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Abstract

Huang et al. (STOC 2018) introduced the fully online
matching problem, a generalization of the classic on-
line bipartite matching problem in that it allows all
vertices to arrive online and considers general graphs.
They showed that the ranking algorithm by Karp et
al. (STOC 1990) is strictly better than 0.5-competitive
and the problem is strictly harder than the online bi-
partite matching problem in that no algorithms can be
(1− 1/e)-competitive.

This paper pins down two tight competitive ratios of
classic algorithms for the fully online matching problem.
For the fractional version of the problem, we show that
a natural instantiation of the water-filling algorithm is
2 −
√

2 ≈ 0.585-competitive, together with a matching
hardness result. Interestingly, our hardness result ap-
plies to arbitrary algorithms in the edge-arrival models
of the online matching problem, improving the state-
of-art 1

1+ln 2 ≈ 0.5906 upper bound. For integral algo-
rithms, we show a tight competitive ratio of ≈ 0.567 for
the ranking algorithm on bipartite graphs, matching a
hardness result by Huang et al. (STOC 2018).

1 Introduction

Following the seminal work by Karp et al. [KVV90]
that initiated the study of the Online Bipartite Matching
problem by proposing the Ranking algorithm, online
matching problems have drawn a lot of attentions in
the online algorithm literature. These problems have
found numerous real-life applications, notably, in online
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advertising. They are also the driving-force behind
many important techniques for designing and analyzing
online algorithms, including the randomized primal dual
technique by Devanur et al. [DJK13].

Recently, Huang et al. [HKT+18] proposed a gener-
alization of the Online Bipartite Matching problem called
Fully Online Matching. The generalization considers gen-
eral graphs and allows all vertices to arrive online. It
captures a much wider family of real-life scenarios, in-
cluding the ride-sharing problem. Concretely, consider
an undirected graph G = (V,E). Each step is either
the arrival or the deadline of a vertex. At a vertex v’s
arrival, all the edges between v and those that arrive be-
fore v are revealed. At its deadline, on the other hand,
the algorithm must irrevocably either match it to an
unmatched neighbor (if it is not matched already) or
leave it unmatched. The model assumes that all neigh-
bors of a vertex v arrive before v’s deadline. This turns
out to be a natural condition when it comes to concrete
scenarios such as ride-sharing.

Further, Huang et al. [HKT+18] showed that the
Fully Online Matching problem is quite intriguing from
an algorithmic viewpoint in that 1) it takes a number of
novel ideas to show that the Ranking algorithm by Karp
et al. [KVV90] is strictly better than 0.5-competitive
even in the fully online setting, and 2) the fully online
setting, even on bipartite graphs, is strictly harder than
the original Online Bipartite Matching problem in that
no algorithms can be 1− 1/e ≈ 0.632-competitive.

1.1 Our Contributions and Techniques. We de-
velop better understandings on the Fully Online Match-
ing problem by establishing two tight competitive ra-
tios. The first result considers the fractional version
of the problem, where we are allowed to fractionally
match each vertex to multiple neighbors so long as the
total mass sum to at most one. We show that the
Water-Filling algorithm, which at each vertex’s deadline
matches its unmatched portion fractionally to all neigh-
bors with smallest matched portion (i.e., the lowest
water-level), gets a competitive ratio of 2−

√
2 ≈ 0.585.

We also construct a matching hard instance for Water-
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Filling. The hardness result applies to arbitrary algo-
rithms if we consider edge arrival models [BST17], even
when preemptions are allowed [ELSW13, McG05], im-
proving the best known bounds in these models. The
second result focuses on the integral problem and the
Ranking algorithm. We prove that its competitive ratio
is exactly the Ω constant1 ≈ 0.567 on bipartite graphs,
improving the previous bound of ≈ 0.554 and matching
the previous hardness result by Huang et al. [HKT+18].
See Figure 1 for where our results sit compared with the
previous works.

Competitive Analysis of Water-Filling. The
analysis of the Water-Filling algorithm is the relatively
easy part of the paper. We follow the online primal
dual framework by Buchbinder et al. [BJN07], building
on the notions of passive and active vertices by Huang
et al. [HKT+18].

When a vertex u matches another vertex v at u’s
deadline, Huang et al. [HKT+18] referred to u as the
active vertex and v as the passive vertex. Intuitively,
when edge (u, v) is of concern, v plays a role similar to an
offline vertex in the Online Bipartite Matching problem
since it sits back and allows u to make the matching
decision, while u plays a role similar to an online vertex.
Following the same principle, for every vertex v, we refer
to the portion that is matched before its deadline as the
passive portion, and the portion that is matched at its
deadline as the active portion.

When a small portion p of edge (u, v) is chosen
into the fractional matching, we shall split the gain of p
between the endpoints according to the current water-
level xv of the passive vertex v (i.e., the one with a
later deadline). For some function g to be chosen in
the analysis, u shall get

(
1− g(xv)

)
· p while v shall get

g(xv) · p. Then, by an appropriate argument, we can
lower bound the total gain of u and v by:

(1.1)

∫ pu

0

g(x)dx+
(
1− pu

)(
1− g(xv)

)
+

∫ xv

0

g(x)dx.

Here, pu is the passive portion of u, and xv is the passive
portion of v after u’s deadline. The first term is the
gain of u due to its passive portion. The second term
lower bounds the gain of u due to its active portion.
The third term lower bounds of the gain of v due to its
passive portion.

It remains to choose g to maximize the above lower
bound against the worst pu and xv. Unlike in the primal
dual analysis of some other online matching problems,
this is not exactly a standard ODE. Nonetheless, we
observe that it is almost symmetric w.r.t. pu and xv.
Indeed, choosing g to be an appropriate linear function

1This is the solution of Ω · eΩ = 1.

makes it symmetric and yields the optimal 2 −
√

2
bound.

Matching Hardness for Water-Filling. Con-
structing a hard instance to show a matching 2 −

√
2

upper bound on the competitive ratio of Water-Filling
presents some technical obstacles beyond the existing
techniques. The construction is driven by Eqn. (1.1).
By our choice of g, Eqn. (1.1) is equal to the lower bound
2−
√

2 only if pu and xv sum to precisely 2−
√

2. Fur-
ther, the performance of the algorithm is equal to the
gain of the endpoints summing over all edges in the opti-
mal matching in hindsight. Therefore, a matching hard
instance must satisfy that before the matching decision
is made for an edge (u, v) in the optimal matching, the
water-levels of the two endpoints are prepared in ad-
vance so that the sum equals 2 −

√
2. This suggests

that a tight instance for Water-Filling must look very
different from the existing hard instances in the previ-
ous works (e.g., [KVV90, DJ12, HKT+18]), where for
every edge (u, v) in the optimal matching, one of the
two endpoints simply shows up with zero water-level
and a matching decision is made for the edge.2

Our construction prepares the water-level of the
vertices via a dynamic as follows. It maintains at all
time a set of vertices with some number of vertices at
each water-level x for 0 ≤ x ≤ 2−

√
2. At each step, pick

a vertex u with an appropriate water-level xu and let it
be u’s deadline. Vertex u connects to a subset of the
vertices with water-level 2−

√
2−xu, among which one

vertex v is u’s partner in the optimal matching. After
the step, u and v will be removed from the pool; new
vertices (with zero water-level) will arrive to refill the
pool if needed. The matching decision of u “pumps up”
the water-level of all its neighbors to 2 −

√
2 − xu + ε.

Some of them will serve as the active endpoints with
this water-level of some edges in the optimal matching;
some of them will serve as the passive counterparts; the
water-level of the remaining will be further “pumped
up” by some vertex with water-level xu − ε. We show
how to maintain such a dynamic so that, in the long run,
the endpoints of any edge in the optimal matching will
have a total water-level close to 2−

√
2 when a matching

decision is made for the edge.
Competitive Analysis of Ranking on Bipartite

Graphs. We first explain why the previous analysis of
Huang et al. [HKT+18] is not tight on their hard in-
stance. Consider an edge (u, v) in the optimal matching
where u has an earlier deadline. The previous analysis
is tight only if there is a threshold θ such that when-
ever v’s rank is larger than θ, u is matched and v is

2It is easy to show that one cannot maintain at all time that
some vertices have 2−

√
2 water-level while the other have 0 with

the Water-Filling algorithm.
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0.5 1 − 1/𝑒
≈ 0.632

0.521 0.554 0.567
Ω constant

2 − 2 ≈ 0.585

trivial

LB 

general

Ranking LB

bipartite

Ranking LB

bipartite

Ranking UB

0.6317

bipartite

UB

one-sided online

optimal ratio

[folklore]

[HKT+18]

[KVV90]

tight ratio of

Water-Filling

bipartite

Ranking LB[this paper]

Figure 1: A comparison of the results in this paper and those in previous work. LB means lower bound (algorithmic
results), and UB means upper bound (hardness results).

unmatched and, more importantly, whenever v’s rank
is smaller than θ, v is passively matched and u matches
to the same vertex as in the previous case. In the hard
instance, however, u is v’s only neighbor. Therefore, if
u’s own rank is sufficiently large such that u matches
actively, u and v will match each other when v’s rank
is smaller than θ. Taking this extra gain into account
gives the optimal ratio of ≈ 0.567 for the hard instance.

Of course, we cannot näıvely assume that one of the
endpoints of any edge in the optimal matching will have
only one neighbor. The point is the previous approach
that tries to characterize the matching status of u and
v using a single threshold of v cannot possibly capture
the above extra gain. We show that a good enough
characterization in general takes three thresholds, a
threshold of u and two thresholds of v, one with u in
the graph and one without. As a result, we get a new
lower bound on the total expected gain of the endpoints
that is strictly better than the previous one in all but a
few bottleneck cases. Then, we design a different gain
sharing function that focuses on these bottleneck cases
to obtain a tight analysis.

Finally, we remark that the three thresholds pin
down when u and v match each other. Previous works
on online matching usually omit the gain from this case,
which indeed happens with negligible probability in the
worst case of those models (with a recent exception of
[HTWZ18]). Our analysis shows it was just a lucky
coincident that we do not need to consider the case
when the endpoints match each other in those problems.
It becomes critical in a more general online matching
model.

1.2 Other Related Works Following Karp et
al. [KVV90], a series of works study different variants
of the problem, including b-matching [KP00], ad-
words [MSVV07, BJN07, DJ12], vertex-weighted
matching [AGKM11] and the random arrival
model [KMT11, MY11, HTWZ18]. Besides, the
analysis of Ranking has been simplified in a series of
papers [GM08, BM08, DJK13].

The Water-Filling algorithm has been studied to
tackle several versions of the Online Bipartite Matching
problems [BJN07, KP00]. Devanur et al. [DHK+13]
considered the whole page optimization problem and
extended the Water-Filling algorithm to use a carefully
designed “level function” instead of a single water-level.
Wang and Wong [WW15] considered an alternative
model of Online Bipartite Matching that allows both
sides of vertices to arrive online. They showed a 0.526-
competitive algorithm for a fractional version of the
problem. Both analysis of [DHK+13, WW15] are based
on the online primal dual framework by [BJN07]. This
paper further illustrates the power of this framework for
studying online fractional matching problems.

The hardness result in this paper improves the
bounds for the following online matching models. In
online preemptive matching [ELSW13, McG05], each
edge arrives online and the algorithm must immediately
decide whether to add the edge to the matching and to
dispose of previously selected edges if needed. A harder
edge-arrival model [BST17] forbids edge disposals. For
both problems, the best previous bound stands at

1
1+ln 2 ≈ 0.5906 [ELSW13].

Very recently, weighted variants of Fully Online
Matching have been studied by [ABJS18, DS18], both
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considering the “windowed” version of the problem,
motivated by the ride-sharing applications.

2 Preliminaries

We study both the fractional and the integral versions
of Fully Online Matching. When the underlying graph
is bipartite, we refer to the problem as Fully Online
Bipartite Matching. Consider the following standard
linear program formulation of the matching problem
and its dual.

max :
∑

(u,v)∈E xuv

s.t.
∑
v:(u,v)∈E xuv ≤ 1 ∀u ∈ V

xuv ≥ 0 ∀(u, v) ∈ E
min :

∑
u∈V αu

s.t. αu + αv ≥ 1 ∀(u, v) ∈ E
αu ≥ 0 ∀u ∈ V

Fractional Matching. In this setting, we may
match edges fractionally. Let xuv ∈ [0, 1] be the
fraction of edge (u, v) in the matching. Assuming u
has an earlier deadline than v, this variable increases
only at u’s deadline. We refer to it as Fully Online
Fractional Matching and study the classic Water-Filling
algorithm (e.g., [BJN07]) in this setting. We give a
formal definition of the algorithm below, in which the
dual variables are updated as well. Note that the dual
variables are used only in the analysis. We fix an
increasing function g : [0, 1]→ [0, 1] to be specified later

and use xu
def
=
∑
v:(u,v)∈E xuv to keep track of the water-

level (i.e. total fractional mass) of u at all time.

Algorithm 1 The Water-Filling Algorithm

Initialize all xuv’s and αu’s to be zero.
When the deadline of vertex u is reached:

Let pu = xu be the water-level collected before u’s
deadline. . pu: passive water-level of u.

Let N(u) be the set of neighbors of u whose
deadlines are not reached.

while xu < 1 and minv∈N(u){xv} < 1 do
Allocate a dx amount to each xuv for v ∈

arg minv∈N(u){xv}.
If xuv increases by dx, increase αu and αv

respectively by

dαu = (1− g(xv))dx and dαv = g(xv)dx.

We call the vertices in N(u) the available neighbors
of u at u’s deadline. We further import the notions of
active and passive vertices from [HKT+18] and define
them for both fractional and integral algorithms.

Definition 2.1. (Active, Passive) For any edge
(u, v) that is (fractionally) matched by an algorithm at
u’s deadline, we say that u is active and v is passive
(w.r.t. edge (u, v)).

Integral Matching. In this setting, xuv’s must
have binary values. We will analyze the Ranking
algorithm in Section 4 when the underlying graph G
is bipartite. Recall the definition of Ranking and some
important notions from [HKT+18].

Algorithm 2 The Ranking Algorithm [HKT+18]

(1) a vertex v arrives:
pick yv ∈ [0, 1) uniformly at random.

(2) a vertex v’s deadline is reached:
if v is unmatched,

let N(v) be the set of unmatched neighbors of
v.

if N(v) = ∅, then v remains unmatched;
else match v to arg minu∈N(v){yu}.

Let M(~y) denote the matching produced when
Ranking is run with ~y as the ranks.

Definition 2.2. (Marginal Rank [HKT+18]) For
any u and any ranks ~y-u of other vertices, the marginal
rank θ of u w.r.t. ~y-u is the largest value such that u is
passive in M(yu = θ-, ~y-u).

The following is a restatement of Lemma 2.5 from
[HKT+18] when restricted to bipartite graphs.

Lemma 2.1. In a bipartite graph, if u is matched in ~y,
then from M(~y) to M(~y-u), all neighbors of u do not
get better. Here, passive is better than active, which is
in turns better than unmatched. Conditioned on being
passive, matching to a vertex with earlier deadline is
better. Conditioned on being active, matching to a
vertex with smaller rank is better.

We set primal variables according to Ranking. The
randomized primal dual technique [DJK13] allows us to
prove competitive ratio bounds through the following.

Lemma 2.2. ([HKT+18], Lemma 2.6) Ranking is F -
competitive if we can set (non-negative) dual vari-
ables such that 1)

∑
(u,v)∈E xuv =

∑
u∈V αu; and 2)

E~y [αu + αv] ≥ F for all (u, v) ∈ E.

3 Tight Competitive Ratio of Water-Filling

In this section, we give a tight analysis on the compet-
itive ratio of the Water-Filling algorithm for the Fully
Online Fractional Matching problem.
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3.1 Lower Bound on the Competitive Ratio We
first prove that the competitive ratio of Water-Filling is
at least 2−

√
2. Our approach is based on a primal dual

analysis.

Theorem 3.1. Water-Filling is (2−
√

2)-competitive.

Proof. Recall that we update the primal variables ac-
cording to Water-Filling and dual variables in a way that
the dual objective always equals the primal objective.
Using the standard primal dual technique, in order to
prove that Water-Filling is (2−

√
2)-competitive, it suf-

fices to show that αu + αv ≥ 2 −
√

2 for all pairs of
neighbors u and v.

Let g(x) =
√

2
2 x + 1 −

√
2

2 be the function we used
for defining dual variables.

Fix any pair of neighbors u, v where u has an earlier
deadline than v. Consider the moment right after u’s
deadline. It must be that either xu = 1 or xv = 1
(otherwise xu will further increase). As v can only be
matched passively, if xv = 1, we have

αu + αv ≥
∫ 1

0

g(x)dx = 1−
√

2

4
≥ 2−

√
2.

Now suppose xu = 1 and xv < 1. Then, we have
αv =

∫ xv

0
g(x)dx. Next, consider the value of αu. Before

u’s deadline, we have αu =
∫ pu

0
g(x)dx (recall that pu

is the passive water-level of u). Since xu = 1, and the
water-level of v after the deadline of u is xv < 1, at any
moment when the water-level of u is increased from pu
to 1, the neighbor that u matches has a water-level at
most xv. Hence, we have

αu ≥
∫ pu

0

g(x)dx+

∫ 1

pu

(1− g(xv))dx

=

∫ pu

0

g(x)dx+ (1− pu)(1− g(xv)).

Summing the lower bounds on the two dual vari-
ables and by the definition of g, we have

αu + αv ≥
∫ pu

0

g(x)dx+ (1− pu)(1− g(xv))

+

∫ xv

0

g(x)dx

=

√
2

4
(p2
u + x2

v) + (1−
√

2

2
)(pu + xv)

+ (1− pu)(

√
2

2
−
√

2

2
xv)

=

√
2

4

(
(pu + xv)− (2−

√
2)
)2

+ 2−
√

2

≥2−
√

2.

Hence, in both cases we have αu + αv ≥ 2 −
√

2,
which gives the 2−

√
2 lower bound on the competitive

ratio of Water-Filling.

3.2 Upper Bound on the Competitive Ratio In
this section we explicitly construct a hard instance, for
which Water-Filling gives a solution of value (2 −

√
2) ·

OPT.
Hard Instance. Let there be 2k ·m vertices, which

are partitioned into m groups of size 2k. For all t ∈ [m],
let the vertices in the t-th group be Ut ∪ Vt, where
Ut = {ut,1, . . . , ut,k} and Vt = {vt,1, . . . , vt,k}. Let
h : [0, 1] → [0, 1] be a decreasing function3 (to be
determined later) with h(0) = 1 and h(1) = 0. There
are two types of edges in the graph (refer to Figure 2):

Upper triangle edges between Ut and Vt: ∀t ∈ [m], i ∈
[k] and j ≥ i, (ut,i, vt,j) ∈ E;

h-induced edges between Ut and Ut+1: ∀t ∈ [m − 1],
i ∈ [k] and j ≤ bk · h( i−1

k )c, (ut,i, ut+1,j) ∈ E.

u2,1

u2,2

u2,3

u2,4

u1,1

u1,2

u1,3

u1,4

v1,1

v1,2

v1,3

v1,4

Figure 2: Subgraph induced by Ut∪Vt∪Ut+1: illustrat-
ing example with t = 1 and k = 4

Finally, let the deadlines of the u vertices be reached
first, following the lexicographical order on (t, i). Then
let the deadlines of the v vertices be reached, i.e., after
the deadline of um,k.4

It is easy to see that the hard instance is bipartite,
where (U1 ∪ U3 ∪ . . . ) ∪ (V2 ∪ V4 ∪ . . . ) and (U2 ∪ U4 ∪
. . . )∪ (V1 ∪ V3 ∪ . . . ) are the two sides of vertices. This
graph admits a perfect matching, in which ut,i matches
vt,i for all t ∈ [m], i ∈ [k] and hence, OPT = km.

We first construct the function h and prove the
following technical lemma. Let c = 2−

√
2, and function

3When h(x) ≡ 1, our instance becomes the 1
1+ln 2

≈ 0.5906
hard instance by [ELSW13] for the edge arrival model.

4The relative order of the deadlines of v vertices does not
matter, as long as vt,i’s deadline is after ut,i’s deadline.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2879

D
ow

nl
oa

de
d 

09
/1

7/
19

 to
 1

31
.1

30
.1

24
.2

07
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



f : [0, c]→ [0, 1] be defined as

f(x)
def
=

1

2
(ln(1− x) + ln(1− c+ x))

+
1√

2(x− 1)
+

2 +
√

2− ln(1− c)
2

.

Let τ(x)
def
= f−1(x) and h(x)

def
= f(c − f−1(x)). It is

not difficult to see that f is strictly decreasing. Hence,
functions h : [0, 1] → [0, 1] and τ : [0, 1] → [0, c] are
well defined. Moreover, since f(0) = 1 and f(c) = 0,
we have that h is decreasing, h(0) = 1 and h(1) = 0,
as required in the construction of the hard instance.
These functions might seem mysteries at this point, we
will show a connection between the functions h and g
via duality in Appendix A, where g is the gain sharing
function that we used to define the dual variables in
Water-Filling.

Lemma 3.1. For all x ∈ [0, 1] we have∫ x

0

1− τ(y)

1− y + h(y)
dy = c− τ(x),

∫ 1

0

τ(y)dy = 1− c

and ∫ 1

0

1

1− y + h(y)
dy < 1.

Proof. First we show the first equation, i.e., for all

x ∈ [0, 1] we have
∫ x

0
1−τ(y)

1−y+h(y)dy = c − τ(x). Note

that τ(0) = c and, thus, both sides equal 0 when
x = 0. It suffices to check that for all x ∈ [0, 1],

1−τ(x)
1−x+h(x) = −τ ′(x). Let φ = τ(x) ∈ [0, c], we have

f(φ) = x and h(x) = f(c − f−1(x)) = f(c − φ). Then,
we only need to check that

1− φ
1− f(φ) + f(c− φ)

= −τ ′(x) = − 1

f ′(φ)
,

which is true as f is defined such that for all φ ∈ [0, c],

1− f(φ) + f(c− φ) + (1− φ)f ′(φ) = 0.

Taking integration from 0 to c, the contributions of
the 2nd and the 3rd terms cancel. We have

0 = c+

∫ c

0

(1− x)f ′(x)dx = c− 1 +

∫ c

0

f(x)dx,

which implies the second equation because
∫ 1

0
τ(y)dy =∫ c

0
f(x)dx = 1 − c, where the first equality follows

because τ = f−1, f is strictly decreasing, f(0) = 0,
and f(c) = 0.

Now we prove the last equation, i.e.,∫ 1

0
1

1−y+h(y)dy < 1.

Observe that both 1 − τ(y) and 1
1−y+h(y) are in-

creasing in terms of y. Hence we have

c = c− τ(1) =

∫ 1

0

1− τ(y)

1− y + h(y)
dy

>

∫ 1

0

(1− τ(y))dy ·
∫ 1

0

1

1− y + h(y)
dy

=c ·
∫ 1

0

1

1− y + h(y)
dy.

Dividing both sides by c proves the last equation.

Now we analyze the performance of Water-Filling
on this instance. We first prove that by running Water-
Filling on the hard instance, the passive water-levels of
almost all vertices are strictly smaller than 1.

Lemma 3.2. For large enough k, Water-Filling produces
a fractional matching with put,i < 1 for all t ∈ [m], i ∈
[k] and pvt,i < 1 for all t ∈ [m− 1], i ∈ [k].

Proof. Observe that at the deadline of each ut,i, where
t ∈ [m − 1], it has |N(ut,i) ∩ Vt| + |N(ut,i) ∩ Ut+1| =
k − i + 1 + bk · h( i−1

k )c neighbors whose deadlines
are not reached. Moreover, as h is decreasing, it is
easy to see (by induction) that at the deadline of ut,i,
all available neighbors of ut,i have the same water-
level. Hence, Water-Filling increases the water-level of
the available neighbors of ut,i at the same rate until
minv∈N(ut,i) xv = 1 or xut,i = 1.

Since ut+1,1 is a neighbor of every vertex in Ut,
we have put+1,1

= maxj∈[k]{put+1,j
, pvt,j}. Therefore, it

suffices to show that put+1,1
is smaller than 1. Note that

each vertex ut,i has at most 1 unit of unmatched portion
that is distributed among k−i+1+bk ·h( i−1

k )c available
neighbors and, thus, it increases the water-level of ut+1,1

by at most 1
k−i+1+bk·h( i−1

k )c . Hence, when k → ∞, we

have

put+1,1 ≤
k∑
i=1

1

k − i+ 1 + bk · h( i−1
k )c

≈
∫ 1

0

1

1− y + h(y)
dy < 1,

where the last inequality follows from Lemma 3.1. This
finishes the proof.

Lemma 3.2 implies that, for large enough k, we
can guarantee that when running Water-Filling on the
hard instance, after the deadline of every ut,i, where
t ∈ [m − 1], we must have xut,i

= 1, as none of its
neighbors with a later deadline has a water-level that
reaches 1.
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Corollary 3.1. For all t ∈ [m− 1], we have xut,i
= 1

after ut,i’s deadline.

Now we are ready to prove the main theorem of this
section.

Theorem 3.2. Water-Filling is at most (2 −
√

2)-
competitive.

Proof. Let pt = (put,1
, put,2

, . . . , put,k
)T denote the

passive water-level vector of Ut. Since the increment
of matching at ut,i’s deadline is at most 1 − put,i , the
solution given by Water-Filling is∑

(u,v)∈E

xuv ≤
∑
t,i

(1− put,i
) =

∑
t

(k − ‖pt‖1).

Indeed, by Corollary 3.1, for all t ∈ [m − 1],
the increment of matching at ut,i’s deadline is exactly
1 − put,i

. Recall that in the hard instance, ut+1,i is a

neighbor of ut,j iff i
k ≤ h( j−1

k ). Hence we have

put+1,i
=

bk·h−1( i
k )+1c∑

j=1

1− put,j

k − j + 1 + bk · h( j−1
k )c

=

bk·h−1( i
k )+1c∑

j=1

(1− put,j
) · aj ,

where aj = 1
k−j+1+bk·h( j

k )c is independent of t. In other

words, there exists a k × k matrix M such that for all
t ∈ [m− 1], pt+1 = M(1− pt). More precisely, we have
Mi,j = aj if j ≤ bk · h−1( ik ) + 1c, Mi,j = 0 otherwise.
Hence, for any i ∈ [k], by Lemma 3.1, we have∑

j∈[k]

Mi,j ≤
∑
j∈[k]

aj < 1.

That is, M is a contraction matrix and the above
mapping from pt to pt+1 has a unique stationary vector
p∗, i.e. p∗ = M(1 − p∗). Moreover, limt→∞ pt = p∗5.
Thus, for any fixed k, when m→∞, the ratio between
the matching size of Water-Filling and the optimal is

lim
m→∞

∑
t(k − ‖pt‖1)

m
= 1− 1

k
· ‖p∗‖1.

Finally, we consider when k →∞ and calculate the
stationary vector. In this case, p∗ becomes a function
p : [0, 1]→ [0, 1] and the linear equation p∗ = M(1−p∗)
becomes the following∫ h−1(x)

0

1− p(y)

1− y + h(y)
dy = p(x), ∀x ∈ [0, 1].

5Observe that (pt+1−p∗) = M(p∗−pt) and M is a contraction
matrix.

We verify that p = τ is a solution to this system of
equations by Lemma 3.1. For all x, we have∫ h−1(x)

0

1− τ(y)

1− y + h(y)
dy = c− τ(h−1(x))

= τ
(
f
(
c− τ(h−1(x))

))
= τ

(
h
(
h−1(x)

))
= τ(x).

Thus, the ratio between Water-Filling and OPT is

1−
∫ 1

0
τ(y)dy = c = 2−

√
2.

Interestingly, we show that our hardness result ap-
plies to the edge-arrival models of the online matching
problems. In the Online Edge Arrival Matching prob-
lem [BST17], at each step, an edge arrives online and the
algorithm must irrevocably decide whether to add the
edge to the matching; in the preemptive setting (Online
Preemptive Matching [ELSW13, McG05]), instead, we
are allowed to dispose of edges in the matching before
accepting a new edge.

Corollary 3.2. No algorithm can be better than (2−√
2)-competitive for Online Edge Arrival Matching and

Online Preemptive Matching, even if fractional matching
is allowed.

Proof. Since the edge arrival model (resp. integral
matching) is strictly harder than the preemptive model
(resp. fractional matching), it suffices to consider the
second model with fractional matching. Consider the
previous hard instance with the following modifications.
The underlying graph remains the same and each vertex
is associated with the same deadline as before. At ut,i’s
deadline, its incident edges with available neighbors
are revealed one by one. In this way, all available
neighbors of ut,i are indistinguishable at this moment,
i.e. they share the same set of neighbors. Thus
by assigning random identities to these vertices, the
available neighbors of ut,i have the same expected
increment in matched fraction. Moreover, since no edge
incident to each vertex comes after its deadline, it is
not beneficial for an algorithm to dispose of previously
chosen edges. Therefore, no algorithm can do better
than Water-Filling in expectation and the lower bound
2−
√

2 applies.

4 Tight Competitive Ratio of Ranking on
Bipartite Graphs

Let Ω ≈ 0.5671 denote the Omega constant, which is the
solution for the equation Ω · eΩ = 1. In this section, we
prove that Ranking is Ω-competitive for the Fully Online
Bipartite Matching, matching the Ω hardness result given
by Huang et al. [HKT+18].
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Theorem 4.1. Ranking is Ω-competitive for Fully On-
line Bipartite Matching.

We adopt the randomized primal dual analysis from
[HKT+18]. Recall the dual assignment that distributes
the gain of each matched edge between its two endpoints
as follows.

• Gain Sharing: Whenever a pair (u, v) is matched
with u being active and v being passive, let αu =
1− g(yv) and αv = g(yv), where g : [0, 1]→ [0, 1] is
non-decreasing, and g(1) = 1.

By Lemma 2.2, it suffices to prove that
E~y [αu + αv] ≥ Ω for all pairs of neighbors u, v. Sup-
pose u has an earlier deadline than v and ~y-v is the rank
vector of all vertices excluding v. Let θ be the marginal
rank of v. The following lemma lies in the central of the
proof by [HKT+18].

Fact 4.1. ([HKT+18], Lemma 3.2) For any arbi-
trarily fixed ~y-v, we have

Eyv [αu + αv]

≥ min
θ∈[0,1]

{∫ θ

0

g(yv)dyv + min {1− g(θ), g(yu)}

}
.

Our main technical contribution is an improved
version of the above lower bound. Indeed, using Fact 4.1
as a lower bound, one cannot achieve a competitive ratio
greater than 0.56 by just optimizing g.6 In the following,
we will first illustrate how this lower bound can be
improved for the hard instance given in [HKT+18].
Then, we show in Section 4.2 how to prove the Ω
competitive ratio for general instances.

4.1 Better Competitive Ratio for the Hard In-
stance Recall the following hard instance for Ranking
that is given by [HKT+18]. In the instance (refer to Fig-
ure 3), the vertices are organized into (infinitely many)
groups of size 2k, where each group Ut ∪ Vt induces a
perfect matching. For all t ∈ [m−1], the vertices Ut and
Ut+1 are connected by a complete bipartite graph. The
deadline of every ut,i is earlier than vt,i, and deadlines
of ut,i follow the lexicographic order on (t, i).

It is shown in [HKT+18] that when running Ranking
on the above instance, at the deadline of the first
vertex of each group, e.g., ut,1, the expected fraction of
unmatched vertices in Ut (which is also the competitive
ratio of Ranking) is given by the equation x = e−x. In

6The function g is not optimized in [HKT+18] with respect to
their lower bound. However, the ratio is less than 0.56 with the
optimal g function.

Prev Prev

ut,1

ut,2

ut,3

ut,4

vt,1

vt,2

vt,3

vt,4

Next Next

Figure 3: Hard instance of Ranking: illustrating exam-
ple with k = 4.

other words, the competitive ratio of Ranking is Ω on
the above instance (when k →∞).

In the following, we show that the competitive ratio
of Ranking is Ω, using the randomized primal dual
framework, and explain what is missing in the previous
analysis. Fix any pair of neighbors u, v in the same
group s.t. u has an earlier deadline than v. Next, we
fix the ranks of all vertices but v arbitrarily, and lower
bound Eyv [αu + αv] for any edge (u, v) that appears in
the perfect matching7.

Observe that u is the only neighbor of v. If u is
passive, then v is unmatched regardless of yv, which
implies Eyv [αu + αv] = g(yu). Otherwise, let θ be the
marginal rank of v. By definition, when yv > θ, u
matches a vertex with rank θ and hence αu = 1− g(θ).
For the case when yv < θ, it is shown in [HKT+18]
(using Lemma 2.1) that u does not get worse: u either
is passive, or actively matches a vertex with rank at
most θ. That is, αu ≥ min{g(yu), 1−g(θ)} when yv < θ.
However, for the specific hard instance given in Figure 3,
u is v’s only neighbor. Hence, u and v will match each
other when yv < θ. Therefore, we have

Eyv [αu + αv] =

∫ θ

0

(αu + αv)dyv +

∫ 1

θ

αudyv

= θ + (1− θ) · (1− g(θ)).

Together with the case when u is passive, we have that

Eyv [αu + αv]

≥f(yu)
def
= min

{
g(yu), min

θ∈[0,1]
{θ + (1− θ) · (1− g(θ))}

}
.

This bound is strictly stronger than Fact 4.1, as we fully
characterize the gain of αu when yv is smaller than

7Note that the competitive ratio equals
∑

u E [αu] =∑
(u,v) appears in the perfect matching E [αu + αv ].
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its marginal rank, rather than the loose lower bound
min{g(yu), 1 − g(θ)} given in [HKT+18]. By taking
expectation over yu and optimizing the function g(·)
(see Section 4.2), the above lower bound implies that
Ranking is Ω-competitive on the hard instance.

In general, v does not necessarily match u when
yv < θ. However, when this fails to happen, we are able
to retrieve extra gain of αv when u is passive. (Recall
that in the hard instance, v is unmatched when u is
passive.) The complete analysis involves a more careful
treatment that considers the randomness of yu, yv at the
same time, when deriving the lower bound.

4.2 Proof of Theorem 4.1 Consider any neighbor-
ing vertices u and v. In the following, we fix an arbitrary
assignment of ranks to all vertices but u, v. We denote
this assignment of ranks by ~y-uv. Unless otherwise spec-
ified, we use E [·] to denote the expectation taken over
the randomness of yu and yv.

Instead of using a single threshold θ of v as in
the previous analysis, we will make use of multiple
thresholds to give a good enough characterization of the
matching status of u and v in order to derive the tight
competitive ratio. We introduce the first two below.

Definition 4.1. (τ and γ) Consider the graph G −
{v} with v removed. Let τ be the marginal rank of u
w.r.t. ~y-uv. In other words, u is passive iff M(yu <
τ, ~y-uv). Similarly, let γ be the marginal rank of v w.r.t.
~y-uv in graph G− {u}, i.e., with u removed.

Lemma 4.1. E [αu · 1(yu < τ) + αv · 1(yv < γ)] =∫ τ
0
g(yu)dyu +

∫ γ
0
g(yv)dyv

Proof. Consider yu = y < τ . By the definition of
τ , we know that for all yv ∈ [0, 1], u is passive in
M(yu = y, yv, ~y-uv), because inserting v (with any rank)
to the graph cannot make u worse (by Lemma 2.1).
Thus, for all yu < τ and yv ∈ [0, 1], we have αu = g(yu),
which correspond to the first term of the RHS. For
the same reason, for all yu ∈ [0, 1], v is passive in
M(yv < γ, yu, ~y-uv), which gives αv = g(yv), and the
second term of the RHS.

For all yu ∈ [0, 1], let θ(yu) be the marginal rank
of v w.r.t. ~y-v = (yu, ~y-uv). Recall v is always passive
(regardless of yu) when yv < γ. Hence, we have
θ(yu) ≥ γ for all yu ∈ [0, 1].

Lemma 4.2. For any fixed yu > τ , we have

Eyv [αu + αv · 1(yv > γ)] ≥1− γ − (1− θ(yu)) · g(θ(yu))

+γ ·min{g(yu), 1− g(θ(yu))}.

Proof. By the definition of θ(yu), we know that when
yv = θ(yu)+ (slightly larger than θ(yu)), v is not
passive. Thus, u must be matched. Moreover, u must
be active. Otherwise u should remain passive when v is
removed, because the deadline of v is later than u, which
contradicts the definition of τ (recall that we fix some
yu > τ). Hence, when yv = θ(yu)+, u actively matches
some vertex with rank at most θ(yu). As increasing
the rank of v does not create any difference to the final
matching, for all yv > θ(yu), we have αu ≥ 1−g(θ(yu)).

Note that it is possible that θ(yu) = 1, i.e., v
is passive for all rank yv ∈ [0, 1], in which case the
above lower bound still holds. Since the graph is
bipartite, by Lemma 2.1, for all yv < θ(yu), we have
αu ≥ min{g(yu), 1− g(θ(yu))}.

Finally, we show that for any yv ∈ (γ, θ(yu)), we
have αu+αv ≥ 1. Fix any yv ∈ (γ, θ(yu)). By definition
v is passive. Consider the first moment when one of u, v
is matched.

Suppose at this moment, v is matched (passively)
by some vertex z. Then, we show that z = u, which
gives αu + αv = 1. Otherwise, z must have an earlier
deadline than u. Then, we know that v remains passive
with u removed, which contradicts the definition of γ.

Suppose at this moment, u is matched. Then we
know that u must active, as otherwise u remains passive
with v removed, which contradicts the definition of
τ . Suppose u matches some vertex z. Since v is not
matched at this moment, the rank of z is no more than
yv, which implies αu ≥ 1− g(yv) = 1− αv, as required.

To sum up, for any fixed yu > τ , we have

Eyv [αu + αv · 1(yv > γ)]

≥
∫ γ

0

αudyv +

∫ θ(yu)

γ

(αu + αv)dyv +

∫ 1

θ(yu)

αudyv

≥γ ·min{g(yu), 1− g(θ(yu))}+ (θ(yu)− γ)

+ (1− θ(yu)) · (1− g(θ(yu)))

≥1− γ − (1− θ(yu)) · g(θ(yu))

+ γ ·min{g(yu), 1− g(θ(yu))},

as claimed.

Combing the two lemmas, we have the following
lower bound. Observe that the following bound de-
grades to the one we derived for the hard instance in
Subsection 4.1, when γ = 0.

Lemma 4.3. For any neighbor u of v that has an earlier
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deadline than v, and for any ~y-uv, we have

E [αu + αv]

≥ min
τ,0≤γ≤θ≤1

{∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+ (1− τ)(1− γ − (1− θ) · g(θ))

+ γ ·
∫ 1

τ

min{1− g(θ), g(yu)}dyu

}

Proof. First, we show that there exists θ such that
θ(yu) = θ for all yu > τ . Consider the graph with v
removed, and let yu = τ+. By the definition of τ , u is
not passive.

1. If u is unmatched, then we know that after inserting
v with any yv ∈ [0, 1], v is passive, as otherwise u
will be matched with v removed. Hence, we have
θ(yu) = 1 for all yu > τ ;

2. Otherwise, u is active. Let θ = θ(τ+). Then, we
know that v is not passive when inserted to the
graph with yv = θ+. Moreover, we know that u
is active after the insertion: if u is passive, then u
remains passive with v removed, which contradicts
the definition of τ . Since increasing yu does not
change the matching, we have θ(yu) ≤ θ for all
yu > τ . On the other hand, when yv = θ- and
yu = τ+, u is active and v is passive. Since
increasing yu does not change the matching, we
have θ(yu) ≥ θ for all yu > τ . The sandwiching
bounds imply that θ(yu) = θ for all yu > τ .

Hence, combining Lemma 4.1 and 4.2, we have

E [αu + αv] ≥ E [αu · 1(yu < τ) + αv · 1(yv < γ)]

+

∫ 1

τ

Eyv [αu + αv · 1(yv > γ)] dyu

=

∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+

∫ 1

τ

(
1− γ − (1− θ) · g(θ)

+ γ ·min{g(yu), 1− g(θ)}
)
dyu

=

∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+ (1− τ) ·
(
1− γ − (1− θ) · g(θ)

)
+ γ ·

∫ 1

τ

min{g(yu), 1− g(θ)}dyu.

Taking minimum over τ and γ ≤ θ gives Lemma 4.3.

Proof of Theorem 4.1: Fix the non-decreasing
function g as follows:

g(y) =


c

1−y , when y < 1−2c
1−c ,

1− c, when 1−2c
1−c ≤ y < 1,

1, when y = 1,

where c = 1
1+eΩ ≈ 0.3619. Let f(τ, γ, θ) denote the

expression to be minimized on the RHS of Lemma 4.3.
Then, we have

f(τ, γ, θ) =

∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+ (1− τ)
(

1− γ − (1− θ) · g(θ)
)

+ γ ·
∫ 1

τ

min{g(yu), 1− g(θ)}dyu.

Fix any γ and θ, and suppose g(τ) < 1− g(θ), then
observe that

∂f(τ, γ, θ)

∂τ
= g(τ)− (1− γ − (1− θ) · g(θ))

−γ ·min{g(τ), 1− g(θ)}
= (1− γ) · g(τ)− (1− γ) + (1− θ) · g(θ)

< (1− γ)(1− g(θ))− (1− γ) + (1− θ) · g(θ)

= (γ − θ) · g(θ) ≤ 0.

Here, the last inequality holds because we have θ ≥ γ
by their definitions.

Thus, the minimum of f(τ, γ, θ) over τ ∈ [0, 1],
0 ≤ γ ≤ θ ≤ 1 must be obtained when g(τ) ≥ 1− g(θ).
As a result, we get that

f(τ, γ, θ) =

∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+ (1− τ)
(

1− (1− θ + γ) · g(θ)
)
.

If we relax the constraint that θ ≥ γ, then the
maximum of (1−θ+γ)g(θ) is achieved when θ∗ = 1−2c

1−c
(for which g(θ∗) = 1 − c). Note that the maximum is
( c

1−c + γ) · (1− c) = (1− c) · γ+ c, which is greater than
the value of expression when θ = 1, i.e., γ. Thus, we
have

f(τ, γ, θ) ≥ f(τ, γ, θ∗) =

∫ τ

0

g(yu)dyu +

∫ γ

0

g(yv)dyv

+ (1− τ) · (1− γ) · (1− c).

It is easy to see that the minimum of f(τ, γ, θ∗)
must be achieved when γ < θ∗ = 1−2c

1−c (for which
g(γ) < 1− c), as otherwise the partial derivative

∂f(τ, γ, θ∗)

∂γ
= g(γ)− (1− τ) · (1− c) ≥ 0.
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Since f(τ, γ, θ∗) is symmetric for τ and γ, the same
conclusion holds for τ , which means

f(τ, γ, θ∗) =

∫ τ

0

c

1− x
dx+

∫ γ

0

c

1− x
dx

+ (1− τ) · (1− γ) · (1− c)
=− c ln(1− τ)− c ln(1− γ)

+ (1− τ) · (1− γ) · (1− c)

≥c− c · ln(
c

1− c
) =

1 + Ω

1 + eΩ
= Ω,

where the inequality comes from the fact that (take
(1−τ)·(1−γ) as the variable) function (1−c)·x−c·ln(x)
achieves its minimum when x = c

1−c .
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A Primal-Dual Connection between the Upper
and Lower Bounds

We provide an interesting primal-dual connection be-
tween the primal dual analysis in Section 3.1 and the
hard instance in Section 3.2, which inspires us to find
the correct h function in Section 3.2.

Recall the following lower bound established in the
proof of Theorem 3.1,

αu + αv ≥ min
{∫ 1

0

g(x)dx, min
pu,xv

{
∫ pu

0

g(x)dx

+ (1− pu)(1− g(xv)) +

∫ xv

0

g(x)dx}
}
.

We are left to optimize function g using the following
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linear program:

max
g

: r

s.t. r ≤
∫ x

0

g(y)dy +

∫ z

0

g(y)dy

+ (1− x)(1− g(z)), ∀x, z ∈ [0, 1].

After solving it, we remove redundant constraints with
slacks and consider the following program:

(P ) max
g

: r

s.t. r ≤
∫ x

0

g(y)dy +

∫ c−x

0

g(y)dy

+ (1− x)(1− g(c− x)), ∀x ∈ [0, c],

where c = 2 −
√

2. We know that the above two
programs have the same optimal value. Moreover, as
the program suggests, in order to construct a tight hard
instance, all pairs u, v matched in OPT must satisfy
pu + xv = c when Water-Filling is run8. According to
the instance structure and argument in Section 3.2, it
suffices to find a function h : [0, 1]→ [0, 1] so that∫ x

0

1− τ(y)

1− y + h(y)
= τ(h(x)) = c− τ(x), ∀x ∈ [0, 1].

Here, τ : [0, 1]→ [0, c] corresponds to the stationary
water level and gives the first equation. Moreover, the
perfect partner corresponding to x also has water level
τ(h(x)) and we require it to be c − τ(x), which gives
the second equation. Therefore, h(x) = τ−1(c − τ(x)).
Let f(x) = τ−1(x) and taking derivative over the above
equation, it suffices to prove the existence of f, τ, h so
that

1− τ(x)

1− x+ h(x)
= −τ ′(x)⇔ 1− φ

1− f(φ) + f(c− φ)
= − 1

f ′(φ)

⇔ 1− f(φ) + f(c− φ) + (1− φ)f ′(φ) = 0, ∀φ ∈ [0, c].

Now, consider the dual program of P :

min
q

:

∫ c

0

(1− x)q(x)dx

s.t.1−
∫ c

0

q(x)dx ≤ 0,∫ x

0

q(y)dy +

∫ c

c−x
q(y)dy − (1− x)q(x) ≤ 0,∀x ∈ [0, c].

According to primal dual theory, we know that the
optimal dual solution q(x) satisfies

∫ c
0
q(x)dx = 1 and

8Constraints must be tight almost everywhere. As otherwise,
our primal dual analysis proves the competitive ratio of Water-
Filling is strictly greater than c on the specific instance.

∫ x
0
q(y)dy +

∫ c
c−x q(y)dy + (1− x)q(x) = 0. Let Q(x) =

1−
∫ x

0
q(y)dy =

∫ c
x
q(y)dy, we have

1−Q(x) +Q(c− x) + (1− x)Q′(x) = 0, ∀x ∈ [0, c],

which is exactly the same equation we required for f .
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