
Compact Oblivious Routing
Harald Räcke
Department of Informatics, TU München, Germany
raecke@in.tum.de

Stefan Schmid
Faculty of Computer Science, University of Vienna, Austria
stefan_schmid@univie.ac.at

Abstract
Oblivious routing is an attractive paradigm for large distributed systems in which centralized control
and frequent reconfigurations are infeasible or undesired (e.g., costly). Over the last almost 20 years,
much progress has been made in devising oblivious routing schemes that guarantee close to optimal
load and also algorithms for constructing such schemes efficiently have been designed. However, a
common drawback of existing oblivious routing schemes is that they are not compact: they require
large routing tables (of polynomial size), which does not scale.

This paper presents the first oblivious routing scheme which guarantees close to optimal load
and is compact at the same time – requiring routing tables of polylogarithmic size. Our algorithm
maintains the polylogarithmic competitive ratio of existing algorithms, and is hence particularly
well-suited for emerging large-scale networks.

2012 ACM Subject Classification Networks → Routing protocols; Theory of computation → Routing
and network design problems; Networks → Network algorithms

Keywords and phrases Oblivious Routing, Compact Routing, Competitive Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.72

1 Introduction

1.1 Motivation
With the increasing scale and dynamics of large networked systems, observing and reacting
to changes in the workload and reconfiguring the routing accordingly becomes more and
more difficult. Not only does a larger network and more dynamic workload require more
fine-grained monitoring and control (which both introduce overheads), also the process of
re-routing traffic itself (see e.g. [15]) can lead to temporary performance degradation and
transient inconsistencies.

Oblivious routing provides an attractive alternative which avoids these reconfiguration
overheads while being competitive, i.e., while guaranteeing route allocations which are almost
as good as adaptive solutions. It is hence not surprising that oblivious routing has received
much attention over the last two decades. Indeed, today, we have a good understanding of
fast (i.e., polynomial-time constructable) and “competitive” oblivious routing algorithms
(achieving a polylogarithmic approximation of the load, which is optimal).

However, while oblivious routing seems to be the perfect paradigm for emerging large
networked systems, there is a fly in the ointment. Oblivious routing algorithms that aim
to minimize congestion require large routing tables: namely polynomial in the network size.
This is problematic, as fast memory in routers is expensive, not only in terms of monetary
costs but also in terms of power consumption.

The goal of this paper is to design oblivious routing schemes which only require small
routing tables (which are compact), and that at the same time still guarantee a close-to-
optimal load.

© Harald Räcke and Stefan Schmid;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 72; pp. 72:1–72:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raecke@in.tum.de
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2019.72
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


72:2 Compact Oblivious Routing

1.2 The Problem in a Nutshell
The network is given as an undirected graph G = (V,E) with n vertices. The edges E are
weighted by a capacity function cap : V × V → R+

0 ; if {x, y} ∈ E, the function returns 0,
otherwise a positive value.

The oblivious routing problem is to set up a unit flow for each source-target pair (s, t) ∈
V × V that determines how demand between s and t is routed in the network G. This unit
flow is pre-specified without knowing the actual demands. When a demand vector ~d is given
that specifies for each pair of vertices the amount of traffic to be sent, the demand-vector is
routed by simply scaling the unit flow between a pair (s, t) by the corresponding demand dst
between the two vertices. This means that traffic is routed along pre-computed paths and
that no path-selection is done dynamically.

The congestion Cobl(G, ~d) resulting from a given oblivious routing scheme, is then
compared to the optimal possible congestion Copt(G, ~d) that can be obtained for demand
vector ~d in G. The competitive ratio of the oblivious routing scheme is defined as

max
~d

Cobl(G,~d)

Copt(G,~d)

In this paper, we are interested in designing packet forwarding rules that allow the packets
to follow a flow of an oblivious routing scheme with a good competitive ratio. Apart from
the competitiveness of the underlying oblivious routing scheme one goal is to encode the
forwarding rules compactly with small space requirement. In particular we require that for a
vertex v the space requirement is only O(deg(v) polylog(n)), where deg(v) is the degree of
the vertex. In other words, this means we rougly require a polylogarithmic number of rules
per network link. It seems unavoidable to let the memory requirement of a vertex depend on
its degree as otherwise the routing scheme might not be able to efficiently utilize all network
links.

In addition to the competitive ratio, the runtime, and the table size, we are also interested
in the required vertex labels (i.e., their size) and the required packet header size.

1.3 Our Contributions
This paper presents the first compact oblivious routing scheme. Our approach builds upon
an oblivious path selection scheme based on classic decomposition trees, which is then
adapted to improve scalability, and in particular, to ensure small routing tables and message
headers, while preserving polynomial runtime (for constructing the routing tables) and a
polylogarithmic competitive ratio.

We present two different implementations of our approach and our results come in two
different flavors accordingly (more detailed theorems will follow):

I Theorem 1. There exist oblivious routing strategies that achieve a polylogarithmic compet-
itive ratio w.r.t. the congestion and require routing tables of polylogarithmic size for
1. networks with arbitrary edge capacities which have a decomposition tree of bounded degree,

and for
2. arbitrary networks with uniform edge capacities.
Our algorithms only require small (polylogarithmic) header sizes and vertex labels. The
routing tables can be constructed in polynomial time.

Networks for which there are decomposition trees of small degree include for example
(constant-degree) grids. The exact requirements that a decomposition tree has to fulfill will
be given later.



H. Räcke and S. Schmid 72:3

2 Algorithm and Analysis

This section describes an oblivious path selection scheme for general undirected networks
that obtains close to optimal congestion and can be implemented with routing tables and
routing headers of small size. In a nutshell, our algorithm leverages a path selection scheme
for general networks that guarantees a good competitive ratio w.r.t. congestion, and then
adapts it so that it can be implemented with small space requirements. We discuss the two
phases of this algorithm in turn.

2.1 Oblivious Path Selection Scheme
There exist essentially two path selection schemes that could be used as a basis for our
approach. First, there is the original result by Räcke [32] who showed that oblivious routing
with a polylogarithmic competitive ratio is possible in general networks, using a hierarchical
path selection scheme (cf. Section 2.1) that guarantees a competitive ratio of O(log3 n).
Second, there is a path selection scheme with an improved competitive ratio of O(logn) [33].
The latter scheme can be roughly viewed as a convex combination of spanning trees.1 A
path between a vertex s and a vertex t is chosen by sampling a random spanning tree and
then choosing the path between s and t in this tree.

In this paper, we will build upon the original result [32] which we call the hierarchical
path selection scheme. The challenge with implementing the path selection mechanism in [33]
space-efficiently is that the number of spanning trees is quite large (polynomial in n). It
seems difficult to avoid that a vertex in the graph has to store some information for every
tree, which yields routing tables of polynomial size. The approach in [32] is based on a single
tree which hence avoids the problem of [33].

The hierarchical path selection scheme is based on a hierarchical decomposition of the
graph G = (V,E). The vertex set V is recursively partitioned into smaller and smaller pieces
until all pieces contain just single vertices of G. We will refer to the pieces/subsets arising
during this partitioning process as clusters.

To such a recursive partitioning corresponds a decomposition tree T = (VT , ET ). A vertex
x in this tree corresponds to cluster Vx ⊆ V and there is an edge between a parent node p
and a child node c if the cluster Vc arises from partitioning Vp. The root r of T corresponds
to the subset Vr = V and the leaf vertices correspond to singleton sets {v}, v ∈ V .

In order to simplify the notation and description we assume that all leaf vertices in T
have the same distance to the root (this could e.g., be achieved by introducing dummy
partitioning steps in which a set is partitioned into itself). We use h to denote the height of
the tree. Let for a vertex v ∈ V , a`(v) denote the ancestor of {v} on level ` of the tree, where
the level of a vertex is its distance from the root. Here we use {v} as a shorthand for ‘the leaf
node that corresponds to cluster {v}’. The `-weight of v is the weight of all edges incident to
v that leave the cluster Va`(v). Formally w`(v) :=

∑
e={v,x}:x/∈Va`(v)

cap(e). We extend this
definition to subsets of V by setting w`(U) :=

∑
u∈U w`(u) for every subset U ⊆ V .

We also introduce for every cluster S in the decomposition tree a weight function
wS : S 7→ R+

0 and a weight function outS : S 7→ R+
0 . For a level `-cluster S we define

wS := w`+1�S and outS := w`�S , i.e., we define it as the restriction of w`+1 and w`,
respectively, to the vertex set of cluster S. Note that outS counts edges that connect vertices

1 This is not entirely correct as the trees are not proper spanning trees but the difference is not important
for the above discussion.

ESA 2019



72:4 Compact Oblivious Routing

of S to vertices outside of S while wS also counts edges that connect different sub-clusters of
S. We refer to wS as the cluster-weight of S and to outS as the border-weight of S.

Using this weight definition, we define a concurrent multicommodity flow problem (CMCF-
problem) for every cluster S in the decomposition tree. For every (ordered) pair (u, v) there
is a demand of wS(u)wS(v)/wS(S). Informally speaking, this means that every vertex injects
a total flow that is equal to its wS-weight and distributes this flow to the other vertices in
S, proportionally to the wS-weight of these vertices. We will use the decomposition tree T
in [32] with the following properties:

the height of T is O(logn), and

for every cluster S in the decomposition tree, the CMCF-problem for S can be solved
with congestion at most C = O(log2 n) inside S.

Now suppose that we are given a decomposition tree with these properties. The path
selection in [32] is then performed as follows. Suppose that we want to choose a path between
vertices s and t in G. Let xs and xt denote the leaf vertices in T that correspond to singleton
clusters {s} and {t}, respectively. Let xs = x1, x2, . . . , xk = xt denote the vertices in the
tree on the path from xs to xt. We first choose a random vertex vi from each cluster Vxi

according to the cluster-weight, i.e., the probability that v is chosen is wVxi
(v)/wVxi

(Vxi).
Note that v1 = s and vk = t as the corresponding clusters just contain a single vertex. It
remains to select a path that connects the chosen vertices.

Suppose we want to connect two consecutive vertices vp and vc, where Vxp
is the parent

cluster of Vxc . We choose an intermediate vertex α inside Vxc according to the border-weight
of Vxc

, i.e., the probability that v is chosen is outVxc
(v)/ outVxc

(Vxc
). We then consider the

solution to the CMCF-flow problems for Vxc
and Vxp

. The first solution contains a flow
f(c, α) between vxc and α, and the second contains a flow f(p, α) between vxp and α. We
sample a random path from each flow. Concatenating these two paths, gives a flow between
vc and vp. For the following analysis we call the sub-path between xc and α the lower
sub-path and the path between α and xp the upper sub-path.

Concatenating all vertices vi in the above manner gives a path between xs and xt. In
the following we analyze the expected load generated on an edge due to this path selection
scheme under the condition that an optimal algorithm can route the demand with congestion
Copt. For completeness and as we will need to modify this proof later, we repeat the following
observations from [32].

I Lemma 2. The expected load on an edge is at most O(h · C · Copt).

Proof. Fix an edge e for which both end-points are contained in some cluster S. Let
S1,. . . ,Sr denote the child-clusters of S. We first analyze the total demand that we have to
route between a pair of vertices (a, b) ∈ S × S due to an upper sub-path where a is chosen
as the intermediate vertex α and b is chosen as a random vertex from the parent cluster
S. Assume a ∈ Si for some child cluster Si. Then the probability that we choose a as α
is Pr[a is chosen] = outSi

(a)/ outSi
(Si). The probability that we choose b as the random

end-point in S is Pr[b is chosen] = wS(b)/wS(S). Note that any message for which we route
between the child cluster Si and the parent cluster S has to leave or enter the cluster Si.
Therefore the total demand for these messages can be at most Copt · outSi(Si), as otw. an
optimum congestion of Copt would not be possible. Hence, the expected demand for pair a



H. Räcke and S. Schmid 72:5

and b is only

outSi(Si)Copt · Pr[a is chosen] · Pr[b is chosen] = outSi(Si)Copt ·
outSi

(a)
outSi(Si)

· wS(b)
wS(S)

= wS(a) · wS(b)
wS(S) · Copt , (1)

where we used the fact that outSi(a) = wS(a), which holds since Si is a direct child-cluster
of S.

Now we analyze the demand that is induced for a pair (a, b) ∈ S×S due to the lower part
of a message between S and its parent cluster. We assume that a is chosen as the intermediate
vertex α and b is chosen as a random node in the child-cluster S. The probability that a is
chosen as intermediate vertex is Pr[a is chosen] = outS(a)/ outS(S) and the probability that
b is chosen is Pr[b is chosen] = wS(b)/wS(S). Every such message has either to leave or enter
cluster S. Hence, the total demand for these messages induced on pair (a, b) is at most

outS(S)Copt · Pr[a is chosen] · Pr[b is chosen] = outS(S)Copt ·
outS(a)
outS(S) ·

wS(b)
wS(S)

≤ wS(a) · wS(b)
wS(S) · Copt , (2)

where we used the fact that outS(a) ≤ wS(a).
Combining Equation 1 and Equation 2 gives that the messages involving cluster S induce

a demand of only 2wS(a) · wS(b)/wS(S) · Copt between vertices a and b from S. Since we
route this demand according to the multicommodity flow solution of the CMCF-problem for
cluster S, the resulting load is at most 2C · Copt on any edge inside cluster S, while edges
not in S have a load of zero. Summing the load induced by messages for all clusters and
exploiting the fact that an edge is at most contained in h different clusters, gives a maximum
load of 2hC · Copt, i.e., a competitive ratio of 2hC. J

Harrelson, Hildrum and Rao [21] present a decomposition tree in which the congestion for
the CMCF-problem of clusters is not uniformly bounded by C but it is guaranteed that along
a root-to-leaf path the congestion values of the respective flow problems sum up to at most
O(log2 n log logn). Then the expected load in Lemma 2 becomes O(log2 n log logn · Copt).
In addition the construction of this decomposition tree is polynomial time.

In the following description we base our oblivious routing scheme on the results in [32] as
it slightly simplifies the write-up. For the theorems we also present the improved version
obtained by plugging in the decomposition tree from Harrelson et al.

2.2 Implementation A: Decomposition Trees with Small Degree
We now present a space efficient implementation of the above path selection scheme. In the
following, we will assume that the maximum degree of the decomposition tree T is small.

The basic building block for our implementation is a method that given a random starting
point v ∈ S chosen according to the cluster-weight of S (i.e., the probability of choosing v
is wS(v)/wS(S)), routes to a random node vi ∈ Si chosen according to the border weight
of Si. Here Si is either a child-cluster of S (in case we want to communicate downwards
in the tree) or Si = S (in case we want to communicate upwards). In the following we use
Si, i ∈ {1, . . . , r} to denote the child-clusters of S and S0 = S to denote S itself. Let G[S]
denote the sub-graph induced by vertices in S.

ESA 2019



72:6 Compact Oblivious Routing

For every i ∈ {0, . . . , r} we compute a single commodity flow fi in G[S] as follows.
We add a super-source s and connect it to every vertex v ∈ S with an edge of capacity
wS(v) · outSi

(Si) and a super-target t to which every vertex in v ∈ S connects with capacity
outSi(v) · wS(S). Note that all source edges together have the same capacity as the target
edges.

We now compute a flow fi between si and ti that saturates all edges from si and to ti.
We can find such flows fi (for all i) such that the combined congestion for these flows (on
edges in S; edges from si’s and to ti’s have congestion 1) is only wS(S) · C. To see this
observe that in the CMCF-solution for cluster S the commodity (vi, v) with vi ∈ Si and
v ∈ S ships a flow of outSi

(vi)wS(v)/wS(S) between vi and v. By ‘merging’ the flows of all
commodities (vi, v) ∈ Si × S into a single commodity we obtain the desired flow (up to a
wS(S)-factor). Merging the commodities does not increase the congestion and, hence, the
congestion is only wS(S) · C.

The flows fi that we constructed so far may have fractional values that are difficult to
store exactly. Therefore we slightly change the flows so that we can store them efficiently.
For this we first scale every flow and the capacity of every edge up by a factor of r. Let
f ′i and cap′(e) denote the scaled flows and capacities. Then every edge e makes a capacity
reservation for every flow fi. Suppose the (scaled) flow sends f ′i(e) along edge e; then the
edge e reserves a capacity of df ′i(e)e for the i-th flow. Note that the total capacity reservation
is at most

∑
idf ′i(e)e ≤

∑
i f
′
i(e) + r ≤ wS(S) · C cap′(e) + r ≤ 2wS(S) · C cap′(e), because

the scaled capacity of an edge is at least r.
Now we resolve every flow problem separately with the restriction that the flow should stay

within its capacity reservation. This is clearly possible and since the capacity reservations
and the demands are all integral we now have an integral flow f ′i . Undoing the scaling gives
us flows fi that can (concurrently) be routed with congestion at most 2wS(S) ·C, and where
flow values are a multiple of 1/r.

We now store the flows fi in a distributed manner at the vertices of S, as follows. Fix
v ∈ S. For every edge we store how much flow enters or leaves v. In order to route from the
cluster-distribution of S to the border-distribution for Si, i ∈ {0, . . . , r}, we choose random
outgoing links (where a link is taken with probability proportional to the outgoing flow) until
the chosen link is the super-target t. When we want to route from the border-distribution of
Si to the cluster-distribution of S, we take random incoming links (where a link is chosen
with probability proportional to the incoming flow), until the chosen link corresponds to the
super-source s. The proof of the following claim is analogous to Lemma 2.

B Claim 3. The expected load of an edge due to the path selection scheme is only O(h·C ·Copt).

Proof. Suppose that the optimum congestion is Copt. The total traffic that the scheme
has to route between the cluster-distribution of S and the border-distribution of Si is only
outSi

(Si) · Copt. We route this traffic according to flow fi of value outSi
(Si)wS(S). Hence,

the maximum load of an edge in G[S] (according to original capacity) is C · Copt.
Since an edge is contained in h different clusters the claim follows. J

B Claim 4. The path selection scheme can be implemented with routing tables of size
O(deg(v) deg(T )(logm + logW )), labels of length O(h log(deg(T ))), and header length
O(h log(deg(T ))).

Proof. Suppose that the capacities of the graph are integers in the range {1, . . . ,W}. A flow
value fi(e) along an edge is at most wS(S) ·W · C (note that we assume that C is integral).
Edges from s and to t have a capacity of wS(v) outSi

(Si) and wS(S) outSi
(v), respectively.



H. Räcke and S. Schmid 72:7

Using the fact that wS(S) and outSi(Si) are at most mW , and d,C ≤ m we get that a
number describing the flow value along an edge can be encoded with

log2(m2W 2r) = O(log(m) + log(W ) + log(r))

many bits (since flow values are a multiple of 1/r). Hence, a node v has to store only
O(deg(v) deg(T )(logm+ logW )) many bits, where we used that r ≤ m.

For the routing scheme we relabel the vertices. We number the children of a vertex
in the tree and encode a leaf vertex by its path from the root. This generates labels of
O(h log(deg(T ))) bits. The routing algorithm now only needs to have the label of the source
vertex and the target vertex and a marker that marks where in the tree the routing currently
is. J

In summary, we obtain the following theorem.

I Theorem 5 (Decomposition Trees of Small Degree). For decomposition trees of degree
deg(T ) one can construct an oblivious routing strategy that requires routing tables of size
O(deg(v) deg(T )(log(m) + log(W ))), labels of length O(h log(deg(T ))), and header sizes
of O(h log(deg(T ))). Depending on the decomposition tree used, we obtain two different
competitive ratios:

Using the decomposition tree from [32] the scheme guarantees a competitive ratio of
O(hC) = O(log3(n)) w.r.t. congestion.
Using the decomposition tree from [21] the scheme can be constructed in polynomial time
and guarantees a competitive ratio of O(log2(n) log log(n)).

2.3 Implementation B: Uniform Capacities
In this section we present a different implementation of the hierarchical routing scheme,
for scenarios where the decomposition trees can be of arbitrary degree but where network
capacities are uniform. Again the basic building block is to route from a node chosen
according to the cluster-distribution of some cluster S to the border distribution of Si where
either Si = S or Si is a child-cluster of S.

Assume that every edge in the graph G has capacity 1. We round the outgoing capacity
outSi(Si) of a child-cluster Si, i ≥ 0 to the next larger power of 2 and denote the rounded
value with ‖Si‖. We also re-order the children w.r.t. this value, i.e., S1 is the child-cluster
with smallest ‖Si‖-value. Since there are at most m possible values for outSi(Si), there
are only logm possible values for ‖Si‖. There are only

(
r+logm

logm
)
possibilities to choose the

‖Si‖-values of the r children of cluster S. Hence, we can store these with O(log(m) · log(r))
many bits. In addition we store the value of ‖S0‖, which requires O(log logm) bits, and the
value of wS(S) which requires O(logm) bits.

In order to design the routing scheme for an individual cluster, we embed a hypercube
of dimension d := dlog2(

∑
i≥0 ‖Si‖)e. We first order the hypercube nodes in an arbitrary

way and then reserve a range of ‖Si‖ consecutive hypercube nodes for every i ≥ 0 (the i-th
range). Note that we store the (rounded) size of all children and that it is straightforward to
compute the ranges assigned for any i from this information.

Then we map the hypercube nodes to nodes of S. First we map hypercube nodes in the
i-th range to nodes with outSi

(v) > 0 such that each node receives at least outSi
(v) and at

most 2 outSi
(v) hypercube nodes. Hypercube nodes that remain unmapped after this step

(i.e., nodes that do not fall within any range) are mapped arbitrarily subject to the constraint
that a cluster node v does not receive more than 8wS(v) hypercube nodes. This can easily be

ESA 2019



72:8 Compact Oblivious Routing

done as the number of hypercube nodes (2d) is at most 2
∑
i ‖Si‖ ≤ 4

∑
i

∑
v∈Si

outSi(v) =
4(wS(S) + outS(S)) ≤ 8wS(S).

B Observation 6. There are at most 8wS(v) hypercube nodes mapped to any graph node.

For the embedding we set up a concurrent multicommodity flow problem as follows. For
every edge {x, y} of the hypercube that is mapped to endpoints {vx, vy}, we introduce a
demand of 1 between vx and vy in both directions. Then every node sends and receives a
total traffic of at most 8d · wS(v). By adding fake traffic we can turn this instance into a
balanced multicommodity flow instance in which every vertex sends and receives a traffic of
exactly 8d · wS(v).

We can solve this multicommodity flow instance with congestion at most 16dC inside the
cluster S by using Valiant’s trick [38, 25] of sending to random intermediate destinations
and using the fact that each flow can send a traffic of wS(v) to random destinations with
congestion C.

2.3.1 Using the Hypercube
How do we exploit the embedded hypercube? If during the routing scheme we are required to
send a message from a cluster node vp to a cluster node vc ∈ Si we proceed as follows. Instead
of choosing an intermediate node α according to probability distribution outSi

(v)/ outSi
(Si)

we choose a random hypercube node from the i-th range. Then we route a message inside
the hypercube to this node. For this we let the message start at a random hypercube node
from the nodes that are mapped to vp.

Note that this means that the probability that the message is sent to node α lies between
outSi

(α)/‖Si‖ and 2 outSi
(α)/‖Si‖ as the hypercube nodes in the i-th range are not mapped

completely uniformly.
For the second part of the message we proceed analogously in the hypercube of Si. We let

the message start at a random hypercube node mapped to α and choose a random hypercube
node as its target.

Again due to the non-uniform mapping, the target distribution on Si (i.e., wSi(v)/wSi(Si))
is not reached exactly, but deviations by a constant factor might occur. This only influences
the congestion of a single step by a constant factor, but it could be problematic if we used
this approach along a path in the tree: in each step the distribution would change by a
constant factor.

Therefore, we add an additional step that fixes the distribution over Si. We embed an
additional hypercube HS for every cluster S with dimension dlog2(wS(S))e. The mapping
is done such that each cluster-vertex v ∈ S receives exactly wS(v) hypercube nodes among
the first wS(S) nodes from HS (the remaining nodes are distributed uniformly). Since every
node in the cluster S stores the value of wS(S), we can route from a node v ∈ S to a random
node chosen according to distribution wS(v)/wS(S), by just selecting a random hypercube
node from the first wS(S) nodes.

2.3.2 Analysis
We showed that the congestion for sub-messages that involve cluster S is small. There are
two types of such messages:
1. messages that start at an intermediate node (distributed according to the border weight

of Si for some i ≥ 0) and are sent to a random node v ∈ S distributed according to the
cluster-weight of S; and



H. Räcke and S. Schmid 72:9

2. messages that start at a random node v ∈ S and are sent to some intermediate node.
It was shown that the total traffic that is sent between a pair vi and v, where v is distributed
according to the cluster weight of S and vi is distributed according to the border weight of
Si, is only outSi

(vi)wS(v)/wS(S) · Copt.
In our new scheme this changes slightly. For messages of the second type the source is

distributed as before but the target may have a slightly different distribution (as we choose a
random hypercube node in the i-th range). For messages of the first type already the source
may have a slightly different distribution (as we choose a random hypercube node from some
range in the hypercube for a child- or parent-cluster). Also the target distribution is slightly
skewed as we choose a random hypercube node as the target.

But since the distributions are only changed by a constant factor this difference does not
really influence our analysis. We still have the property that the traffic between vi and vS is
Θ(outSi

(vi)wS(v)/wS(S) · Copt).
The second difference is that the traffic is not sent according to the CMCF-problem for

cluster S but it is instead sent along the hypercube. Note that due to the embedding of the
hypercube, a cluster node v ∈ Si has Θ(outSi(v)) = Θ(wS(v)) hypercube nodes in the i-th
range mapped to it (i.e., hypercube nodes are balanced perfectly up to constant factors).
Hence the demand between vi and v will be split among Θ(outSi

(vi)wS(v)) pairs in the
cube. Therefore the demand for every pair in the cube is only Θ(Copt/wS(S)) = Θ(Copt/2d).
This means that at most a traffic of O(Copt) starts and ends at every vertex and routing
this traffic using Valiant’s trick gives a congestion of O(dCopt) in the hypercube. Since we
embedded the hypercube with congestion O(dC), the congestion of a graph edge will be
O(d2C ·Copt) (as each hypercube node has degree d), which gives rise to the following lemma.

I Lemma 7. Implementation B guarantees a maximum expected load of O(hd2C · Copt).

Proof. The lemma follows by applying the previous argument for each level of the tree.
It remains to bound the edge-load induced by the re-randomization steps. The total

traffic that is send to a cluster S in the tree is at most (
∑
i out(Si)) ·Copt = Θ(wS(S) ·Copt).

For each such message we require a re-randomization, because in our current scheme, it is
only distributed approximately according to the cluster-weight of S.

However by design each vertex receives exactly a wS(v)/wS(S)-fraction of the re-randomization
messages, and a Θ(wS(v)/wS(S))-fraction of messages start at v, since the messages are
approximately distributed according to cluster-weight. Sending these messages along the
hypercube introduces congestion Θ(d · Copt) in the cube and Θ(d2C · Copt) due to the
embedding. J

I Lemma 8. Implementation B requires space O(hC log(m) log log(m) deg(v)) bits at every
vertex and a label and header length of O(h log(deg(T ))).

Proof. We will use the following helper lemma:

I Lemma 9. Let X1, . . . , Xn denote a set of negatively correlated random variables taking
values in the range [0, 1]. Let X denote their sum and let µ ≤ E[X] denote a lower bound on
the expectation of X. Then for any δ ≥ 1

Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3 .

A vertex v ∈ S has to store the approximate size ‖Si‖ of the child-clusters of S. Summing
this over all levels gives O(h log(m) · log(r)) bits. In addition one has to encode the embedding
of the hypercubes. The congestion of the solution to the concurrent multicommodity flow

ESA 2019



72:10 Compact Oblivious Routing

problem for embedding a hypercube is O(dC). This fractional solution will encode a flow for
every hypercube edge. Using a standard randomized rounding approach, we can route the
flows to paths with a congestion of O(dC + log(m)) = O(dC). This is done as follows. For
every pair {x, y} we take the unit flow and first decompose this unit flow into flow-paths.
Then we choose for every pair one of the flow-paths at random (proportional to its weight).
Let Xi(e) denote the random variable that describes whether the flow path for the i-th pair
includes edge e. By design the above process guarantees E[Xi(e)] = fi(e), where fi(e) is the
flow for pair i that goes through edge e. The total load on edge e is

∑
iXi(e). This is a sum

of negatively correlated random variables with expectation µ = O(dC). Using Lemma 10
with δ = 3 ln(m)/µ gives that with constant probability, no edge exceeds load O(dC + logm).

Therefore only O(deg(v)dC) paths traverse a vertex v (recall that C ≥ logm). For
every path, we need to store the outgoing edge and the id of the paths on this edge. This
requires (log2(deg(v)) + log2(dC)) bits for every path and O(ddeg(v)C log(ddeg(v)C)) bits
in total. Multiplying with the height and using d = Θ(logm) gives O(hC log(m)(log(deg v) +
log logm) deg(v)) = O(hC log2(m) · deg(v)) bits.

The header- and label-length is analogous to Implementation A. We just use the root-to-
leaf path in the tree as a label and a header consists of the source-label, the target-label, and
a marker. J

In summary we derived the following result:

I Theorem 10 (Compact Oblivious Routing for Uniform Capacities). For arbitrary networks of
uniform capacities, there exists an oblivious routing strategy which requires label and header
length of O(h log(deg(T ))), and which comes in two flavors, depending on the decomposition
tree used:

Using the decomposition tree from [32] the scheme requires O(hC log2(m) deg(v)) =
O(log5(n) deg(v)) bits at every vertex and guarantees a competitive ratio of O(hC log2(n)) =
O(log5(n)) w.r.t. congestion.
Using the decomposition tree from [21] the scheme requires O(log2 m log2(n) log logn) deg(v)) =
O(log4 n log logn) deg(v)) bits at every vertex and guarantees a competitive ratio of
O(log4(n) log log(n)) w.r.t. congestion. The oblivious routing scheme can be constructed
in polynomial time.

3 Related Work

The drawbacks of adaptive routing have been discussed intensively in the literature, see
e.g., [34] for a survey. In particular, adaptive routing schemes need global information about
the routing problem in order to calculate the best paths, and even if it were possible to collect
such information sufficiently fast, it can still take much time to compute a (near-)optimal
solution to that problem (large linear programs may have to be solved).

One of the first and well-known results on oblivious routing is due to Borodin and
Hopcroft [8] who showed that competitive oblivious routing algorithms require randomization,
as deterministic algorithms come with high lower bounds: given an unweighted network with
n nodes and maximum degree ∆, there exists a (permutation) routing instance such that the
congestion induced by a given deterministic oblivious routing scheme is at least Ω(

√
n/∆3/2).

This result was improved by Kaklamanis et al. [22] to a lower bound of Ω(
√
n/∆).

For randomized algorithms Valiant and Brebner [38] showed how to obtain a polylogar-
ithmic competitive ratio for the hypercube by routing to random intermediate destinations.
Räcke [32] presented the first oblivious routing scheme with a polylogarithmic competitive



H. Räcke and S. Schmid 72:11

ratio of O(log3 n) in general networks. The paper by Räcke was also the first to propose
designing oblivious routing schemes based on cut-based hierarchical decompositions. However,
Räcke’s result is non-constructive in the sense that only an exponential time algorithm was
given to construct the hierarchy. This approach has subsequently been used to obtain approx-
imate solutions for a variety of cut-related problems that seem very hard on general graphs
but that are efficiently solvable on trees, see e.g. [2, 3, 5, 10, 14, 23, 26, 33]. Polynomial-time
algorithms for constructing the hierarchical decomposition were given by Bienkowski et al. [7]
and Harrelson et al. [21]. However, none of these results provide an (asymptotically) optimal
competitive ratio.

Azar et al. [4] gave a polynomial time algorithm that for a given graph computes the
optimal oblivious routing via a linear programming approach, i.e., without using a hierarchical
decomposition.

An optimal competitive ratio of O(logn) (which matches a known lower bound from
grids [6, 30]) was first presented by Räcke [33] . Instead of considering a single tree to
approximate the cut-structure of a graph G, [33] proposes to use a convex combination
of decomposition trees. The paper relies on multiplicative weight updates and the proof
technique is similar to the technique used by Charikar et al. [9] for finding a probabilistic
embedding of a metric into a small number of dominating tree metrics.

More recently, inspired by the ideas on cut matching games introduced by Khandekar, Rao,
and Vazirani [24], Räcke et al. [35] presented a fast construction algorithm for hierarchical
tree decompositions, i.e., for a single tree: given an undirected graph G = (V,E, c) with edge
capacities, a single tree T = (VT , ET , cT ) can be computed whose leaf nodes correspond to
nodes in G and which approximates the cut-structure of G up to a factor of O(log4 n) (i.e.,
the faster runtime comes at the price of a worse approximation guarantee). In particular,
the authors present almost linear-time cut-based hierarchical decompositions, by establishing
a connection between approximation of max flow and oblivious routing. This overcomes the
major drawback of earlier algorithms such as [21] and even [29] which required high running
times for constructing the decomposition tree (or the distribution over decomposition trees).
The bound has been improved further by Peng in [31].

Previous results on compact routing focus on routing strategies that aim to minimize
the path length instead of the congestion (see e.g. [13, 27, 39]). There are two variants: labeled
(the designer is free to name the nodes according to the topology and the edge weights of the
graph) and name-independent (name determined by an adversary). The research community
has derived many interesting results on compact shortest path routing on special graphs, e.g.,
characterizing hypercubes, trees, scale-free networks, and planar graphs [17, 18, 19, 28, 37].
A well-known recent result on compact routing in the name-independent model on general
graphs is by Abraham et al. [1].

However, it is also known that it is impossible to implement shortest path routing with
routing tables whose size in all network topologies grows slower than linear with the increase
of the network size [16, 20]. As a resort, compact routing research studies algorithms to
decrease routing table sizes at the price of letting packets to be routed along suboptimal
paths. In this context, suboptimal means that the forwarding paths are allowed to be longer
than the shortest ones, but the length increase is bounded by a constant stretch factor. A
particularly interesting result is by Thorup et al. [37] who presented compact routing schemes
for general weighted undirected networks, ensuring small routing tables, small headers and
low stretch. The approach relies on an interesting shortest path routing scheme for trees of
arbitrary degree and diameter that assigns each vertex of an n-node tree a label of logarithmic
size. Given the label of a source node and the label of a destination it is possible to compute,

ESA 2019



72:12 Compact Oblivious Routing

in constant time, the port number of the edge from the source that heads in the direction of
the destination. An interesting recent work by Retvari et al. [36] generalizes compact routing
to arbitrary routing policies that favor a broader set of path attributes beyond path length.
Using routing algebras, the authors identify the algebraic requirements for a routing policy
to be realizable with sublinear size routing tables.

There also exist interesting works focusing on scalable oblivious traffic engineering, e.g.,
for confluent (per-destination) routing schemes [11, 12]. However, we are not aware of any
results on compact oblivious routing which provides polylogarithmic approximation ratios
along both dimensions, table size and congestion.

4 Conclusion

Given the fast growth of communication networks (e.g., due the advent of novel paradigms
such as Internet-of-Things), the high costs of network equipment (e.g., fast memory is
expensive and power hungry), as well as the increasing miniaturization of communication-
enabled devices, we in this paper initiated the study of oblivious routing schemes which only
require small routing tables. In particular, we presented the first compact oblivious routing
scheme, requiring polylogarithmic tables only (as well as polylogarithmic packet headers and
vertex labels).

We believe that our work opens an interesting avenue for future research. In particular,
while our algorithms provide poly-logarithmic routing tables and competitive ratios, it may
be possible to further improve these results by logarithmic factors. Furthermore, it would be
interesting to generalize our results to non-uniform network capacities, as well as to explore
whether our results can be improved for special network topologies arising in practice.

References

1 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Upper bounds.
In Proc. 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 217–224, 2006.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Seffi Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms (TALG),
2(4):640–660, 2006.

3 Konstantin Andreev, Charles Garrod, Daniel Golovin, Bruce Maggs, and Adam Meyerson.
Simultaneous source location. ACM Transactions on Algorithms (TALG), 6(1):16, 2009.

4 Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal oblivious
routing in polynomial time. Journal of Computer and System Sciences, 69(3):383–394, 2004.

5 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Nagara-
jan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion. In
Proc. IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages
17–26. IEEE, 2011.

6 Yair Bartal and Stefano Leonardi. On-line routing in all-optical networks. In Proc. International
Colloquium on Automata, Languages, and Programming (ICALP), pages 516–526. Springer,
1997.

7 Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for
constructing oblivious routing schemes. In Proc. 15th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 24–33. ACM, 2003.

8 Allan Borodin and John E. Hopcroft. Routing, merging, and sorting on parallel models of
computation. Journal of computer and system sciences, 30(1):130–145, 1985.



H. Räcke and S. Schmid 72:13

9 Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approxim-
ating a finite metric by a small number of tree metrics. In Proc. 39th Annual Symposium on
Foundations of Computer Science (FOCS), pages 379–388. IEEE, 1998.

10 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. The all-or-nothing multicommodity
flow problem. In Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), pages
156–165. ACM, 2004.

11 Marco Chiesa, Gábor Rétvári, and Michael Schapira. Lying your way to better traffic
engineering. In Proc. ACM 12th International on Conference on Emerging Networking
EXperiments and Technologies (CoNEXT), pages 391–398, 2016.

12 Marco Chiesa, Gábor Rétvári, and Michael Schapira. Oblivious routing in ip networks.
IEEE/ACM Transactions on Networking (TON), 26(3):1292–1305, 2018.

13 Lenore J Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–183,
2001.

14 Roee Engelberg, Jochen Könemann, Stefano Leonardi, and Joseph Seffi Naor. Cut problems
in graphs with a budget constraint. In Proc. Latin American Symposium on Theoretical
Informatics (LATIN), pages 435–446. Springer, 2006.

15 Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of consistent software-
defined network updates. In IEEE Communications Surveys and Tutorials (COMST), 2018.

16 Pierre Fraigniaud and Cyril Gavoille. Memory requirement for universal routing schemes. In
Proc. 14th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
223–230. ACM, 1995.

17 Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. International Colloquium on
Automata, Languages, and Programming (ICALP), pages 757–772. Springer, 2001.

18 Greg N Frederickson and Ravi Janardan. Designing networks with compact routing tables.
Algorithmica, 3(1-4):171–190, 1988.

19 Cyril Gavoille. Routing in distributed networks: Overview and open problems. ACM SIGACT
News, 32(1):36–52, 2001.

20 Cyril Gavoille and Stéphane Pérennès. Memory requirement for routing in distributed networks.
In Proc. 15th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
125–133. ACM, 1996.

21 Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minimize congestion. In Proc. 15th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 34–43, 2003.

22 Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious
routing in the hypercube. Mathematical Systems Theory, 24(1):223–232, 1991.

23 Rohit Khandekar, Guy Kortsarz, and Vahab Mirrokni. On the advantage of overlapping
clusters for minimizing conductance. Algorithmica, 69(4):844–863, 2014.

24 Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single commodity
flows. Journal of the ACM (JACM), 56(4):19, 2009.

25 Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable flow problem. In
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages
184–193. Society for Industrial and Applied Mathematics, 2002.

26 Jochen Könemann, Ojas Parekh, and Danny Segev. A unified approach to approximating
partial covering problems. In Proc. European Symposium on Algorithms (ESA), pages 468–479.
Springer, 2006.

27 Dmitri Krioukov, Kevin Fall, Arthur Brady, et al. On compact routing for the internet. ACM
SIGCOMM Computer Communication Review (CCR), 37(3):41–52, 2007.

28 Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Compact routing on internet-like graphs. In
Proc. IEEE INFOCOM. IEEE, 2004.

29 Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs.
In Proc. 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
245–254. IEEE, 2010.

ESA 2019



72:14 Compact Oblivious Routing

30 Bruce M Maggs, F Meyer auf der Heide, Berthold Vocking, and Matthias Westermann.
Exploiting locality for data management in systems of limited bandwidth. In Proc. 38th
Annual Symposium on Foundations of Computer Science (FOCS), pages 284–293. IEEE, 1997.

31 Richard Peng. Approximate undirected maximum flows in o(m polylog (n)) time. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1862–1867. Society
for Industrial and Applied Mathematics, 2016.

32 Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 43–52, 2002. doi:
10.1109/SFCS.2002.1181881.

33 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), pages 255–264.
ACM, 2008.

34 Harald Räcke. Survey on oblivious routing strategies. In Proc. 5th Conference on Computability
in Europe: Mathematical Theory and Computational Practice (CiE), pages 419–429, 2009.

35 Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical decom-
positions in almost linear time. In Proc. 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 227–238. Society for Industrial and Applied Mathematics, 2014.

36 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J Bíró. Compact
policy routing. Distributed computing, 26(5-6):309–320, 2013.

37 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA). ACM, 2001.

38 Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In
Proceedings of the 13th ACM Symposium on Theory of Computing (STOC), pages 263–277,
1981. doi:10.1145/800076.802479.

39 Jan van Leeuwen and Richard B Tan. Compact routing methods: A survey. In Proc. Colloquium
on Structural Information and Communication Complexity (SICC), pages 99–109, 1995.

http://dx.doi.org/10.1109/SFCS.2002.1181881
http://dx.doi.org/10.1109/SFCS.2002.1181881
http://dx.doi.org/10.1145/800076.802479

	Introduction
	Motivation
	The Problem in a Nutshell
	Our Contributions

	Algorithm and Analysis
	Oblivious Path Selection Scheme
	Implementation A: Decomposition Trees with Small Degree
	Implementation B: Uniform Capacities
	Using the Hypercube
	Analysis


	Related Work
	Conclusion

