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Abstract. While SDNs enable more flexible and adaptive network operations, (logically)
centralized reconfigurations introduce overheads and delays, which can limit network reactivity.
This paper initiates the study of a more distributed approach, in which the consistent network
updates are implemented by the switches and routers directly in the data plane. In particular,
our approach leverages concepts from local proof labeling systems, which allows the data plane
elements to locally check network properties, and we show that this is sufficient to obtain global
network guarantees. We demonstrate our approach considering three fundamental use cases,
and analyze its benefits in terms of performance and fault-tolerance.
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1 Introduction

Given the increasingly stringent requirements on the dependability and performance of communication
networks, it becomes important that networks be able to flexibly adapt to their context, e.g., react to failures
or to changes in the demand, in an automated manner. Software-Defined Networks (SDNs) provide such
flexibilities by allowing to update network configurations programmatically, disburdening human operators
from their most complex tasks and significantly improving reaction times. Indeed, over the last years, the
algorithmic problem of how to update networks consistently has received much attention [1].

However, while outsourcing and consolidating the control over switches and routers provides great
flexibilities, indirection via (remote) controllers comes with overheads in terms of communication and
computation costs, and can hence lead to delays. In fact, it is known that updating routes in a network while
providing even simple transient properties such as loop-freedom, requires many interactions with the SDN
controller in the worst case [2, 3], unless one resorts to packet header rewriting. Given that the control plane
can operate orders of magnitude slower than the data plane [4], this is problematic.

This paper investigates opportunities to overcome these overheads and hence further improve network
reactivity. To this end, we explore a more distributed approach to updating routes in networks, reducing
interactions with the control plane without sacrificing flexibility and consistency. This is challenging, as
without a (logically) centralized network view, switches and routers need to be able to check certain network
properties locally.

We propose and investigate the use of distributed mechanisms based on local proof labeling systems [5],
to propagate and implement network updates entirely in the data plane. In particular, we present a solution
which allows switches and routers to check locally if a certain network property is fulfilled and whether a
rule update can be safely applied. Consequently, a controller (or multiple controllers, in case of distributed
SDN control planes) can simply submit update requests to the network, which are then propagated and
implemented by the data plane autonomously. To demonstrate our approach, we consider two fundamental
properties, both related to connectivity.

• Blackhole freedom: There is always a matching rule forwarding a packet to the next hop switch or
router.

• Loop freedom: The forwarding rules never contain a loop.

We also evaluate the benefits of our approach analytically and investigate potential speed ups and
fault-tolerance.
Contributions. This paper presents a distributed approach to operate and consistently update software-
defined networks, by relying on local proof labeling systems. We show the feasibility and benefits of our
approach on two case studies, demonstrating that using our approach, simple local verification is sufficient to
provide global correctness guarantees. We also show that our approach can lead to faster and fault-tolerant
network updates.
Overview. The remainder of this paper is organized as follows. After introducing our model and preliminaries
in Sections 2, we present our main approach in Section 3. We discuss our two case studies in Section 4
(considering efficient updates limited to the affected routes) and Section 5 (removing the need for packet
tagging), and then examine potential speed up and fault-tolerance aspects (Section 6). After reviewing related
work in Section 7, we conclude in Section 8.

2 Model and Preliminaries

We follow standard assumptions [5, 6, 7] in our work, both regarding the network and the local verification
model.
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Network model. The considered networks are modeled as connected graphs G = (V,E) with n nodes
(switches, routers) with unique identifiers and m full-duplex links.

The network is equipped with a logically centralized controller that can collect the network state and send
out conditional network updates to the nodes, e.g., changing a forwarding rule once a certain local condition
is met [7].
Local Verification. We will also leverage a connection [5] between proof labeling schemes [8, 9] and the
SDN model [1], see Section 3. A proof labeling scheme can be characterized by a prover-verifier-pair (P,V)
as follows: Given some property S that the network state could uphold after updates (e.g., loop freedom), the
prover P sends new labels to the nodes. The verifier V is a distributed algorithm, running on each node v,
that can collect the labels from all neighborsN (v). It outputs YES if property S holds and the labels are from
P , but at least one node must output NO, if the property S is violated.

3 Approach and Main Idea

This section presents how to leverage proof labeling schemes in the context of consistent updates for SDNs,
both from a methodological and an implementation point of view.
Methodology. Many consistency properties are inherently global, e.g., long loops cannot be detected by
considering the forwarding rules in the local neighborhood. Even locally detectable problems can have an
impact on nodes far away, such as, e.g., a blackhole downstream from the packet source.

We thus utilize the power of proof labeling schemes to allow for local verification of consistency
properties, also supporting distributed consistent network updates. In our approach, the controller acts as the
prover P . Nodes which are aware of the current label state of their neighbors, can now check them in the time
intervals deemed necessary. In the simplest case, a node informs all its neighbors once its label state changes.

Once being informed about label state changes, nodes can run the verifier V to check if the (global)
property S is still correct, respectively ring an alarm (e.g., to the controller) if not. The main idea of our
approach is that a node will not immediately apply a new label received from the controller, but rather first
check if the property S still holds from its point of view after applying said label to itself. As such, we do not
need the large overhead of constantly communicating with the centralized controller regarding the updated
network state, but can decide completely locally when to update.

The challenge we undertake in this paper is to actually develop approaches that fulfill these criteria for
common consistency properties, i.e., generating distributed consistent network updates that can be verified
locally.
Implementation. Our approach is timely and can be implemented in OpenFlow and P4-based programmable
networks. The implementation of the controller is simple as it only pre-computes the information needed
by the switches later, during the network update (reducing communication and computation overheads).
Furthermore, our approach does not rely on tight clock synchronization protocols while providing the same
benefits [10]. In the dataplane, we can use the approach by ez-Segway [7], leveraging per-switch local
controllers to manipulate dataplane state (via OpenFlow).

4 Efficient Certification Limited to Involved Routes

We first present a solution for efficient certification which only involves the nodes along routes that are
actually updated (rather than all nodes in the network).

We start with a case study on the blackhole freedom property. A so-called blackhole occurs when a node
has no matching rule for a packet, i.e., the packet is dropped (into a blackhole). A simple scheme to avoid
blackholes for a specific network flow is to ensure that new labels for a node v always contain a matching
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rule for the flow destination d, where an update is rejected otherwise. However, whereas this scheme is easy
to verify and apply, it suffers from the downside that every node in the network must have a forwarding rule
for said flow, even if its packets only traverse a small subset of the nodes.

A more efficient solution would supply forwarding rules only to those nodes actually en route, as
performed e.g., in [7] for network flows. The authors propose a distributed version of the 2-phase update
scheme by e.g., Reitblatt et al. [11]1: the routing path for flow F is updated in reverse, where the destination
informs its predecessor on the path to update its rules for F ′, which in turn informs its predecessor, and so on.
Eventually, the packet source will be reached, which then knows it is safe to send packets out tagged with F ′.

Providing verifiable blackhole freedom can be directly achieved in this setting if every node v with a new
rule for F ′ only updates if its successor w on the path has been updated. Notwithstanding, what cannot be
verified so far is the problem of reachability, i.e., will the packets in F ′ actually reach their target? In the
prover-verifier framework, if each node is informed about its successor, a node w could be successor of two
nodes u, v, which in turn can lead to a forwarding loop.

We can resolve this problem with a construction borrowed from reachability in the context of proof
labeling schemes [9], by specifying both predecessors and successors of all nodes (besides source and
destination). Then, by a connectivity argument, the packets of F ′ cannot loop and will reach the destination
when starting from the source.

While we now have verifiable blackhole freedom for the nodes en route, we cannot use the above scheme
to actually deploy a new path for F ′. Assume that the path has at least two nodes besides the source and the
destination, then no further node en route can actually deploy the rules for F ′ under common asynchrony [1]
assumptions—both a successor and predecessor along the route is needed.

Moreover, from a structural point of view, such a predecessor-successor construction does not remove
unnecessary forwarding loops in the network, e.g., a loop disconnected from source/destination cannot be
locally detected. While such disconnected loops might not seem as harmful from a routing point of view,
they can hinder future updates and also highlight another downside of the above scheme, namely that it is
not suitable for purely destination-based schemes, where routing is performed along a forwarding tree. We
investigate such scenarios in the next section, but first show how to fix our proposed scheme.

To this end, we replace the predecessor-successor relationship with a distance labeling scheme, as
described in, e.g., [8, 9]. Each node along the path of F ′ also obtains its distance to the destination as part
of the label, measured in hops along F ′. Then, a node will only update if its successor has already updated
and its distance is exactly one less. A counting-to-zero argument can be used to show the correctness of this
scheme w.r.t. blackhole and loop freedom, as a) only the destination may have a distance of zero and b) the
source only starts to utilize F ′ once the path has been established.

Theorem 1. The reverse update scheme in [7] for flows can be made locally verifiable for both blackhole
and loop freedom by enhancing it with distance labelings.

5 Removing the Need for Packet Tagging

It is sometimes possible to remove the need for packet tagging (as required by the approach above), and hence
also reduce the number of rules to be stored by the nodes (as they are often per-tag), by slightly relaxing the
notion of consistency. Observe that in the previous section, our approach moreover guaranteed so-called
per-packet consistency [11], where a packet will either take the old F or the new F ′ path, but never a mix of
both. However, such stronger guarantees are not needed in order to guarantee blackhole and loop freedom.

1The 2-phase commit scheme in [11] updates the forwarding for a flow F to F ′ as follows: The new flow rules for F ′ are
distributed in the network, and once ack’ed to the controller, the controller informs the packet source to from now on tag all flow
packets with F ′, instead of the previous tag of F .
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We assume as such that routing is to be performed destination-based along forwarding trees, which in
turn have to be blackhole/loop-free. It was already observed in [6] that consistency in this setting can be
verified and consistently updated by including the depth of the node v in the forwarding tree in its label. As
such, specifying the parent and the depth suffices. In a nutshell, a node v waits until its parent w updates, and
then only updates if DEPTH(v)=DEPTH(w) + 1 is satisfied.

A downside of the above scheme is that it only specifies a single transition from old to new forwarding
rules. In order for a second and further updates to be performed, the controller needs to again collect
acknowledgments that all nodes have switched, inducing unnecessary overhead. In the previous section and
in 2-phase commit schemes in general, one can just create a new tag to avoid such issues, e.g., transitioning
from F to F ′ to F ′′ and so on. Even if F ′ is never fully implemented, the packet source can transition to F ′′

once its path is fully provisioned.
It seems at first as if the trick of adding increasing version numbers cannot be directly applied to

forwarding trees. In network flows, there is a single node (the source) from which the traffic along the
new path originates, whereas in forwarding trees, all nodes can act as sources, potentially sending across
combinations of different forwarding trees (in [6]: just 2 trees).

However, instead of waiting for the last update to be completed, we can actually mix different subsequent
updates, as long as in each intermediate possible time-step the forwarding is performed along a forwarding
tree.2 As such, we add version numbers to each label and observe that we only need to obey a larger-than
relationship: as long as any of v’s neighbors w is a parent in some larger version number x, v may switch to
its label (tree) with version x if DEPTHx(v)=DEPTHx(w) + 1. Observe that a node can also skip intermediate
labels.

Correctness is guaranteed by the invariant that a node will never switch to a smaller version number.3

Nodes using the largest version number form a correct forwarding tree, as they will not forward to nodes in
other trees and in each step reduce the distance to the destination. Next, observe that for all other forwarding
trees (version numbers), the next routing hop will decrease the distance in the label of the parent, respectively
switch to a higher version number. Hence, the packet will reach the destination eventually and loops in
the current forwarding state can be locally detected as well: Assume for the sake of contradiction that the
forwarding graph contains some loop with no node ringing an alarm (outputting NO). As every node outputs
YES, we can follow the routing loop starting from some node u, where in each step, we increase the version
number or reduce the distance. However, when we reach u again4, u must either have a smaller depth or a
higher version number than itself, a contradiction.

Theorem 2. By augmenting the update scheme from [6] with version numbers, s.t. a node v may update to
larger version numbers x, if its respective parentw in x is also in version number x and DEPTHx(v)=DEPTHx(w)+
1, we obtain a locally verifiable scheme which preserves blackhole and loop-freedom.

6 Discussion: Speed Up and Fault-Tolerance

Potential speed up gains. Nguyen et al. [7] showed in their evaluations that decentralized consistent updates
can speed up updates by up to 45% at the median, in realistic scenarios.

We briefly analyze what sort of theoretical speed up is possible in extreme cases, from the viewpoint of
message propagation delay, where we assume one hop to take unit time.

Consider the scenario analogously to [12, Fig. 2], shown in Figure 1. The task is to update from the old
(solid) to the new (dashed) forwarding rules for the destination d in a loop-free fashion. In a centralized

2Note that loop freedom is a structural property of the forwarding graph.
3For practical purposes, an appropriate circular ordering could be defined.
4As we study a structural property, we assume no updates in the meantime.
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Figure 1: Network with old (solid) and new (forwarding) rules which requires l− 2 ∈ Ω(n) rounds to update
consistently when enforcing loop freedom. For example, v3 cannot update before v2, and so on.

setting, we need Ω(n) rounds to complete the migration, as only one rule (once: two) can be updated per
round [12]. Else, asynchrony could lead to transient loops in the forwarding graph.

While it is impossible to break theΩ(n) different updates lower bound, distributed updates can drastically
improve the message propagation delay overhead. Assume that the controller is connected to or placed
on any arbitrary node. In a distributed setting, the controller can pipeline the distribution of the update
labels, reaching all nodes in O(n) time. Next, the update messages propagate one hop, each along the new
forwarding rules, again taking O(n) time. In contrast, in a centralized setting, the controller needs to obtain
an acknowledgement of each update, in turn sending out the next update command. In total, this requires a
message propagation delay of Ω(n2).

Observation 1. Distributed updates can speed up the update process by a factor of O(n), w.r.t. message
propagation delay.

Fault-tolerance. Fault-tolerance is largely unexplored w.r.t. proof labeling schemes, the only work that we
are aware of relies on a global (unspecified) notification that an error occurred [13], investigating a single link
failure. On the other hand, there is also work that studies so-called local fixing, where nodes/links can e.g.,
leave last wills behind in order to restore properties [14]. However, such fixing is not studied from the aspect
of verification, to the best of our knowledge.

Interestingly, we can create a heuristic that directly extends our constructions from the last section to
fault-tolerance. For destination-based routing, observe that we do not need to forward to a node with a depth
exactly one smaller, but any smaller depth (or higher version) would suffice. In this context, fault-tolerance
could benefit benefit from link-disjoint forwarding trees [15], which can be computed efficiently [16], along
with appropriate optimization for route lengths [17, 18].

7 Related Work

Proof labeling schemes have been widely studied in the context of distributed computing. We take inspiration
from, e.g., [8, 9], and also refer to both articles for an introduction to the topic. Similarly, the topic of
consistent network updates in SDNs has received much attention in the networking community, see the
recent survey in [1]. The idea to leverage proof labeling schemes for verification purposes in SDNs was first
investigated in [5], joined with consistent updates for destination-based routing in [6]. We extend the ideas
in [6] by handling multiple subsequent updates and also covering flow-based routing, along with speed ups
and fault-tolerance.

Nguyen et al. [7] lay the practical groundwork for our paper, by showing how to efficiently implement
consistent SDN updates in the data plane. We build upon their work by adding local verification to blackhole
and loop-free consistent updates, leveraging the concepts of proof labeling schemes.

Lastly, the idea of fault-tolerance in proof labeling schemes was considered in [13], but in contrast
required an explicit (unspecified) global failure notification. Related in this context is also the idea of local
fixing [14] or preprocessing in distributed control planes in general [5, 19, 20].
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8 Conclusion

Given the constantly changing demands and requirements on communication networks, e.g., due to security
policy changes, traffic engineering requirements, planned maintenance work or unplanned link failures,
among many more, future communication networks are expected to be changed and reconfigured more
frequently. This paper presented a distributed approach, based on proof labeling systems, which allows to
offload the responsibility for network reconfigurations to the data plane and hence support and speed up such
reconfigurations.

We understand our work as a first step, and believe that it opens several interesting avenues for future
research. In particular, it will also be interesting to consider the use of randomized [21] and approxi-
mate [22] solutions to improve our approach, provide extensions to further consistency properties such as
waypoints [23] and congestion [24], as well as seamless updates [25], but also the inherent connections to
self-stabilization [26]. More generally, we believe that our approach can provide interesting new perspectives
on emerging self-driving networks [27], which center around fine-grained and fast adaptions of networks
reacting to their environment, and may hence benefit from our distributed approaches. Furthermore, it will be
interesting to investigate opportunities coming from emerging programmable dataplanes, to speed up our
approach further, as well as to generalize it to additional use cases.
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