibility and interoperability. The option not to manage cross-
service communication basically means that all benefits of service mesh are not
achievable.

An example realizing the API-Based Service Integration is Connect Proxy
used in Consul that is implemented using language-specific libraries that are
used directly in microservices code. Service Proxy and Sidecar Proxies are more
frequently supported; examples are Envoy Proxy [5] in the Istio Service Mesh
[11], Kong Proxy, NGINX Proxy and Linkerd Proxy. Most such service proxy
technologies can be deployed as a sidecar or a service proxy running in a different
environment (e.g., different server or VM); they usually also offer the option to
be used as a Front Proxy as discussed in the next section.

4.2 Managed Ingress Communication Decision

In addition to handling cross-service communication, service meshes often in-
tercept incoming traffic, usually called ingress traffic. The decision for managed
ingress communication is usually made for the Service Mesh as a whole. The
ingress traffic then needs to be routed to the containers orchestrated in the
mesh. Of course, we might choose not to manage ingress communication but
this is a risky and dangerous option since it might expose the service mesh to
malicious or overloaded traffic. This option may be adopted in case of a private
service mesh, but such meshes seem to be very rare. The typical design option
chosen is a Front Proxy which is used by the Control Plane to intercept ingress
traffic as shown in Figure 2. An API Gateway [20], a common microservice pat-
tern with the goal to provide a common API for a number of services, can be



Managed Cross-Service Communication
: Decision

Service Endpoint
: Domain Class

Service Proxy : Practice

Sidecar Proxy : Practice
Container Orchestrator

: Pattern

Data Plane
: Design Solution / Domain

Class

API-Based Service Integration
: Practice

No managed cross-service communication
: Do Nothing

«Option»
{name = "use a

proxy per service"}

«Option»
{name = "use a
service mesh

API for service
integration

and communication
without

a proxy"}

«Option»
{name = "service
is not integrated

into service
mesh"}

«decide for all instances
of»

«Variant»
«Uses»

sidecar container
runs alongside the service
container (in the same pod)

«Includes»«Includes»

Fig. 1. Managed Cross Service Communication Decision

realized based on a Front Proxy of a service mesh. A Front Proxy can protect the
service mesh from malicious traffic. It can provide proxy tasks such as load bal-
ancing and multi-protocol support at the perimeter of the service mesh. Clients
are shielded from details about the inner workings of the service mesh and are
provided with an API at the client-needed granularity; this reduces complexity
for clients. The additional proxy increases complexity for developers of the ser-
vice mesh. The performance of requests can be increased, as less roundtrips from
clients to services are needed, if the Front Proxy can retrieve data from multiple
services for one request from a client. However, the additional network hop for
accessing the Front Proxy decreases the performance. An example of this type of
proxy is the NGINX Ingress Controller. Most of the proxies from the previous
section can also be used as Front Proxies.

Managed Ingress Communication
: Decision

Service Mesh
: Design Solution / Domain

Class
Front Proxy : PracticeNo managed ingress communication

: Do Nothing

Control Plane
: Design Solution / Domain

Class
API Gateway : Pattern

«Option»
{name = "manage

ingress communication"}

«Option»
{name = "do not
manage ingress
communication"}

«decide for all instances
of» «Can Use» «Can be Realized With»

Fig. 2. Managed Ingress Communication Decision

4.3 Traffic Control Decision

Communication in service meshes generates a lot of traffic and data that needs
to be controlled and captured e.g. to distribute access control and usage policies,



and observe and collect telemetry, traces and metrics. The traffic control decision
is usually made for the whole Service Mesh as illustrated in Figure 3. There are
four traffic control options:

– Centralized Control Plane – A central component, called the Control Plane,
controls traffic of a service mesh. It is responsible of managing and config-
uring sidecars in addition to distributing access control and usage policies,
observing and collecting telemetry, traces and metrics, in addition to numer-
ous other services like service discovery, as described in Section 4.5.

– Distributed Control Plane – Each service of a service mesh has its own cache
that is efficiently updated from the rest of the services. This helps to enforce
policies and collect telemetry at the edge.

– Front Proxy – The proxy is responsible for intercepting incoming traffic from
outside the service mesh as described in Section 4.2. It might also be extended
to handle traffic control at the entry point of the service mesh. This option
can potentially be combined with the two previous options (for that reasons,
the decision is marked with a stereotype that indicates that multiple answers
can be selected).

– Finally no dedicated traffic control can be used as well.

The most obvious benefit of using a Centralized Control Plane is its simplic-
ity and ease of administration. However, especially when using one single control
plane, it produces a single point of failure and is hard to scale. Also, it might
cause traffic congestion which increases latency. Centralized Control Planes pro-
vide policies to the Service Proxy on how to perform routing, load balancing and
access control. In that case, the next optional decision to take is related to service
mesh expansion. Istio service mesh, for example, which is based on Centralized
Control Plane supports service mesh expansion in a multi-cluster environment.
On the other hand, a Distributed Control Plane is highly scalable and there is no
single point of failure. However, this option is the most complex and thus risky
option. Using this option, traffic may be forwarded to either a Service Proxy or
directly to a service via API-Based Service Integration as described in Section
4.1. Consul for example, which implements Distributed Control Plane, consists
of a set of client agents that are efficiently updated from server agents to control
traffic at the edge. An example using Front Proxy, described in Source S10 in
Table 1, uses Envoy which can be extended to become an API Gateway, which
then can do traffic control for the service mesh by integrating with Istio. The
Front Proxy solution does not have the fine-grained control offered by the other
options, as it is only applied in a central place. It is also a single point of failure
and is negative for congestion and latency, but is a simple and non-complex solu-
tion. If used together with one of the other options, it increases the complexity of
these options even further, but enables more fine-grained control for the ingress
traffic and thus can reduce the overall traffic in the mesh. These options lead
us to the next optional decision regarding distributing traffic control and other
tasks among Control Plane and Data Plane (see Section 4.5 for a list of these
follow-on decisions, not shown in Figure 3 for brevity). Figure 3 shows these
decision options and their relations.
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Fig. 3. Traffic Control Decision

4.4 Service Mesh Expansion Decision

To scale and achieve redundancy, service meshes can be expanded and form
multi-clustered service meshes, leading to the selection of the option Multi-
Cluster Support in the decision illustrated in Figure 4. The service mesh ex-
pansion decision is made for the Service Mesh itself. Selecting Multi-Cluster
Support may result in higher complexity and increased network bandwidth need
and cost. The decision option Multi-Cluster Support is in its simple form just
using one Centralized Control Plane (see Section 4.3) that controls multiple ser-
vice meshes. The most obvious benefit of this option is its simplicity and ease of
administration. However, it is creating a single point of failure and might pro-
duce traffic bottlenecks which increase latency. Multi-Cluster Support has one
variant Multi-Cluster Support with Multiple Control Planes with no single point
of failure. This option variant uses Multiple Control Planes which is a variant of
Control Plane as shown in Figure 4.

Istio Multicluster on Openshift, described in source S22 of Table 1, is an
example that implements Multi-Cluster Support using one Centralized Control
Plane. In this example, one cluster is hosting the Control Plane and the others
host the Data Plane as well as some parts of the Control Plane for distributing
certificates and Sidecar Proxy injection. Another example is NSX service mesh,
described in source S32 of Table 1, which is also based on Istio but implements
the variant Multi-Cluster Support with Multiple Control Planes by enabling a
local service mesh per Kubernetes cluster.

4.5 Central Services and Proxy Tasks

As explained above, the Control Plane and Data Plane provide numerous central
services and proxy tasks, and many of those are achieved jointly. The decisions
on central services and proxy tasks are usually made for the Service Mesh itself
but can in many cases be changed for individual services or service clusters from
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Fig. 4. Service Mesh Expansion Decision

the default configured for the service mesh. Proxy tasks generally can be imple-
mented on the Service Proxies or in some cases alternatively on a Front Proxy.
All solutions relying on a central service or on the Front Proxy are introducing
a single point of failure (not repeated per case below). The decisions, options,
and decision drivers for central services and proxy tasks are discussed below.
In addition, we have found evidence for decisions that are needed for the basic
functioning of the service mesh such as policy distribution, which we have not
included in our catalog, as the user does not have to make a decision about them.
Based on the services and tasks listed below we found evidence for many possi-
ble follow-on decisions such as support for rate limits, quotas, circuit breaking,
retries, timeouts, fault injection, dashboards, analytics, and so on. We did not
include those in our ADD model either, as the possible list of such higher-level
services is excessive and will likely grow over time.

Service Discovery Decision In order to communicate in a service mesh, ser-
vices need to locate others based on information like IP address and port number.
Of course, this might be simply hard-coded in each of these services. If a service
changes its address, fails or is unavailable for other reasons like congestion, then
it becomes not reachable anymore. Then, there is a huge problem since all ser-
vices code needs to be changed and the mesh needs to be restarted which impacts
negatively availability. To resolve this issue, the Control Plane and Data Plane
use service discovery system usually provided by platforms like Kubernetes for
example. An alternative is using a central Lookup service [24]. The distributed
service discovery option requires a consistency protocol and caching of discovery
information, i.e. it is more complex. However, the lookup is local, thus it offers
better performance. Without service discovery, the manageability, changeabiltiy,
and evolvability of the service mesh would severely suffer.

Load Balancing Decision Service meshes, especially at scale, have to handle
tremendous traffic loads which might overload services, increase their latency
and decrease their availability. In order to avoid such a situation and maintain
scalability, services are replicated and load is distributed over these instances by
both the Control Plane and Data Plane using a load balancing algorithm. Load
balancing can also be based on geographical location, especially in the case of
service mesh expansion described in Section 4.4. If load balancing is used, the



typical option is Load balancing on the Service Proxies. An alternative which
offers balancing loads for the whole ingress traffic is Load balancing on the Front
Proxy; this option offers less fine grained control over the load balancing than
e.g. to balance per service cluster. Both solutions can also be combined, offering
the benefits of both solutions but also increasing the complexity.

Custom Routing Decisions To manage cross-service and ingress communica-
tion, the Control Plane and Data Plane need to know where each packet should
be headed to or routed; routing is usually configured on the Control Plane and
enacted by the proxies on the Data Plane. In addition to such basic routing, the
service mesh often offers Custom Routing options which can be based on URL
path, host header, API version or other application-level rules for control over the
routing in the mesh. Such routing rules can be dynamically changed, increasing
the flexibility of the architecture. Custom routing can in follow-on decisions be
used for extra tasks, a prominent one is to support continuous experimentation
techniques such as staged rollouts, A/B testing and canary deployment (or not).
The latter can help for more controlled deployments to production, which helps
to minimize deployment risks.

Health Checking Decision In highly versatile environment such as service
meshes, services go up and down unexpectedly which decreases availability. To
overcome this issue, periodic health checks on services can be applied and e.g.
mitigation strategies like service restarts can be applied. Health checks are usu-
ally performed by the service proxy and a central service collecting the informa-
tion. Alternatively, simple health checks like pinging service proxies can also be
done solely on the central service, but then more complex health checking is not
possible. Of course another decision option is to not perform health checks.

Security-Related Decisions Communication in service meshes usually uses
encryption based generated keys and certificates; if not used, the service mesh
might be exposed to malicious traffic and manipulations, unless a key and cer-
tificate management service outside of the service mesh can or must be used. A
simple option is using API Keys [26] and local key management. The alternative
is to introduce a central certificate authority, residing in the Control Plane, that
takes care of storing and distributing security keys and certificates to the Data
Plane. This option is more secure than the other options and creates in large
installations less maintenance overhead for managing various API Keys in the
clients and service proxies, but it is also more complex than e.g. API Keys. Once
authentication is handled, authorization needs to be considered. This can be
achieved by setting up access control in the Control Plane or in the Data Plane.
If we choose not to control access after authentication, then services are exposed
to unintentional and unwanted modifications. Security is the most important
driver in this decision; a solution on the data plane supports more fine-grained
control but is more complex than a solution on the control plane. Using en-
cryption in service meshes, usually based on mutual TLS, has to be handled at



both ends; not using encryption means security is endangered. There are three
decision options for TLS Termination: either we offer TLS termination directly
in the service, at the Front Proxy, or – the most common option – in the Data
Plane. The first option brings boilerplate code to the service which might also
decrease its performance. The second option is only viable if the service mesh
is in a private environment in which internal unencrypted communication is an
option (or another encryption than the one used for communication with clients).

Collect Telemetry, Traces, and Metrics Decision To observe telemetry,
traces and metrics in a service mesh, they first need to be collected. Otherwise,
we have to access each of the services and upload this data manually. This is
usually done by a control plane service collecting data from data plane proxies.
With few services, we can choose not to collect them centrally. At large scale,
this might make control and management tasks complex and central features
such as dashboard or metrics are hard to impossible to build. Some telemetry
might also be needed anyway for the functioning of the service mesh itself.

Multi-Protocol Support Decision In heterogeneous environments like ser-
vice meshes, multi-protocol support is required. It helps to have a unified API
interface that can be used by services using different protocols, which increases
interoperability and extensibility of the service mesh. This can be offered by data
plane proxies or on the front proxy, where the latter option offers less fine-grained
support and is suitable if the mesh uses only one protocol inside. Of course, we
might choose not to use this API interface and relieve the service mesh from the
resulting processing overhead. Then, we need to add boilerplate code to services
to support different protocols or suffer from interoperability issues.

5 Estimation of Uncertainty Reduction

There are many different kinds of uncertainties involved in making ADDs in a
field in which the architect’s experience is limited. The obvious contribution of
our ADD model is that it helps to reduce the uncertainty whether all relevant,
necessary and sufficient elements for making a correct decision have been found.
Another kind of uncertainty reduction is the uncertainty reduction our ADD
model provides compared to using the same knowledge, but in a completely
unorganized fashion. We want to estimate this kind of uncertainty reduction
here, following the approach described in detail in [26]. Here, we estimate the
uncertainty reduction only for each individual decision. Please note that in most
decisions combinations of options from different decisions need to be taken; but as
many decisions in our ADD model have different decision contexts, this can only
be calculated precisely for actual decisions made, not for the reusable decisions in
the ADD model. But a consequence is that the actually achievable uncertainty
reduction is much higher than the numbers below when decisions need to be
made in combination. We calculate each number both for using our ADD model



(denoted with ⊕ below) and not using our model (denoted with 	 below). Let
DEC denote the decisions in our ADD model. For each, d ∈ DEC there are a
number of decision options OPTd possible to choose for decision d. Finally, there
is a set of criteria CRId that need to be considered when making a decision d.

Number of decisions nodes (ndec): Our ADD model represents each decision
separately. So the number of decision nodes for a single decision d is always
ndec⊕d = 1. Without our ADD model, each decision option in the design space
that is not Do Nothing is a possible decision node, and it can either be selected
or not: ndec	d = |OPTd \ {Do Nothing}|. Please note that, if a design solution
has variants, OPTd contains the base variant plus each possible variant.

Number of required criteria assessments in a decision (ncri): Our ADDmodel
includes explicit decision criteria per decision and for all decisions described
above all criteria are pre-decided in the sense that we have assigned a qualitative
value {++, +, o, -, --} to it, represented in the range: very positive, positive,
neutral, negative, and very negative. Thus the required criteria assessments per
decision are one assessment per decision, ncri⊕d = 1. Without our ADD model,
we need to assess each criterion for each decision node (as we have no pre-decided
choices): ncri	d = |CRId| × |ndec	d |.

Number of possible decision outcomes (ndo): Our ADD model already mod-
els each decision option separately in |OPTd| including Do Nothing options, so
ndo⊕d usually equals |OPTd| unless the design space allows explicit combinations
of solutions as additional outcomes. For instance, in the decision on managed
ingress communication the API Gateway can be combined with the base variant
Front Proxy. Let the function solComb() return the set of possible solution com-
binations in the options of a decision; then ndo⊕d = |OPTd|+ |solComb(OPTd)|.
The same is true in principle for the decisions made without our ADD model,
but as the decision d is here split into multiple separate decision nodes ndec	d
and without the ADD model no information on which combinations are possible
is present, we need to consider any possible combination in ndec	d , i.e., the size
of the powerset of the decision nodes: ndo	d = |P(ndec	d )| = 2|ndec	

d
|.

Table 2 shows the results of the uncertainty reduction estimation. It can be
seen that the number of decisions to be considered ndec can be in total reduced
from 33 to 14, with an average improvement of 49.76% when using our ADD
model. As all decisions have multiple criteria and when not using our ADD model
no decision are pre-decided, the improvement for criteria assessments is higher:
on average a 86.70% improvement is possible. Finally, the possible decision out-
comes is improved from 96 to 47, with an average 32.59% improvement.

6 Discussion and Threats to Validity

We have studied knowledge on established practices in service mesh architec-
tures, relations among those practices, and decision drivers to answer our re-
search questions RQ1-3, respectively, with multiple iterations of open coding,
axial coding, and constant comparison to first codify the knowledge in informal
codes and then in a reusable ADD model. Precise impacts on decision drivers



Table 2. Uncertainty Reduction Estimation

Decision ndec⊕ ndec	 Imp. ncri⊕ ncri	 Imp. ndo⊕ ndo	 Imp.
Managed Cross-Service
Communication

1 3 66.67% 1 24 95.83% 4 8 50.00%

Managed Ingress Com-
munication

1 2 50.00% 1 16 93.75% 3 4 25.00%

Traffic Control 1 5 80.00% 1 45 97.78% 6 32 81.25%
Service Mesh Expansion 1 2 50.00% 1 16 93.75% 3 4 25.00%
Service Discovery 1 2 50.00% 1 16 93.75% 3 4 25.00%
Load Balancing 1 3 66.67% 1 21 95.24% 4 8 50.00%
Custom Routing 2 4 50.00% 2 8 75.00% 6 10 40.00%
Health Checks 1 2 50.00% 1 6 83.33% 3 4 25.00%
Security 3 7 57.24% 3 24 87.50% 10 16 37.50%
Telemetry 1 1 0.00% 1 4 75.00% 2 2 0.00%
Multi Protocol Support 1 2 50.00% 1 16 93.75% 3 4 25.00%
Total 14 33 14 196 47 96
Average Improvement
Per Decision

49.76% 86.70% 32.59%

of design solutions and their combinations were documented as well; for space
reasons we only summarized those in the text and did not show them in detailed
tables. In addition, we estimated in Section 5 the uncertainty reduction achiev-
able through the organization of knowledge in our ADD model. We may conclude
that our ADD model (and similar models) has the potential to lead to substantial
uncertainty reduction in all evaluation variables due to the additional organiza-
tion it provides and pre-selections it makes. For individual decisions, mastering
and keeping in short term memory the necessary knowledge for design decision
making seems very hard for the case without the ADD model (see numbers in
Table 2), but quite feasible in case of our ADD model. Our model also helps to
maintain an overview of the decisions ndec⊕ and criteria assessments ncri⊕ in
the combinations of contexts. Only the number of possible decision outcomes for
the combination of multiple decisions seem challenging to handle, both in the
ndo⊕ and ndo	 case. That is, despite all benefits of our approach, the uncer-
tainty estimations show that a limitation of the approach is that when multiple
decisions need to be combined in a context, maintaining an overview of pos-
sible outcomes and their impacts remains a challenge – even if a substantial
uncertainty reduction and guidance is provided as in our ADD model. Further
research and tool support is needed to address this challenge. As our numbers
are only rough estimates, further research is needed to harden them and confirm
them in empirical studies, maybe based on a theory developed based on such
preliminary estimations.

While we believe generalizability of our results beyond the knowledge sources
we have studied is possible to a large extent, our results are limited to those
sources and to a lesser extent to very similar service mesh architectures. Most
of the sources were public Web sources; there might be inhouse practices not
reported to the public by practitioners not covered here. Some of the sources
were from the technology vendors, which might have introduced bias; but this is
mitigated to a certain extent as we considered sources from most major service
mesh vendors. Our results are only valid in our set scope; we do not claim



any form of completeness. Possible misinterpretations or biases of the author
team cannot be fully excluded and might have influenced our results. We aimed
to mitigate this threat by our own in-depth experience and by carefully cross-
checking among the sources in many iterations.

7 Conclusions

We have performed in this paper a qualitative study in which we have studied
service mesh established practices and proposed a formally defined ADD model.
In total based on our findings, we modeled 14 architectural design decisions
with 47 decision outcomes and 77 decision drivers. In our uncertainty reduction
estimations we were able to indicate that the knowledge organization in our ADD
model can lead to a significant reduction of uncertainty. We plan in our future
work to combine our ADD model with other aspects of microservice design and
DevOps practices, and empirically validate a theory based on the preliminary
uncertainty reduction estimations. We also plan to validate our ADD model
using real life case studies with field practitioners.
Acknowledgments. This work was supported by: FFG (Austrian Research
Promotion Agency) project DECO, no. 846707; FWF (Austrian Science Fund)
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