
Brief Announcement:
Self-Adjusting Linear Networks

Chen Avin1 Ingo van Duijn2 Stefan Schmid3

1 Ben Gurion University of the Negev
2 Aalborg University

3 University of Vienna

Abstract. Emerging networked systems become increasingly flexible
and “reconfigurable”. This introduces an opportunity to adjust net-
worked systems in a demand-aware manner, leveraging spatial and tem-
poral locality in the workload for online optimizations. However, it also
introduces a tradeoff: while more frequent adjustments can improve per-
formance, they also entail higher reconfiguration costs.

This paper initiates the formal study of linear networks which self-adjust
to the demand in an online manner, striking a balance between the ben-
efits and costs of reconfigurations. We show that the underlying algorith-
mic problem can be seen as a distributed generalization of the classic dy-
namic list update problem known from self-adjusting datastructures: in a
network, requests can occur between node pairs. This distributed version
turns out to be significantly harder than the classical problem in gener-
alizes. Our main results are a Ω(logn) lower bound on the competitive
ratio, and a (distributed) online algorithm that is O(logn)-competitive
if the communication requests are issued according to a linear order.

Keywords: Self-adjusting datastructures · competitive analysis · dis-
tributed algorithms · communication networks.

1 Introduction

Communication networks are becoming increasingly flexible, along three main
dimensions: routing (enabler: software-defined networking), embedding (enabler:
virtualization), and topology (enabler: reconfigurable optical technologies, for
example [3]). In particular, the possibility to quickly reconfigure communica-
tion networks, e.g., by migrating (virtualized) communication endpoints [1] or
by reconfiguring the (optical) topology [2], allows these networks to become
demand-aware: i.e., to adapt to the traffic pattern they serve, in an online and
self-adjusting manner. For example, in a self-adjusting network, frequently com-
municating node pairs can be moved topologically closer, saving communica-
tion costs (e.g., bandwidth, energy) and improving performance (e.g., latency,
throughput).

2 Avin et al.

However, today, we still do not have a good understanding yet of the algorithmic
problems underlying self-adjusting networks. The design of such algorithms faces
several challenges. As the demand is often not known ahead of time, online
algorithms are required to react to changes in the workload in a clever way;
ideally, such online algorithms are “competitive” even when compared to an
optimal offline algorithm which knows the demand ahead of time. Furthermore,
online algorithms need to strike a balance between the benefits of adjustments
(i.e., improved performance and/or reduced costs) and their costs (i.e., frequent
adjustments can temporarily harm consistency and/or performance, or come at
energy costs).

The vision of self-adjusting networks is reminiscent of self-adjusting datastruc-
tures such as self-adjusting lists and splay trees, which optimize themselves to-
ward the workload. In particular, the dynamic list update problem, introduced
already in the 1980s by Sleator and Tarjan in their seminal work [4], asks for an
online algorithm to reconfigure an unordered linked list datastructure, such that
a sequence of lookup requests is served optimally and at minimal reconfigura-
tion costs (i.e., pointer rotations). It is well-known that a simple move-to-front
strategy, which immediately promotes each accessed element to the front of the
list, is dynamically optimal, that is, has a constant competitive ratio.

This paper initiates the study of pairwise communication problems in a dynamic
network reconfiguration model. This model consists of a a set of communication
nodes V , and a graph called the host network, denoted H = (N,L) where L ⊆
N ×N . The communication nodes are ‘hosted’ on H, denoted with an injection
h : V → N called a configuration. Without loss of generality, we assume that
|V | = |N |, so that every configuration is a bijection. Two nodes u, v ∈ V are
connected on a configuration h if (h(u), h(v)) ∈ L.

Now, given a communication sequence σ = σ1, σ2, ..., where σi ∈ V × V , the
pairwise communication problem asks to serve all communication requests in
order. A communication request is served if the two constituent nodes are con-
nected. Additionally, the network is allowed to be reconfigured, by migrating any
two nodes which are connected. That is, given a configuration h in which u, v
are connected, migrating them corresponds to producing a new configuration
h′ where h′(u) = h(v), h′(v) = h(u), and h′(w) = h(w) for w 6= u, v. For sim-
plicity, we assume in this paper that both serving a communication request and
reconfiguring the network are constant cost operations. Note that in general mi-
grating two nodes is likely (a large constant factor) more expensive than serving
a single communication. However, with the assumption that communicating and
migrating are the same up to a (large) constant factor, one can think of the
communication cost between two arbitrary node as simply the number of recon-
figurations necessary to make them (temporarily) connected. With this simple
cost model, we can thus phrase the pairwise communication problem as:

Brief Announcement: Self-Adjusting Linear Networks 3

Definition 1 (Pairwise Communication Problem). Given a host network
with an initial configuration, give an algorithm that serves all communication
requests from a sequence σ that minimises the total reconfiguration cost.

In the offline version of this problem, σ is given in advance, whereas in an
online setting, a communication request σi is only revealed after σi−1 has been
served. A competitive analysis compares an online algorithm ON to an offline
algorithm OFF. The ultimte goal is to devise online algorithms ON for the
pairwise communication problem which minimise the competitive ratio ρ:

ρ = max
σ

cost(ON(σ))

cost(OFF(σ))

2 Results & Open Problems

In this paper, we study host networks with the topology of a d-dimensional grid.
The primary problem we investigate is therefore:

Definition 2 (Distributed Grid Update). What is the competitive ratio for
for the pairwise communication problem for host networks with a d-dimensional
grid topology?

We show that for such networks there is a Ω(log n) lower bound on the compet-
itive ratio. Furthermore, in pursuit of a non-trivial upper bound, we show that
for communication sequences with linear demand, there is an algorithm that is
O(log n)-competitive. A communication sequence is said to have linear demand
if there is a configuration h that serves each request (without reconfigurations),
or more formally:

Definition 3 (Linear Demand). Let R(σ) denote the set of communication
requests interpreted as edges over V . A sequence σ has linear demand over a
network H = (N,L) if there exists a configuration h such that for all (u, v) ∈
R(σ), it holds that (h(u), h(v)) ∈ L.

From a lower bound perspective, our main result is that the competitive ratio is
at least Ω(log n). We show this by explicitly constructing a hard sequence:

Theorem 1. For every online algorithm ON solving Distributed Grid Up-
date on a grid of n nodes in total and for every 0 < ε ≤ 1, there is a sequence
σON of length O(εn1+ε log n) such that cost(ON(σON)) = Ω(εn1+1/d log n). The
resulting request graph R(σON) is a d-dimensional grid graph.

Since R(σON) is a grid graph, an offline algorithm can simply configure to the
configuration h that serves all requests (i.e. σON has linear demand). From an

4 Avin et al.

arbitrary starting configuration, it takes Ω(n1+1/d|) to configure h, which domi-
nates the cost for serving all requests as long as ε ≤ 1/d. Therefore, we find the
following lower bound on ρ:

ρ ≥ cost(ON(σON))

cost(OFF(σON))
= Ω(log n)

Because we rely on linear demand, our technique does not leverage the full power
available to an offline algorithm: namely reconfigurations in between communi-
cation requests. As future work, we pose the following open problem:

Problem 1. Construct a sequence σ with nonlinear demand for Distributed
Grid Update, such that any online algorithm is a factor ω(log n) off the optimal
offline algorithm.

From an upper bound perspective, we investigate Distributed Grid Update
restricted to line topologies, dubbed Distributed List Update. We show that
in the very restricted case of linear demand, there is a matching upper bound
to the competitive ratio:

Theorem 2. There is an algorithm Gread solving Distributed List Up-
date, such that if σ has linear demand, then

cost(Gread(σ)) = O(m+ nk log k)

where m = |σ| and k = |R(σ)|

Again, it is the restriction to linear demand that allows for this tight upper
bound. However, we see this as an initial step to finding any nontrivial upper
bound for the general case:

Problem 2. Given a sequence σ for Distributed List Update with arbitrary
request graph R(σ), is there an algorithm with competitive ratio o(n)?

Note that a competitive ratio of o(n) means anything better than a trivial al-
gorithm. However, a better understanding of the behaviour of offline algorithms
for Distributed Grid Update on nonlinear demand is required to answer this
question.

References

1. Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. In:
Proc. 30th International Symposium on Distributed Computing (DISC) (2016)

2. Avin, C., Schmid, S.: Toward demand-aware networking: A theory for self-adjusting
networks. In: ACM SIGCOMM Computer Communication Review (CCR) (2018)

3. M. Ghobadi et al.: Projector: Agile reconfigurable data center interconnect. In: Proc.
ACM SIGCOMM. pp. 216–229 (2016)

4. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

	Brief Announcement: Self-Adjusting Linear Networks

