
Information Systems 90 (2020) 101438

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Mining association rules for anomaly detection in dynamic process
runtime behavior and explaining the root cause to users
Kristof Böhmer ∗, Stefanie Rinderle-Ma
Research Group Workflow Systems and Technology, Faculty of Computer Science, University of Vienna, Vienna, Austria

a r t i c l e i n f o

Article history:
Received 1 February 2019
Received in revised form 1 June 2019
Accepted 10 September 2019
Available online 18 September 2019
Recommended by Gottfried Vossen

Keywords:
Anomaly detection
Process runtime behavior
Root cause
Association rule mining
Process change

a b s t r a c t

Detecting anomalies in process runtime behavior is crucial: they might reflect, on the one side, security
breaches and fraudulent behavior and on the other side desired deviations due to, for example,
exceptional conditions. Both scenarios yield valuable insights for process analysts and owners, but
happen due to different reasons and require a different treatment. Hence a distinction into malign and
benign anomalies is required. Existing anomaly detection approaches typically fall short in supporting
experts when in need to take this decision. An additional problem are false positives which could result
in selecting incorrect countermeasures. This paper proposes a novel anomaly detection approach based
on association rule mining. It fosters the explanation of anomalies and the estimation of their severity.
In addition, the approach is able to deal with process change and flexible executions which potentially
lead to false positives. This facilitates to take the appropriate countermeasure for a malign anomaly
and to avoid the possible termination of benign process executions. The feasibility and result quality
of the approach are shown by a prototypical implementation and by analyzing real life logs with
injected artificial anomalies. The explanatory power of the presented approach is evaluated through a
controlled experiment with users.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Information security, while being one of the top priorities for
companies, is currently shifting from prevention-only approaches
to detection and response — according to Gartner [1]. One analyst
states: ‘‘The shift to detection and response approaches spans people,
process and technology elements and will drive a majority of security
market growth over the next five years’’ [1]; predicting a 113 billion
worldwide spending on information security by 2020.

The vehicle to integrate processes, users, and technology and
hence to drive digitalization efforts in companies are executable
processes implemented through Process-Aware Information Sys-
tems (PAIS). Security problems in PAIS can be found based on
anomaly detection approaches, i.e., by revealing anomalous pro-
cess execution behavior which can indicate fraud, misuse, or
unknown attacks, cf. [2,3]. Typically, whenever anomalous be-
havior is identified an alarm is sent to a security expert. Subse-
quently, the expert determines the alarm’s root cause to choose
an appropriate anomaly countermeasure, such as, terminating an
anomalous process, ignoring a false alarm, or manually correcting
process execution behavior, cf. [3].

∗ Corresponding author.
E-mail addresses: kristof.boehmer@univie.ac.at (K. Böhmer),

stefanie.rinderle-ma@univie.ac.at (S. Rinderle-Ma).

The survey on security in PAIS [4], however, shows that the
majority of existing approaches focuses on prevention and only
few approaches tackle detection and response, particularly at
runtime and change time of processes.

1.1. Problem statement and research questions

Analyzing anomaly detection alarms and choosing counter-
measures is challenging, cf. [5]. This applies also to the process do-
main as many processes operate in flexible open environments [6].
Hence, thousands of alarms must be carefully analyzed as they
could be false positives that report benign behavior as anoma-
lous [3,5] (e.g., because of incorrectly interpreted noise or ad hoc
changes).

Existing work on process anomaly detection, cf. [2,3,7], reports
only if an execution is anomalous or not. However, we assume
that additional information, e.g., which behavior motivated the
(non-) anomalous decisions or the anomaly severity, are a neces-
sity. Without such information, anomalies, likely, cannot be fully
understood and it becomes hard to differentiate between harmful
anomalies and false positives, but also to choose appropriate
countermeasures as anomalies vary in effect and form.

Further on, existing process focused work frequently applies
monolithic anomaly detection signatures, cf. [2,7], to identify

https://doi.org/10.1016/j.is.2019.101438
0306-4379/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2019.101438
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2019.101438&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:kristof.boehmer@univie.ac.at
mailto:stefanie.rinderle-ma@univie.ac.at
https://doi.org/10.1016/j.is.2019.101438
http://creativecommons.org/licenses/by/4.0/

2 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Fig. 1. Applied design science inspired research method.

anomalies. Such signatures, compress all expected execution be-
havior into a complex interconnected structure. As a conse-
quence, the signatures must be recreated from scratch whenever
a process changes, are hard to understand, and can be computa-
tionally intense to create. Monolithic signatures were also found
to be overly detailed and specific so that benign noise or ad hoc
changes (such as slightly varying resource assignments or activity
execution orders) are typically reported as anomalies [3]. This
could hinder an organization as benign process executions could
be unnecessarily terminated.

Altogether, this work aims at a flexible approach to detect
anomalies, distinguish their cause into benign and malign behav-
ior, and explain their root cause to the users. This is reflected by
the following research questions:

1. RQ1: How to distinguish anomalies caused by benign be-
havior, such as, changes from malign behavior?

2. RQ2: How to reduce the effort for anomaly detection, par-
ticularly in flexible process environments?

3. RQ3: How to explain the root cause of anomalies effectively
and efficiently to users?

1.2. Contribution and research method

To address RQ1–RQ3 this work proposes a novel unsupervised
anomaly detection heuristic. Instead of monolithic signatures it
applies small sets of independent association rules (↦→ RQ1, RQ2)
as follows: Let P be a process that should be monitored for
anomalies and let L hold all execution traces t of P . The given
behavior in L is represented as a set of association rules R (a
signature, resp.). To analyze if a novel execution trace t ′ /∈ L is
anomalous it is determined which rules in R are supported by t ′.
Supported means that a trace complies to the conditions specified
by the rule. If it is found that t ′ has a lower rule support than
the trace t ∈ L that is most similar to t ′ then t ′ is identified as
anomalous and an alarm is triggered. Doing so, individual rules
can easily be replaced if a process changes (↦→ RQ2).

Another advantage of employing a rather simple formalisms
such as association rules, when compared to more expressive for-
malisms such as LTL, is understandability (↦→ RQ3). Typically, the
more expressive rules become the more likely it is that they are
misunderstood and the more computational intense it is to mine
them, cf. [8,9]. Nonetheless, in order to cover the most prominent

process perspectives, the work at hand supports association rules
with respect to control flow, resources, and temporal process
execution behavior.

Furthermore, the proposed approach prevents false positives
as it supports noise and ad hoc changes (↦→ RQ1). This is because
process executions, differently to monolithic signatures, no longer
must be completely represented by the signatures, but only by a
fraction of the rules which a signature is composed of, cf. [3]. This
also enables to provide more details about the individual anoma-
lies, as it can be reported which rules a process execution (trace
resp.) supports and which not, but also the anomaly severity. The
latter is composed of the aggregated and automatically calculated
rule significance of each non-supported rule.

Overall, this work follows the design science research method-
ology, cf. [10]. The specific method is depicted in Fig. 1. At first,
existing relevant literature was thoroughly analyzed based on a
systematic literature review on process runtime anomaly detec-
tion, cf. [3]. Hereby, a range of limitations could be identified,
such as, the lack of root cause analysis capabilities in the business
process anomaly detection area, forming a foundation to address
and identify related research problems and design requirements
in the following.

Subsequently, design requirements are derived from existing
work on anomaly detection in the security domain, in general,
and the process domain specifically. As a result an existing rule
formalism, i.e., association rules, lays the foundations for a novel
anomaly detection approach, cf. Sections 2 and 3. This artifact
is evaluated in two ways. In Section 4, its feasibility and the
quality of the results are shown based on a proof-of-concept
implementation and by performing a cross validation with real
life process executions, injected anomalies and multiple state-of-
the-art comparison approaches. Secondly, the expressive power
of the approach is evaluated based on a controlled experiment
with users (cf. Section 5).

In this experiment, different visualizations and representa-
tions of anomalies and their root cause are compared by the
users in finding answers to questions on the anomalies. The
correctness of the answers is analyzed in order to gain insights on
the effectiveness of the proposed approach. In addition, the time
for giving such answers is also measured to evaluate its efficiency.
All findings are then compared with related work (cf. Section 6)
and the achieved root cause analysis capabilities are discussed

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 3

Table 1
Exemplary running example log L containing the exemplary traces t1 and t2 .
Event e Process P Trace t Activity ea Resource er Start timestamp es End timestamp ec

e1 P1 t1 A Mike 1 5
e2 P1 t1 B Mike 6 9
e3 P1 t1 C Sue 12 16

e4 P1 t2 B Mike 18 21
e5 P1 t2 A Tom 22 29
e6 P1 t2 C Sue 32 38

in Section 7. Stakeholders of the proposed approach are process
managers and security experts.1

Overall, this work contributes towards a flexible anomaly de-
tection approach that is robust against process change and noise.
Its visualization seems promising to foster a more effective and
efficient understanding to anomaly root causes than existing ap-
proaches.

2. Requirements, fundamentals, and overall approach

This section starts off with a summary on design requirements
for an anomaly detection approach in flexible process runtime be-
havior. Fundamental notions are introduced in the sequel. Finally,
we sketch the overall approach which is presented formally in
Section 3.

2.1. Design requirements

The design requirements for the approach are selected based
on the systematic literature review on approaches for anomaly
detection in process runtime behavior conducted in 2017 [3].
In the following, these requirements are augmented – where
applicable – with more general research challenges, as identified
in [4].

• DR1: Detecting anomalies during runtime: Both reviews
[3,4] find that most of the existing approaches focus on ex
post anomaly detection. Although this can also yield valu-
able insights the need for detecting anomalies when they
are actually happening, i.e., during runtime when a process
model is currently executed, is prevalent. This is, because
ex post analysis can only reveal that an anomalous incident,
such as, an attack was already completely executed, and,
e.g., that attackers have already achieved their malicious
goals. In comparison dynamic runtime analysis capabilities
bear the chance to delay or stop an attack in its tracks before
it unfolds potential negative effects, such as, data loss.
Challenges: performance and process changes Design choices:
avoid monolithic signatures, provide lightweight, simplistic
and flexible signatures
How to address: represent signature by short comprehensi-
ble association rules as ‘‘pieces’’ of a lightweight signature

• DR2: Reduction of False Positives: Change and flexibility
are one of the open research challenges stated in [3], but will
currently result in ‘‘assessing correct behavior as anomalous’’
and hence pump up the number of false positives.
Challenges: distinction of false positives, high frequency of
changes
Design choices: keep signature complexity and interconnec-
tion to a minimum in order to be able to adapt them at any
given point in time; support root cause analysis in order to
distinguish between benign and malign anomalies
How to address: represent signature by association rules
which can easily be adapted in case of deviating behavior;
this facilitates distinction into benign and malign anomalies

1 Note that this work extends [11].

• DR3: Explaining Root Causes: [4] states that ‘‘a holistic
security approach also includes the involvement and awareness
of humans’’. However, [3] finds that most approaches oper-
ate in ‘‘black box mode’’, i.e., it is not sufficient to present
only that a trace was detected as being anomalous. Instead
details on anomaly severity, causes, and further explanatory
information should be provided.
Challenges: determine root cause, convey information to
users
Design choices: integrate root cause representation into
anomaly detection, i.e., the results of the anomaly detec-
tion should already provide information on root causes;
representation by visualization
How to address: association rules enable tracing back root
causes in a fine-granular way; use representation inspired
by Ishikawa or ‘‘fishbone’’ diagrams as they have proven
useful for root cause identification [12,13]

Design requirements DR1–DR3 address a subset of the chal-
lenges stated in [3,4]. Another challenge is, for example, to deal
with instance spanning anomalies instead of limiting the ap-
proaches to find single instance anomalies. For the work at hand,
however, DR1–DR3 lead to a balanced approach focusing on a
flexible, runtime anomaly detection with integrated root cause
explanation support.

2.2. Fundamental notions

This paper proposes an anomaly detection heuristic to classify
process execution traces as anomalous or not. For this association
rules are mined from a bag of recorded execution traces L (i.e., a
log). This is beneficiary as L:

(a) represents real process execution behavior;
(b) incorporates manual adaptions, noise, and ad hoc changes;
(c) is automatically generated during process executions; and
(d) is independent from abstracted/outdated documentation,

cf. [14].

The proposed approach is unsupervised as the traces in L are
not labeled, formally:

Definition 1 (Execution Log). Let L be a bag of execution traces
t ∈ L; t := ⟨e1, . . . , en⟩ holds an ordered list of execution events
ei := (ea, er, es, ec); ei represents the execution of activity ei.ea,
by resource ei.er , which started at timestamp ei.es ∈ R>0 and
completed at ei.ec ∈ R>0; the order of t is determined by ei.es.

This notion represents information provided by process ex-
ecution log formats such as, the eXtensible Event Stream,2 and
enables the representation of the control, resource, and temporal
perspective on a trace level. As this work is not yet aiming on
the analysis of additional perspectives and event/case attributes,
we opted not to represent such information, for the sake of sim-
plicity, in Definition 1. Accordingly, the first event in the running
example (cf. Table 1) would be denoted as e1 = (A, Mike, 1, 5).

The following auxiliary functions are used:

2 http://xes-standard.org/ — IEEE 1849–2016 XES Standard.

http://xes-standard.org/

4 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Fig. 2. Proposed rule based process anomaly detection approach — overview.

• {· · ·}
0 returns a random element from a set/bag.

• c := a ⊕ b appends b to a copy c of the collection given by
a.

• ⟨·⟩
l retains the last element of a list

• ⟨·⟩i retains the list item with index i ∈ N>0.
• ⟨·⟩

+

i retains all list items with an index > i.

Fig. 2 provides an overview of the proposed anomaly detection
heuristic; algorithms are presented in Section 3. Firstly, a signa-
ture R is created for a process P based on the associated execution
log L (rule mining), i.e., L is assumed as given input ①. Here, a
signature R is a set of rules that represent behavior mined from
L. A rule represents, e.g., that activity C should be a successor of
A.

The applied rule mining approach is inspired from the Apri-
ori algorithm [15] which mines valuable relationships in large
unordered data sets as association rules. However, process ex-
ecution traces are temporally ordered, e.g., based on the start
timestamp of each event. To take this aspect into account (a) the
Apriori algorithm is adapted accordingly, cf. Section 3; and (b)
association rules, as defined in [15], are extended into Anomaly
Detection Association Rules (ADAR) — (rule for short), cf. Defini-
tion 2.

The applied adaptions to the Apriori algorithm are inspired
from related sequence mining approaches, i.e., GSP [16] and,
especially, PrefixSpan; enabling to gradually reduce the compu-
tational effort (which is relative to the complexity and amount of
traces analyzed throughout rule mining) during each rule mining
step the longer each rule becomes, cf. [17]. Overall this enables
to achieve a sufficient rule mining performance, cf. Section 4,
while the implementation is still simplistic and can directly be
applied on the given expandable Definition 1 of traces, execution
events, and logs used throughout this work. Enabling ADARs to
represent common process execution behavior, to detect control,
resource, and temporal execution behavior deviations (i.e., po-
tential anomalies) from expected behavior as unsupported rules,
as those can be indicators for potential fraud, misuse, or novel
attacks, cf. [2,7,18,19].

For the analysis of temporal execution behavior, (fuzzy) tem-
poral association rules can be applied. However, related mining
approaches were found to be designed with different objectives
in mind than this work; such as, the identification of seasonal-
ity [20], the analysis of inter-event-intervals [21], or the analysis
of unordered item lifespans [22]. In comparison, this work is
interested into analyzing individual activity execution durations
in combination with control flow sequences which requires to
combine concepts mentioned beforehand. Accordingly, ADARs are
formally defined as:

Definition 2 (ADAR). Let L be a set of execution traces.
A rule r is defined as r := ⟨rp1, . . . , rpm⟩ with conditions

rpj := (ra, rd).
For j = 1, . . . ,m, rpj.ra represents an expected activity and

rpj.rd ⊆ {low, avg, high} an optional execution duration repre-
sented as classes low, avg, and high. All conditions in r must be
matched by t ∈ L to conclude that t supports r , cf. Definition 4.
The condition indices j represent their expected order in r, i.e., rpj
must be matched by a trace before rpj+1 can be.

The following projections were defined for rules (r) and con-
ditions (rp): rt(r) ↦→ {control, temporal, SoD, BoD} represents
that a rule can specify control flow (control for short), temporal,
or resource behavior. The latter focuses on the assignment of
resources to activities which is analyzed in the form of Separation
of Duty (SoD) or Binding of Duty (BoD), cf. [23]. Depending on the
rule condition type (e.g., control or temporal) different elements
(i.e., rp.ra and rp.rd) of each rule condition rp := (ra, rd) become
relevant. In the following examples non-relevant elements will be
denoted as ·. For example, a control flow focused rule condition
for activity A will, in the following, be denoted as rp := (A, ·)
because the duration representation rp.rd is solely relevant for
temporal rule conditions, cf. Example 1.

Further, as rules (conditions) are mined based on given traces
(events); we define projections for rules (conditions) on their
trace (event), such that:

• rtr(r) := t returns a trace t ∈ L which has motivated the
rule r during rule mining.

• re(rp) := e is similar to rtr(r) but returns an event e ∈ t ∈ L
which motivated the rule condition rp during rule mining.

It was chosen to focus on the described three process execu-
tion behavior perspectives (i.e., control, temporal, and resource
behavior) as we found that these are most commonly covered by
existing work, cf. [3]. Support for additional perspectives can be
added by specifying additional conditions, see Section 3.1.

Example 1 (ADAR, Cf. Table 1). Imagine rule r1 := ⟨rp1, rp2⟩ where
rt(r1) = control, rp1 = (A, ·), and rp2 = (B, ·) is matched
with the running example. As r1 is a control flow rule, execution
duration classes are not relevant/defined. While trace t1 supports
r1 the second does not. This is because an execution of activity A
succeeded by an execution of activity B is only given in trace t1.
If rp1.ra = A and rp2.ra = C then the rule would be supported by
both traces t1 and t2.

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 5

2.3. Overall approach

The applied rule mining consists of three stages (cf. Fig. 2).
Initially, the basis for the mining is laid by converting each event
e, given by L’s traces, into an individual rule (see ②). Hence, at this
stage each rule only holds a single condition, so that ∀r ∈ R; |r| =

1. In the following, these initial set of rules (the individual rules
in R, resp.) is repeatedly extended and verified to create the final
anomaly detection rule set.

Example 2 (Single Rule Condition, Cf. Table 1). When assuming
that the running example log only consists of t1 then the initial
rule set is R := {r1, r2, r3} where each rule consists of a single
rule condition, e.g., r1 := ⟨rp1⟩ where rp1.ra = A given that
rt(r1) = control.

Subsequently, rule extension and verification approaches are
applied in an iterative way. The rule extension, see ③, extends
each rule in R by one additional rule condition in each possible
way to identify new potential rules.

Example 3 (Rule Extension, Cf. Table 1). To extend r1 all successors
of activity A (i.e., the last rule condition, ↦→ r l1, in r1, cf. Defini-
tion 3) are determined, i.e., activity B and C. Secondly, activity B
and C are utilized to extend the ADAR r1 into r ′

1 := ⟨rp1, rp′

2⟩ and
r ′′

1 := ⟨rp1, rp′′

2⟩ where rp′

2.ra = B and rp′′

2.ra = C.

Formally, the rule extension is defined as:

Definition 3 (Extending Individual ADARs). Let E be the bag of
all events in a log L, RP be the set of all rule conditions and
R be the set of all rules. Let r := ⟨rp1, . . . , rpm⟩ be a rule and
t := ⟨e1, . . . , en⟩ ∈ L be an execution trace with rtr(r) = t . Rule
extension function ext : R × L ↦→ R extends r by:

ext(r, t) := {r ⊕ torp(e, rt(r))|e ∈ Eaux} (1)

where

• torp : E× {control, temporal, SoD, BoD} ↦→ RP con-
verts an event e into a rule condition rp of the given type,
e.g., control.

• Eaux := {e′
∈ t|e′.es > e′′.es; e′′

= re(rpm)} determines
events which will individually be attached to r to span a set
of extended rules.

Section 3.1 defines how the extension described in Definition 3 is
performed for each of the four rule types, i.e., rt(r) ∈ {control,
temporal, SoD, BoD}.

Finally, rule verification is applied ④. Each rule is verified by
analyzing its support, i.e.,

sup(r, L) := |{t ∈ L|mp(r, t) = true}| / |L| (2)

where function mp is defined in Definition 4. The support of a
rule represents the percentage of traces in L that a rule could be
successfully mapped to (match the rule conditions, resp.). If the
support (i.e., the percentage of traces t ∈ L that a rule supports) of
a rule is below a user configurable threshold mins ∈ [0, 1], then
the rule is removed from R. Subsequently, the rule extension and
verification steps are applied repeatedly until the rules in R are
extended to a user configurable maximum length of rl ∈ N≥1 rule
conditions.

The verification variables mins and rl enable to fine tune
rules for specific use cases and process behavior. For example,
we found that the mining of longer rules resulted in stricter
signatures than the mining of short rules. In comparison choosing
a low mins value could result in overfitting the signatures and
a high amount of rules. Further discussions on the variables are
given in Section 4.

We also have investigated alternative measures, common to
association rules, for the calculation of rule significance, e.g., lift or
confidence. While those were found to result in mining a smaller
set of rules (signature, resp.) it also increased the number of
false positives reported by the proposed approach. We were left
with the impression that this was caused because the smaller,
e.g., more confident rule set resulted in a stricter representation
of the behavior in L — providing less freedom for fluctuations
and ad hoc chances (i.e., overfitting occurred). Unfortunately, this
effect persisted even after relaxing the chosen thresholds in an
effort to mitigate it.

Definition 4 (ADAR Mapping). Let r := ⟨rp1, . . . , rpm⟩ be a rule
(cf. Definition 2) and t := ⟨e1, . . . , en⟩ an execution trace (cf.
Definition 1). Mapping function mp : R× L ↦→ {true, false} de-
termines if r is supported by (matching to, resp.) t . Rule type rt(r)
determines the matching strategy to be applied, see Section 3.1.

Example 4 illustrates the ADAR mapping.

Example 4 (ADAR Mapping, Cf. Table 1). The rule r ′

1, as given
in Example 3 achieves a support of 0.5. This is because it ex-
pects that activity A is succeeded by activity B. Accordingly, it
can only be mapped onto trace t1 but not on t2. Imagine, that
mins was defined as 0.9, then r ′

1 would be removed during the
verification phase from R as 0.5 < 0.9. In comparison rule r ′′

1
would not be removed as it is supported by both traces t1 and
t2 (i.e., sup(r ′′

1 , L) = 1 so that 1 ≮ 0.9). Rule r ′′

1 matches to (is
supported by, resp.) traces where A is succeeded by activity C.

Finally, the mined rules R (the signature) are applied to classify
a given process execution trace t ′ /∈ L as anomalous or not. For
this a trace t ∈ L is identified that is most similar to t ′, see ⑤. The
similarity between traces is measured based on the occurrence
of activities in the compared traces, cf. Definition 5. Then t ′ and
t are mapped onto R’s rules to determine the aggregated support
of both traces. Finally, if the aggregated support of t ′ is below
the aggregated support of t then the given trace t ′ is classified as
being anomalous, see ⑥.

3. ADAR based Anomaly Detection

This section presents the algorithms for the approach set out
in Fig. 2.

3.1. Association rule mining for Anomaly Detection

The applied ADAR mining approach, cf. Algorithm 1, combines
the main mining steps described in Fig. 2. This is the rule set
initialization, along with the iteratively applied rule extension (cf.
Definition 3) and verification steps (cf. Definition 4). Depending on
the user chosen rule type ty ∈ {control, temporal, SoD, BoD}
different algorithms are applied to mine either control, temporal,
or resource behavior given in L into rules. While each rule type is
mined individually, rules of all types can be combined in a single
signature (i.e., the union of all individual rule sets).

The auxiliary function torp(e, ty) : rp (cf. Definition 3) trans-
forms an event e into a rule condition rp. Depending on the
chosen rule type ty one out of the three rule condition mining
approaches presented in Section 3.1.1 to Section 3.1.3 is applied.
For example, if ty = control then the control flow rule mining
approach presented in Section 3.1.1 is used.

6 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Algorithm ruleMining(log L, min support mins, max rule length rl, rule
type ty)

Result: set of mined rules R (i.e., a signature)
R := ∅; // initially the rule set (signature, resp.) is empty
foreach t ∈ L do // initializing the rule set R with base rules

foreach e ∈ t do
R := R ∪ {⟨torp(e, ty)⟩} // initial base rule with one condition

for rcsize := 0 to rl do // generate rules up to a size of rl conditions
per rule

R := {ext(r, rtr(r))|r ∈ R} // extend rules in R, cf. Definition 2
and Definition 3
foreach r ∈ R do

if sup(r, L) < mins // verification, calc. rule support, cf.
Definition 4 then

R := R \ {r} // remove r from R because its support is too
low

return R // final set of mined rules R for behavior given by the
log L

Algorithm 1:Mines rules for a given execution log L and rule type
ty.

3.1.1. Mining control flow ADARs
Control flow rules represent expected activity orders, e.g., that

activity A should be succeeded by activity C during a process
execution. Hereby, control flow rules enable to identify process
misuse, cf. [2], such as, the execution of a financially critical ‘‘bank
transfer’’ activity without the previous execution of a usually
mandatory ‘‘transfer conformation’’ activity.
Event to control condition Accordingly, during rule extension,
an event e is transformed into a rule condition rp = (e.ea, ·).
Given the running example (cf. Table 1) e1 would be transformed
into rule condition rp = (A, ·).
Control ADAR Support Trace t supports a control flow rule r if
t holds all activity executions specified by the rule conditions
in rp ∈ r , cf. Fig. 2, ①. Further the activity executions must
occur in accordance to the order of rule conditions in r , ②. This
represents that activity executions are mutual dependent on each
other. ①and ②are verified by Algorithm 2 to determine if a trace
t supports the control flow rule r .

Example 5 (Control Flow ADAR, Cf. Table 1). Rule r = ⟨rp1, rp2⟩
where rp1.ra = A (rp1 = (A, ·), resp.) and rp2.ra = B (meaning
that activity A must be succeeded by B) would only be supported
by trace t1 but not by t2.

Algorithm ControlSupport(trace t, control flow rule r)
Result: if r is supported by t ↦→ true or not ↦→ false
for j = 1 to |r| // |⟨·⟩| retains the length of the list ⟨·⟩ do

for i = 1 to |t| do
if ti.ea = rj.ra // verify control flow rule condition
matching then

t := t+i ; r := r+j ; break // remove successfully matched
parts of t, r

return |r|= 0?true:false // return true if r fully matches to t else
false

Algorithm 2: Checks if a trace t supports the control flow rule r .

This work applies a relaxed rule matching. Hence, a rule is
assumed as supported by a trace as long as this trace contains at
least a single combination of events that match to the rule condi-
tions. This enables to deal with loops and concurrency. Moreover,
the approach is flexible enough to avoid struggle with noise and
ad hoc changes. However, as found during the evaluation it is still
specific enough to differentiate benign and anomalous process
executions, cf. Section 4.

3.1.2. Mining temporal ADARs
Temporal rules focus on activity durations (i.e., the times-

pan between the start and completion of an activity execution).
Those were found to be a significant indicator for fraud and
misuse, cf. [18,19]. However, while control flow rules focus on

representing distinct values (e.g., explicitly activity A is expected)
this is not possible for temporal rules. This is because distinct
durations, e.g., one second or one hour, are so specific that even
a minor temporal variation, which we assume as being likely,
would render a rule to be no longer supported by a trace. This
can, potentially, result in false positives.

To tackle this challenge we apply fuzzy temporal rules. These
rules are not representing durations with explicit values but
with duration classes. These classes represent, for example, that
the expected duration of activity A is roughly comparable or
below/above the average execution duration of activity A — given
by the traces in L. In this work three duration classes are in
use, i.e., PDC := {low, avg, high}. Increasing the number of
classes would be possible but it was found that this can result
in overfitting the generated temporal rules (signature).
Event to temporal condition A temporal rule condition consists
of an expected activity execution along with its expected duration
classes. For this the activity execution duration is represented as a
subset of the possible duration classes PDC . So, based on an event
e a temporal condition rp is constructed by defining the expected
activity, i.e., rp.ra := e.ea and selecting one or more duration class
which are expected to be observed, e.g. rp.rd := {low} ⊆ PDC .

Algorithm TempClass(event e, log L, duration classes PDC, widen
w ∈ [0; 1])

Result: set of representative duration classes DC ⊆ PDC for e
// calculate durations D for L, min and max duration, duration
class timespan part, duration d of event e, relative class
timespan widening wspan
D := {e′.ec − e′.es|e′ ∈ t, t ∈ L : e′.ea = e.ea}
min := {d|d ∈ D, ∀d′

∈ D; d ≤ d′
}
0; max := {d|d ∈ D, ∀d′

∈ D; d ≥ d′
}
0

part := (max − min)/|PDC |; d := e.ec − e.es; wspan = part · w; i := 0
foreach pdc ∈ PDC // check for each class in PDC if it is
representative do

start := min − wspan + part · i; end := start + wspan · 2 + part; i := i + 1
if d ≥ start ∧ d ≤ end then

DC := DC ∪ {pdc}
return DC // set of representative duration classes for event e

Algorithm 3: Determines for a log L the duration class for an
event e.

Algorithm 3 determines the representative duration classes for
an event e based on L. Hereby, variable w ∈ [0; 1] ‘‘widens’’ the
covered timespan of each duration class so that the rule support
calculation becomes less strict to prevent overfitting. Compare
Fig. 3. It depicts the three duration classes of PDC and how
widening affects them. For example, while the activity duration
①can clearly be represented by class low this is not the case
for the duration ②. As this duration is between the avg and
the high class the ‘‘widening’’ (w) comes into effect, so that
②is represented by both classes. Accordingly, the two exemplary
constraints rp1.rd = {avg} and rp2.rd = {high} would both
match to ②.

Example 6 (Temporal ADAR, Cf. Table 1). Converting e1 into a
temporal rule condition rp1 results in rp1.ra = A while rp1.rd =

{low} when using a widening factor of w := 0.1. Given this
widening factor, the average class for activity A would match
durations between 3.9 and 4.1. In comparison event e5 would
convert into a condition rp2 so that rp2.ra = A while rp2.rd =

{high}.

Example 7 (Temporal ADAR, Cf. Table 1). Converting e4 into a
temporal rule condition rp1 results in rp1.ra = B while rp1.rd =

{avg} when using a widening factor of w := 0.2. Given this
widening factor, the average class for activity B would match
durations between 2.8 and 3.2. In comparison event e2 would
convert into a condition rp2 so that rp2.ra = B while rp2.rd =

{avg} as both e4 and e2 match to the average execution duration
class of B (i.e., both events show an execution duration of 3).

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 7

Fig. 3. Duration class representation for temporal ADARs.

Temporal ADAR Support A trace t supports the temporal rule
r (i.e., rt(r) = temporal) if t holds all activity executions
specified by the rule conditions in r with the expected durations.
In addition, these activity and duration pairs must occur in the
expected order given by r ’s conditions. To verify this Algorithm
2, is extended by calculating and comparing duration classes, cf.
Algorithm 4.

Algorithm TempRuleSupport(trace t, temporal rule r, duration classes
PDC, w ∈ [0; 1])

Result: true if r is supported by t; false otherwise
for j = 1 to |r| // |⟨·⟩| retains the length of the list ⟨·⟩ do

for i = 1 to |t| do
if ti.ea = rj.ra ∧ ((TempClass(ti, L, PDC, w) ∩ ti.rd) ̸= ∅) then

t := t+i ; r := r+j ; break // cf. Algorithm 2
return |r|= 0?true:false // return true if r fully matches t else false
Algorithm 4: Checks if trace t supports the temporal rule r

3.1.3. Mining SoD and BoD ADARs
Separation and Binding of Duty rules represent expected rel-

ative pairs of activities and resource assignments, cf. [23], i.e., all
activities covered by a SoD rule must be executed by different
resources while all activities covered by a BoD rule must be
executed by the same resource. Failing to support resource rules
can be an indicator for fraudulent behavior, cf. [2,7].
Event to resource condition Converting an event e into a SoD
or BoD rule condition rp is performed by extracting the activity
related to e, i.e., rp.ra := e.ea. Accordingly, for e1, in Table 1,
rp.ra = A holds.
Resource ADAR Support To verify if a trace t supports a resource
(res. in short) rule r , a set is generated that holds all resources that
have executed activities which are specified in r ’s conditions (cf.,
rp.ra), i.e., RS := {e.r|e ∈ t ∧ e.ea ∈ {rp.ra|rp ∈ r}}

For a BoD rule it is expected that all executions utilize the
same resource, i.e., |RS| = 1. For a SoD rule the amount of
resources taking part in the activity executions should be equal
to the amount of conditions, i.e., |RS| = |r|.

Example 8 (Res. ADAR SoD, Cf. Table 1). Rule r = ⟨rp1, rp2⟩
where rp1.ra = A, rp2.ra = B, and rt(r) = SoD would only
be supported by trace t2 but not by t1. This is because, here, r
specifies that activity A and B must be executed by different
resources. Hence for trace t1 the set RS = {Mike} (i.e., |RS| = 1)
while |r| = 2 so that |RS| ̸= |r|.

Example 9 (Res. ADAR BoD, Cf. Table 1). Rule r = ⟨rp1, rp2⟩
where rp1.ra = A, rp2.ra = B, and rt(r) = BoD would only
be supported by trace t1 but not by t2. This is because, here, r
specifies that activity A and B must be executed by the same
resource. Accordingly, for trace t1 the set RS = {Mike}, such that,
|RS| = 1 while for t2 the set RS would become RS = {Mike, Tom}
such that |RS| ̸= 1. In the latter case BoD would be violated.

3.2. ADAR based anomaly detection

The mined ADARs (i.e., a signature) are applied to classify a
given trace t ′ /∈ L as anomalous or not. For this the artificial like-
lihood of t ′ is calculated and compared with the likelihood of the
trace t ∈ L that is most similar to t ′. If t ′ is identified as less likely

it is assumed as being anomalous, cf. Definition 5. Hereby, the
presented approach follows and exploits the common assumption
that anomalous behavior is less likely than benign behavior, cf.
[3,7,18], while also enabling dynamic anomaly threshold identifi-
cation. In comparison to existing work, cf. [3], the latter increases
the flexibility of the proposed approach. This is because this work,
other than, e.g. [18], does not rely on a fixed predefined detection
threshold which is fixated once and from there on needs to
be suitable for ‘‘all’’ potentially upcoming process executions.
To further extend on this concept one could create an average
likelihood threshold based on a range of most similar traces to
reduce the risk of overfitting — which will be explored in future
work. A comparable idea was implemented by us in [7].

The artificial likelihood of a trace is determined by aggregating
the overall support (based on L) of the rules which the trace is
supporting, cf. Definition 4. This implies: the less rules a trace
supports the less likely it and its occurrence is assumed to be and
the more likely it is anomalous.

Definition 5 (Anomaly Detection). Let L be a bag of all traces t
(i.e., an execution log) and t ′ be an execution trace with t ′ ̸∈ L.
Let further R be a set of rules, i.e., a signature that was mined for L.
Whereas R be the set of all signatures and L be the set of all Logs,
such that, L ∈ L. Anomaly detection function adec : R × L ↦→

{true, false} is defined as:
Case 1: adec(R, t ′) := true if∑

r∈R
mp(r,t′)=true

sup(r, L) <
∑
r∈R

mp(r,tsim(t′,L))=true

sup(r, L)

Case 2: adec(R, t ′) := false otherwise.
where tsim(t ′, L) returns the trace t ∈ L that is most similar to

t ′ ̸∈ L.

The proposed anomaly detection approach requires to identify,
for a given trace t ′ /∈ L, the most similar trace t ∈ L. For
this function tsim(t, L) : t is applied. In detail: both traces are
first converted into bags of activities (each one holds activi-
ties executed by the respective trace). Subsequently, the Jaccard
similarity J({· · ·}, {· · ·}), cf. [24], between both activity bags is
calculated. This means: the more equal activities3 the traces
contain (have executed) the more similar they are. For example:
J({A, C}, {B, C}) = |{A, C} ∩ {B, C}| / |{A, C} ∪ {B, C}| = 0.3.

More calculation intensive approaches, such as, edit distances
(e.g., the Damerau–Levenshtein distance) could be applied to get
a more thorough representation of activity orders, as demon-
strated by us in [25]. Such can especially be beneficial if activity
orders in the analyzed traces are fluctuating while roughly the
same activities are executed overall. Such a situation did not
emerge throughout the evaluation. Hence, while the underlying
similarity measure can be user chosen the described approach
was found to be fast and sufficient during the evaluation, cf.
Section 4.

3.3. Fostering root Cause analysis and understandability

The detection of anomalies constitutes only the first step in a
large anomaly management process [12]. In addition it must also

3 Activity equivalence is considered as label equivalence here.

8 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

be analyzed which context, behavior, policies or errors motivated
the classification of an execution as being anomalous, cf. [26]. The
latter is typically subsumed as root cause analysis which paves
the ground for the selection and application of suitable anomaly
countermeasures (e.g., the termination or adaption of anomalous
instances). In general, ‘‘root cause analysis is a structured investiga-
tion that aims to identify the true cause of a problem and the actions
necessary to eliminate it ’’ [12].

So far, root cause analysis capabilities have been mostly ne-
glected in the process anomaly detection domain, cf. [3]. Related
work focuses on the technical perspective of detecting anomalies
in the first place. However, this can significantly lower the posi-
tive impact of such detection approaches as it is our assumption
that an anomaly can only be truly resolved by understanding
and addressing its cause. Accordingly, this work proposes the
novel visualization technique A_Viz to foster anomaly focused
root cause analysis to address following limitations:

Severity: existing process anomaly detection approaches fre-
quently generate binary results, i.e., they mark traces either
as anomalous or not, cf. [3]. However, this does hardly
support experts when in need to (a) assess the severity of
an reported anomaly and (b) deduce the reasons why an
execution was deemed anomalous. Thus, as stated in [9],
providing only binary results is generally not sufficient.
Hence, we propose to utilize the aggregated rule support of
a signature/traces (t vs. t ′) as an indicator for the deviation
severity between a trace and a signature.

Granularity: binary detection results are also insufficient to per-
form a thorough anomaly analysis as they do not indicate
which specific parts of a trace did not comply to the uti-
lized signatures. In comparison, the proposed approach
comprises the signature from multiple fine granular rules
which can be individually reported as supported or not; en-
abling to report which parts of a given trace were affected
by an identified anomaly in a fine granular way.

Simplicity and clarity: during the evaluation the mined signa-
tures were found to contain a relative low amount of
rules (e.g., below 100 temporal and control rules) while an
even lower amount of rules was typically violated by an
anomalous trace. Given the low amount of (violated) short
and simple rules those can, likely, easily be grasped and
taken into account by experts when analyzing process ex-
ecutions (traces resp.) which were found to be anomalous
for anomaly root causes.

Transparency: is required to foster trust in the anomaly de-
tection results to achieve a wide spread use of related
detection approaches. Hence, we propose that it must not
only be obvious that an execution trace is anomalous and
why but also which parts of traces were not identified as
being anomalous. This enables experts to assess strengths
and weaknesses of a detection approach but also to iden-
tify and report overlooked anomalous behavior to form a
training set which can be used to further improve related
anomaly detection approaches.

Relation: Existing approaches were found to utilize separate
screen locations to display (a) the execution trace, and (b)
information about related anomaly detection results. We
assume that this hardens it for an expert to draw conclu-
sions about relations between anomalous execution events
and the related anomaly detection results (e.g., which rules
were violated by a given event). Hence, such related details
should, likely, be located in close proximity.

Fig. 4. Visualizing a rule violation with A_Viz (example).

A_Viz builds and expands on visualization approaches utilized
in related areas, such as, business process compliance research.
There, business process models and executions are, for example,
colored to indicate that a given execution part, such as an activ-
ity, is compliant (green) or not (red), cf. [27]. Further, Ishikawa
(fishbone) diagrams are applied to organize the relations between
problem causes, cf. [28]. The latter, are typically created manually
while A_Viz can be created automatically based on the analyzed
traces and mined rules.

Fig. 4 gives an example of the proposed visualization approach.
It consists of two main parts: The process execution trace ①which
was deemed as being anomalous, and ②/③, i.e., the rules which
were found to be violated (not supported, resp.) by that trace.

Here, color is applied to visualize differences between process
execution events which have not violated any rules (green) and
events which have violated rules (red) (i.e., which do not comply
to expected behavior). Note, that also a third color is utilized
(blue) indicating that a less significant rule was violated (i.e., a
rule which is partly also violated by process executions which
were, overall, classified as being non-anomalous).

The latter can occur in the case of loops and parallel ex-
ecutions, were, e.g., activity executions overlap each other in
different ways and orders or were, e.g., the same activity can
be observed four or fife times in a row — depending on the
number of loop iterations. The chosen colors/shades were com-
bined in a way that they are still distinguishable by applicants
which suffer from red–green deficiency. The latter was verified by
checking out multiple potential color combinations with affected
test subjects.

The proposed visualization takes over ideas from Ishikawa
diagrams while positioning each graphical element. Hence, the
rules which are violated by an execution event are positioned
just below the event which triggered the rule violation decision.
Compare with ②, it depicts a violated resource rule which aims
at checking whether or not X and W are executed by different
resources (SoD), cf. Fig. 4. As this is not the case the SoD rule is
violated, W is identified as the culprit and the violated rule is dis-
played just below the potentially malicious execution event for W.
This rule positioning approach was motivated by our assumption
that preceding execution behavior (the IF part of each rule) sets
the expected behavior for succeeding behavior (the THEN part of
each rule). Hence, we assume the event related to the THEN part
of the rule as the wrongdoer and position the violated rule below
it — similar to the concepts used in Ishikawa diagrams.

The proposed positioning approach is not applicable at all
times. So, if an activity should be executed but is missing com-
pleted from an visualized trace then the executing event match-
ing the THEN part of the rule is missing too. To stay consistent
with the general idea to positing the violated rules below the

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 9

THEN part a workaround is applied by summarizing such events
below a ‘‘No matching Events’’ caption, see ③in Fig. 4.

Overall, A_Viz supports all three rule types outlined through-
out Section 3. Hereby, small icons, positioned in the top right
corner of each rule box, in the form of tridents (control flow),
clocks (temporal behavior), and stick figures (resource behavior,
i.e., SoD or BoD) visualize the associated rule type. The icons
are selected according to suggestions from literature on process
compliance, e.g. [29]. The explanatory power of the proposed root
cause visualization and analysis is evaluated in Section 5.

4. Evaluating the Detection quality of the proposed Anomaly
Detection approach

The evaluation utilizes real life process execution logs from
multiple domains and artificially injected anomalies in order to
assess the anomaly detection performance and feasibility of the
proposed approach. It was necessary to inject artificial anomalies
as information about real anomalies are not provided by today’s
process execution log sources [3].

The utilized logs were taken from the BPI Challenge 20154
(BPIC5) and Higher Eduction Processes (HEP), cf. [30]. These logs
were chosen because they are: (a) widely applied throughout
existing process anomaly detection work, such as, [7,31,32], fos-
tering comparability; (b) realistic and cover real world business
process execution behavior; (c) enabling to evaluate the described
approach based on logs with two different complexity levels (high
↦→ BPIC5, medium ↦→ HEP) and domains; and (d) containing all
the relevant information in sufficient granularity, as, for example,
we found that alternative logs frequently do not contain details
on the related resources.

The BPIC5 logs hold 262,628 execution events, 5649 instances,
and 398 activities. The logs cover the processing of building
permit applications at five (BIPC5_1 to BIPC5_5) Dutch building
authorities between 2010 and 2015. The HEP logs contain 28,129
events, 354 instances, and 147 activities — recorded from 2008
to 2011 (i.e., three academic years ↦→ HEP_1 to HEP_3). Each
trace holds the interactions of a student with an e-learning plat-
form (e.g., exercise uploads). All logs contain sufficient details to
apply the proposed approach (e.g., execution events, activities,
timestamps, resource assignments, etc.).

The logs were randomly separated into training (for signature
generation) and test data (for the anomaly detection performance
evaluation). Subsequently, randomly chosen test data entries
were randomly mutated to inject artificial
anomalies. By randomly choosing which, how many, and how
frequently mutators are applied on a single chosen test data
entry (trace, resp.) this work mimics that real life anomalies
are diverse and occur in different strengths and forms. Further
the application of mutators enables to generate labeled non-
anomalous (i.e., non-mutated) and anomalous (i.e., mutated) test
data entries. Hereby, it becomes possible to determine if both
behavior ‘‘types’’ are correctly differentiated by the proposed
approach (cross validation). The applied mutators inject random
control flow, temporal, and resource anomalies:

(a) Control Flow — mutators which randomly mutate the order
and occurrence of activity execution events; and (b) Temporal
— randomly chosen activity executions get assigned new arti-
ficial execution durations; and (c) Resource — activity/resource
assignments are mutated to mimic, for example, BoD anomalies.

The applied mutators were adapted from our work in [7,19].
Combining multiple mutators enables to represent the diversity
of real life anomalies. In addition, the applied random training

4 http://www.win.tue.nl/bpi/2015/challenge — DOI: 10.4121/uuid:31a308ef-
c844- 48da-948c-305d167a0ec1.

and test data separation also evaluates if the proposed approach
is capable of dealing with benign noise and ad hoc changes by
not identifying them as anomalous. This is, because the test data
contains benign behavior which is not given by the training data
(e.g., bening ad hoc changes). The given evaluation results are an
average of multiple evaluation runs, cf. Table 4. This enables to
even out random aspects, such as, the random data separation
and trace mutation.
Metrics and Evaluation Here, the feasibility of the presented
approach is analyzed. For this, a cross validation is performed
to determine if known anomalous (mutated) execution traces
are correctly differentiated from known non-anomalous (non-
mutated) ones. Through this four performance indicators are
collected: True Positive (TP) and True Negative (TN), i.e., that
anomalous (TP) and non-anomalous (TN) traces are correctly
identified. False Positive (FP) and False Negative (FN), i.e., that
traces were incorrectly identified as anomalous (FP) or non-
anomalous (FN). Finally, these indicators are aggregated into:

(a) Precision P = TP/(TP+FP) — if identified anomalous traces
were in fact anomalous; and (b) Recall R = TP/(TP + FN) — if all
anomalous traces were identified (e.g., overly generic signatures
could result in overlooking anomalies); and (c) Accuracy A =

(TP + TN)/(TP + TN + FP + FN) — a general anomaly detection
performance impression; TP, TN, FP, FN ∈ N; P, R, A ∈ [0; 1].

An optimal result would require that TP and TN are high
while FP and FN are low so that the accuracy becomes close
to one. Further, the Fβ-measure, Eq. (3), provides a configurable
harmonic mean between P and R, cf. [33]. Hence, β < 1 results
in a precision oriented result while β = 1 generates a balanced
result.

Fβ =
(β2

+ 1) · P · R
β2 · P + R

(3)

Results The results were generated based on the BPIC 2015
and HEP process execution logs and following proof of concept
implementation: https://github.com/KristofGit/ADAR The imple-
mentation was found to be capable of creating a signature within
minutes and requiring only seconds to classify a trace as anoma-
lous or not. Once generated the signatures can be reused and
easily adapted by adding new rules or removing old ones, e.g., to
address concept drift.

Primary tests were applied to identify appropriate configu-
ration values, e.g., the maximum rule length rl := 3 (control
and temporal) and rl := 2 (resource). Typically utilizing longer
rules results in stricter signatures which are prone to overfitting,
cf. [34]. Here, this seems not to be the case as the given dynamic
threshold calculation utilized in this work mitigates this effect as
(a) both, the trace analyzed for anomalies and its most similar
counterpart in L commonly support similar rules; and (b) shorter
rules (i.e., rules with a length below rl) are also generated, based
on the outlined iterative extension and validation based rule
mining approach, cf. Definition 3, and become part of the rule set
R. Hence, a single long unsupported rule does not have a dramatic
effect on the detection results (anomaly assessment, resp.). How-
ever, given that lower values for rl do not only result in shorter
easier to grasp rules but also reduced calculation times low values
were used for rl in the following. A comparison of the effect
of different rl rule length configuration values on the anomaly
detection performance (represented as average F1-measures) is
given in Table 2. The best three results are printed in bold letters.

In comparison, the minimum support a rule has to achieve
mins during the mining phase, to be accepted as a part of the
signature, was set to 0.9 for control & resource rules and 0.8 for
temporal rules. For this variable it was found that higher values
could potentially result in a very small rule set or in finding no
rules at all. In comparison, using a lower value could result in

http://www.win.tue.nl/bpi/2015/challenge
https://github.com/KristofGit/ADAR

10 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Table 2
Effect of different rl values on F1 , cf. Eq. (3).

rl
Co

nt
ro
l/T

em
po

ra
l 2 0.9 0.89 0.85 0.84 0.87

3 0.87 0.86 0.84 0.86 0.9
4 0.88 0.84 0.83 0.85 0.86
5 0.88 0.87 0.83 0.8 0.88
6 0.86 0.89 0.9 0.86 0.89

6 5 4 3 2

rl Resources Rules

Table 3
Effect of different mins values on F1 , cf. Eq. (3).

m
in
s
Co

nt
ro
l/R

es
ou

rc
e 0.5 0.78 0.75 0.74 0.72 0.6 0.7

0.6 0.76 0.78 0.76 0.76 0.74 0.76
0.7 0.76 0.78 0.78 0.77 0.75 0.77
0.8 0.77 0.76 0.79 0.78 0.77 0.77
0.9 0.77 0.76 0.91 0.87 0.81 0.76
1 0.77 0.77 0.77 0.76 0.75 0.78

1 0.9 0.8 0.7 0.6 0.5

mins Temporal Rules

finding a very high amount of rules. This does not necessarily
result in better anomaly detection results as it increases, as we
found, the risk of generating overfitting signatures. A comparison
of the effect of different minimum support configuration values
on the anomaly detection performance (represented as average
F1-measures) is given in Table 3. The best three results are printed
in bold letters.

Finally, the fuzzy temporal rule generation can be configured
based on the chosen temporal class widening variable w which
was set to 0.2. Lowering this value will result in stricter signa-
tures (temporal rules, resp.) that could potentially struggle when
dealing with noise and ad hoc changes while a higher value would
result in potentially overlooking anomalies as the signatures be-
come less strict. However, when experimenting with different
values for w (between, 0.01 and 0.6) the F1 results, cf. Eq. (3),
only fluctuated by 1%–3%. Given the low amount of configura-
tion variables we assume that existing optimization algorithms
should, likely, be able automatically find optimal settings for the
proposed approach based on given training data.

The average evaluation results are shown in Table 4. Overall,
an average accuracy of 81% was achieved along with an average
precision of 77% and an average recall of 89%. Given these results
we conclude that the proposed approach is feasible to identify the
injected anomalies in the analyzed process execution data. More-
over, it becomes visible that the detection of diverting anomalous
behavior becomes harder the more diverse and complex the
benign behavior is (e.g., because of noise or ad hoc changes).
Accordingly the anomaly detection performance of the BPIC 2015
logs are lower than the results for the HEP logs. Nevertheless, an
average anomaly detection accuracy of 75% was achieved for the
more challenging BPIC 2015 process execution log data.
Comparison with existing anomaly detection approaches

We have roughly compared the proposed approach against
five alternative anomaly detection approaches, cf. Table 5. From
those, [7,31] were specifically tailored for detecting anomalies
in business process executions. In comparison, [35–37] apply

generic anomaly detection techniques, such as, clustering. The
tests were executed based on the BPIC 2015 logs as such are
more challenging than the HEP logs and thus enable a more con-
clusive evaluation. Here, the Area Under the Curve (AUC) metric
is applied to compare the listed anomaly detection techniques
as this metric was found to be commonly used by comparison
approaches, such as, [31,38].

In comparison to alternative approaches, such as, [7] it was
found that the proposed approach achieves a lower
anomaly detection performance, cf. Table 5. However, we were
left with the impression that, with regards to quality attributes,
such as, understandability, computational performance require-
ments or visualization capabilities, a significant improvement was
achieved. For example, [7] utilizes large monolithic signatures
which need to be completely recreated from scratch if, e.g., the
process model which instantiates the to be analyzed traces is
changed. In comparison, the proposed approach was found to
generate the signatures faster and can also reuse some of the
generated rules if the underlying process model changes. Overall,
this gives the experts the flexibility to choose the correct tool for
their needs as, for now, there seems to be a trade off between de-
tection performance and simplicity/understandable of the results
and signatures.

5. Evaluating the proposed root Cause analysis visualization
approach (A_Viz)

This part of the evaluation has the objective to investigate
the effect of A_Viz on the analysis of anomalous process exe-
cutions detected by the presented anomaly detection approach.
For this an expected process execution anomaly analysis work-
flow is replicated. Within the conducted experiment, the partici-
pants are, hence, provided with (a) multiple anomalous execution
traces, (b) a related process documentation, while (c) given the
task to identify and report as many distinct anomalies as pos-
sible. The focus of this evaluation is on correctness (how many
anomalies were correctly identified and reported) and response
time (how long did it take the participants to complete the given
tasks). Both variables are frequently utilized to construct under-
standability, i.e., enabling to deduce if the proposed visualization
supports the identification of anomalies, cf. [39].
Context The experiments and data collection were conducted
throughout calendar week three in 2019 with 25 participants.
From these 25, six participants were classified as experts as
they can show of more than five years of practical (or research)
experience in the field of process management and analysis —
either as a researcher or process analyst. The remaining par-
ticipants were students who enrolled in the course ‘‘Workflow
Technology’’ (WT) or ‘‘Business Intelligence’’ (BUS) (optional part
of the Master in the Computer Science curricula) at the University
of Vienna throughout the winter term 2018/2019; both courses
put a distinct focus on business process design and analysis. It
will, in the following, be differentiated between both participant
groups of ‘‘non-experts’’, i.e., students, and ‘‘experts’’ in order to
determine if the use of A_Viz affects both groups differently. Note,
according to [40], conducting experiments with students ‘‘is not
a major issue as long as you are interested in evaluating the use of

Table 4
Anomaly detection performance of the presented approach.
Log HEP_1 HEP_2 HEP_3 BPIC5_1 BPIC5_2 BPIC5_3 BPIC5_4 BPIC5_5

Precision 0.86 0.87 0.85 0.73 0.70 0.78 0.69 0.69
Recall 0.98 0.98 0.97 0.90 0.85 0.75 0.87 0.84
Accuracy 0.91 0.91 0.90 0.78 0.74 0.77 0.73 0.73
F0.5-measure 0.88 0.88 0.87 0.76 0.73 0.77 0.72 0.72
F1-measure 0.92 0.92 0.91 0.80 0.77 0.77 0.77 0.76

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 11

Table 5
Anomaly detection performance comparison.
Detection technique ADAR Dynamic BN Likelihood Feature bagging LOF SOD

Reference This paper [31] [7] [37] [35] [36]
AUC 0.76 0.84 0.77 0.56 0.55 0.6

a technique by novice or non-expert ... engineers. Students are the
next generation ... professionals and, so, are relatively close to the
population of interest.’’ Further studies even argue that students
can serve as sufficient representatives for experts, cf. [41–43].
Material, Tasks, and Design Each task of the experiment con-
sists of two steps (a) reading and understanding a given process
documentation, and (b) analyzing three related process execution
traces to spot and report anomalies by comparing (a) and (b). For
(a) two types of documentation are utilized:

Optimal Documentation is up to date, contains a BPMN based
visualization of the process model along with a textual
documentation of that model which, inter alia, describes
temporal and resource relations, such as, BoD and SoD
constraints. This documentation type could represent, for
example, the early days of a business processes when its
design/implementation was just completed and all docu-
mentation is still up to date and available.

Typical Documentation: Here it is assumed that the original
documentation was lost or is outdated. Hence, the last
resort for an anomaly analyst is to utilize historic pro-
cess executions (in the form of execution traces), which
are deemed as benign, to deduce expected benign be-
havior from them. This documentation type represents a
common scenario where business processes have been in
use for some time and have been affected by undocu-
mented changes such that related documentation is miss-
ing, no longer applicable or even misleading. This docu-
mentation type is, based on our experience, common and
representative for aged business processes.

The group of participants was split into subgroups of three.
The members of the same group were always uniformly provided
with the same documentation type (i.e., optimal or typical). It was
randomly and evenly determined which group utilizes which kind
of documentation throughout the experiment. The latter enabled
to achieve an almost perfectly balanced ratio between the optimal
(13 participants) and typical (12 participants) documentation.

In addition to the documentation the experiment requires that
given process execution traces must be analyzed for anomalies,
i.e., (b). Traces were visualized in three different ways:

A_Viz is a visualization using colors and rules. See Section 3.3 for
an outline and an example depicted in Fig. 4.

Colors represents a simplification of A_Viz which mimics com-
mon visualization styles applied by existing conformance
checking approaches, cf. [27]. Colors are utilized to visual-
ize that an execution event is either most likely related to
an anomaly (red) or not (i.e., benign behavior ↦→ green),
see Fig. 5 for an example application of this visualization.
In comparison to the A_Viz visualization details on the
violated rules are not provided.

No support represents the status quo in existing work, cf. [3].
Here, a process analyst only receives the information that a
given execution trace contains one or more anomalous ex-
ecution events, while additional details about which events
are likely affected/related by/to anomalies are not pro-
vided. Fig. 6 gives an example for this. Note, this trace vi-
sualization uses a gray background color to enable the dif-
ferentiation between this visualization style and the other
two alternatives presented here.

Fig. 5. Anomaly visualization using colors (example). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Example without visualization support.

Task Generation Procedure For each of the two documentation
types three matching execution traces were created (i.e., six in
total) and mutated to contain randomly chosen anomalies, on
randomly chosen events, with random strengths (at least/most
2/4 events were mutated for each trace) — comparably to the
mutation approach applied in Section 4. Each of the mutated
traces was visualized in all three style (i.e., 18 different visual-
izations were generated in total). For each participant the order
of traces was randomized along with the visualization styles.
While doing so it was ensured that the traces match the doc-
umentation handed out to the group the respective participant
belongs to. Note, each of the three traces was visualized in a
randomly chosen style while ensuring that each participant deals
with each visualization style exactly once (i.e., each participant
had to analyze three traces, each trace was visualized in a unique
visualization style).

By following this computer aided and randomized design
we aimed at avoiding learning effects and selection bias. Further,
the tasks, traces, processes, and visualizations given throughout
the experiment are not taken from the material of the two
related courses. All materials handed out to the students are pub-
licly available at https://github.com/KristofGit/A_Viz to support
a replication of the study. This includes a preparatory document
which provides basic information on BPMN and the way the
execution traces and its events are visualized throughout the
experiment. In addition to the two documentation types, all
anomalous traces in the three different visualizations, and the
utilized master data sheet are included. The latter is utilized
to collect data about previous experience in related areas (such
as process research) from the participants (at the start of the
experiment). After the experiment that sheet was utilized again
to document and obtain a general impression concerning the
three different visualization styles. For this questions were asked,
such as, which of the three visualization styles resulted in the
highest confidence that no anomaly was overlooked or that the
reported anomalies were, in fact, true positives.
Pre Test Four weeks before the experiments, pre-tests were con-
ducted with four experts to verify if the created documentation
was clear and understandable, the technical infrastructure was
capable, the tasks were doable in time, and all necessary infor-
mation was provided before and during the experiment. With
regards to the latter aspects it was planned that a single group
does not require more than 60 min to complete the given tasks

https://github.com/KristofGit/A_Viz

12 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Table 6
Anomaly report correctness. Optimal documentation (strict).

A_Viz Colors No support

Temporal 1.00 0.91 0.83
SoD 1.00 1.00 0.83
BoD 1.00 0.83 1.00
Missing Act. 1.00 0.80 0.83
Swapped Act. 1.00 1.00 0.83
New Act. 1.00 0.83 1.00

Table 7
Anomaly report correctness, typical documentation (strict).

A_Viz Colors No support

Temporal 1.00 0.75 0.60
SoD 1.00 0.50 0.50
BoD 0.88 0.60 0.50
Missing Act. 1.00 0.72 0.81
Swapped Act. NA NA NA
New Act. 1.00 0.83 1.00

Table 8
Anomaly report correctness, optimal documentation (relaxed).

A_Viz Colors No support

Temporal 1.00 1.00 0.83
SoD 1.00 1.00 1.00
BoD 1.00 1.00 1.00
Missing Act. 1.00 0.80 1.00
Swapped Act. 1.00 1.00 0.83
New Act. 1.00 1.00 1.00

Table 9
Anomaly report correctness, optimal documentation (relaxed).

A_Viz Colors No support

Temporal 1.00 0.75 0.60
SoD 1.00 1.00 1.00
BoD 0.88 0.60 1.00
Missing Act. 1.00 0.72 0.81
Swapped Act. NA NA NA
New Act. 1.00 0.83 1.00

(i.e., to read the provided documentation and spot anomalies
in three different execution traces). Those 60 min comprise of
a 15 min preparation session which reiterates the objective of
the experiment, answers questions with regards to the different
visualization types and the provided process documentation. All
participants were able to complete the experiment within the 60
min period (during the pre test and the real experiment).

Based on the feedback gathered throughout the pre tests some
minor changes were performed, ranging from fixing typos to
slight wording adaptions to prevent potential misunderstandings.
Overall, the feedback was positive and no critical issues were
observed.
Experiment Execution Two weeks before the experiment five
minute talks about its goals and motivations were given through-
out one session of both courses (i.e., WT and BUS). Those talks
motivated the relation of the experiment to the respective course
and outlined the respective benefits each student could gain
when participating (one/two bonus points could be earned by
participating in WT/BUS).

Before these talks preparatory material was made available
together with a registration form at CEWebS5 to enable poten-
tial participants to sign up for their preferred group/timeslot.
CEWebS is a custom e-learning platform which is utilized by
a number of computer science courses at the University of Vi-
enna (including WT and BUS). The preparatory material and all

5 https://cewebs.cs.univie.ac.at/

other materials contain informal natural language descriptions
of approaches and tasks along with practical examples. This en-
abled us to present the material equally to each participant in
an approachable manner, as suggested in [44–46]. Note, while
performing the experiment all participants were always able to
access all the material at once.

Before the beginning of each group timeslot each attending
participant was seated randomly and the experiment materials
were handed out as printed documents. The latter used a com-
bination of A4 and A3 pages whenever appropriate to increase
content readability and clarity (e.g., the process model documen-
tation was always printed on A3 pages so that no page flips
are necessary by the participants). Next, the participants were
brought up to speed about the tasks, visualization styles used, and
the general procedures to follow. This included the website which
was utilized by each participant to report identified anomalies.
Data Set Collection Throughout the experiment each partici-
pant described/reported identified anomalies by using a custom
made website. On this website it was possible to select (a) the
event which was the source of an anomaly (or that an expected
event is missing), and (b) the anomaly type (i.e., missing activity,
swapped activity, novel activity, SoD or BoD violation or temporal
violation). Each anomaly could be reported individually until
the participant decided that all anomalies for the current trace/
task were identified and switched over to the next task/trace.
Utilizing an electronic data collection (i.e., anomaly reporting)
system enabled us to automatically track each participants’ ac-
tions (e.g., when he or she started with reporting anomalies and
when this process was completed for a given task/trace). Further,
it prevents the occurrence of equivocal markings, timestamp doc-
umentations or that participants forget to annotate all necessary
details — as it was observed, e.g., in [47].

During their work each participant utilized a laptop computer
provided by the researchers which had all the necessary tools
(such as, the website utilized to report anomalies) already prein-
stalled. From these machines no network connection was possible
and the participants were arranged in a way that limit opportu-
nities for cheating — which was further hampered by the random
trace/task/visualization style order each participant was assigned
with. Note, the publicly available material collection also contains
a copy of the beforehand mentioned electronic data collection
(i.e., anomaly reporting) solution (website, resp.). Further, the raw
data collected throughout the experiment is available at https:
//github.com/KristofGit/A_Viz.
Analysis: 25 participants took part in the experiment. Each partic-
ipant was assigned with a unique combination of documentation
type, trace order, and trace visualization style. Tables 6 and 7 give
the results when applying a strict analysis of the anomaly reports.
Here strict means that an anomaly is only assumed as correctly
reported if the anomaly type and the culprit event were correctly
identified. In comparison, Tables 8 and 9 give the results when
applying a relaxed analysis, i.e., an anomaly is also counted as
detected if the correct anomaly type was chosen, but the culprit
event was wrong. Note that the results collected for the typical
documentation do not contain any details on anomalies caused
by swapped activity as this mutation operator was never applied
on the related traces due to the random nature of the mutation
selection and application.

In all scenarios, A_Viz (average correctness 0.98) outperforms
visualization approaches Colors (average correctness 0.82) and
No support (average correctness 0.79). While the longest exper-
iment run took 55 min from start to completion the shortest
took 35 min. Overall, it was found that experts were, on average,
able to complete the given tasks faster than non-experts, mainly,
because they extracted the necessary details from the given doc-
umentations faster. An overview on the anomaly reporting times

https://cewebs.cs.univie.ac.at/
https://github.com/KristofGit/A_Viz
https://github.com/KristofGit/A_Viz
https://github.com/KristofGit/A_Viz

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 13

Table 10
Average anomaly report duration, optimal documentation.

A_Viz Colors No support

Temporal [sec] 55 150 63
SoD [sec] 132 106 35
BoD [sec] 49 144 50
Missing Act. [sec] 145 50 97
Swapped Act. [sec] 235 107 65
New Act. [sec] 105 44 50

Table 11
Average anomaly report duration, typical documentation.

A_Viz Colors No support

Temporal [sec] 69 131 43
SoD [sec] 82 57 39
BoD [sec] 119 99 138
Missing Act. [sec] 106 190 138
Swapped Act. [sec] NA NA NA
New Act. [sec] 38 311 91

is given in Tables 10 and 11. At first, it might seem that the
participants were significantly faster when reporting anomalies
when not being supported by the visualization. However, this
was likely not the case as it was observed that the ‘‘No support’’
visualization was frequently handled in a different way than,
e.g., A_Viz, i.e., the participants first extracted all the anomalies
in advance and subsequently entered them into the report web-
site in bulk which distorts the collected durations/timestamps.
Hence, the related data on temporal behavior must be taken with
caution.

Another difference between experts and non-experts could
be spotted in the result quality: experts made almost no errors
throughout the experiment. The few errors made by experts
occurred at tasks which were not supported by A_Viz. Unfortu-
nately, only six experts participated in the experiment so that a
clear differentiation between the compared scenarios is hardly
possible.

When comparing relaxed and strict results it seems that al-
most all anomalies were identified by the participants when
applying a relaxed analysis, cf. Tables 8 and 9. However, it was
found that the participants frequently started to spot anomalies
‘‘everywhere’’ when being unsure if some behavior is anomalous
or not. This effect was especially visible in the data collected for
the No support visualization and seems to be less significant
the more support the visualization provides — which could be
an indicator that the proposed visualizations increase under-
standability. One interpretation is that providing no root cause
analysis support could motivate analysts to become overly sus-
picious which could potentially increase the likelihood to choose
incorrect anomaly countermeasures.
Discussion & Impact When preparing the visualization we as-
sumed that the more support and information is provided by
a visualization the easier, precise, and faster the identification
of individual anomalies, hidden in a given execution trace, be-
comes. However, this assumption was only partly confirmed by
the results and the oral feedback provided by the participants.

In detail: for ‘‘simple’’ control flow related tasks such as re-
porting novel or missing activities the No support visualization
outperformed the Color visualization. We refer to such tasks as
being simple as, e.g, comparing the trace with a given process
model is sufficient to solve them. In comparison, resource or
temporal behavior violations require to correlate multiple events
at once. Based on our observations a likely reason for this is
that without any support the participants (a) invested more ef-
fort and checked for anomalies more thoroughly, (b) marked
observations and anomalies on the provided handouts, and (c)

checked and verified more potential cases of anomalous behavior
before starting to enter any information into the anomaly report
website.

These observations were also confirmed by oral feedback pro-
vided by the participants after completing the experiment.

Nevertheless, it was found that A_Viz outperformed both com-
parison approaches. This is, most likely, as it explicitly points
out anomalies which, as we assume, are relatively hard to spot
(i.e., anomalies related to resources and temporal behavior). The
personal preferences expressed by each participant on the mas-
ter data sheet support this impression, i.e., A_Viz dominates
the categories ‘‘highest confidence’’ and ‘‘personal preference’’.
However, given the limited amount of participants and scenarios
further studies must be performed to verify and expand these
observations.

When expanding the outlined idea of simple and more chal-
lenging tasks it could be observed that the application of sup-
portive visualizations, i.e., Colors and A_Viz, seems the more
beneficial the more complex a task becomes. For example, we
assume that the identification of anomalies is simpler when ana-
lyzing traces related to the ‘‘optimal documentation’’ than when
analyzing traces related to the ‘‘typical documentation’’. This
assumption is motivated by the fact that the optimal documen-
tation already describes, e.g., resource constraints in an informal
manner while the typical documentation requires to deduce them
from a set of execution traces. The results in Tables 6 and 7 seem
to support this assumption. Hence, we found that A_Viz seems
to be especially helpful if the process documentation is outdated
or missing — which we assume to be a realistic and common
situation for typical anomaly detection scenarios. Nevertheless,
additional studies are necessary to verify if this observation holds
when given, e.g., more complex process executions and process
models as the models utilized here only contained 7 activities
each and a small amount of basic gateways (parallel and XOR).
Limitations and Extensions The conducted A_Viz evaluation fol-
lowed the assumption that organizations have to cope with a
wide range of domains, process models, and anomaly reports
simultaneously. Accordingly, the respective expert for each do-
main, process model, and execution – which was identified as
being anomalous – is potentially, not available all the time. Hence,
based on our observations, generic Business Process Management
(BPM) experts are frequently forced into the role of ‘‘limited’’
domain experts and business analysts. For example, by reading
up on the process model documentation before deciding on and
conforming reported anomalies (as simulated throughout this
experiment).

This also motivated the applied visualization styles (e.g., lan-
guages and symbols), which we found to be well known to the
targeted BPM user group. For this a minimalistic visualization
was implemented that represents the cause (the IF part of each
rule) and effect (the THEN part of each rule) of each reported
anomaly in a condensed form. This enables to represent all the
relevant information in close proximity to each other to support
deductions on an execution’s anomaly state (e.g., to confirm an
anomaly and terminate the related execution).

Accordingly, while the proposed visualization is well suited
for BPM experts, less specialized stakeholders, such as, managers
will likely struggle with the chosen representation without ad-
ditional training. Further, preparing fundamental security related
changes based on identified anomalies and root causes requires
to incorporate analysts which have a deep understanding of the
related domains (i.e., domain experts). This scenario was not
evaluated here, but is seen as a promising extension for future
work. Hence, we see A_Viz mainly as a first step towards creating
awareness for supporting root cause analysis in the business
process anomaly detection domain.

14 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Fig. 7. Related areas.

6. Related work

(Business Process) Anomaly detection employs techniques
from areas, such as, data mining and machine learning and is
relevant for a number of application domains, e.g., intrusion
and fraud detection [18]. In particular, anomaly detection in the
business process domain combines two viewpoints: Firstly, a
method side which applies process-oriented techniques, such as,
conformance checking along with techniques from mining cross-
sectional and temporal data and, secondly, the application side,
i.e., the detection of deviations in process execution behavior.
Hereby, it is related and influenced by a range domains and con-
cepts stemming from data and process mining but also security
in general, see Fig. 7. This is because detecting anomalies is often
connected with security issues [4], for example, the detection of
fraud and misuse. In the following, we discuss related approaches
from the security domain and from the process domain as well as
approaches on root cause analysis. The discussions also address
the method point of view.

6.1. Anomaly detection in the security domain

In the security domain, anomaly detection and root cause anal-
ysis are major research areas. However, existing approaches are
too specialized to be applied to process data, cf. [19,48], because
they focus on single unique use cases and data formats, such as,
specific network protocols, e.g., the Session Initiation Protocol,
cf. [49]. These approaches can hardly be generalized and applied
to process execution logs which hold different data, formats, and
contextual attributes. In comparison, generic and more flexible
anomaly detection approaches from the data analysis domain
frequently show a sub par performance when being applied on
process executions, cf. Table 5 and [31].

One could argue that instead of applying anomaly detection
the process definition could be secured by applying security
focused modeling notations, cf. [23]. In real world scenarios, this
would require to be aware of all potential sources for security
incidents during the design phase and to constantly update the
processes to meet novel security challenges. In comparison the
proposed anomaly detection approach is self learning and can
also deal with process changes automatically.

This flexibility also differentiates the proposed approach from
existing work, e.g., [2], which was found to frequently apply
either overly strict signatures [3] (potentially resulting in false
positives) or soft matchers, cf. [19]. Soft matchers widen the area
of behavior which a signature matches to. Hereby, the risk of
false positives can be reduced. However, as soft matchers require
domain and expert knowledge and are manually defined we

assume that they are hardly applicable given the huge amount
of processes which are currently in use. We assume that the
proposed automatic approaches, e.g., to dynamically choose a
comparison trace based on its similarity or to factor in rule
significance, are necessary.

6.2. Detecting anomalies in process behavior

This section provides an overview on anomaly detection ap-
proaches in process behavior based on the systematic literature
study in [3]. One option to categorize the approaches is based
on the applied method, e.g., by distinguishing supervised learning
and unsupervised learning methods.

For supervised learning classification is applied as follows: the
process execution data, i.e., the logs, are considered as labeled
training data that does not contain any anomalies. From this,
a classifier is learned and new process instance data can be
classified into non-anomalous or anomalous behavior. Based on
the technique, the classifier varies.

For process mining techniques, the classifier is typically a
reference process model that is discovered from the training
data, cf. [50–54]. By contrast, [55] mines an automaton and
is specifically tailored to deal with infrequent behavior (which
would, elsewise, be interpreted as anomalous). [56] advocates an
anomaly score for sliding windows on the log data.

In comparison, conformance checking and filtering techniques,
cf. [57–59], show some resemblance, e.g., to [50], as they are
also capable of detecting deviations between process models and
process executions, cf. [60,61]. However, we were left with the
impression that, while conformance checking and filtering show
potential, related techniques are not perfectly up to the task. This
is, because related conformance checking and filtering work, for
example, was found to be ‘‘overly’’ strict which can increase false
positive rates — a drawback which similar process mining based
approaches, which were mentioned beforehand, such as [55], mit-
igate. For example, by precisely relaxing mined process models
and related anomaly detection thresholds.

For rule mining techniques – such as, the work at hand – rules
are derived in order to serve as a classifier. An approach based
on Support Vector Machines (SVM) is presented in [62]. The most
comparable work to the approach at hand is [63]. It applies asso-
ciation rules for anomaly detection in processes. However, rules
are largely manually generated (e.g., a user define the expected
maximum activity duration) and order dependencies between
activities are not verified.

In [19], we present an approach to detect temporal anomalies
for multiple instances that is based on time series mining.

Unsupervised approaches are clustering-based and aim at de-
termining clusters of non-anomalous and anomalous behavior
where the latter is most likely represented by small and scattered
clusters. The clusters are based on similarity between process ex-
ecutions, e.g., based on the resources [64], the temporal perspec-
tive [65], and the control flow [66]. Other control flow oriented
approaches include [67,68]. In [7], clustering is combined with
likelihood graphs.

Further approaches employ neural networks, cf. [69], signa-
tures based on regular expressions [70], and statistical anomaly
detection [71].

Currently, several shortcomings in existing work hinder the
application of anomaly detection in real world applications.
At first, a significant amount of process anomaly detection ap-
proaches support only single process perspectives. Secondly, ex-
isting work does hardly support the analysis of identified anoma-
lies and mostly applies monolithic signatures which are hard to
grasp, struggle with noise and ad hoc changes, but also cannot be
partially updated whenever the underlying process changes.

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 15

6.3. Compliance checking and root cause analysis

Compliance checking approaches such as [9,27] also utilize
rule-based definitions of expected process behavior. The goal is
to analyze the process definition and execution for compliance
violations and their root causes, cf. [9,72]. However, such work
typically does not take noise and ad hoc changes into account,
possibly resulting in false positives. Moreover, rule formalisms
such as LTL enable expressive rules, but at the price of increased
complexity. This work, by contrast, aims at simplicity, balanced
with flexibility. Moreover, the definition of the compliance rules
often requires in depth domain and process knowledge and hence
results in manual effort. The work at hand, by contrast, offers
automatic mining of association rules.

As said before a crucial step in compliance management is
the analysis and explanation of root causes. The process of root
cause analysis comprises the following steps according to [12]:
at first, the problem should be understood. Here tools such as
flow charts are proposed. In the approach at hand, accordingly,
process models can mined from the log. Secondly, a problem
cause brainstorming should take place. This step can be added
to the approach if desired. Thirdly, the problem cause data is
collected and analyzed. These steps are achieved by the associ-
ation rule mining approach. Subsequently, the root cause is to be
identified. Here it is suggested to use cause-and-effect charts as
they provide ‘‘an easily applied tool used to analyze possible causes
of a problem’’ [12]. Accordingly, this work uses cause-and-effect
charts based on Ishikawa (‘‘fishbone’’) diagrams. The final steps
of problem elimination and solution implementation are out of
scope of this work, but constitute promising research directions
for future work.

Alternatives for anomaly and root cause visualization are
provided in literature. In [73], a visualization for anomalies in
business processes is provided. For this, impact factors can be
specified and related to a fraud amount. This approach can be
used to further investigate factors behind the deviations, but
does not analyze the process deviations directly. An approach to
discover deviations between process graphs and their instance
traffic is offered in [74]. Deviations can be spotted, but the root
cause is neither visualized nor explained. A survey on visual
analytics options based on current process mining frameworks
such as ProM.6 is provided in [75] For spotting anomalies in
process behavior the described visualizations using dotted charts
seems particularly useful, however, it does not shed light on their
root causes.

Further related work can be found in the predictive monitoring
area, cf. [76,77]. The latter, strives to predict the outcome and
execution behavior of business processes and business process
changes. While such predictions provide valuable insights for
business process management, they are only of limited used for
anomaly root cause analysis. This is because such work typically
focuses, e.g., on predicting execution costs or durations but not
on describing the cause and effects of anomalous behavior.

7. Discussion and outlook

The paper set out three research questions, i.e., how to detect
anomalies by reducing false positives (RQ1), how to balance effort
and flexibility for anomaly detection (RQ2), and how to explain
the root cause for anomalies to users (RQ3). We conclude that
the proposed approach is able to detect anomalies (↦→RQ1) as
the conducted evaluation showed an average anomaly detec-
tion recall of 89%. This goes hand in hand with a substantial
simplification of the generated signatures compared to previous

6 http://www.processmining.org/prom/start

work in [7] (complex likelihood graphs vs. short rules) which
in principle fosters the understandability of the signatures and
identified anomalies (↦→RQ2).

Both research questions RQ1 and RQ2 require an adequate
treatment of flexibility by ad hoc process changes and noise as
both might lead to false positives or in other words an insufficient
distinction between benign and malign behavior.

The proposed approach applies the common assumption that
benign behavior is more likely than anomalous behavior, cf. [3].
Nevertheless benign noise and ad hoc changes still occur in the
signature mining data (i.e., L) but also in the traces that are
analyzed for anomalies, cf. [3]. These kinds of behavior can, if the
applied signature is too strict or overfitting, be misinterpreted
as being anomalous and so result in false positives. Hence, the
proposed approach applies three strategies to mitigate this risk:

Similarity: given traces are not compared with strict fixed signa-
tures or thresholds. Instead the signature and the expected
behavior is individually and automatically adapted for the
trace that is analyzed by dynamically selecting a similar
trace in L which is utilized as a source for comparable
behavior.

Rule significance: the significance and impact of each rule is dy-
namically calculated during the anomaly detection phase.
For this the rule support given by L (i.e., the percentage of
traces in L that the rule supports) is utilized. Hence, each
rule gets automatically assigned an individual significance.

Signature strictness: it is not necessary that a trace matches all
rules a signature R is composed of. Instead the applied
approach aggregates the support of each rule such that a
trace can ‘‘compensate’’ an unsupported rule by supporting
other rules. Such a relaxed approach, in comparison to
stricter existing work, cf., [50], provides a basis to deal with
noise and ad hoc changes, cf. [19].

We conclude that the approach takes a next step towards the
reduction of false positives by being aware of process change and
noise.

As the identified anomalies (and related traces) can be com-
plex and hard to understand we argue that anomaly detection
approaches should support experts when analyzing anomalies
along with the related alarms. We assume that it is necessary
to identify but also to understand anomalies to choose appropri-
ate anomaly countermeasures. For this, inter alia, the following
information is required: (a) which part of an execution trace is
affected by an anomaly; and (b) the anomaly severity, cf. [5].
It is shown how this information is provided by the proposed
rule based anomaly detection approach (↦→ RQ3). Moreover, the
proposed root cause visualization can foster the understanding
and identification of root causes of anomalies. To our knowledge
this is the first process anomaly detection approach that does so.

In future work, the performance of the proposed approach will
be further optimized. This is because currently each of the three
rule types is mined independently of each other. However, we
found that for example the control flow rules and the temporal
rules partly have connected conditions (i.e., the respective ac-
tivities they apply to). We assume that such similarities can be
exploited. Moreover, we will analyze if the proposed approach
can be applied to clean up execution logs. Hereby, if logs that
are riddled with anomalous traces they could be ‘‘cleaned’’ by the
proposed unsupervised approach so that they can be successfully
utilized by existing semi- or even supervised anomaly detection
approaches, cf. [3]. Finally, we will extend the conducted A_Viz
evaluation by incorporating domain experts and more complex
execution scenarios.

http://www.processmining.org/prom/start

16 K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438

Acknowledgement

This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Gartner, Gartner says detection and response is top security priority
for organizations in 2017, 2017, Newsroom Press Release. https://gtnr.it/
2HsXdOG.

[2] F. Bezerra, et al., Anomaly detection using process mining, in: Enterprise,
Business-Process and Information Systems Modeling, Vol. 29, Springer,
2009, pp. 149–161.

[3] K. Böhmer, S. Rinderle-Ma, Anomaly detection in business process runtime
behavior–challenges and limitations, 2017, arXiv arXiv:1705.06659.

[4] M. Leitner, S. Rinderle-Ma, A systematic review on security in Process-
Aware Information Systems - Constitution, challenges, and future
directions, Inf. Softw. Technol. 56 (3) (2014) 273–293.

[5] K. Julisch, Clustering intrusion detection alarms to support root cause
analysis, Inf. Syst. Secur. 6 (4) (2003) 443–471.

[6] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies, Springer, 2012.

[7] K. Böhmer, et al., Multi-perspective anomaly detection in business process
execution events, in: Cooperative Information Systems, Springer, 2016, pp.
80–98.

[8] C. Czepa, H. Tran, U. Zdun, T.T.T. Kim, E. Weiss, C. Ruhsam, Plausibility
checking of formal business process specifications in linear temporal logic,
in: CAiSE Forum, 2016, pp. 1–8.

[9] L.T. Ly, F.M. Maggi, M. Montali, S. Rinderle-Ma, W.M. van der Aalst,
Compliance monitoring in business processes: Functionalities, application,
and tool-support, Inf. Syst. 54 (2015) 209–234.

[10] R. Wieringa, Design Science Methodology for Information Systems and
Software Engineering, Springer, 2014.

[11] K. Böhmer, S. Rinderle-Ma, Association rules for anomaly detection and
root cause analysis in process executions, in: Advanced Information
Systems Engineering, 2018, pp. 3–18.

[12] B. Andersen, T. Fagerhaug, Root Cause Analysis: Simplified Tools and
Techniques, ASQ Quality Press, 2006.

[13] M. Ben-Daya, Failure mode and effect analysis, in: Handbook of
Maintenance Management and Engineering, Springer, 2009, pp. 75–90.

[14] G. Greco, A. Guzzo, L. Pontieri, Mining taxonomies of process models, Data
Knowl. Eng. 67 (1) (2008) 74–102.

[15] R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules,
in: Very Large Data Bases, Vol. 1215, 1994, pp. 487–499.

[16] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and
performance improvements, in: International Conference on Extending
Database Technology, Springer, 1996, pp. 1–17.

[17] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
M.-C. Hsu, Mining sequential patterns by pattern-growth: The prefixspan
approach, IEEE Trans. Knowl. Data Eng. 16 (11) (2004) 1424–1440.

[18] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey, Comput.
Surv. 41 (3) (2009) 15.

[19] K. Böhmer, S. Rinderle-Ma, Multi instance anomaly detection in business
process executions, in: Business Process Management, Springer, 2017,
pp. 77–93.

[20] G. Zimbrão, J.M. de Souza, V.T. de Almeida, W.A. da Silva, An algorithm
to discover calendar-based temporal association rules with item’s lifespan
restriction, in: The Second Workshop on Temporal Data Mining, 2002.

[21] M.H. Namaki, Y. Wu, Q. Song, P. Lin, T. Ge, Discovering graph temporal
association rules, in: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, ACM, 2017, pp. 1697–1706.

[22] C.-H. Chen, G.-C. Lan, T.-P. Hong, S.-B. Lin, Mining fuzzy temporal
association rules by item lifespans, Appl. Soft Comput. 41 (2016) 265–274.

[23] A.D. Brucker, I. Hang, G. Lückemeyer, R. Ruparel, SecureBPMN: Modeling
and enforcing access control requirements in business processes, in: Access
Control Models and Technologies, ACM, 2012, pp. 123–126.

[24] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining. 1st, Pearson
Addison Wesley, 2005.

[25] K. Böhmer, S. Rinderle-Ma, Probability based heuristic for predictive busi-
ness process monitoring, in: OTM Confederated International Conferences"
on the Move to Meaningful Internet Systems", Springer, 2018, pp. 78–96.

[26] M. Heravizadeh, J. Mendling, M. Rosemann, Dimensions of business pro-
cesses quality (QoBP), in: Business Process Management, Springer, 2008,
pp. 80–91.

[27] L.T. Ly, S. Rinderle-Ma, D. Knuplesch, P. Dadam, Monitoring business
process compliance using compliance rule graphs, in: On the Move to
Meaningful Internet Systems, Springer, 2011, pp. 82–99.

[28] I. Kaoru, What is Total Quality Control: The Japanese Way, Prentice Hall,
1985.

[29] D. Knuplesch, M. Reichert, A. Kumar, A framework for visually monitoring
business process compliance, Inf. Syst. 64 (2017) 381–409.

[30] T. Vogelgesang, G. Kaes, S. Rinderle-Ma, H. Appelrath, Multidimensional
process mining: Questions, requirements, and limitations, in: CAISE Forum,
Springer, 2016, pp. 169–176.

[31] S. Pauwels, T. Calders, An anomaly detection technique for business
processes based on extended dynamic Bayesian networks, in: ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 494–501.

[32] I. Teinemaa, A. Leontjeva, K.-O. Masing, BPIC 2015: Diagnostics of Building
Permit Application Process in Dutch Municipalities, BPI Challenge Report
72, 2015.

[33] N. Chinchor, B. Sundheim, MUC-5 evaluation metrics, in: Message
Understanding, in: Computational Linguistics, 1993, pp. 69–78.

[34] W.-K. Wong, A. Moore, G. Cooper, M. Wagner, Rule-based anomaly
pattern detection for detecting disease outbreaks, in: AAAI/IAAI, 2002,
pp. 217–223.

[35] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-
based local outliers, in: ACM SIGMOD Record, Vol. 29, No. 2, ACM, 2000,
pp. 93–104.

[36] H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek, Outlier detection in axis-
parallel subspaces of high dimensional data, in: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, 2009, pp. 831–838.

[37] A. Lazarevic, V. Kumar, Feature bagging for outlier detection, in: Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, ACM, 2005, pp. 157–166.

[38] A.P. Bradley, The use of the area under the ROC curve in the evaluation of
machine learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159.

[39] B. Hoisl, S. Sobernig, M. Strembeck, Comparing three notations for defining
scenario-based model tests: A controlled experiment, in: Quality of Infor-
mation and Communications Technology (QUATIC), 2014 9th International
Conference on the, IEEE, 2014, pp. 180–189.

[40] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K.
El Emam, J. Rosenberg, Preliminary guidelines for empirical research in
software engineering, IEEE Trans. Softw. Eng. 28 (8) (2002) 721–734.

[41] P. Runeson, Using students as experiment subjects–an analysis on grad-
uate and freshmen student data, in: Empirical Assessment in Software
Engineering, 2003, pp. 95–102.

[42] M. Svahnberg, A. Aurum, C. Wohlin, Using students as subjects-an empiri-
cal evaluation, in: Empirical Software Engineering and Measurement, ACM,
2008, pp. 288–290.

[43] M. Höst, B. Regnell, C. Wohlin, Using students as subjects – a comparative
study of students and professionals in lead-time impact assessment, Empir.
Softw. Eng. 5 (3) (2000) 201–214.

[44] M. Knobelsdorf, C. Frede, Analyzing student practices in theory of compu-
tation in light of distributed cognition theory, in: Proceedings of the 2016
ACM Conference on International Computing Education Research, ACM,
2016, pp. 73–81.

[45] H. Habiballa, T. Kmet’, Theoretical branches in teaching computer science,
Internat. J. Math. Ed. Sci. Tech. 35 (6) (2004) 829–841.

[46] F.C. Richardson, R.M. Suinn, The mathematics anxiety rating scale:
psychometric data, J. Couns. Psychol. 19 (6) (1972) 551.

[47] C. Czepa, U. Zdun, On the understandability of temporal properties for-
malized in linear temporal logic, property specification patterns and event
processing language, IEEE Trans. Softw. Eng. (2018).

[48] M. Gupta, J. Gao, C.C. Aggarwal, J. Han, Outlier detection for temporal data:
A survey, Knowl. Data Eng. 26 (9) (2014) 2250–2267.

[49] K. Rieck, S. Wahl, P. Laskov, P. Domschitz, K.-R. Müller, A self-learning
system for detection of anomalous sip messages, in: Services and Security
for Next Generation Networks, Springer, 2008, pp. 90–106.

[50] W.M. Van der Aalst, A.K.A. de Medeiros, Process mining and security: De-
tecting anomalous process executions and checking process conformance,
Theoret. Comput. Sci. 121 (2005) 3–21.

[51] R. Accorsi, T. Stocker, On the exploitation of process mining for security
audits: the conformance checking case, in: ACM Symposium on Applied
Computing, 2012, pp. 1709–1716.

[52] R. Rieke, M. Zhdanova, J. Repp, R. Giot, C. Gaber, Fraud detection in mobile
payments utilizing process behavior analysis, in: Availability, Reliability
and Security, 2013, pp. 662–669.

[53] F. de Lima Bezerra, J. Wainer, Algorithms for anomaly detection of traces in
logs of process aware information systems, Inf. Syst. 38 (1) (2013) 33–44.

[54] S. Mardani, M.K. Akbari, S. Sharifian, Fraud detection in process aware
information systems using MapReduce, in: 2014 6th Conference on
Information and Knowledge Technology (IKT), IEEE, 2014, pp. 88–91.

https://gtnr.it/2HsXdOG
https://gtnr.it/2HsXdOG
https://gtnr.it/2HsXdOG
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb2
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb2
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb2
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb2
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb2
http://arxiv.org/abs/1705.06659
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb4
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb4
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb4
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb4
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb4
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb5
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb5
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb5
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb6
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb6
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb6
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb7
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb7
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb7
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb7
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb7
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb8
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb8
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb8
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb8
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb8
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb9
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb9
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb9
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb9
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb9
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb10
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb10
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb10
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb11
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb11
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb11
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb11
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb11
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb12
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb12
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb12
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb13
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb13
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb13
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb14
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb14
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb14
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb15
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb15
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb15
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb16
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb16
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb16
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb16
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb16
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb17
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb17
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb17
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb17
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb17
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb18
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb18
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb18
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb19
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb19
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb19
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb19
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb19
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb21
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb21
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb21
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb21
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb21
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb22
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb22
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb22
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb23
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb23
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb23
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb23
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb23
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb24
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb24
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb24
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb25
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb25
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb25
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb25
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb25
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb26
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb26
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb26
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb26
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb26
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb27
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb27
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb27
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb27
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb27
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb28
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb28
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb28
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb29
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb29
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb29
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb30
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb30
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb30
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb30
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb30
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb32
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb32
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb32
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb32
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb32
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb33
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb33
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb33
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb35
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb35
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb35
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb35
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb35
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb36
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb36
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb36
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb36
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb36
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb37
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb37
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb37
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb37
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb37
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb38
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb38
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb38
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb39
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb40
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb40
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb40
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb40
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb40
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb41
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb41
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb41
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb41
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb41
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb42
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb42
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb42
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb42
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb42
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb43
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb43
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb43
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb43
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb43
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb44
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb45
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb45
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb45
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb46
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb46
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb46
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb47
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb47
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb47
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb47
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb47
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb48
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb48
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb48
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb49
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb49
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb49
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb49
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb49
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb50
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb50
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb50
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb50
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb50
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb52
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb52
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb52
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb52
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb52
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb53
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb53
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb53
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb54
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb54
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb54
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb54
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb54

K. Böhmer and S. Rinderle-Ma / Information Systems 90 (2020) 101438 17

[55] R. Conforti, M.L. Rosa, A.H.M. ter Hofstede, Filtering out infrequent behavior
from business process event logs, IEEE Trans. Knowl. Data Eng. 29 (2)
(2017) 300–314.

[56] N. Gupta, K. Anand, A. Sureka, Pariket: Mining business process logs for
root cause analysis of anomalous incidents, in: Databases in Networked
Information Systems, 2015, pp. 244–263.

[57] S.J. van Zelst, M.F. Sani, A. Ostovar, R. Conforti, M.L. Rosa, Filtering spurious
events from event streams of business processes, in: Advanced Information
Systems Engineering - 30th International Conference, CAiSE 2018, Tallinn,
Estonia, June 11–15, 2018, Proceedings, 2018, pp. 35–52. http://dx.doi.org/
10.1007/978-3-319-91563-0_3.

[58] M.F. Sani, S.J. van Zelst, W.M.P. van der Aalst, Applying sequence mining
for outlier detection in process mining, in: On the Move to Meaningful
Internet Systems. OTM 2018 Conferences - Confederated International
Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October
22-26, 2018, Proceedings, Part II, 2018, pp. 98–116. http://dx.doi.org/10.
1007/978-3-030-02671-4_6.

[59] N. Tax, N. Sidorova, W.M.P. van der Aalst, Discovering more precise process
models from event logs by filtering out chaotic activities, J. Intell. Inf. Syst.
52 (1) (2019) 107–139, http://dx.doi.org/10.1007/s10844-018-0507-6.

[60] M. Alizadeh, X. Lu, D. Fahland, N. Zannone, W.M.P. van der Aalst, Linking
data and process perspectives for conformance analysis, Comput. Secur. 73
(2018) 172–193, http://dx.doi.org/10.1016/j.cose.2017.10.010.

[61] G. Li, W.M.P. van der Aalst, A framework for detecting deviations in
complex event logs, Intell. Data Anal. 21 (4) (2017) 759–779, http://dx.
doi.org/10.3233/IDA-160044.

[62] F.M. Maggi, A.J. Mooij, W.M.P. van der Aalst, Analyzing vessel behavior
using process mining, in: Situation Awareness with Systems of Systems,
2013, pp. 133–148.

[63] R. Sarno, et al., Hybrid association rule learning and process mining for
fraud detection, Comput. Sci. 42 (2) (2015).

[64] T. Zhu, Y. Guo, J. Ma, A. Ju, Business process mining based insider threat
detection system, in: Advances on P2P, Parallel, Grid, Cloud and Internet
Computing, 2016, pp. 467–478.

[65] P. Hsu, Y. Chuang, Y. Lo, S. He, Using contextualized activity-level duration
to discover irregular process instances in business operations, Inform. Sci.
391 (2017) 80–98.

[66] F. Folino, G. Greco, A. Guzzo, L. Pontieri, Mining usage scenarios in business
processes: Outlier-aware discovery and run-time prediction, Data Knowl.
Eng. 70 (12) (2011) 1005–1029.

[67] B. Depaire, J. Swinnen, M. Jans, K. Vanhoof, A process deviation anal-
ysis framework, in: Business Process Management Workshops, 2012,
pp. 701–706.

[68] C. Linn, D. Werth, Sequential anomaly detection techniques in busi-
ness processes, in: Business Information Systems Workshops, 2016,
pp. 196–208.

[69] T. Nolle, S. Luettgen, A. Seeliger, M. Mühlhäuser, Analyzing business
process anomalies using autoencoders, Mach. Learn. 107 (11) (2018)
1875–1893.

[70] K. Böhmer, S. Rinderle-Ma, Automatic signature generation for anomaly de-
tection in business process instance data, in: Enterprise, Business-Process
and Information Systems Modeling, 2016, pp. 196–211.

[71] A. Rogge-Solti, G. Kasneci, Temporal anomaly detection in business
processes, in: Business Process Management, 2014, pp. 234–249.

[72] E. Ramezani, D. Fahland, W.M.P. van der Aalst, Where did I misbe-
have? Diagnostic information in compliance checking, in: Business Process
Management, 2012, pp. 262–278.

[73] M.C. Hao, D.A. Keim, U. Dayal, J. Schneidewind, Business process impact
visualization and anomaly detection, Inf. Vis. 5 (1) (2006) 15–27.

[74] S. Kriglstein, G. Wallner, S. Rinderle-Ma, A visualization approach for
difference analysis of process models and instance traffic, in: Business
Process Management, 2013, pp. 219–226.

[75] S. Kriglstein, M. Pohl, S. Rinderle-Ma, M. Stallinger, Visual analytics in
process mining: Classification of process mining techniques, in: EuroVis
Workshop on Visual Analytics, 2016, pp. 43–47.

[76] A. Cuzzocrea, F. Folino, M. Guarascio, L. Pontieri, Predictive monitoring
of temporally-aggregated performance indicators of business processes
against low-level streaming events, Inf. Syst. 81 (2019) 236–266, http:
//dx.doi.org/10.1016/j.is.2018.02.001.

[77] C. Witt, M. Bux, W. Gusew, U. Leser, Predictive performance modeling
for distributed batch processing using black box monitoring and machine
learning, Inf. Syst. 82 (2019) 33–52, http://dx.doi.org/10.1016/j.is.2019.01.
006.

http://refhub.elsevier.com/S0306-4379(19)30490-9/sb55
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb55
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb55
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb55
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb55
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb56
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb56
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb56
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb56
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb56
http://dx.doi.org/10.1007/978-3-319-91563-0_3
http://dx.doi.org/10.1007/978-3-319-91563-0_3
http://dx.doi.org/10.1007/978-3-319-91563-0_3
http://dx.doi.org/10.1007/978-3-030-02671-4_6
http://dx.doi.org/10.1007/978-3-030-02671-4_6
http://dx.doi.org/10.1007/978-3-030-02671-4_6
http://dx.doi.org/10.1007/s10844-018-0507-6
http://dx.doi.org/10.1016/j.cose.2017.10.010
http://dx.doi.org/10.3233/IDA-160044
http://dx.doi.org/10.3233/IDA-160044
http://dx.doi.org/10.3233/IDA-160044
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb62
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb62
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb62
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb62
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb62
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb63
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb63
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb63
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb64
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb64
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb64
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb64
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb64
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb65
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb65
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb65
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb65
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb65
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb66
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb66
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb66
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb66
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb66
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb69
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb69
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb69
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb69
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb69
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb70
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb70
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb70
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb70
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb70
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb71
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb71
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb71
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb72
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb72
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb72
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb72
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb72
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb73
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb73
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb73
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb74
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb74
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb74
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb74
http://refhub.elsevier.com/S0306-4379(19)30490-9/sb74
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.is.2018.02.001
http://dx.doi.org/10.1016/j.is.2019.01.006
http://dx.doi.org/10.1016/j.is.2019.01.006
http://dx.doi.org/10.1016/j.is.2019.01.006

	Mining association rules for anomaly detection in dynamic process runtime behavior and explaining the root cause to users
	Introduction
	Problem statement and research questions
	Contribution and research method

	Requirements, fundamentals, and overall approach
	Design requirements
	Fundamental notions
	Overall approach

	ADAR based Anomaly Detection
	Association rule mining for Anomaly Detection
	Mining control flow ADARs
	Mining temporal ADARs
	Mining SoD and BoD ADARs

	ADAR based anomaly detection
	Fostering root Cause analysis and understandability

	Evaluating the Detection quality of the proposed Anomaly Detection approach
	Evaluating the proposed root Cause analysis visualization approach (AViz)
	Related work
	Anomaly detection in the security domain
	Detecting anomalies in process behavior
	Compliance checking and root cause analysis

	Discussion and outlook
	Acknowledgement
	Declaration of competing interest
	References

