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Abstract—Most modern communication networks include fast
rerouting mechanisms, implemented entirely in the data plane,
to quickly recover connectivity after link failures. By relying
on local failure information only, these data plane mechanisms
provide very fast reaction times, but at the same time introduce
an algorithmic challenge in case of multiple link failures: failover
routes need to be robust to additional but locally unknown
failures downstream.

This paper presents local fast rerouting algorithms which
not only provide a high degree of resilience against multiple
link failures, but also ensure a low congestion on the resulting
failover paths. We consider a randomized approach and focus
on networks which are highly connected before the failures
occur. Our main contribution are three simple algorithms which
come with provable guarantees and provide interesting resilience-
load tradeoffs, significantly outperforming any deterministic fast
rerouting algorithm with high probability.

I. INTRODUCTION

Emerging applications, e.g., in the context of industrial,
tactile or 5G networks, come with stringent latency and
dependability requirements. To meet such requirements, many
communication networks feature Fast Re-Route (FRR) mech-
anisms [1], [2], [3], [4]: local failover mechanisms in the
data plane which avoid the time-consuming advertisement and
collection of failure information and re-computation of routes
in the control plane [5], [6]. Rather, these mechanisms rely on
a pre-defined logic, often implemented in terms of conditional
failover rules [7]. However, while such mechanisms are attrac-
tive and widely used to deal with single failures, they introduce
an algorithmic challenge in the presence of multiple link fail-
ures, as they are common in large networks such as datacenter
and Internet networks [8], [9], [10], [11], [12], [13]: rerouting
decisions need to be made based on incomplete information
about the failure scenario, and in particular, about failures
downstream. The problem becomes particularly challenging if
the rerouted flows should not only preserve connectivity under
failures but also a low load, an important criteria in practice:
congested routes threaten dependability and indeed, congestion
is a main concern of any traffic engineering algorithm.

Recently, a series of negative results have been obtained on
what can be achieved using deterministic fast rerouting algo-
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rithms (e.g., [14]). In particular, it has been shown that even
on networks which are still highly-connected after failures, the
congestion resulting from any deterministic local fast failover
algorithm is bound to be high in the worst case [15], [16], i.e.,
polynomial in the number of link failures.

This paper initiates the study of randomized algorithms to
provide high resiliency and low congestion at the same time.
In particular, we will show that using a randomized approach,
the congestion can be reduced from polynomial to polylog-
arithmic, with high probability, hence breaking deterministic
congestion lower bounds.

A. Model in a Nutshell

In a nutshell, we consider the fundamental problem of
congestion-minimal fast rerouting on a complete undirected
network G = (V,E) connecting n nodes (routers and hosts).
Such complete networks are typically studied in the related
work and can be seen as an approximation of highly-connected
networks as they arise, e.g., in the context of datacenters.
Furthermore, it is known that solutions for complete networks
translate into multihop solutions in certain cases and hence
form building blocks. More details will follow.

The network links (henceforth called edges) of G are subject
to multiple concurrent failures, determined by an oblivious
adversary: an adversary who knows the failover protocol in-
cluding the used probability distributions, but not the generated
random values nor the resulting loads. (Later in this paper we
will discuss even stronger adversaries.)

The goal is to pre-define local failover rules for the different
nodes V such that traffic is rerouted to the destination while
balancing the load: the maximal number of flows (a continuous
stream of packets) crossing any node or link in the network.
The failover rules, which depend on the set of failed edges
incident to the given node as well as certain packet header
information, should be as simple as possible. Also, these
rules should be static, i.e., the routing table is not allowed
to be updated during the whole routing procedure, except
in the case of some ”bad” event – which can only happen
with a low probability in the adversarial model we consider
(see Section V for a discussion). For a brief overview on
the applicability of different failover routing mechanisms, see
Section I-D. In particular, we in this paper consider three such
destination-based rule types: one where only the destination978-1-7281-2700-2/19/$31.00 2019 c© IEEE



can be matched, one where we can also match the hop count,
and one where we can modify the hop count. To measure the
performance of our failover approaches we assume that the
network follows a all-to-one communication pattern [15], [16]:
one of the V nodes is selected as a distinguished destination
d, and one flow originating from each node V \ {d} needs to
be routed to d. The adversary may know d.

B. The Deterministic Case Lower Bound

The authors of [15] showed that deterministic failover
algorithms are bound to result in a high load even in case
of an initially completely connected network which is still
highly connected after the failures [15]. The proof has been
generalized further by Pignolet et al. in [16]. More specifically,
the authors showed that: (1) when only relying on destination-
based failover rules, an adversary can always induce a maxi-
mum edge load of Ω(ϕ) by cleverly failing ϕ edges; (2) when
failover rules can also depend on the source address, an edge
load of Ω(

√
ϕ) can be achieved, when failing ϕ many edges.

When considering the node load only, this bound can be
extended and account for further information that may be
used by the routing rules. Particularly, if we require that some
packet starting from node v takes the same path under the
same set of underlying edge failures (i.e., the packets’ paths are
oblivious and may not change depending on the other traffic
moving around the network), a node load of Ω(

√
ϕ) can be

generated by the adversary. Note that this extension allows
for including the hop counter inside the routing rule without
weakening the result of the lower bound.

C. Our Results

The main contribution of this paper are three randomized
fast rerouting algorithms which not only provide a high
resilience to multiple link failures but also an exponentially
lower load than any possible deterministic algorithm.

We present the three failover strategies in turn. Assuming
up to ϕ = O(n) edge failures, the first algorithm ensures that a
load of O(log n log log n) will not be exceeded at most nodes,
while the remaining O(polylog n) nodes reach a load of at
most O(polylog n). As we consider randomized approaches,
we require the above statement to hold with high probability1.
The second approach we present reduces the edge failure
resilience to O(n/ log n), however it is purely destination-
based and achieves a congestion of only O(log n log log n) at
any node w.h.p. Finally, by assuming that the nodes do have
access to O(log n) shared permutations of V , which are not
known to the adversary, the node load can be reduced even
further. That is, a maximum load of only O(

√
log n) occurs

at any node w.h.p.
While our focus lies on complete networks, these networks

constitute a major open problem in the literature today and it
is known that such solutions may be generalizable to other
networks using specific network decompositions based on
arborescence covers [17], [18] (namely if the cover is based

1Here we use the well established notion of with high probability, or w.h.p. ,
denoting probability of at least 1− n−Ω(1).

on Hamiltonian cycles). Furthermore, such networks provide a
good approximation of datacenter networks which are usually
highly connected, providing (almost) full bisection bandwidth.

D. Further Related Work

Link failures are the most common failures in communica-
tion networks [19], [20], [21], [22] and it is well-known that
ensuring connectivity via the control plane can be slow [4],
[14], even if it is centralized [23] or based on link rever-
sal [24], [25], [26], [27]. Data plane based failover mechanisms
which do not require table reconfigurations can be orders
of magnitudes faster [14] but are algorithmically difficult to
configure. Feigenbaum et al. [14] showed that it is not possible
to achieve an “ideal (static) resilience” in arbitrary networks
using local fast rerouting and without header rewriting [17],
[28]: it is impossible to define failover rules such that con-
nectivity is preserved as long as the network is physically
connected. Furthermore, Chiesa et al.’s conjecture [29], [30]
that is at least always possible to preserve connectivity in
a k-(edge-)connected network if there are at most k − 1
link failures, remains an open problem. Existing results on
failover algorithms either do not account for load (see e.g.,
the interesting randomized failover approaches in [29], [30])
or are deterministic [31], [32]. Note that in [29], [30] the
authors mainly focus on static-routing-resiliency of different
procedures in arbitrary k-connected graphs, where k can be
any number between 2 and n, and derive several important
results. Their randomized algorithm is based on arborescence-
based routing, which requires the precomputation [33] and the
(distributed) storage of sets of certain spanning trees, leading
to significant memory complexity. Furthermore, as randomized
decisions have to be taken during the routing of each packet,
possible TCP-flows may be disrupted.

E. Organization

The remainder of this paper is organized as follows. In the
following Sections II to IV we present our three algorithms
and provide an extensive analysis of their behavior. Then, in
Section V, we discuss extensions of our results, considering
additional failure scenarios as well as stronger adversaries. Af-
ter reporting on simulation results in Section VI, we conclude
in Section VII. Due to space constraints, some simple proofs
are omitted in this version of the paper.

II. BEATING DETERMINISTIC APPROACHES
WITH THREE PERMUTATIONS

This section presents our first failover algorithm. While it
is simple as forwarding is only based on the destination and
hopcount header fields, it ensures w.h.p. very low loads even
under a large number of link failures.

From the point of view of some fixed node v the first
protocol, we call it 3-Permutations, works as follows. For
destination d, the node v stores three permutations π(1)

v,d, π(2)
v,d

and π(3)
v,d of all nodes u ∈ V \ {d}. Upon receiving a packet p

intended for d, the node v first tries to forward it directly
via the link (v, d). In case this link failed, v inspects the



Input: A packet with destination d and hop count h(p)
1: if (v, d) is intact then forward p to d and return
2: else set i = arg maxj∈{1,2,3}{h(p) ≥ (j−1)C1} and send
p to first directly reachable node in π(i)

v,d

3: increase h(p) += 1

Fig. 1. 3-Permutations protocol. Point-of-view of some node v

current hop counter of p, denoted by h(p). Depending on
h(p), the node v then chooses one of the three permutations
π

(i)
v,d and forwards the packet to the first reachable partner w

in this permutation. We call a node w reachable from v, if
the direct link (v, w) is not failed. The criteria for selecting
which permutation to use is simple. In case h(p) < C1 for
a value C1 = O(log n), permutation π

(1)
v,d is consulted. For

C1 ≤ h(p) < 2C1 the permutation π
(2)
v,d is used and in any

remaining case π(3)
v,d is utilized. In any case the packets hop

counter is increased by 1 before handing it to the next node.
A concise description is given in Fig. 1.

Our main contribution is related to the way how these
permutations are selected. Instead of opting for a deterministic
protocol, we assume that each node v chooses the permutations
π

(i)
v,d out of all possible permutations of nodes u ∈ V \ {d}

uniformly and at random. As the adversary is oblivious, these
permutations are not known to it and it needs to essentially
blindly select edges for manipulation. Note however that this
approach comes with a challenge. This random creation of
failover routes may introduce temporary cycles into the pack-
ets routing paths. One important idea of the 3-Permutations
protocol is that most packets p will reach destination d solely
relaying on the failover entries given by π

(1)
v,d. And, only in

case p ends up trapped in a cycle, further permutations will
be used allowing it to escape said cycle. We show that w.h.p.,
at most O(log2 n log log n) load will reside at any node, even
if the adversary is allowed to destroy a linear amount of edges.

Theorem 1. Assume that the adversary fails at most α·n edges
where α < 1 is a non-negative constant. Then, if all nodes
perform all-to-one routing to any destination d and follow the
3-Permutations protocol, a maximum of

O(log n · log log n)

flows will pass at all but O(log2 n) nodes. Furthermore, the
remaining nodes, except for d, will receive a load of at most
O(log2 · log log n) and every packet will travel O(log n) hops.
These statements hold w.h.p.

Now, in order for the nodes to follow this protocol they
require the value C1. This value upper-bounds the number of
hops needed by any packet to reach the destination d, unless
it is trapped in a cycle due to the permutation π

(1)
v,d. We will

see that C1 can be bounded from above by 16 log(1/α) n. If α
is not known to the nodes, then C1 can be set to some value
in ω(log n). This slightly changes the result of Theorem 1

where up to O(log2 n) many nodes will receive a load of
O(C1 · log n log log n).

When it comes to memory complexity, each node may
store 3 permutations of n nodes for every destination d. A
naive approach would therefore require routing tables of size
O(n2 log n) bits to be prepared for routing to any arbitrary
destination d. This can be overcome as follows. First, each
node v only computes 3 random permutations π(i)

v , i = 1, 2, 3

on all nodes. The permutation π(i)
v,d for each d ∈ V is simply

π
(i)
v , and thus we apply π

(i)
v to obtain our failover strategy

regardless of d. Note that if the edge (v, d) is not failed, then
any packet with target d that reaches v is sent directly from
v to d. If, however, (v, d) is failed, then such a packet is sent
to the first node w in π

(i)
v for which (v, w) is not failed.

Secondly, note that the nodes only consult their permutations
up until the first reachable node (see Line 2 of Fig. 1). Even
if all αn failed edges are incident to the same node v, then
at least one of the first 3 log(1/α) n nodes in each of the
permutations π(i)

v,d will be directly reachable from v w.h.p. This
follows from the fact that the adversary does not know the
random bits generated at some node. Therefore, nodes may
truncate the permutations, storing only the first 3 log(1/α) n
entries of each permutation. In the low probability event that
none of the first 3 log(1/α) n is directly reachable from v (due
to the failed edges), another 3 log(1/α) n nodes are selected
uniformly at random – without replacement. Employing these
improvements yields an improved total memory complexity of
O(log2 n/ log(1/α)) = O(log2 n) per node.

In the following, we will perform the analysis w.r.t some
arbitrary but fixed destination d. As we will establish proba-
bilistic guarantees of at least 1−n−(1+Ω(1)) for the statements
in Theorem 1, applying the union bound will show that the
results indeed hold for arbitrary destinations d w.h.p.

Regarding the tightness of our result, assume all α ·n failed
edges are so called destination edges, i.e., edges incident to
the destination. Then, the flow starting at the other end v
of such a (failed) edge will first be sent to a node selected
uniformly at random from the set V \ {d}. The resulting
distribution of the load can be seen as the outcome of throwing
αn balls into n−1 bins [34], and the maximum load will reach
Ω(log n/ log log n) at some node w.h.p.

A. Notation and Conventions

Let π(i)
v,d for i ∈ {1, 2, 3} denote the permutations for some

fixed node v when receiving a packet with destination d.
We will in the following consider a fixed destination d, and
therefore omit it from the indices. Additionally, let π(i)

v (j)
for 1 ≤ j ≤ n − 1 denote the j-th node in v’s permutation.
Furthermore we define F to be the set of failed edges and
further partition it into F (in) and F (out). The former contains
all failed inner edges , i.e (u, v) with u, v 6= d. The latter
consists of the remaining failed edges, which are incident to
the destination. We furthermore define constants ε and γ such
that |F (out)| ≤ ε · n and |F (in)| ≤ γ · n, both smaller than α
and subject to ε+γ < 1. Also, let VG be the set of good nodes,



that is, nodes v ∈ V \ {d} with (v, d) 6∈ F (out). Conversely
let VB = V \ (VG ∪ {d}) be the set of bad nodes, s.t. for
v ∈ VB it holds that (v, d) ∈ F (out). If we state that we
apply Chernoff bounds for a random variable X , we mean
P [X ≥ (1 + δ)µ] ≤ exp (min{δ, δ2}µ/3), where µ = E[X].
For lower tails we use P [X ≤ (1− δ)µ] ≤ exp (δ2µ/2) with
δ < 1. Besides w.h.p., we introduce the following abbrevi-
ations: Instead of with probability, uniformly at random and
random variable, we will use w.p., u.a.r. and r.v. respectively.
Finally, log n will denote log2 n.

B. Analysis

We first establish some structural properties that describe the
paths that the packets take according to our failover strategy.
For i ∈ {1, 2, 3}, we define the directed subgraphs G

′(i) =

(V \{d}, E′(i)) with edge sets E
′(i) = {(v, π(i)

v (1))|v ∈ VB}.
Under assumption that F (in) = ∅, this graph depicts the
possible paths a packet traverses to either the good nodes VG
or to some possibly existing cycle. It is easy to see that any
graph G

′(i) hosts multiple trees, each rooted in some v ∈ VG.
The other components in G

′(i) consist of cycles, in which
each node acts as the root of a tree. Note that such a root
may have no children at all. The first important result of our
analysis is that the size of these structures will be at most
O(log n · log log n) w.h.p.

In the next step, we will account for the failures in F (in).
Here we will use the fact the permutations are chosen com-
pletely at random. We will see that only O(log n) of all edges
in the graphs G

′(i) are failed, which reinforces the intuition
that failing inner edges has little effect compared to the failure
set F (out). This approach will allow us to construct the graphs
G
′′(i), which now account for inner edge failures and correctly

depict the paths that the packets traverse.
Finally we put everything together and use the graphs G

′′(i)

to show the result of Theorem 1. Additionally we will see that
3 permutations per node do indeed suffice for any packet to
be routed to d w.h.p.

a) Measuring Forests: As mentioned we start by ana-
lyzing the graphs G

′(i). We will for now consider some fixed
i ∈ {1, 2, 3} and omit the superscript (i). That is, we consider
the graph G′ together with the edge set E′ = {(v, πv(1))|v ∈
VB}. As already discussed, only the existence of some cycles
between nodes in VB prevents G′ from being a forest. A rough
perspective on G′ is given in Fig. 2.

We start by establishing some structural properties of the
graph G′. The proof of the following result relies on standard
techniques and is omitted due to space constraints.

Lemma 1. The graph G′ does not contain paths or cycles of
length larger than 4 log1/ε n w.p. 1 − n−3. Additionally, the
number of cycles in G′ is O(log n) w.p. 1− n−3.

Consider again the graph G′ = (V ′, E′) with V ′ = V \{d}
and some fixed node v ∈ VG. Remember that such a node
is the root of a tree in G′, induced by the edges (w, πw(1))
for w ∈ VB . Let now Li denote the set of nodes at level i
of v’s tree, where L0 = {v}. We now construct L1, L2, ...

Fig. 2. The structures contained in the subgraph G′. On the left, a tree rooted
in some v ∈ VG is presented. On the right, we have a cycle and each node
of the cycle is again a root of a tree.

step by step as follows. In the i-th step construct Li =
{w|w ∈ (VB \

⋃i−1
j=0 Lj)∧πw(1) ∈ Li−1}. One can see this as

constructing the tree v ∈ VG layer-by-layer, by adding nodes
with outgoing edges connected to nodes in the set Li in the
i-th step. We define the r.v. Xi = |Li| and when fixing v ∈ VG
we will in the following call {Xi} the layer sequence, or in
short sequence, corresponding to v. The step-wise construction
described above directly yields the following lemma.

Lemma 2. Fix some root node v ∈ VG in G′ together with
its layer sequence {Xi}. Then, it holds for level i that Xi ∼
B(m, p) with

m = |VB | −
i−1∑
j=1

Xj and p =
Xi

|V ′| −
∑i−2
j=0Xj

This means that we can describe the tree rooted in v ∈ VG
by a sequence of binomial distributions, whose expected value
depends on the previous layers. The following statement gives
us a bound on m · p w.h.p., showing that the set of nodes at
level i indeed decreases exponentially fast.

Lemma 3. Let v ∈ VG be a root node in G′ together with
its corresponding layer sequence {Xi}. Then, for i < log2 n
it holds that E[Xi+1] ≤ Xi · ε(1 + o(1)) ≤ β. Additionally,
w.p. 1 − n−3 it holds for all i ≤ log2 n that Xi < C log n.
Here 0 < β < 1 and 0 < C are constants depending on ε.

Proof: We show by induction on i that with probability
pj > (1 − i · n−4) it holds for all j ≤ i that Xj < C log n.
Clearly w.p. 1 it holds that X0 = 1 < C log n. Now, consider
i← (i+ 1) and observe that

E[Xi+1|X0, ..., Xi < C log n]

< (|VB | − polylog n)
Xi

|V ′| − polylog n

< ε ·Xi ·
(

1 +
polylog n

n

)
, (1)

where we used the induction hypothesis and that i < log2 n
as well as |VB | ≤ εn. By Lemma 2, Xi+1 follows a
binomial distribution. Therefore we apply Chernoff bounds
with δ ≈ ε−2 − 1 (c.f Section II-A) and obtain that
P [Xi+1 ≥ C log n | X1, ..., Xi < C log n] < n−4 for large
enough constant C. Hence we established the desired property
w.p. pi+1 ≥ pi ·(1−n−4) > (1−(i+1)n−4) and conclude the



induction. Using that P [Xi+1 ≤ n] = 1, for i < log2 n we can
bound E[Xi+1] < E[Xi+1 | X0, ..., Xi < C log n]+n ·i ·n−4,
since P [Xi < n] = 1. This, together with (1), yields the first
statement of the lemma.

According Lemma 1 packets at most O(log n) hops until
reaching the destination. This implies the following.

Corollary 1. Consider any v ∈ VG of G′ with its correspond-
ing layer sequence {Xi}. Then, for i > C ′ log n it holds that
Xi = 0 w.p. at least 1− n−3.

Clearly for some fixed node v ∈ VG with sequence {Xi},
our main interest lies in the value X =

∑
i≥0Xi. In the

following we say that Xi−1 < a increases into the interval
[a, b), iff Xi ∈ [a, b). Analogously we say Xi−1 ≥ b decreases
into the same interval iff Xi ∈ [a, b).

Lemma 4. Consider again a root v ∈ VG and the correspond-
ing layer sequence {Xi}. Then, at most O(β̂−j) members of
{Xi} will increase into the interval[

C log n · β̂j , C log n · β̂j−1
)

w.p. at least 1 − n−3. Here j < log(log n/ log log n), and β̂
is a constant β < β̂ < 1, with β and C being the constants
defined in Lemma 3.

Proof: In the following we consider the elements of
the sequence {Xi} one after the other, starting with X0. By
Lemma 2 and Lemma 3 we know that the i-th value Xi follows
a binomial distribution with mean less than Xi−1 · β. Using
Chernoff bounds together with the fact that β < 1 is a constant,
we obtain for any t ≥ 0

Pr[Xi ≥ t | Xi−1 ≤ t] ≤ exp(−Ω(t)). (2)

Note that for t = C log n · β̂j , (2) bounds the probability
that Xi−1 increases into [C log n · β̂j , C log n · β̂j−1). Now,
from Corollary 1 it follows that at most C ′ log n elements may
increase into the interval mentioned before. Therefore we can
majorize the total number of increases into the interval by
B(C ′ log n, exp(−c · t)), where c is the constant hidden in
Ω(t) in (2). Now, using the well-known upper bound on the
binomial coefficient we get

Pr

[
B
(
C ′ log n, exp

(
−cC · log n · β̂j

))
=

5

cC
· β̂−j

]
<

(3)(
O(1) log n · β̂j

)O(β̂−j)
(

1

e

)5 logn

<
1

n3.4

for n large enough and j < log(log n/ log log n).
We are finally ready to state that no tree contained in G′

consists of more than O(log n · log log n) nodes. The proof is
omitted due to space constraints.

Lemma 5. Let v ∈ VG be a root and {Xi} the corresponding
layer sequence. Then it holds w.p. at least 1 − polylog n/n3

that
∑
iXi < O(log n · log log n)

When applying the union bound, this gives us that no
tree with root v ∈ VG of G′ will exceed size O(log n ·
log log n) w.h.p. However, remember that another type of
component exists in G′, namely cycles that may have ad-
ditional nodes attached to them. Fix one of these compo-
nents and let C = {v1, ..., v|C|} be the set of nodes of
the cycle. Furthermore define Ai := {w | w ∈ (VB \
C)∧ a path from w to vi exists in G′}∪{vi}. Then, this set
induces a tree in G′ unless the loop (vi, vi) is contained in
E′ which implies |C| = 1. In any case, one may see the
component as being induced by the set

⋃
iAi as a forest

of trees, whose roots lie on the cycle C. To determine the
total size of the set

⋃|C|
i=1Ai, we look at the growth of them

layer-by-layer. However, this time we let all |C| of these trees
grow at the same time, again uncovering edges step-by-step.
That is, L0 = C and construct any set Li with Xi = |Li|
just as we did when considering the roots v ∈ VG, i.e.,
Li = {w | w ∈ (VB\

⋃i−1
j=0 Lj)∧πw(1) ∈ Li−1}. Observe that

for this fixed cycle we can describe the sequence {Xi} by the
number of nodes in VB \C being at distance i from the cycle.
When replacing the set VB by VB \C, the result of Lemma 2
also holds for this layer sequence. As Lemma 1 guarantees
that X0 < O(log n), the statement of Lemma 3 follows
accordingly and allows us to repeat the whole approach.

Corollary 2. The results of Lemma 3, Corollary 1, Lemma 4
and finally Lemma 5 also hold for the sequence {Xi} of nodes
in distance i to some fixed cycle in G′.

b) Accounting for Inner Edge Failures: So far we estab-
lished that none of the components in G′ will be of total size
more than O(log n · log log n) w.h.p. Remember however that
we still need to account for the failures in F (in). We start by
showing that only O(log n) of them lie on any path in G′, even
if the adversary fails Θ(n) inner edges. The proof is based on
standard techniques and omitted here due to space constraints.

Lemma 6. The number of nodes v ∈ V that have their first
failover edge (v, πv(1)) destroyed by the adversary is O(log n)
w.p. 1− n−3

In the following we will transfer G
′(i) into G

′′(i) for any
i = 1, 2, 3. The basic idea will be to remove edges (v, π

(i)
v (1))

that lie in F (in) from G
′(i) and replace them with the first non-

failed edge in the permutation π(i)
v . This way, the graph G

′′(i)

represents the correct path of the packets with hop counter
(i − 1)C1 ≤ h(p) < iC1. One may see the construction of
G
′′(i) as cutting out subtrees of size O(log n · log log n) of

the structures in G
′(i) and then letting them dock on some

components in G
′(i). This is visualized in Fig. 3. Besides the

fact that some components in G
′′(i) are extended by docking

subtrees, a new type of structure can be created. Some of the
launched subtrees may connect with each other and thereby
form a new type of cycle. It is easy to show the following.

Lemma 7. Consider the graph G
′′(i). Then, none of the

components contained in G
′′(i) will consist of more than

O(log n · log log n) nodes. Furthermore, the number of con-



X

Fig. 3. Failed edges (v, πv(1)) may cause subtrees relocate.

tained cycles remains in O(log n) with each not exceeding
length O(log n). Additionally, any packet that is not trapped
in some cycle takes at most C1 = 16 log1/ε n steps to reach
d. All above statements hold w.p. 1−O(n−2)

c) From Forests to Load: To determine the total load
some node v receives we look at the graphs G

′′(i) one
after another. When starting the all-to-one routing, each node
initiates a flow and all of them follow paths according to the
single outgoing edges in G

′′(1). Now, most of the flows will
reach the destination d after at most C1 many hops. However,
some might be trapped inside a cycle. In both cases we will
consider the cost T1(v) that occurred at any node v until this
point. Upon reaching a hop value of C1 the flows currently
trapped in a cycle will move according to the permutation
π

(2)
v . If we know where these cycle nodes are located in G

′′(2),
we can again track the flows’ paths and determine the loads
caused by the next C1 many hops, denoted T2(v). Finally, we
repeat this approach one more time in the same manner and
obtain the values T3(v). In the following we say that flows
exit the system G

′′(i) if their respective hop counter reaches
iC1. Similarly we say flows enter the system G

′′(i), if they
reach hop value (i − 1)C1 and G

′′(i) becomes relevant for
their failover paths for the first time. Finally, we will argue
that Ti(v) = 0 w.h.p. for any v and i ≥ 4, which is why we
originally only required three permutations, and deduce that
the total load v receives is T (v) = T1(v)+T2(v)+T3(v). We
can show the following:

Lemma 8. Let i ≥ 1 and assume that every component in
G
′′(i) is entered by O(log n · log log n) total flows. Then, every

node v that is not contained in a cycle will receive a load of
at most Ti(v) = O(log n · log log n). Nodes contained in a
cycle in G

′′(i) will receive Ti(v) = O(log2 n · log log n) load
until the flows exit G

′′(i) w.p. 1−O(n−2)

Clearly, for i = 1 and G
′′(1) the assumption of this lemma

holds. This is because Lemma 7 guarantees that all structures
are of size O(log n · log log n) and each node starts sending
one flow of packets. The next lemma deals with the inductive
step and i > 1. (Proof omitted due to space constraints.)

Lemma 9. Assume that the assumption of Lemma 8 holds for
G
′′(i). Then, also in G

′′(i+1) no component will be entered by
more than O(log n log log n) flows w.p. 1−O(n−2)

Above lemma concludes the inductive step, showing that

Lemma 8 is applicable to all i ∈ {1, 2, 3}. We now state that
it is indeed enough to only look at the graphs G

′′(i) where
1 ≤ i ≤ 3 to determine the maximum load.

Lemma 10. Fix an arbitrary packet p sent by a node v ∈ VB .
Then, p ends up in a cycle in each G

′′(1), G
′′(2) and G

′′(3)

w.p. at most polylog /n3. Additionally, it holds that Ti(v) = 0
for all nodes v ∈ V \ {d} and i ≥ 4 w.p. 1− polylog /n2.

Note that this lemma also implies that O(log n) hops suffice
for any packet to reach the destination. We established in
Lemma 9 that the assumption in Lemma 8 is indeed fulfilled
for G

′′(1), G
′′(2) and G

′′(3). Hence, the total load any node
receives that is not contained in a cycle in either G

′′(2) or
G
′′(1) is O(log n · log log n). And those that lie on a cycle

will have load of O(log2 n · log log n), where according to
Lemma 7 at most O(log2 n) such nodes exist. Theorem 1
follows accordingly.

III. CIRCUMVENTING CYCLES BY PARTITIONING

One of the major challenges of the 3-Permutations protocol
is to cope with temporary cycles, which may be introduced
when employing randomization into the failover strategy. For
packets with large hop counts, which indicate the existence
of a cycle, we effectively provided different failover routes.
In the following we present the Intervals routing protocol that
1) does not introduce any cycles in the packets routing paths
w.h.p. and 2) is purely destination based. This comes however
at the cost of smaller maximum resilience against failures.

The Intervals protocol works as follows. We assume that
every node is given a unique ID or address, which is known
to the other nodes. Therefore we can enumerate the nodes by
v1, v2, ..., vn. Let now α be some small constant 0 < α < 1.
We partition the nodes of the graph into consecutive sets of
size I = n/4 log1/α n. That means, the i-th set Ri contains
nodes with addresses in the range[

(i− 1) · n

4 log1/α n
+ 1 , i · n

4 log1/α n

]
.

Assume that the value α is chosen such that both, the interval
bounds and the number of intervals, are integers. The next step
is similar to Section II. Every node tries to directly forward
a packet to the desired destination d, if the direct link is
available. Otherwise, again a permutation πv,d of nodes is
consulted and the packet is sent to the first reachable partner in
πv,d. The crucial difference to the 3-Permutations protocol is
the following: for some node v that lies in the interval Ri, the
permutation πv,d is a permutation of the nodes in R(i+1)\{d}.
Hence, only edges ranging from nodes in the set Ri to nodes
in Ri+1 are considered as possible failover edges. To allow
for a proper protocol, we assume that nodes of the rightmost
interval choose failover edges into R0. We will see in the
upcoming analysis that this protocol will not create any cycles
in the routing paths w.h.p. The following statement allows the
adversary to fail up to Ω(n/ log n) many edges. Note that
this protocol is purely destination based and therefore any



Input: A packet with destination d
1: if (v, d) is intact then forward p to d and return
2: Forward p to first directly reachable node in πv,d

Fig. 4. Intervals protocol. Point-of-view of some node v

deterministic scheme operating under this constraint would
allow Ω(n/ log n) load to be created by the adversary [15].

Theorem 2. Assume the adversary is allowed to fail up to
α · I many edges, for some arbitrary constant 0 < α < 1
where I = n/(4 log1/α n). Then, when considering all-to-one
routing to any destination d, the Intervals protocol guarantees
a maximum of

O(log n · log log n)

load at any node except d and edge w.h.p. Additionally, no
packet will perform more than O(log n) hops w.h.p.

For α = 1/e above statement provides the maximum
resilience of n/(4e loge n). Furthermore, assume the adversary
fails Ω(n/ log n) destination edges (v, d), with all such nodes
v being in the same interval Ri. Then, similar as in the
case of the 3-Permutation protocol, a balls-into-bins argument
[34] shows that after all nodes in Ri send their flows to
randomly chosen nodes in Ri+1, at least one node will have
load Ω(log n/ log log n) w.h.p.

Concerning the notation we will carry over everything
defined in Section II-A. Additionally we extend the notation
for the sets of failed edges as F (in)

i and F (out)
i . These sets

only contain failed edges started in the i-the interval and, in
case of F (in)

i , have partners in the interval i + 1. Just as in
the protocols description we denote the set of nodes inside the
i-th interval as Ri where I = |Ri|.

We remark that the result of Theorem 2 also holds, if we
require that |F (in)

i | < ε ·I and |F (out)
i | < γ ·I for any interval

Ri, as long as ε+γ ≤ 1−∆ for some constant ∆ > 0. As the
sets F (in)

i and F (out)
i are specified for some fixed destination

d, we require this property for all possible destinations d.
Regarding the memory complexity, for a fixed destination

each node needs a permutation of O(n/ log n) nodes, hence
O(n) bits in total. As in case of the 3-Permutations protocol,
the set of permutations {πv,d | d ∈ V } some node v
requires can be derived from a single permutation πv , and
only the first 3 log1/α n entries of each permutation need to
be stored (see corresponding description on page 3). This
allows for a reduction of the total memory required per node
to O(log2 n/ log(1/α)).

A. Analysis

A main motivation behind Section III is to eliminate the
need to perform any kind of cycle resolution. To that end we
will start by showing that our protocol will not introduce any
cycles into the packets routing paths and at the same time
derive that the hop count of any packet remains in O(log n).

To show that the maximum load occurring lies in O(log n ·
log log n), we will take a similar approach as in Section II-B.

That is, we fix some node v ∈ VG ∩ Ri in some interval.
Then, all the sources of packets that are forwarded over the
edge (v, d) will form a tree rooted in v. We will again argue
that, in expectation, the number of nodes per level of this tree
decreases exponentially fast and reuse parts of Section II-B.

a) Cycles: Some packet located in Ri has only two
possibilities for its next hop. Either it is directly forwarded
to the destination, or it is forwarded to a node of the set
Ri+1. To end up in a cycle it needs to traverse a sequence
of 4 log1/α n intervals, hitting a node v ∈ VB with every hop.
This is unlikely and formalized as follows.

Lemma 11. Let p be an arbitrary packet to be routed to
destination d. Then, its routing path will not contain any cycles
and it will reach the destination after 4 · log1/α n + 1 hops
w.p. at least 1− n−4.

The proof is simple and excluded due to space constraints.
b) Carrying over Previous Results: In the following we

show that the result of Lemma 5 also holds when nodes follow
the Intervals protocol. That is, for some fixed node v ∈ VG we
construct a tree as follows. Assume v ∈ Ri and let L0 = {v}
denote the root of this tree. The j-th level of the tree associated
with v is defined by Lj = {w | (w ∈ Ri−j ∩ VB)∧ (πw(k) ∈
Li−1) ∧ (∀` < k : (w, πw(`)) ∈ F (in)) ∧ ((w, πw(k)) 6∈
F (in))}. That is, Lj is the set of nodes whose packets reach v
in exactly j hops (for easier readability we neglect the fact that
wrap-around might occur). One can easily show the following.

Lemma 12. Let v ∈ VG be arbitrary and assume that v ∈ Ri.
Furthermore let Xj = |Lj |, where Lj is the j-th level of the
tree associated with v. Then, it holds that E[Xj+1] ≤ Xj · α.

With this we established a statement similar to the first part
of Lemma 3. It is easy to see that the size of each level Xj

of the tree follows a binomial distribution when constructing
the tree level-by-level. Furthermore, Lemma 11 establishes
the property of Corollary 1 and since Lemma 12 guarantees
that the levels shrink exponentially fast in expectation, the
statement Xi < C log n, C large enough, follows by applying
Chernoff bounds. That said, we established all necessary
requirements and a simple repetition of the corresponding
analysis allows us to reuse Lemma 4 and Lemma 5. Summariz-
ing, we get the following and conclude the proof of Theorem 2.

Corollary 3. Let v ∈ VG be a good node and let {Xi} be
defined as in Lemma 12. Then it holds that

∑
iXi = O(log n ·

log log n) w.p. 1− polylog n/n3.

IV. FURTHER REDUCING THE CONGESTION

In this section we present a third protocol, called Shared-
Permutations, that improves the bound of the maximum load
observed in Theorem 1 and Theorem 2 under the assumption
that the nodes share a common but randomized permutation.
This could for example be achieved by computing parts of
the routing tables starting from the same seed for the random
generator, which is unknown to the adversary. Additionally we
assume again that the packet headers are equipped with a hop



Input: A packet with destination d and hop count h(p)
1: if (v, d) is not failed then forward p to d ; h(p) += 1

and return
2: if h(p) < E2 then v′ ← successor of v in πh(p),d

3: if (v, v′) is not failed then forward p to v′

4: else h(p)← E2.
5: if h(p) ≥ E2 then forward p to first directly reachable

node according to πv,h(p),d

6: increase h(p) += 1

Fig. 5. Shared-Permutations protocol. Point-of-view of some node v

field of size O(log log n) bits, which is initially set to 0 and
may be accessed by the network partners.

The Shared-Permutations protocol works as follows. Again
we consider an arbitrary but fixed destination d. Every node
v ∈ V is equipped with permutations π0,d, π1,d, ..., πC1,d

of all nodes V \ {d}, where C1 is a value O(log n) to be
specified later. Now, contrary to the 3-Permutation protocol,
these permutations are assumed to be globally agreed upon
without being known to the adversary. Furthermore, each
permutation is chosen u.a.r out of the set of all possible per-
mutations. Additionally we assume that v stores C2 additional
permutations πv,j,d on V \ {d}, only known to v itself and
chosen u.a.r. Here j ∈ {E2, E2 + 1, . . . , E2 + C2 + 1} for
E2 = C1 + 1 and C2 is another value in O(log n).

Assume now that a packet p with destination d arrives at
node v ∈ V and denote its current hop counter by h(p).
First of all, if the link (v, d) is not failed the packet is
directly forwarded to the destination. Otherwise if h(p) < E2,
the node v forwards it via a link (v, v′) where v′ denotes
the node following v in the global permutation πh(p),d. In
case this link is failed, v raises the hop counter of p to E2

instead and forwards it to the first non-failed edge according
to πv,E2,d. The case we did not consider yet is h(p) ≥ E2.
In this case p is routed over the first reachable partner in
πv,h(p),d. Finally, in every case, h(p) is increased by one. A
pseudo-code describing this algorithm is given in Fig. 5. The
common global permutations allow the flow to be distributed
more evenly among the network, reducing the congestion to
O(
√

log n), even if Ω(n) edges are failed by the adversary.

Theorem 3. Assume that the adversary is allowed to fail α ·n
edges total, where α < 1 is a constant. When performing all-
to-one routing to any destination d, the Shared-Permutations
protocol guarantees a maximum flow of

O(
√

log n)

on any node (except d) and edge w.h.p. Additionally, no packet
traverses more than O(log n) hops w.h.p.

Assuming it is possible for the nodes to agree on common
permutations that are not known to the adversary, the max-
imum load can be decreased by more than a factor

√
log n

compared to the protocols in Sections II and III. Note that

this result breaks the Ω(log n/ log log n) lower bound of the
3-Permutations and Intervals protocols.

Regarding space complexity, our nodes are required to store
O(log n) permutations of n nodes per destination. Therefore
in the most simple case we require O(n2 · log2 n) bits at most.
However, the same improvements as described in Sections II
and III can be made to store the permutations more efficiently
and achieve a memory complexity of O(log3 n/ log(1/α))
bits per node. Note that the protocol requires knowledge of
the values C1 and C2, which can both be set to 5 log1/α n.
These values are given in Lemma 14 and Lemma 17, together
bounding the maximum number of hops any packet performs
until it reaches the destination d w.h.p. If α is not known
to the nodes, then a slow growing function in ω(log n) can
be used for C1 and C2, which comes at the cost of slightly
increased memory complexity.

A. Analysis

Throughout the analysis we will consider a fixed destination
d and omit the corresponding index from all permutations. We
will use the notation from Section II-A and start by neglecting
any failed edges in the set F (in). Next, we assume that each
node sends 1 packet with destination d from each node v ∈
V . We will consider the number of packets that have i hops
while still not having reached the destination d and see that
this set decreases exponentially fast. Additionally no packet
traverses more than C1 < E2 many hops w.p. at least 1−n−2.
Therefore, without any inner edge failures, the only relevant
permutations for our failover strategy are π0, ..., πE2−1.

Finally we will account for the failures in F (in) and
make use of the permutations πv,j . We will consider the
maximum load caused by the flows after reaching hop value
E2 separately and deduce that this value is O(

√
log n) w.h.p.

a) Staying in Line: We start by neglecting the failures
in F (in), i.e we assume first that |F (in)| = 0 and |F (out)| <
ε · n. Furthermore, assume that every node v ∈ V \ {d} starts
sending a single packet to destination d. Then, the number of
packets that pass through some node v is equivalent to the
number of flows passing through v. Notice, that due to the
global permutations, no node will be visited by more than 1
packet with the same hop value. Consider the set of packets
hop-for-hop and denote Hi as the set of packets that reached
hop i at some point without reaching the destination. Clearly
|H0| = (n− 1), |H1| = |VB | and we can show the following.

Lemma 13. Let Hi denote the set of packets that still have
not reached d after i hops. Then, for |Hi| = Ω(log n) it holds
w.p. at least 1− n−4 that |Hi+1| ≤ |Hi| ·

√
ε.

This allows us to bound the maximum number of hops
required for any packet to reach destination d. It is easy to
show the following.

Lemma 14. Fix some packet p with destination d. Then,
assuming F (in) = 0, it requires at most C1 steps to reach the
destination w.p. at least 1−n−3. Here C1 is a value bounded
above by 5 log1/ε n.



Remember the following invariant: when fixing some node
v and hop value i, the node v will receive at most 1 packet
with such hop value. This leads to following result.

Lemma 15. Consider some node v ∈ V and assume |F (in)| =
0. Then, if every node sends 1 packet with destination d, v will
by visited by packets O(

√
log n) times w.p. at least 1− n−3.

Proof: Let i∗ be the first time such that Hi∗ reaches size
O(log n). We start by showing that throughout hops 1 ≤ i <
i∗ the node v is visited by at most O(

√
log n) packets in total.

For this range of i, we know according to Lemma 13 that the
size of Hi will decrease exponentially fast, i.e |Hi+1| < |Hi|·β
for some constant 0 < β < 1 that depends on ε. Fix now
some node v and let Yi = 1 iff v receives a packet with hop
value i at some point, and 0 otherwise. Similar as in the proof
of Lemma 13, we argue that the packets with hop value i
are distributed uniformly – and independently of any earlier
hops – among the nodes of the network. Hence P [Yi = 1] =

Hi/(n− 1) and we are interested in Y =
∑i∗

i=1 Yi. Note that
P [Yi = 1] = Hi/n < ε · βi , where we wrote n instead of
n− 1 for ease of readability. Then

P [Y = k] =
∑

S⊆{1,...O(logn)}
with |S|=k

(∏
j∈S

P [Yj = 1]·

∏
`∈{1...O(logn)}\S

1− P [Y` = 1]
)
.

The second product can be crudely bounded above by 1. The
first product reaches its maximum value for S = {1, ..., k}
and is bounded by (εβ · εβ2 · ... · εβk). Therefore we get

P [Y = k] <

(
e · C log n

k

)k
εk · βk(k−1)/2.

Now assume k = C ′ ·
√

log n for some sufficiently large
constant C ′. In this case

P [Y = k] < O
(√

log n
)C′√logn

·
(

1

n

)5

.

Clearly the first term lies in o(n). When increasing k further,
the probability will only get smaller. Applying the union bound
over the remaining O(log n) − C ′

√
log n larger values of k,

we get P [Y ≥ C ′
√

log n] < n−3. Adding 1 for the packet
that was initialized on v yields the result.

Clearly this implies that both, the maximum node load and
the edge load are O(

√
log n) in the case of |F (in)| = 0.

b) Accounting for Inner Edge Failures: We consider two
copies, S(out) and S of our initial graph in which the adversary
failed at most αn edges according to its strategy. In S(out) we
repair all failures F (in), which results in ignoring inner edge
failures just as described above. Again we will consider the
equivalent point-of-view of each node sending a single packet
to d instead of a consecutive flow. The idea in the following is
to consider only S(out) and each time an inner-edge (u, v) is
chosen for communication that is failed in the original graph,
the packet is copied and placed with hop count E2 on u in
S. This way S will only contain packets with hop count of

at least E2. The packet in S(out) will however continue as if
the edge was intact. Note that, by Lemma 14, S will w.h.p.
only consist of packets that are redirected because of inner
edge failures. The idea behind the analysis is the following:
Let S(out) run until all packets reached the destination d and
determine the number of packets starting in S. We then let the
system S run and it is easy to see that we can majorize the
load some node v receives in the original process by adding up
the loads of v in S(out) and S respectively. This is because in
S(out) we do not remove packets but copy them to S instead.

In Lemma 15 we already established the load some node
v receives in S(out). The following can be shown w.r.t. the
number of packets that are initialized in the system S.

Lemma 16. Consider the number of packets p that reach a
load of E2 at some point. Then, at most O(log n ·

√
n) of them

will exist w.p. at least 1− 2 · n−3.

As all packets in S have hop count at least E2, only the
local permutations πv,j are used as part of our failover strategy.
While this leads to nodes possibly receiving multiple packets
of the same hop value, the number of initial packets lies in
O(log n

√
n) only. The following statement can be shown.

Lemma 17. 1) Fix some arbitrary packet in S. Then, it will
reach the destination after at most C2 hops for C2 <
3 log1/α n w.p. at least 1−O(n−3).

2) Each node in S is reached by at most O(
√

log n) packets
in total and w.p. at least 1−O(n−3).

We established that in both systems, S(in) and S, each node
has a load of O(

√
log n). Theorem 3 follows accordingly.

V. FURTHER REMARKS

Stronger adversaries. So far we have focused on oblivious
adversaries who only know the random distribution but not
the actually sampled values (a common assumption in the
literature). However, our algorithms can easily be extended to
deal also with more adaptive adversaries: to defeat adversaries
who aim to infer network-internal loads (e.g., leveraging phys-
ical access or using tomographic techniques), we can simply
regenerate random permutations periodically. That is, the 3-
Permutations and Intervals algorithms have the attractive prop-
erty that they allow to regenerate such permutations quickly,
locally, and without coordination: each node can independently
regenerate random numbers over time to enhance security.
Note, this also allows our algorithms to recover in case the
1/nΩ(1) probability event occurs that may lead to higher loads
than specified in the theorems.
Lower Amount of Failures. Throughout the previous sections
we assumed that the adversary destroys up to either linear
or O(n/ log n) many edges. A lower amount of edge failures
affects the performance of the algorithms as follows. In case
n1−δ edges are destroyed for constant δ > 0 it can be shown
(by a slightly adapted repetition of the existing analysis) that
all three of our algorithms guarantee w.h.p. a maximum load of
O(1) on most, or even all, of the nodes. That is, the Intervals
and Shared-Permutations protocols achieve this result w.r.t. all



Fig. 6. Left: Log-plot of the average maximum load for networks of increasing
size. Right: Maximum load distribution for selected n values. 50 runs for each
value of n (colors correspond to same algorithms as in left figure).

nodes in V \ {d}. In case of the 3-Permutations algorithm
O(log n) nodes may receive a load of up to O(log n).
Random Edge Failures. Previously we assumed the existence
of a malicious adversary selecting the edges to be failed.
However, in the context of e.g. hardware failures or power
outages, it might make sense to model the set of failed edges as
selected u.a.r. out of all ∼ n2/2 edges. In this case, w.h.p., all
but O(log n) nodes will forward their incoming traffic directly
to the all-to-one routing destination d. Then, it can be shown
that all our algorithms only induce a congestion of O(1) w.h.p.

VI. SIMULATIONS

To complement our theoretical results and obtain insights
into the specific distributions of the maximum load, we con-
ducted several simulations.

a) Setup: We study fully meshed networks of different
sizes. We preceded each simulation run by selecting a distin-
guished node d ∈ V as destination and failing α · n edges
with α = 1/2. We chose to distribute all these failures on
edges incident to the destination node d. Intuitively, failing
destination edges is the best strategy for the adversary as
most so-called inner edges (i.e., edges not incident to d) are
not part of any failover route. Note that in the analysis of
the 3-Permutations protocol (cf. Lemma 6), we showed that
the algorithm tries to route over at most O(log n) of such
failed inner edges w.h.p., even if there are n/2 failed inner
eges. Additionally, we selected the set of failed destination
edges uniformly at random: as the random bits generated by
the nodes are unknown to the adversary and we operate in a
complete network, there is no better strategy for the adversary.
To initiate a flow from each node to the destination d, each
node v ∈ V \{d} generates at the beginning a packet to be sent
to destination d (all-to-one routing towards d) and incoming
packets are forwarded according to one of our three proposed
algorithms. To account for the maximum flow passing through
some node, the maximum load is defined as the maximum
number of packets that traverse any node v ∈ V \ {d} during
the whole execution of the algorithm.

b) Parameters: We considered 24 complete networks
with sizes ranging from 103 to 107 nodes. For every such
network, 50 simulations were performed w.r.t. each protocol.

In the simulated 3-Permutations and Shared-Permutations al-
gorithms, we set C1 = d1.5 log ne as this value worked well in
practice. As only edges incident to the destination were failed,
the C2 parameter of the Shared-Permutations protocol does
not need to be specified. In case of the Intervals protocol, we
failed half of the destination edges in each interval, allowing
for comparison to our other algorithms, and set the interval
size to d4n/ log(1/α) ne as required by Theorem 2.

c) Results: The log-plot on the left of Fig. 6 shows
the averaged maximum load for increasing network sizes. We
observe that the average maximum load w.r.t. all algorithms for
all network sizes lies below log n log log n. This reflects the
theoretical results we derived for our Intervals and Shared-
Permutations protocols, which ensure a maximum conges-
tion of O(log n · log log n) and O(

√
log n), respectively (cf.

Theorems 2 and 3). Surprisingly, the 3-Permutations proto-
col achieves similar average maximum load as the Intervals
protocol, which is significantly smaller than the theoretical
upper bound derived in Theorem 1. This can be explained
as follows: In many simulation runs of the 3-Permutations
protocol no temporary cycles occur at all. However, as dis-
cussed in Section II-B Lemma 8, a load of ω(log n log log n)
is only induced on nodes that lie on a (temporary) cycle
(see cycle structure in Fig. 2). This phenomena is further
analyzed in the second plot on the right side of Fig. 6.
It contains 5 triples of box plots, where each such triple
describes the distribution of the maximum load w.r.t. the three
protocols over 50 runs each. While the results of the Intervals
and Shared-Permutations simulations are tightly concentrated,
the 3-Permutations protocol sometimes induces a congestion
above value log n log log n. These outliers correspond to runs
in which the failover paths of some packets contain temporary
cycles of short length (at most 3 nodes). Packets following a
failover path that reaches a node on such a cycle may hit
each of these cycle nodes up to Ω(log n) times before exiting
the cycle (after roughly C1 hops). In case the failover paths
of ω(log log n) packets share the same such cycle, each node
lying on this cycle will receive a load of ω(log n · log log n).
However, also these outliers seem to adhere the theoretical
bound of O(log2 n · log logn) as specified by Theorem 1.

VII. CONCLUSION

We initiated the study of randomized congestion-minimizing
fast rerouting algorithms and presented three algorithms
which provably ensure significantly lower loads than any
deterministic algorithm. We understand our work as a first
step and believe that it opens several interesting avenues
for future research. In particular, it would be interesting to
fill the gap between our derived upper and lower bounds
which do not perfectly match yet. More generally, it will be
interesting to extend our study of randomized approaches to
more general communication patterns and network structures.
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