Virtual Network Embedding Approximations: Leveraging Randomized Rounding

Virtual Network Embedding Approximations: Leveraging Randomized Rounding

Abstract

The Virtual Network Embedding Problem (VNEP) captures the essence of many resource allocation problems of today’s infrastructure providers, which offer their physical computation and networking resources to customers. Customers request resources in the form of Virtual Networks, i.e. as a directed graph which specifies computational requirements at the nodes and communication requirements on the edges. An embedding of a Virtual Network on the shared physical infrastructure is the joint mapping of (virtual) nodes to physical servers together with the mapping of (virtual) edges onto paths in the physical network connecting the respective servers. This work initiates the study of approximation algorithms for the VNEP. Concretely, we study the offline setting with admission control: given multiple request graphs the task is to embed the most profitable subset while not exceeding resource capacities. Our approximation is based on the randomized rounding of Linear Programming (LP) solutions. Interestingly, we uncover that the standard LP formulation exhibits an inherent structural deficit when considering general virtual networks: its solutions cannot be decomposed into valid embeddings. In turn, focusing on the class of cactus request graphs, we devise a novel LP formulation, whose solutions can be decomposed into convex combinations of valid embedding. Proving performance guarantees of our rounding scheme, we obtain the first approximation algorithm for the VNEP in the resource augmentation model. We propose two rounding heuristics and evaluate their performance in an extensive computational study, showing that these consistently yield good solutions (even without augmentations).

Grafik Top
Authors
  • Rost, Matthias
  • Schmid, Stefan
Grafik Top
Supplemental Material
Shortfacts
Category
Journal Paper
Divisions
Communication Technologies
Subjects
Informatik Allgemeines
Journal or Publication Title
IEEE/ACM Transactions on Networking
ISSN
1063-6692
Date
2019
Export
Grafik Top