
Journal Pre-proof

Formal foundations for responsible application integration

Daniel Ritter, Stefanie Rinderle-Ma, Marco Montali, Andrey Rivkin

PII: S0306-4379(19)30491-0
DOI: https://doi.org/10.1016/j.is.2019.101439
Reference: IS 101439

To appear in: Information Systems

Received date : 14 March 2019
Revised date : 13 July 2019
Accepted date : 10 September 2019

Please cite this article as: D. Ritter, S. Rinderle-Ma, M. Montali et al., Formal foundations for
responsible application integration, Information Systems (2019), doi:
https://doi.org/10.1016/j.is.2019.101439.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.is.2019.101439
https://doi.org/10.1016/j.is.2019.101439

Formal Foundations for Responsible Application Integration

Daniel Rittera,b, Stefanie Rinderle-Mab, Marco Montalic, Andrey Rivkinc

aSAP, Technology and Innovation, Germany
bUniversity of Vienna, Faculty of Computer Science, Austria

cUniversity of Bozen-Bolzano, Faculty of Computer Science, Italy

Abstract

Enterprise Application Integration (EAI) constitutes the cornerstone in enterprise IT landscapes that are
characterized by heterogeneity and distribution. Starting from established Enterprise Integration Patterns
(EIPs) such as Content-based Router and Aggregator, EIP compositions are built to describe, implement,
and execute integration scenarios. The EIPs and their compositions must be correct at design and runtime
in order to avoid functional errors or incomplete functionalities. However, current EAI system vendors use
many of the EIPs as part of their proprietary integration scenario modeling languages that are not grounded
on any formalism. This renders correctness guarantees for EIPs and their composition impossible. Thus this
work advocates responsible EAI based on the formalization, implementation, and correctness of EIPs. For
this, requirements on an EIP formalization are collected and based on these requirements an extension of
db-net, i.e., timed db-net, is proposed, fully equipped with execution semantics. It is shown how EIPs can be
realized based on timed db-nets and how the correctness of these realizations can be shown. Moreover, the
simulation of EIP realizations based on timed db-nets is enabled which is essential for later implementation.
The concepts are evaluated in many ways, including a proof-of-concept implementation and case studies.
The EIP formalization based on timed db-nets constitutes the first step towards responsible EAI.

Keywords: Enterprise application integration, enterprise integration patterns, petri nets, responsible
programming, trustworthy application integration

1. Introduction

With the growing number of cloud and mobile
applications, the importance of Enterprise Applica-
tion Integration (EAI) [1] has immensely increased.
Integration scenarios — essentially compositions of
Enterprise Integration Patterns (EIPs) [2] and their
recent extensions [3, 4, 5, 6] — describe typical
concepts in designing messaging systems as used
for EAI (e.g., the communication between these
applications). Due to the increasing heterogeneity
of endpoints and their distribution, trust into pro-
ductive integration solutions becomes even more
essential. This, in turn, requires to provide means
for a responsible development of integration solu-
tions (cf. “responsible programming” [7]) in order

Email addresses: danielr81@unet.univie.ac.at

(Daniel Ritter), stefanie.rinderle-ma@univie.ac.at
(Stefanie Rinderle-Ma), marco.montali@inf.unibz.it
(Marco Montali), andrey.rivkin@inf.unibz.it (Andrey
Rivkin)

to avoid design flaws such as functional errors or
incomplete functionality, starting with the EIPs.

Similar to Cerf [7] we say that users who define
integration solutions should have a clear sense of
responsibility for their reliable operation as well
as their resistance to compromise and error. That
means that the integration logic can only be trusted
if it is possible in principle to prove that it behaves
correctly. In turn, this means that users must be
enabled by means to express and specify what their
integration solution should do. We call a method
that takes this into account a responsible develop-
ment of integration solutions. The main properties
of this principle are a formal treatment of integration
patterns (i.e., their formalization within a framework
with clearly defined syntax and semantics, and that
supports formal analysis of its models), simulation
and validation. We conjecture that this will be-
come one of the key principles for the development
in shared responsibility environments like cloud or

Preprint submitted to Journal of LATEX Templates July 13, 2019

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

mobile computing. Moreover, it will constitute the
foundation for functionally correct compositions and
correctness-preserving improvements (e.g., optimiza-
tions).

However the current EAI system vendors use
many of the EIPs as part of their proprietary in-
tegration scenario modeling languages [3]. These
languages are not grounded on any formalism and,
hence, may produce models that are subject to the
design flaws mentioned above, e.g., functional errors.
Due to the missing formal definition, currently the
detection and analysis of these flaws are by large
performed manually. This results in huge effort and
potentially in mistakes. Hence, nowadays, EIPs can
rather be considered as a set of informal design so-
lutions than a formal language for modeling and
verifying correctness of integration patterns, thus
leaving the EAI vendors with their own proprietary
semantics and not allowing for a responsible de-
velopment. Our recent survey [3] identified a first
attempt towards formalization of some EIPs using
coloured Petri nets (CPNs) [8]. Although the CPN
colors abstractly stand for data types and CPNs
support the control flow through control threads
(i.e., tokens) progressing through the net, carrying
data conforming to colors, they cannot be used to
model, query, update, and reason on requirements
inherent to the extended EIPs [2, 3, 4, 5, 6] such as
persistent data or timings.

To overcome these limitations, a responsible devel-
opment of integration solutions, i.e., solutions that
can be thoroughly tested for their correctness at
design time, requires the formalization of its pat-
tern foundations. Therefore we follow a responsible
pattern formalization process that allows for the ob-
jectives: (i) formalization and (ii) realization of EIPs
as well as (iii) simulation of the EIP realizations
and (iv) their validation and verification. Figure 1
shows this process with its three main steps that we
subsequently discuss: pattern formalization, pattern
implementation, pattern correctness.

Formalization The formalization of a pattern starts
with capturing and defining its semantics. With
a thorough understanding of the pattern and its
variations, it can be formally represented. The
resulting formal pattern model can be analyzed
and verified (i.e., model checking). With model
checking capabilities, errors in patterns can
be found and either their semantics or formal
representation is revisited.

Implementations If model checking is not possible

Implement
in tool

Simulate

Pattern implementation

Pattern correctness

Pattern formalization

Define
semantics

Formal
representation

Check model

Configure

Instantiation of
solution design

Check
design

Test
design

Figure 1: Responsible pattern formalization process

or difficult, the formal patterns can be imple-
mented, configured and simulated in a suitable
tool. The simulation not only bridges the model
to implementation gap, but allows for an exper-
imental validation of a pattern.

Correctness The correctness of a pattern can be
decided according to its semantics, when put
into the context of a dedicated, scenario-specific
configuration, a test design, which specifies the
desired properties like the expected output of
a pattern simulation, for a given input. This
test design is instantiated and checked during
the simulation of the pattern. Any flaws found
during this step can results to another round
of formal or implementation adjustment.

We argue that existing approaches do not fully
support a responsible development and hence the
following research questions are formulated to guide
the design and development of an EIP formalization
living up to objectives ((i)–(iv)).

Q1 Which EAI requirements are relevant for the
formal definition of EIPs? To which extent are
they met by existing approaches?

Q2 How to design an EIP formalization to meet
relevant EAI requirements and objectives (i)–
(iv)?

Q3 How to realize the EIPs and real-world integra-
tion scenarios?

Q4 How to accomplish correctness testing and sim-
ulation of EIP realizations?

The conference paper [9] that is extended in this
work has provided the foundations for Q1–Q2 (and
partially Q3). The formalization of EIP is based
on db-nets [10] as a database-centric extension of

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

choutchin

chtimer
		

int*intList

Sequences
int*int*string

chpT1

T2

Net

colset	intList	=	list	INT;
var	msg,	seq,	sid:	INT;		
var	msgs:	intList;	
var	status,	data:	string;

Aggregate

T3

...

Actions

			:- SELECT DISTINCT seq,	list_agg(msg)	FROM Messages	GROUP BY seq;
:- SELECT * FROM Sequences;

Queries

T4

Sequences
SID:	int STATUS:	string

Messages
MID:	int DATA:	stringSEQ:	int

{"complete",
"expired"}

DB	schema

SEQ:	int

Figure 2: Aggregator pattern variant as a timed db-net

CPNs (incl. atomic transactions). In [9], db-nets
have been extended by EAI requirements such as
time, resulting in so called timed db-nets. It has been
shown that with timed db-nets a responsible devel-
opment of integration solutions becomes possible.
The following example that leverages timed db-nets
illustrates selected EIPs and their requirements on
a formalization.

Example 1. A commonly used stateful Aggrega-
tor pattern [2] is designed to combine a number of
input messages into a single output message. In the
stateful version, the aggregator also stores collected
messages in a persistent storage. The messages can
be collected according to a Message Sequence [2],
which identifies a group of coherent messages. Fig-
ure 2 shows how the stateful aggregator pattern can
be represented using timed db-nets. While the for-
mal aspects will be specified throughout this work
(e.g., data, queries, actions, transactions, time), the
aggregator’s semantics are subsequently described

in timed db-net terms.
The aggregator starts with a number of input mes-

sages in its input channel that is represented with
a place chin. Every message consists of a unique
message identifier msg and an information block
data, and will be eventually put into the database
(cf. DB schema in Figure 2 for more detailed
database schema description). To collect messages
from the input channel and assign them to cor-
rect sequences, the net correlates every incoming
(msg, data) token to those in place chp, that, in
turn, stores pairs of sequences seq and lists of mes-
sages msgs that have been already collected and
stored in the persistence storage.1 If the message is
the first in a sequence, new entries, one containing
information about the message and another contain-

1To be more precise, chp is a special place that can be
understood as a view over the database defined by a query
Qmsgs (cf. Queries in Figure 2) and that can be accessed
only by reading tokens from it.

3

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

ing data about the referenced sequence, are added
to tables called Messages and Sequences, respec-
tively. This is achieved by checking guard condition
isF irst(msg,msgs) = true attached to transition
T1, and, if the condition holds, by firing that transi-
tion and executing action CreateSeq attached to
it. The firing of T1 also starts a timer (cf. chtimer)
that in 30 time units can expire the sequence status
(this is done by firing transition T3 that changes
the sequence status in table Sequences to expired).
If a message is not new in a sequence, then it is
inserted into Messages by firing T2 and executing
UpdateSeq (see a more detailed definition of up-
dates in the Actions block in Figure 2). However,
the update by UpdateSeq may fail if a message
is already in the database or a referenced sequence
has already been aggregated due to a timeout (i.e.,
status is expired). In this case the net switches to
an alternative roll-back flow (a directed arc from
T2 to chin) and puts the message back to the input
message channel chin.

The aggregation of a sequence of messages hap-
pens based either on the completion condition (i.e.,
the sequence status is complete) or on time-out of
30 time units (i.e., sequence status is expired), and
is realized by firing transition Aggregate. Since
the sequence completion logic is defined depending
on a specific pattern application scenario, we use
a subnet (a cloud element in the Net block of Fig-
ure 2) denoting a configurable part of the model.
Note that the logic must always be realized in the
designated subnet since we explicitly guard it with
transition T4 that executes an update (using action
Complete) changing a given sequence state. �

In this work we first devise a collection of EAI
requirements on EIP formalization including a com-
prehensive assessment and elaboration on the selec-
tion of existing approaches, i.e., Petri nets (7→ Q1).
Based on this, a formalism, i.e., db-nets, is selected
and equipped with missing EAI requirements, most
prominently time, into timed db-nets (7→ Q2). The
extension also includes a study of suitable time for-
malisms (including the one we have chosen). The
full execution semantics of timed db-nets is shown
based on an elaborated proof sketch. Next, an in-
structive catalog of pattern realizations is provided
(7→ Q3). It is shown how to test the correctness of
the formal EIP realizations based on their execution
traces at different levels in the formalism (7→ Q4).
Finally, a prototypical implementation on top of
CPN Tools [11] is used to develop a concept for ex-

perimentally testing the correctness of timed db-net
patterns.

The contributions to research questions Qx are
elaborated following the principles of the design
science research methodology described in [12]: “Ac-
tivity 1: Problem identification and motivation” is
based on literature and assessment of vendor-driven
solutions (e.g., [3]) as well as on the harvested EAI
requirements (i.e., existing catalogs with 166 inte-
gration patterns) in a quantitative analysis (cf. Q1).
“Activity 2. Define the objectives for a solution” is
addressed by formulating objectives (i)–(iv). For
“Activity 3. Design and development” several arti-
facts are created to answer questions Q1–Q4 and
meet objectives (i)–(iv), including the EIP formal-
ism, the catalog of realizations of EIP formalizations,
and the foundations for correctness testing. “Activ-
ity 4. Demonstration” and “Activity 5. Evaluation”
are conducted based on a prototypical implementa-
tion and case studies.

The paper is structured as follows: In Section
2, pattern requirements are harvested from litera-
ture. The EIP formalism timed db-nets is presented
in Section 3. An instructive catalog of formalized
patterns is provided in Section 4. The foundations
for correctness testing are lied in Section 5. In Sec-
tion 6, we elaborate on the comprehensiveness of
the formalism in a quantitative study, show a pro-
totypical db-net realization for testing correctness,
and discuss the general applicability of PNs and,
in particular, timed db-nets for the composition of
integration patterns in a real-world example. We
conclude by discussing related work in Section 7
and outlining the main results and future research
directions in Section 8.

2. Formalization Requirements Analysis

In this section, we collect the EAI requirements
relevant for the formalization of the EIPs by analyz-
ing the existing pattern catalogs [2, 3, 4, 5, 6] (cf.
Q1). Then we briefly discuss which of them can be
represented by the means of CPNs or db-nets, and
which require further extensions.

2.1. Pattern Analysis and Categories

The EIP formalization requirements are derived
by an analysis of the pattern descriptions based
on the integration pattern catalogs from 2004 [2]
(as original) and recent extensions [3, 4, 5, 6] (as
extended) that consider emerging EAI scenarios

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

(e.g., cloud, mobile and internet of things). Together
the catalogs describe 166 integration patterns, of
which we consider 139 due to their relevance for this
work (e.g., excluding abstract concepts like Canoni-
cal Data Model [2] or Messaging System [2]). During
the analysis, we manually collected characteristics
from the textual pattern descriptions (e.g., data,
time) and created new categories, if not existent.

The reoccurring characteristics found in this work
allow for a categorization of patterns as summa-
rized in Fig. 3 to systematically pinpoint relevant
EAI requirements into general categories (with more
than one pattern). Most of the patterns require
(combinations of) Data flow, Control (Crtl.) flow,
and (Transacted) Resource ((Tx.) Res.) access.
While the control flow denotes the routing of a mes-
sage from pattern to pattern via channels (i.e., or-
dered execution), the data flow describes the access
of the actual message by patterns (incl. message
content, headers, attachments). Notably, most of
the patterns can be classified as control (Crtl.-only;
e.g., Wire Tap [2]) and data only (Data-only; e.g.,
Splitter [2]) or as their combination (Data-Crtl.;
e.g., Message Filter [2]), which stresses on the im-
portance of data-aspects of the routing and trans-
formation patterns. In addition, resources denote
data from an external service not in the message
(e.g., Data Store [3]). The EIP extensions add new
categories like combinations of data and {time, re-
sources} (Data-Time like Message Expiration [2, 3],
Data-Res. like Encryptor [3]) and control and time
(Crtl.-Time; e.g., Throttler [3]). For instance, the
motivating example in Fig. 2 is classified as Data-
Tx.-Res.-Time. The different categories are disjoint
with respect to patterns.

2.2. From Categories to Requirements

We assume that the control requirement REQ-0
“Control flow” is inherently covered by any PN ap-
proach, and thus in CPN and db-net. However, there
are two particularities in the routing patterns that
we capture in requirement REQ-1 “Msg. chan-
nel priority, order”: (a) the ordered evaluation
of Msg. channel conditions or guards of sibling PN
transitions, required for the Content-based Router
pattern, (b) the enablement or firing of a PN tran-
sition according to a ratio for the realization of a
Load Balancer [3]. In both cases, neither execution
priorities nor ratios are trivially in CPN or db-net.

Furthermore, there are 77 patterns in the cata-
logs with data and 10 with message format aspects,

which require an expressive CPN token representa-
tion (e.g., for encodings, security, complex message
protocols), for which we add a second requirement
REQ-2 “data, format” that has to allow for the
formal analysis of the data. Although CPNs and
db-nets have to be severely restricted (e.g., finite
color domains, pre-defined number of elements) for
that, db-nets promise a relational representation
that can be formally analyzed [10].

We capture the 11 patterns with time-related
requirements as REQ-3 “time”: (a) Timeout: nu-
merical representation of fixed, relative time (i.e., no
global time); (b) Expiry date: discrete point in time
according to a global time (i.e., based on existing
message content); (c) Delay: numerical, fixed value
time to wait or pause until continued: e.g., often
used in a redelivery policy; (d) Message/time ratio:
number of messages that are sent during a period of
time. Consequently, a quantified, fixed time delay
or duration semantics is required.

The 49 patterns with resources REQ-4 “(ex-
ternal) resources” require: (a) create, retrieve,
update, delete (CRUD) access to external services
or resources, and (b) transaction semantics on a
pattern level. Similarly, exception semantics are
present in 28 patterns as REQ-5 “exceptions”,
which require compensations and other post-error
actions. Consequently, a PN definition that allows
for reasoning over these timing and structured (per-
sistent) data access is required.

2.3. Requirements Summary

Table 1 summarizes the formalization require-
ments for timed db-nets by setting the coverage
of the CPN [8] and db-net [10] approaches into con-
text. While CPNs provide a solid foundation for
control (cf. REQ-0) and a simple data flow repre-
sentation (cf. REQ-2), db-nets extend it towards
more complex data structures — message protocols
in our case (cf. REQ2), and add CRUD operations
(cf. REQ-4(a)), transactional semantics (cf. REQ-
4(b)), and exception handling (cf. REQ-5), suitable
for working with external, transactional resources.
In CPNs, message channel distributions cannot be
represented and priorities require explicit modeling,
leading to complex models. In this work we build
upon the CPN approach by subsequently defining
timed db-nets in Sect. 3 for the time-related re-
quirements (cf. REQ-3(a)–(d)) and provide (less
complex) realizations for message channel priority
execution (cf. REQ-1(a)) and load balancing (cf.
REQ-4(b)) in Sect. 4.

5

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

0

5

10

15

20

25

O
cc
u
rr
en

ce
s

Categories

original extended

Figure 3: EIP requirement categories (with Control (Crtl.), Resource (Res.), Transaction (Tx.))

Table 1: Formalization Requirements (covered
√
, partially

(
√
), not -)

ID Requirement CPN db-net

REQ-0 Control flow (pipes and
filter)

√ √

REQ-1 (a) Msg. channel prior-
ity

(
√

) (
√

)

(b) Msg. channel distri-
bution

- (
√

)

REQ-2 Data, format incl. mes-
sage protocol with encod-
ing, security

(
√

)
√

REQ-3 (a) Timeout on message,
operation

- -

(b) Expiry date on mes-
sage

- -

(c) Delay of message, op-
eration

- -

(d) Msg./time ratio - -
REQ-4 (a) CRUD operations

on (external) resources
-

√

(b) Transaction se-
mantics on (external)
resources (incl. roll-
back)

-
√

REQ-5 Exceptions, compen-
sation similar to roll-
back in REQ-4

-
√

3. Integration Pattern Formalization

We recall the main characteristics of db-nets [10],
and then extend them with temporal features, ob-
taining a formalism called timed db-nets. We then
show how decidability results on the formal analysis
of db-nets can be lifted to timed db-nets (cf. Q2).

3.1. The db-net Framework

When facing the problem of formalizing multi-
perspective models that suitably account for the
dynamics of a system (i.e., the process perspective)
and how it interacts with data (i.e., the data per-
spective), several design choices can be made. In
the Petri net tradition, the vast majority of formal
models striving for this integration approaches the
problem by enriching execution threads (i.e., tokens)
with complex data. Notable examples within this
tradition are data nets [13] and ν-nets [14], Petri
nets with nested terms [15], nested relations [16],
and XML documents [17].

While all of the approaches treat data subsidiary
to the control-flow dimension, the EIPs require data
elements attached to tokens being connected to each
other by explicitly represented global data models
(cf. Sect. 2). Consequently, they do not allow for
reasoning on persistent, relational data such as tree
or graph structured message formats [18].

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

persistence
layer

data logic
layer

control
layer

DB

ActionsQueries

View places Places Transitions

fetch update

populate trigger

Arcs

Read
arcs
Rollback
arcs

Figure 4: The conceptual components of db-nets (from [10])

Db-net. The recently proposed framework of db-
nets [10] aims at conceptually establishing this con-
nection through a formal model that consists of three
layers (cf. Figure 4). On the one hand, a db-net sepa-
rately represents persistence storage (constituted by
a full-fledged relational database with constraints)
and control (captured as a CPN with additional,
specific constructs). On the other hand, it explicitly
handles their interplay through a data logic inter-
mediate layer, which provides the control layer with
queries and database operations (such as trigger,
update, read, bind). Updates are transactional,
that is, are only committed if the resulting instance
of the persistence layer satisfies the database con-
straints. The control layer is informed about the
outcome of an update, and can consequently com-
pensate in case of a roll-back.

We select db-nets (see Def. 2) as a foundation of
timed db-nets for three main reasons: (i) ability to
represent relational data (cf. REQ-2: “data”, “for-
mat”); (ii) built-in support for transactional CRUD
operations (cf. REQ-4); (iii) exception handling and
corresponding compensation mechanism (cf. REQ-
5). In addition, since db-nets are based on CPNs,
it is possible to lift existing simulation techniques
from CPNs to db-nets [10].

In the remainder of this section, we recall the
definition of a db-net and its execution semantics.

Definition 2 ([10]). A db-net is a tuple
〈D,P,L,N〉, where:
• D is a type domain — a finite set of data types,

each of the form D = 〈∆D,ΓD〉, where ∆D is the
value domain of D, and ΓD is a set of domain-
specific (rigid) predicates.
• P is a D-typed persistence layer, i.e., a pair
〈R, E〉, where R is a D-typed database schema,

and E is a finite set of first-order FO(D) con-
straints over R. 2

• L is a D-typed data logic layer over P, i.e.,
a pair 〈Q,A〉, where Q is a finite set of FO(D)
queries over P, and A is a finite set of actions over
P. Each action in A is parameterized, and uses
its parameters to express a series of insertions
and deletions over P.
• N is a D-typed control layer L, i.e., a

tuple (P, T, Fin, Fout, color, query, guard, act),
where:
− P = Pc∪Pv is a finite set of places partitioned

into control places Pc and so-called view places
Pv,

− T is a finite set of transitions,
− Fin is an input flow from P to T
− Fout and Frb are respectively an output and

rollback flow from T to Pc
− color is a color assignment over P (mapping
P to a cartesian product of data types),

− query is a query assignment from Pv to Q
(mapping the results of Q as tokens of Pv),

− guard is a transition guard assignment over T
(mapping each transition to a formula over its
input inscriptions), and

− act is an action assignment from T to A (map-
ping some transitions to actions triggering up-
dates over the persistence layer). �

Input and output/roll-back flows contain inscrip-
tions that match the components of colored tokens
present in the input and output/roll-back places
of a transition. Such inscriptions consist of tuples
of (typed) variables, which then can be mentioned
in the transition guard as well as in the action
assignment (to bind the updates induced by the
action to the values chosen to match the inscrip-
tions), and also, in case of the output flow, the
inscriptions may contain rigid predicates. Specifi-
cally, given a transition t, we denote by InVars(t)
the set of variables mentioned in its input flows, by
OutVars(t) the set of variables mentioned in its out-
put flows, and by Vars(t) = InVars(t)∪OutVars(t)
the set of variables occurring in the action assign-
ment of t (if any). Fresh variables FreshVars(t) =
OutVars(t) \ InVars(t) denote those output vari-
ables that do not match any corresponding input
variables, and are consequently interpreted as ex-
ternal inputs. While input inscriptions are used to

2These constraints capture typical database constraints
such as key and foreign key dependencies.

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

match tokens from the input places to InVars(t),
the output expressions that involve rigid predicates
operate over OutVars(t). In case of numerical types,
these expressions can be used to compare values, or
to arithmetically operate over them. We call plain
a db-net that employs matching output inscriptions
only (i.e., does not use expressions).

Intuitively, each view place is used to expose a
portion of the persistence layer in the control layer,
so that each token represents one of the answers
produced by the query attached to the place. Such
tokens are not directly consumed, but only read by
transitions, so as to match the input inscriptions
with query answers. A transition in the control layer
may bind its input inscriptions to the parameters
of data logic action attached to the transition itself,
thus providing a mechanism to trigger a database
update upon transition firing (and consequently in-
directly change also the content of view places). If
the induced update commits correctly, the transi-
tion emits tokens through its output arcs, whereas
if the update rolls back, the transition emits tokens
through its rollback arcs.

The terms message and (db-net, CPN) token will
be used synonymously hereinafter.

Db-net execution semantics. We briefly recall
the execution semantics of db-nets. A state of a
db-net captures at once a state of the persistence
layer (i.e., an instance of the database), and that
of the control layer (i.e., a net marking, where the
content of view places must be compatible with that
of the database instance). More technically, in each
moment (called snapshot) the persistence layer is
associated to a database instance I, and the control
layer is associated to a marking m aligned with I via
query (for what concerns the content of view places).
The corresponding snapshot is then simply the pair
〈I,m〉. Tokens in m have to carry data compatible
with the color of the places and the marking of a
view place Pv must correspond to the associated
queries over the underlying database instance.

Similar to CPNs, the firing of a transition t in
a snapshot is defined by a binding that maps the
value domains of the different layers, if several prop-
erties are guaranteed, e.g., the guard attached to t
is satisfied. More specifically, we have the following.

Definition 3 (Transition Enablement [10]). Let
B be a db-net 〈D,P,L,N , 〉, and t a transition in
N . Let σ be a binding for t, i.e., a substitution

σ : Vars(t)→ ∆D.3 A transition t ∈ T is enabled
in a B-snapshot 〈I,m〉 with binding σ, if:
• For every place p ∈ P, m(p) provides enough

tokens matching those required by inscription w =
Fin(〈p, t〉), once w is grounded by σ, i.e., σ(w) ⊆
m(p);

• the guard guard(t)σ evaluates to true;
• σ is injective over FreshVars(t), thus guarantee-

ing that fresh variables are assigned to pairwise
distinct values of σ, and for every fresh vari-
able v ∈ FreshVars(t), σ(v) 6∈ (Adomtype(v)(I)
∪ Adomtype(v)(m)).4 �

Firing an enabled transition has the following ef-
fects: (i) all matching tokens in control places Pc
are consumed; (ii) the action instance action —
induced by the firing — is applied on the current
database instance in an atomic transaction (and
rolled back, if not successful); (iii) accordingly, to-
kens on output places Fout or rollback places Frb
(i.e., those connected via rollback flow) are produced.
Technically, we have the following.

Definition 4 (Transition Firing [10]). Let B be
a db-net 〈D,P,L,N〉, and s1 = 〈I1,m1〉, s2 =
〈I2,m2〉 be two B-snapshots. Fix a transition t
of N and a binding σ such that t is enabled in s1
with σ (cf. Def. 3). Let I3 = apply(actionσ(t), I1)
be the database instance resulting from the applica-
tion of the action attached to t on database instance
I1 with binding σ for the action parameters. For
a control place p, let win(p, t) = Fin(〈p, t〉), and
wout(p, t) = Fout(〈p, t〉) if I3 is compliant with P,
or wout(p, t) = Frb(〈p, t〉) otherwise. We say that
t fires in s1 with binding σ producing s2, written
s1[t, σ〉s2, if:
• if I3 is compliant with P, then I2=I3, otherwise
I2=I1;

• for each control place p, m2 corresponds to m1

with the following changes: σ(win(p, t)) tokens are
removed from p, and σ(wout(p, t)) are added to p.
In formulae: m2(pc) = (m1(pc)− σ(win(p, t))) +
σ(wout(p, t)). �

All in all, the complete execution semantics of
a db-net is captured by a possibly infinite-state
transition system where each transition represents

3We assume σ to be naturally extended to arc inscriptions.
In case when an arc inscription contains an expression, σ will
be applied to its variables.

4AdomD(X) is the set of values of type D explicitly con-
tained in X.

8

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

the firing of an enabled transition in the control
layer of the net with a given binding, and each state
is a snapshot. The infinity comes from the presence
of external inputs, and the fact that domains/colors
may have an infinite domain. It is important to
notice that the resulting transition system may be
infinite even if the control layer is bounded in the
classical Petri net sense.

Example 5. The aggregator in Fig. 2 requires a

view place chp (denoted by) for storing and up-
dating the message sequences as well as rollback
arc (T2, chin) to manage compensation tasks (repre-
sented as). The graphical notation is in line
with [10]. �

3.2. Timed db-nets

We now extend the db-net model so as to account
for an explicit notion of time. While the implicit
temporal support in PNs (i.e., adding places rep-
resenting the current time) is rather counterintu-
itive [19], the temporal semantics of adding times-
tamps to tokens [19], timed places [20], arcs [21]
and transitions [22] are well studied and naturally
capture different facets of time in dynamic systems.
The temporal requirements in REQ-3 demand a
quantified, fixed or discrete time representation by
timed transitions or places, representing the delay
induced by a transition firing. This is currently
missing in db-nets. So, in the spectrum of timed
extensions to PNs, we extend the db-net control
layer N with a temporal semantics that achieves a
suitable trade-off: it is expressive enough to capture
the requirements in REQ-3, and at the same time it
allows us to transfer the existing technical results on
the verification of db-nets to the timed extension.

We start by explaining the intuition behind the
approach, and then provide the corresponding for-
malization. We assume that there is a global, con-
tinuous notion of time. The firing of a transition
is instantaneous, but can only occur in certain mo-
ments of time, while it is inhibited in others, even
in presence of the required input tokens. Every
control token, that is, token assigned to a control
place, carries a (local) age, indicating how much
time the token is spending in that control place.
This means that when a token enters into a place,
it is assigned an age of 0. The age then increments
as the time flows and the token stays put in the
same place. View places continuously access the
underlying persistence layer, and consequently their

(virtual) tokens do not age. Each transition is as-
signed to a pair of non-negative (possibly identical)
rational numbers, respectively describing the mini-
mum and maximum age that input tokens should
have when they are selected for firing the transi-
tion. Thus, such numbers identify a relative time
window that expresses a delay and a deadline on
the possibility of firing.

Definition 6. A timed db-net is a tuple
〈D,P,L,N , τ〉 where 〈D,P,L,N〉 is a db-net with
the control layer N , and τ : T → Q≥0×(Q≥0∪{∞})
is a timed transition guard mapping each transition
t ∈ T to a pair of values τ(t) = 〈v1, v2〉, such that:
(i) v1 is a non-negative rational number; (ii) v2 is ei-
ther a non-negative rational number equal or greater
than v1, or the special constant ∞.

The default choice for τ is to map transitions to
the pair 〈0,∞〉, which corresponds to a standard
db-net transition.

Given a transition t, we adopt the following graph-
ical conventions: (i) if τ(t) = 〈0,∞〉, then no tem-
poral label is shown for t; (ii) if τ(t) is of the form
〈v, v〉, we attach label “@〈v〉” to t; (iii) if τ(t) is
of the form 〈v1, v2〉 with v1 6= v2, we attach label
“@〈v1, v2〉” to t.

Example 7. The aggregator in Fig. 2 defines a
timed transition T3, that can be fired precisely after
30 time units (here seconds) from the moment when
a new sequence seq has been created. Upon firing,
T3 enables the Aggregate transition, by updating
the sequence’s status on the database to expired
using the TimeoutSeq action. �
Timed db-net execution semantics. The exe-
cution semantics of timed db-net builds on the one
for standard db-nets, extended with additional con-
ditions on the flow of time and the temporal enable-
ment of transitions. The management of bindings,
guards, and database updates via actions, is kept
unaltered. What changes is that, in a snapshot,
each token now comes with a corresponding age,
represented as a number in Q≥0.

As customary in several temporal extensions of
Petri nets, we consider two types of evolution step.
The first type deals with time lapses: it indicates
that a certain amount of time has elapsed with the
net being quiescent, i.e., not firing any transition.
This results in incrementing the age of all tokens
according to the specified amount of time.

The second type deals with transition firing, which
refines that of db-nets by checking that the chosen

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

binding selects tokens whose corresponding ages are
within the delay window attached to the transition.
Specifically, let B be a timed db-net 〈D,P,L,N , τ〉,
t a transition in N with τ(t) = 〈v1, v2〉, and σ a
binding for t. We say that t is enabled in a given
B snapshot with binding σ if it is so according to
Definition 3 and, in addition, all the tokens selected
by σ have an age that is between v1 and v2. Firing
an enabled transition is identical to the case of
standard db-nets (cf. Definition 4), with the only
addition that for each produced token, its age is
set to 0 (properly reconstructing the fact that it is
entering into the corresponding place).

The execution semantics of a timed db-net then
follows the standard construction (using the refined
notions of enablement and firing), with the addition
that each snapshot may be subject to an arbitrary
time lapse. This is done by imposing that every
B-snapshot 〈I,m〉 is connected to every B-snapshot
of the form 〈I ′,m′〉 where:
• I ′ = I (i.e., the database instances are identical);
• m′ is identical to m except for the ages of to-

kens, which all get incremented by the same, fixed
amount x ∈ Q of time.
Given two B-snapshots s and s′, we say that s

directly leads to s′, written s→ s′, if there exists a
direct transition from s to s′ in the transition system
that captures the execution semantics of B. This
means that s′ results from s because of a transition
firing or a certain time lapse. We extend this notion
to finite execution traces s0 → . . . → sn. We also
write s

∗−→ s′ if s directly or indirectly leads to s′. If
this is the case, we say that s′ reachable from s.

Example 8. To complete the aggregator, when the
persisted sequence in the aggregator is complete or
the sequence times out, then the enabled Aggregate

transition fires by reading the sequence number seq
and snapshot of the sequence messages, and moving
an aggregate msg′ to chout. Notably, the Aggregate
transition is invariant to which of the two causes led
to the completion of the sequence. �

3.3. Checking Reachability over Timed Db-nets

Checking fundamental correctness properties such
as safety/reachability is of particular importance
for timed db-nets, in the light of the subsequent
discussion in Sect. 6.2 on reachable goal states. We
consider here, in particular, the following relevant
reach-template problem:
Input: (i) a timed db-net B with set Pc of control

places, (ii) an initial B-snapshot s0, (iii) a set

Pempty ⊆ Pc of empty control places, (iv) a set
Pfilled ⊆ Pc of nonempty control places such
that Pempty ∩ Pfilled = ∅.

Output: yes if and only if there exists a finite
sequence of B-snapshots of the form s0 →
. . .→ sn = 〈In,mn〉 such that for every place
pe ∈ Pempty, we have |mn(pe)| = 0, and for
every place pf ∈ Pfilled, we have |mn(pf)| > 0.

Checking the emptiness of places in the target
snapshot is especially relevant in the presence of
timed transitions, so as to predicate over runs of
the systems were tokens are consumed within the
corresponding temporal guards. For example, by
considering transition T3 in Fig. 2, asking for the
chtimer place to be empty guarantees that T3 indeed
triggered whenever enabled.

Since timed db-nets build on db-nets, reachability
is highly undecidable, even for nets that do not
employ timed transitions, have empty data logic and
persistence layers, and only employ simple string
colors. As pointed out in [10], this setting is in
fact already expressive enough to capture ν-nets [13,
14], for which reachability is undecidable. Similar
undecidability results can be obtained by restricting
even more the control layer, but allowing for the
insertion and deletion of arbitrarily many tuples in
the underlying persistence layer.

However, when controlling the size of information
maintained by the control and persistence layers
in each single snapshot, reachability and also more
sophisticated forms of temporal model checking be-
come decidable for db-nets using string and real
data types (without arithmetics).

In particular, decidability has been shown for
bounded, plain db-nets. Technically, a db-net B
with initial snapshot s0 is:
• width-bounded if there is b ∈ N s.t., for everyB-

snapshot 〈I,m〉, if s0
∗−→ 〈I,m〉, then the number

of distinct data values assigned by m to the tokens
residing in the places of B is bounded by b;

• depth-bounded if there is b ∈ N s.t., for everyB-
snapshot 〈I,m〉, if s0

∗−→ 〈I,m〉, then the number
of appearances of each distinct token assigned by
m to the places of B is bounded by b;

• state-bounded if there is b ∈ N s.t., for every B-
snapshot 〈I,m〉, if s0

∗−→ 〈I,m〉, we have | ∪D∈D
AdomD(I)| ≤ b.

We say that a db-net is bounded, if it is at once
width-, depth-, and state-bounded. Intuitively, a
db-net is bounded if it does not accumulate unbound-
edly many tokens in a place, and guarantees that
the number of data objects used in each database

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

instance does not exceed a pre-defined bound.
The decidability of reachability for bounded db-

nets does not imply decidability of reachability for
bounded timed db-nets. In fact, ages in timed db-
nets are subject to comparison and (global) incre-
ment operations that are not expressible in db-nets.
However, we can prove decidability by resorting to a
separation argument: the two dimensions of infinity
respectively related to the infinity of the data do-
mains and of the flow of time can in fact be tamed
orthogonally to each other. In particular, we get
the following.

Theorem 1. The reach-template problem is de-
cidable for bounded and plain timed db-nets with
initial snapshot.

Proof sketch. Consider a bounded timed db-net B
with initial snapshot s0, empty control places Pempty ,
and filled control places Pfilled . Using the faith-
ful data abstraction techniques presented in [10,
Thm 2], one obtains a corresponding timed db-net
B′ enjoying two key properties. First, B′ is bisimi-
lar to B, with a data-aware notion of bisimulation
that takes into account both the dynamics induced
by the net, as well as the correspondence between
data elements. Such a notion of bisimulation cap-
tures reachability as defined above, and consequently
reach-template(B,s0,Pempty ,Pfilled) returns yes
if and only if reach-template(B′,s0,Pempty ,Pfilled)
does so. Second, the only source of infinity, when
characterizing the execution semantics of B′, comes
from the temporal aspects, and in particular the
unboundedness of token ages. This means that B′

can be considered as a “standard” temporal variant
of a CPN with bounded colors that, in turn, boils
down to a temporal variant of an (uncolored) P/T
net. In particular, one can easily see that B′ cor-
responds to a specific type of bounded Timed-Arc
Petri Net (TAPN) [21], a classical P/T net with
continuous time, where the tokens carry an age and
arcs between places and transitions are labeled with
time intervals that restrict the age of tokens:
• whenever B′ contains a transition t with τ(t) =
〈v1, v2〉, its corresponding TAPN labels each
arc entering in t with the same interval [v1, v2];
• each transition-place arc is labeled with the

interval [0, 0].
Consequently, the infinity of B′ can be tamed using
standard techniques known for bounded TAPNs,
which indeed enjoy decidability of reachability for
the queries tackled by reach-template [23, 24].
In particular, notice that reach-template does

not explicitly express constraints on the expected
token ages when reaching the final state.

It is interesting to notice that TAPNs have a more
expressive mechanism to specify temporal guards
in the net. In fact, TAPNs attach temporal guards
to arcs, not transitions, and can therefore express
different age requirements for different places, as
well as produce tokens with an age nondetermin-
istically picked from a specified interval. Hence,
this more refined temporal semantics can be seam-
lessly introduced in our timed db-net model without
compromising Theorem 1.

4. Formal Pattern Realizations

In this section we discuss (formal) pattern realiza-
tions using timed db-nets. Due to the high number
of patterns, the formalization and corresponding
in-detail description of all of them seems imprac-
tical. However, thanks to the fact that patterns
can be classified into disjoint categories (see the
requirement categories in Sect. 2), it suffices to dis-
cuss the most representative ones from each of such
categories. We call this an instructive pattern for-
malization, which strives to formalize the patterns
and, at the same time, offers modeling guidelines
for other patterns of the respective categories using
the provided examples. The structure of subsequent
sections is as follows: first we give a brief descrip-
tion of the pattern and its aim in the context of
the requirements, then we discuss its relevance as
candidate, and finally specify a realization.

4.1. Control Flow: Load Balancer

Control flow only patterns are those that route
the token flow without looking inside the actual
content of the message.
Candidate Selection. To demonstrate the control
flow only pattern (cf. requirement REQ-0 in Tab. 1),
we have chosen the Load Balancer pattern [3]. Inter-
estingly, this pattern also covers the message channel
distribution requirement (cf. requirement REQ-1(b)
in Tab. 1) and thus can be considered as a relevant
candidate of this category as well.
Candidate Description. In a nutshell, the bal-
ancer distributes the incoming messages to a num-
ber of receivers based on a criterion that uses some
probability distribution or ratio defined on the sent
messages.
Pattern Realization. To realize the probability-
or ratio-based criterion in Petri nets, one could adopt

11

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

message	count

Net

var	toCh1,	toCh2:	INT;		
var	msg:	STRING;

T1

DB	schema

Num:	int
CountCh1

Num:	int
CountCh2

	 	:-	SELECT Num		FROM CountCh1
 UNION SELECT Num		FROM CountCh2;

Queries

																								

Actions

T2

Figure 5: Load Balancer realization in timed db-net

their stochastic Petri nets [25, 26] or extend the
db-net transition guards definition with an abil-
ity to sample probability values from a probability
distribution (e.g., [27]). While the latter would
extend the db-net persistence layer, it is unclear
whether the decidability results discussed in the
previous section will still hold. Hence, we opted
for the ratio criterion that, as shown in Fig. 5, is
realized using a persistence storage and transition
gaurds with a simple balancing scheme. Specifi-
cally, a message msg in channel chin leads to a
lookup of the current ratio by accessing the current
message counts per output channel in the database
(via the view place message count) and evaluating
guards assigned to one of the two transitions based
on the extracted values. The ratio criterion is set
up with two (generic) guards ϕ1(toCh1, toCh2) and
ϕ2(toCh1, toCh2) respectively assigned to T1 and
T2. If one of the guards holds, the corresponding
transition fires by moving the message to its output
place as well as updating the table by incrementing
the corresponding channel count. The latter is done
by executing action Inc Chi(toChi) that consecu-
tively performs Inc Chi·del = {CountChi(toChi)}
and Inc Chi·add = {NumberChi(toChi + 1)} (for
i ∈ {1, 2}).5

5Note that in db-nets an update is realized by first deleting

 chin chout

Net

start_translate

var msg : TYPE1;
var msg' : TYPE2;

end_translate

translation

 ch1 ch2 ... msg msg msg msg′ msg′ msg′

Figure 6: Message Translator realization in timed db-net

split create msg

 chin

 ch1 ch2

 chout

 (pre, it,post)

pre

post

x x

genMsg(pre,post, x)

Net

separate

it
...

it

pre

pre

post

post

var pre: PRE;
var post: POST;
var x: OBJ;
var it: iterable OBJ;

Figure 7: Splitter realization in timed db-net

4.2. Data Flow: Message Translator, Splitter

Data flow only patterns are those that access
the actual content of the message mostly for data
filtering and transformation purposes.
Candidate Selection. The stateless Message
Translator [2] is the canonical example of a data flow
only pattern (cf. requirement REQ-2 in Tab. 1).

The (iterative) Splitter [2] is an example of a
non-message transformation data flow only pattern,
which is also required for a case study scenario
in Sect. 6.
Candidate Description. The translator works on
the data representation level (i.e., data flow) and
transforms incoming messages of type TYPE1 into
(output) messages of type TYPE2. The translation
mechanism is defined a-priori by the user.

The splitter represents a complex routing mech-
anism that, given an iterable collection of input
messages it together with two objects pre and post,
is able to construct for each of its elements a new
message of the form [〈pre〉]〈it : msgi〉[〈post〉] with
optional pre and post parts.
Pattern Realizations. A timed db-net repre-
senting a message translator is shown in Fig. 6.
As in the pattern’s definition, the corresponding
net performs the message transformation from one

a tuple and then adding its modified version.

12

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

split

var x: OBJ;
var it: iterable OBJ;

Net

Figure 8: Sample split subnet realization

type to another. Specifically, an incoming message
of type TYPE1 from input channel place chin is
consumed (after firing start translate) by sub-
net translation that, in turn, produces (by firing
end translate) a new message of type TYPE2 into
the receiver place chout.

As for the Splitter pattern, we show in Fig. 7 that,
under certain restrictions assumed for the type of the
iterable collection at hand, the pattern can be fully
realized using only coloured Petri nets. The entering
message payloads in ch0 are separated into its parts:
pre, post and it. While the first two are remembered
during the processing, the iterable it is iteratively
split into parts according to some criterion realized
in the split subnet, which represents a custom split
logic and thus is intentionally left unspecified (in
Fig. 7 it is marked with a cloud symbol).

Example 9. The split subnet can be adapted
to the message format and the requirements of a
specific scenario. Figure 8 demonstrates a possible
implementation of the subnet. Here, functions get

and drop are used to read and remove the n-th ele-
ment of an iterable object. In our case, we alternate
their applications to the iterable object it from place
ch1 in order to extract and delete its first element
that is then placed into ch2. Such a procedure is
repeated until it is empty (i.e., it is NULL). �

Each of extracted elements from it, together with
the information about pre and post, is then used to
create a new message (by calling function genMsg)
that is passed to the output channel chout (Fig. 8).

4.3. Data and Control Flow: Content-based Router

Data and control flow patterns consider the actual
content of the message for routing a token through
the net.
Candidate Selection. The Content-based Router
pattern [2] is the canonical candidate for data and
control flow patterns and also one of the mostly used
integration patterns (cf. [28]).

...

Net

var msg: INT;

Figure 9: Content-based Router realization in timed db-net

Candidate Description. The Content-Based
Router examines the message content and routes
the message onto a different channel based on data
contained in the message. The routing conditions
have to be executed in a pre-defined order (cf. re-
quirement REQ-1(a) in Tab. 1).
Pattern Realization. The realization of the
Content-based Router pattern with conditions ϕ1,
ϕ2 is shown in Fig. 9. Given that the router can
be realized using various strategies imposed on the
conditions (for example, using priority function sim-
ilarly to [25]), we opted for more explicit realization
where conditions have to be evaluated strictly in-
order (cf. requirement REQ-1(a) in Tab. 1), using
pair-wise negated db-net transition guards. In our
patter realization, a message from input channel
place chin is first evaluated against condition ϕ1.
Based on the evaluation result, the message is moved
either to ch1 or ch2. In case it has been moved to
ch2, the net proceeds with the subsequent evalu-
ation of other conditions using the same pattern.
When none of the guards can be evaluated, a non-
guarded, low-priority default transition fires (not
shown). The provided realization covers the router’s
semantics, however, requires (k × 2) + 1 transitions
(i.e., condition, negation, and only one default), with
the number of conditions k.

4.4. Data Flow with Transacted Resources: Content
Enricher, Resequencer

Data flow with transacted resource patterns con-
sider the actual content of the message as well as ad-
ditional information from transacted sources mostly
for message transformations.
Candidate Selection. The first pattern chosen
for this category such that it includes a data flow

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Net

T1 T2

var	key,	id:	INT;		
var	msg,	val:	STRING;

:-	
SELECT id,	val	FROM Storage

Queries
Storage
ID:	int ... val:	string

DB	schema

Figure 10: Content Enricher realization in timed db-net

with transacted resources is the Content Enricher [2]
(cf. requirements REQ-2, REQ-4 in Tab. 1), which
mainly read from the transacted resource. Hence
we add the stateful Resequencer [2], which writes to
a transacted resource.

Candidate Description. The content enricher
requires accessing external resources (e.g., relational
database) based on data from an incoming message.
Such data are then used to enrich the content of the
message.

The stateful Resequencer is a pattern that en-
sures a certain order imposed on messages in (asyn-
chronous) communication by persistently storing
intermediate message sequences (cf. requirements
REQ-2, REQ-4 in Tab. 1).

Pattern Realizations. A Content Enricher db-
net realization is shown in Fig. 10. The message
enriching processes starts with consuming a message
from the input channel place chin. The message is
represented by two elements: a message identifier
key and message content msg. We use request-
reply transitions T1 and T2 to direct the net flow
towards extracting message-relevant data from an
external resource. The extraction is performed by
matching the message identifier key with the one
in the storage. While the stateless enriching part is
essentially a coloured Petri net, we need db-nets in
order to access a stateful resource in ch3 one needs to
specify and perform queries on the external storage
(cf. REQ-4(a,b)). In addition to the specific pattern
requirements, the message processing semantics of
the EIPs describes one message (or token) at a time.
Thus we assume that the represented net model
always deals with a single message as well.

Figure 11 shows how the resequencer can be rep-

resented in db-nets. We assume that incoming
message msg comes with the information about
sequence seq it belongs to and certain order ord,
and all such data are eventually persisted in the
database. The information about stored messages
can be accessed through the view place chp. For
the first incoming message in a sequence (i.e., the
guard of T1 evaluates to true), a corresponding se-
quence entry with a unique identifier value bound
to sid6 will be created in the persistent storage (se-
quences can be accessed in the view place ms) using
action CreateSeq, whereas for all subsequent mes-
sages of the same sequence (i.e., when the guard
of T2 holds), the messages are simply stored in the
database via updating action UpdateSeq. As soon
as the sequence is complete, i.e., all messages of
that sequence have arrived, the messages of this
sequence are queried from the database in ascending
order of their ord component (see the view place
chp′ and its corresponding query) using transition
Fetch. The query result is represented as a list that
is forwarded to chout. Note that, similarly to the
aggregator in Sect. 6, the completion condition can
be extended by a custom logic, indicated by a subnet
connected to T3.

4.5. Control Flow with Transacted Resource and
Time: Circuit Breaker

Control flow with transacted resource and time
patterns require a transacted resource to route a
message to their receivers, while involving time as-
pects.
Candidate Selection. To demonstrate a family
of patterns that are based on a control flow with
transacted resources and time, we selected as its
representative the Circuit Breaker pattern [3] (cf.
requirements REQ-0, REQ-3, REQ-4(a)).
Candidate Description. The Circuit Breaker ad-
dresses failing or hung up remote communication,
which impacts the control flow of the request-reply
pattern [2] by using transacted access to external
resources. Thereby the request-reply pattern is just
one out of many control flow only pattern examples,
for which the circuit breaker can be used.
Pattern Realization. Figure 12 shows a repre-
sentation of the request-reply pattern in timed db-
nets, extended by a circuit breaker “wrapper” that
protects the remote call. At the beginning, every

6Note that since sid is not bound to variables in the
input flow of Ti (i ∈ {1, 2, 3}), it can be treated as a fresh

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

choutchin
int*intList

ms int*int*string

chpT1

T2

Net

colset	intList	=	list	INT;
var	msg,	seq,	ord,	sid:	INT;		
var	msgs:	intList;	
var	status,	data:	STRING;

Fetch

...

Actions

	:- SELECT DISTINCT seq,		list_agg(msg)		FROM Messages	GROUP	BY	seq;
	:- SELECT * FROM Sequences;

	:- SELECT DISTINCT seq,		list_agg(msg)		
 FROM (SELECT seq,		FROM Messages	ORDER	BY	ord ASC)	AS	OrdMessages	GROUP	BY seq;

Queries

T3

int*intListchp'

Sequences
SID:	int STATUS:	string

Messages
MID:	int SEQ:	int

{"complete"}
DB	schema

SEQ:	int ORD:	int DATA:	string

Figure 11: Resequencer realization in timed db-net

(endpoint-dedicated) circuit7 in the circuit breaker
is closed (that is, its status in table Circuit is ini-
tially set to closed), thus allowing to pass the input
message from input place chin to the Request-Reply
pattern part (represented with a dedicated subnet)
by firing Send Req. If the request-reply pattern ex-
ecutes normally (i.e., transition Receive Resp has
been executed), the resulting message is placed in
chout. Otherwise, in case when an exception has
been raised, the information about the failed end-
point is first placed in place epexec, and then, by
firing T1 and action UpdCount assigned to it, can
be stored both in a special place ch exec and the
Endpoints table of the persistent storage.8 Such a
table contains all endpoints together with the num-
ber of failures that happened at them. If the number
of failures reaches a certain limit (e.g., num > 5),

variable [10] that, whenever the transition is executed, gets a
unique value of a corresponding type assigned to it.

7For simplicity, every endpoint is identified with a unique
number EPID.

8To be more precise, UpdCount only updates the count
of exceptions occurred at a given endpoint.

the circuit trips using transition T2 and updates its
status in the corresponding entry of the Circuit

relation to open using action TripCircuit. This in
turn immediately blocks the communication process
that, however, can be resumed (i.e., the circuit is
again set to open and the failure count is set to 0)
after 40 time units have been passed and transition
T3 can be fired. Note that whenever at least one
circuit remains opened, the messages from chin will
be immediately redirected to ch exec.

4.6. Control Flow with Time: Throttler, Delayer

Control flow with time patterns are those that
route tokens depending on the time.
Candidate Selection. The message expiration
(cf. REQ-3(b)) can be modeled implicitly in the
timed db-net tokens. The patterns that represent
most natural candidates for requirements of delaying
the messaging or an operation (cf. requirement
REQ-3(c)) and processing only a certain number of
messages per time (cf. requirement REQ-3(d)) are
the Delayer [3] and Throttler [3] patterns.
Candidate Description. The first pattern is the
Throttler. It helps to ensure that a specific receiver

15

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Request-Reply

var	epid,	num:	INT;		
var	status,	msg:	STRING;
var	e:	UNIT;

chin

Send_Req

ch1

ch0 ...

ch2chout

Circuits

Receive_Resp

ep
exec

Endpoints

timer

Net

EPID:	int STATUS:	string

{"open","closed"}

Circuit Endpoints
EPID:	int NUM:	int

DB	schema

	:- SELECT epid,	status		FROM Circuit;
	:- SELECT * FROM Endpoints;

Queries

Actions

ch
exec

T1

T2

T3

T4

Figure 12: Circuit Breaker realization in timed db-net

does not get overloaded by regulating the number
of transferred messages. A slightly different pattern
of this category is the Delayer that uses a timer
to reduce the frequency of messages sent to the
receiving channel.

Pattern Realizations. The representative pat-
terns of this group mostly require control flow and

Netcolset strList = list STRING;
var e: UNIT;
var msgs: strList;
var msg: STRING;

T1

chin chout

cap

ch1
msg

e

msgs

add(msg,msgs) msgs msgs

T2

Figure 13: Throttler realization in timed db-net

Netvar msg: STRING;

T1

chin choutch1
msg msg msg

T2

msg

Figure 14: Delayer realization in timed db-net

time aspects, and thus can be represented using
timed coloured Petri nets (e.g., [19]).

Figure 13 shows the realization of a throttler that
emits at most n messages per 60 time units to the
receiving place chout. To ensure that the number of
messages taken from input channel place chin does
not exceed the predefined bound, we introduce place
cap that has n “simple”, black tokens assigned to it
with an initial marking. Given that every token’s
age in chin is initially set to zero, one can fire T1
until the time elapses to the point that the timed
guard of T2 is satisfied. Note that every time T1
is fired, message token msg is getting appended to
collection of messages msgs using special function
add.9

A slightly different pattern of this category is the
Delayer that uses a timer to reduce the frequency
of messages sent to the receiving place chout. As
shown in Fig. 14, the sent message from the input
channel place chin is first placed into intermediate
place ch1, and then gets delayed by 60 time units
(so as to make the timed guard of T2 satisfiable).

4.7. Data Flow with transacted Resources Time:
Aggregator

The combination of data, transacted resources
and time aspects in patterns makes them the seman-
tically most complex ones.

Candidate Selection. One of the mostly used
patterns in this category (cf.[28]) is our leading

9For example, in CPN Tools one can define the add func-
tion on lists.

16

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

pattern example, the Aggregator. To be fully func-
tion it requires access to the data (cf. requirement
REQ-2), the configuration of a timeout (cf. require-
ment REQ-3(a)), CRUD operations on transacted
external resources (cf. requirement REQ-4), and
compensation (cf. requirement REQ-5).
Candidate Description. In a nutshell the ag-
gregator is a stateful filter that combines several
incoming message into one outgoing message. Since
the aggregator is our running example throughout
this work, more elaborate descriptions can be found
in Ex. 1, 5, 7 and 8.
Pattern Realization. Fig. 2 specifies the seman-
tics of a commonly used stateful Aggregator [2]
pattern. The aggregator persistently collects mes-
sages, that can be seen in a dedicated view place
chp, and aggregates them using the Aggregate tran-
sition based on a completion condition (i.e., a se-
quence that the message is related to is complete)
or on a sequence completion timeout. For this an
incoming message msg is correlated to an existing
sequence based on a sequence label seq attached to
it. If the message is first in a sequence (i.e., the
guard of T1 is satisfied), a new sequence is created
in the Sequences table and the message together
with a reference to this sequence is recorded in the
Messages table in the persistent storage using ac-
tion CreateSeq. If a message correlates to an ex-
isting sequence seq (i.e., the guard of T2 is satisfied),
which has been aggregated due to a timeout (i.e., T3
has fired and updated the sequence by assigning to it
the expired status in the Sequences table), the up-
date fails. This results in the roll-back behavior: the
database instance is restored to the previous, while
the net uses the roll-back arc to put the message
back to the message channel chin. This message
can be then added as the first one to another newly
created sequence seq. To aggregate of messages one
needs to fire Aggregate that, in turn, can be fired
if the sequence completion criterion has been met
and transition T4 fired. Note that the completion
criterion is user-definable and thus we leave out its
concrete implementation in this pattern realization.

4.8. Discussion

The db-net foundation implicitly covers REQs-2,4
in form of a relational formalization with database
transactions. Together with the realizations of the
Content-based Router, Load Balancer (cf. REQ-
1(a), (b)) and Aggregator Fig. 2 (cf. REQs-3(a),
REQ-4 and REQ-5) we showed realizations for all
of the requirements from Sect. 2. The expiry of

tokens, depending on time information within the
message, can be represented using CPNs and db-
nets by modelling it as part of the token’s color set
and transition guards (similar to [19]). Nevertheless,
to model the transition timeouts (cf. REQ-3(a))
and delays (cf. REQ-3(c)) one needs to resort to
more refined functionality realized in timed transi-
tions provided by the timed extension of db-nets.
Similarly, the msg / time ratio (cf. REQ-3(d)) can
be represented (see Throttler pattern in Fig. 13).

The categorization of patterns according to their
characteristics allows for an instructive formaliza-
tion based on candidates of these categories and
shows that even complex patterns can be defined
in timed db-nets. This, in turn, allowed us not to
discuss candidates of all the categories from Fig. 3,
since they can be seamlessly derived by the intro-
duced patterns from other categories. For example,
control and data with resource patterns do not re-
quire transacted resources, and can thus be realized
similar to their transacted resource cases by substi-
tuting view places with normal ones. The building
blocks for the realization of transacted resource as
well as data flow with time patterns can be derived
from, e.g., the Resequencer or Aggregator patterns.
Finally, the data flow with format patterns can be
represented using CPNs, and thus not further dis-
cussed here.

Thanks to our model checking results presented
in the previous section, the correctness of the re-
alization of each pattern can be formally verified.
However, due to the absence of a model checker for
(timed) db-nets, the formal analysis (cf. [10]) of such
cannot be automatically performed. Nevertheless,
as an alternative to the model checking approach, it
is possible to perform the correctness testing using
the experimental validation via (repeated) simula-
tion of db-net models. We discuss this approach in
the following section.

5. Correctness Testing

The correctness of an integration pattern realiza-
tion represented in timed db-nets can be validated
by evaluating the execution traces of such models
(e.g., similar to the state-oriented testing scheme
by Zu and He [29]), where at each step, an exe-
cution trace contains a B-snapshot representing a
current state of the persistence layer together with
a control layer marking. According to the timed
db-net execution semantics (see Sect. 3), a consec-
utive, finite enactment of a pattern model starting

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 15: A finite db-net execution of a Content-based
Router

from an initial B-snapshot s1 = 〈I1,m1〉 produces
several B-snapshots s = 〈I,m〉 that, depending on
the number of enactment steps, generates a finite
execution trace s1 → . . .→ sn+1 for some n ∈ N.

Example 10. Consider a Content-based Router
model B from Fig. 9 with an initial B-snapshot s1
containing markings for messages of two employees
with their age (Jane, 23), and (Paul, 65). Since the
router has no persistence, the database snapshot is
empty. Figure 15 shows a possible, finite execution
of B starting from s1. In order to reach s2 from s1,
transition T1 with routing condition [age ≤ 25] has
to be fired. The resulting marking only contains
the message of Jane that has satisfied the condition,
while the message of Paul has not been forwarded.�

In the router example, given the initial marking
{(Jane, 23), (Paul, 65)} analyzed against the guard
of T1, the marking sexpected in Fig. 15 denotes the
only allowed final (or expected) state that can be
reached from s1 in case of a properly working router.
Indeed, it is evident that the generated state s2 is
identical to the expected one and thus one could
conjecture the correctness of the presented execution.
More generally this is defined in Def. 11, which,
together with a comparison operator ∼, allow for
a configurable, correctness criterion definition over
finite traces induced by pattern models.

Definition 11 (Correctness Criterion). Let s1 →
. . . → sn+1 be a finite execution trace of some
pattern model M and C be a set of reference B-
snapshots that define a set of correct, desired states.
We say that a pattern execution is correct, if for all

c ∈ C it holds that c ∼ si, for i ∈ {1, . . . , n + 1}.
The operator ∼ typically denotes equality, but can
also correspond to more sophisticated comparison
operators for relating reached and desired snapshots.
�

For example, it is easy to see, that in Fig. 15
s2 ∼ sexpected.

Note that the definition still captures the situation
where target snapshots are enumerated explicitly.
Other forms of validation (e.g., based on statistical
goals formulated over the exhibited behaviors of the
system) would require a more fine-grained approach
able to aggregate snapshots and traces. This is
matter of future work.

Next we discuss the application of this correctness
criterion for three different requirement categories:
control flow, data flow together with format and
(transacted) resource, and timed patterns.

5.1. Control Flow Patterns

To test control flow patterns for correctness, the
operator ∼ can be defined so as to compare the
number of tokens in the correct, final snapshot.
Nevertheless, there are control flow patterns whose
correctness testing puts additional requirements on
∼. For example, the Load Balancer pattern (cf.
REQ-1) denotes a special case, since it requires a
sequence of input tokens, which then have to pro-
duce data entries in the output instances that fit the
probability values and distribution of the balancer
(e.g., Kolmogorov-Smirnov test [30]). Therefore, the
∼ operator has to check whether the number of
tokens in the desirable states follows a probability
distribution.

Example 12. Consider a Load Balancer in timed
db-net B from Fig. 5 with an initial B − snapshot
s1 containing a marking m with several mes-
sages composed of employee names and ages m =
{(Jane, 23), (Lisa, 35), (Joe, 47), (Paul, 65)}. In the
example shown in Fig. 16, three of the tokens have
been already distributed. This means that the cur-
rent, observable snapshot si has a database instance
with two tuples CountCh1(1) and CountCh2(2),
and a marking with one token in the input state
m(chin) = {(Jane, 23)}, one token in the first chan-
nel m(ch1) = {(Lisa, 35)} and two tokens in the
second channel m(ch2) = {(Joe, 47), (Paul, 65)}. As-
suming that in the current state ϕ1 holds, we can
fire transition T1. This, in turn, generates a new
state si+1. In order to check whether si+1 is an

18

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

��

sexpected

∼

m(c) = {(Jane, 23)}hin

m(c) = {(Lisa, 35)}h1

m(c) = {(Joe, 47), (Paul, 65)}h2

 I(CountC) = 1h1

I(CountC) = 2h2

si

 m(c) = {(Lisa, 35), (Jane, 23)}h1

m(c) = {(Joe, 47), (Paul, 65)}h2

 I(CountC) = 2h1

I(CountC) = 2h2

si+1

 m(c) = {(Lisa, 35), (Jane, 23)}h1

m(c) = {(Joe, 47), (Paul, 65)}h2

 I(CountC) = 2h1

I(CountC) = 2h2

Figure 16: A finite execution trace of a load balancer in
timed db-net. Here we use Empl to define an input place
with employees and count as a function that counts a number
of tokens in marking m.

expected state, we run a correctness test that is
performed on the number of messages sent to the
channels. Such a test allows us to see whether a fi-
nal, desired message ratio is produced by the model.
For example, knowing that the bandwidth of the
second channel is considerably greater than the one
of the first channel, we may expect that the final
ratio of ch1

ch2
is not greater than 0.7. Our ∼ operator

can be accordingly adopted to perform such a test.
�

The example shows that, even though the cor-
rectness testing of control flow patterns is feasible,
there are cases in which such tasks may require ex-
tra workload in form of input data, mainly on the
configuration of the testing setup.

5.2. Data Flow and (transacted) Resource Patterns

In order to test the correctness of patterns that
meet requirements REQ-2 and REQ-4 (cf. Tab. 1),
one needs to consider testing not only the marking,
as it is done in the case of control flow patterns,
but also to compare states of the persistent storage.
Specifically, for a given initial snapshot s1 with an
instance I1, either an expected state sn with an
instance In or an expected error state sj must be
produced by the pattern. Otherwise the pattern is
considered incorrect.

Figure 17: A partial execution of a content enricher timed
db-net. For simplicity we omit the view place marking in
si+1 and sexpected.

Example 13. Let us consider a timed db-net B
for the Content Enricher in Fig. 10 with an initial
B-snapshot s1 that contains a marking m with a
message composed of an employee name and age
such that m(chin) = (Jane, 23). In Fig. 17 the
database of the content enricher model stores in-
formation about employees and their positions in a
relation called Empl. To reach the final state si+1

from si, we need to fire T2. The fact that we have si
with a marking containing two tokens (one with the
employee’s name and age, and another one with the
same name and position) shows that, a few steps
before, the employee token (Jane, 23) was matched
to the corresponding entry in the persistent storage
and extra information about her position was ex-
tracted. If it was not the case, the execution trace,
which is partially represented in Fig. 17, would not
contain such two tokens that, in turn, would mean
that the transition used for accessing the view-place
could not fire since no matches were found. Thus, T2
does not fire and the final state does not fulfill the
correctness criterion for the given initial snapshot.
�

Note that, however, in this example the internal
database state does not play the main role when
testing the correctness. The correctness checking is
done on the markings which are populated from the
database based on the matching condition assigned
to the transition inspecting the view place.

5.3. Timed Patterns

Finally, a timed pattern can be validated by ex-
tending database schemas with extra attributes for

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

m(c) = (Jane, 23, t)hout

∅
sexpected

∅

m(c) = (Jane, 23, 0.0)hin

∅

s1

��

m(c) = (Jane, 23, 70.5)hout

s3

∼

s2

��

∅

m(c) = (Jane, 23, 0.0)hin

t ∈ (60, 10.0 + 5.0 + 60]

Figure 18: A partial execution of a delayer timed db-net

storing timestamps (as “on-insert timestamps” in
actual databases) or by adding such timestamps to
tokens, indicating the token creation time. This
allows for checking delays, e.g., by comparing the
insert timestamps time(I1), time(In) of data to in-
stance I1 and those of the final instanceIn, or the
timestamps in the tokens, respectively. With this, a
numeric delay interval d = (d1, d2] can be checked,
with d1 = τ being the delay configured in the pat-
tern and d2 = τ + avg(tp) + var(tp), the average
time tp and the variance the pattern requires for
the internal transition firings without the configured
delay plus. Since the delay τ is an interval itself,
its upper value is taken for the application of the
correctness criterion.

Example 14. Consider a timed db-net B for the
Delayer in Fig. 14 with an initial B-snapshot s1
that has a marking m wit a message composed of
an employee’s name and age m(chin) = (Jane, 23).
In Fig. 18 transition T2 fires with a time delay of
60 time units. Since the delayer does not require a
database state, the correctness of the timestamps
is checked on the markings. In this example, we
assume the average time avg(tdelayer) is 10.0 and
the variance var(tdelayer) is 5.0 without the delay.
This results in a desirable marking (Jane, 23, t) in
sexpected with t ∈ (60, 75] that, in turn, can be
checked against the one in s3 using ∼ that, on top
of comparing the states by equality, also compares
whether the time stamp belongs to a desired time
interval. �

Note that the token ages cannot be used for check-
ing delays, since they are reset, when inserted into
a timed db-net place.

5.4. Erroneous Patterns

The main sources of error during the responsible
pattern formalization process in Fig. 1 are the con-
ceptual work on defining the formal representation
of a pattern, as well as the model to implementation
step, in which the formal model is implemented and
configured. Subsequently, we briefly describe these
types of errors by example.
Pattern Description to Model Errors. The for-
mal representation of a pattern depends on different
challenging factors concerning the quality and com-
prehensiveness of the pattern description as well as
the clarity of its variations, and the complexity of
the formalism. Consequently, the process of formal-
izing a pattern can introduce flaws prone due to
understanding of the complex task at hand.

Example 15 (Content-based Router). While the
Content-based Router in Fig. 9 represents the pat-
tern correctly, one could go wrong with the ordered
execution (cf. REQ-1(a)), e.g., through transition
guards at T1 and T′1. If these guards were set with
overlapping conditions, then several tokens are pro-
duced in different output places, i.e., m(chout1 =
{(Paul, 65)}), m(chout2 = {(Paul, 65)}), which
does not match the desired state in the example
in Fig. 15. �

Pattern Model to Implementation Errors.
The model to implementation gap specifies the dif-
ficulties that can arise during the implementation
of a formalized pattern. With the model on one
side and the tool-specificities on the other, errors
can occur during the translation and configuration.
While translation-related errors target particulari-
ties of the chosen tool or language, configuration
errors can occur in user-defined subnets.

Example 16 (Message Translator). The Message
Translator in Fig. 6 allows for the configuration of a
user-defined subnet that translates an input message
msg of type TYPE1 an output message of TYPE2

using a special casting function cast. In case of an ex-
pected final state m(chout = {(Paul, 65, London)})
for an input state m(chout = {(Paul, 65, EC4M)}),
a configuration of the subnet as shown in Fig. 19
would not suffice, due to the resulting final state
m(chout = {(Paul, EC4M)}). �

20

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 ch1 ch2

msg

Net

cast(msg)

translate

translation

var msg : TYPE1;

Figure 19: Sample translation subnet realization

It is important to note that in this work timed
db-nets are used to formalize various enterprise inte-
gration patterns and integration scenarios involving
them. This, in turn, facilitates the usage of model-
driven development of EIP realizations (e.g., Apache
Camel [31]) as well as their combinations (most
likely while running a Petri net-based engine in the
background of some modeling suite that uses more
conventional graphical EIP language like the EIP
icon notation [2]) since the generated interfaces are
having clear syntax and semantics, and thus are less
prone to errors caused by users at design time. On
top of that, designed application integration infras-
tructures can be tested against various correctness
guarantees using conventional techniques such as
validation through simulation. In particular, while
testing software systems can be considered more
program-based testing (e.g., [32, 33]), the validation
of Petri nets allows for specification-based testing,
when developing concurrent systems like integra-
tion solutions. This enables more elaborate testing
methods like structural [34], place- or transition-
oriented [35, 36, 37], or state-oriented testing [36, 29],
as used in this work. Those techniques go beyond
the classical program-based testing used for software
systems by providing deeper insights, e.g., into the
actual concurrency graphs for structural testing [34]
or the states of the transition system representing
the software at hand [36, 29]. Note also that the
validation approach used in this paper is similar
to (Big Bang) Integration Testing [38] that aims at
checking correctness of interfaces between various
software components against a (correct) software
design. Yet, when modeled with timed db-nets, the
whole testing process is facilitated with the graph-
ical, design-time representation of the integration
scenario “topology”, and thus allows for faster and
more precise detection of test cases.

Given that on top of the formalism of timed db-
nets one can enforce certain composition rules for
designing integration scenarios for EIPs, it would
be even possible to reduce the effort for responsi-

ble development of integration scenarios in which
manual errors are minimized. In other words, by
restricting the modeling language and giving it a
blocked structure (i.e., integration scenarios can be
represented only as certain compositions of EIPs),
one can facilitate user design tasks.

6. Evaluation

In this section, we quantitatively evaluate the
comprehensiveness of the timed db-net formalism
against the real-world integration scenarios (includ-
ing pattern composition cases), show the correctness
of the formal pattern realizations for the require-
ments discussed in Sect. 2.2 via the simulation, and
qualitatively study the application of timed db-nets
to one hybrid integration (i.e., “on-premise to cloud”
(OP2C)) and one internet of things integration sce-
nario (i.e., “device to cloud” (D2C)) (cf. Q3).

6.1. Comprehensiveness of Timed Db-nets

The comprehensiveness of timed db-nets is evalu-
ated with respect to coverage of the patterns in the
catalogs depicted in Fig. 20(a). Here we compare
the applicability of the existing CPN-based formal-
ization [8] (Current-CPN), coloured Petri nets in
general (CPN (general)) and timed db-nets (timed
db-net). While the formalization proposed in [8]
covers only some of the EIP from [2], many more
EIPs as well as the recently extended patterns can
be represented by coloured Petri nets. Now, as we
have indicated in the previous sections, one can for-
malize nearly all of the EIPs using timed db-nets.
The only exception is one pattern, namely Dynamic
Router, whose requirements cannot be represented
using Petri net classes discussed in this work. In fact,
in order to represent such a pattern one would need
to employ a formalism that, on the one hand, sub-
sumes db-nets and thus covers all the requirements
discussed in Tab. 1 and, on the other hand, sup-
ports extra requirements (i.e., dynamically added
or removed channels during runtime [8]) that, in
turn, extend the expressiveness of the formalism
with the ability to generate arbitrary topologies. To
allow for such a functionality one may opt for an
approach similar to the one in [39], where the au-
thors enrich classical Petri nets with tokens carrying
Linear Logic formulas. This, however, would require
further investigations.

After having analyzed the pattern coverage per
formalism, we now consider the relevance of such

21

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

0

20

40

60

80

100

120

140

Patterns Current-CPN CPN (general) timed db-net Not in PN n/a

#
P
a
tt
e
rn
s

original extended

(a) Pattern coverage by formalization

41 0 10 41
0

5000

10000

15000

20000

25000

30000

Total Current-CPN CPN (general) timed db-net

#
In

te
g
ra

ti
o
n
 s

c
e
n
a
ri

o
s

OP2C C2C, B2B D2C unclassified

(b) Realization by integration solution

Figure 20: Timed db-net comprehensiveness

formalisms against real-world integration scenarios.
For this we implemented a Content Monitor pat-
tern [3], which allows for the analysis of the actually
deployed integration scenarios that are, for exam-
ple, running on SAP Cloud Platform Integration
(SAP CPI)10. Figure 20(b) shows the coverage of
the formalisms grouped by the following integration
scenario domains, taken from [3]: On-Premise to
Cloud (short OP2C, also known as hybrid integra-
tion), Cloud to Cloud or Business Network (native
cloud applications C2C, B2B), and Device to Cloud
(D2C, including Mobile, IoT and Personal Comput-

10SAP Cloud Platform Integration, visisted 03/2019:
https://api.sap.com/shell/integration.

ing) integration. The results show that the current
approach by Fahland and Gierds [8] is only partially
sufficient to cover the OP2C, C2C and B2B scenar-
ios. With a more general CPN approach, more than
70% of more conventional OP2C communication
patterns can be covered. The more recent and com-
plex cloud, business network and device integration
requires timed db-nets to a larger extent, which cov-
ers all analyzed scenarios. Note that the Dynamic
Router with arbitrary topologies was not practically
required for these scenarios, and thus seems to be
rather of theoretical relevance.

Conclusions. (1) timed db-nets are sufficient to
represent most of the EIPs; (2) EIPs that are gener-
ating arbitrary topologies are not covered by consid-

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

ered PN classes; (3) hybrid integration requires less
complex semantics and thus is largely in CPN; (4)
timed db-nets cover all of the current integration
scenarios in SAP CPI.

6.2. Simulation: Pattern Correctness Testing

We prototypically implemented the db-net formal-
ism so as to experimentally test the correctness of
the pattern realizations via simulation, following the
idea described in Sect. 5. In order to test the cor-
rectness, we simply generate a finite execution trace,
starting in an initial B-snapshot s1 and finishing
in sn, using the prototype and inspect the gener-
ated marking together with the database instance.
If sn corresponds to an expected state according
to Def. 11, then the test is considered to be success-
ful. Since the inner workings of a pattern can differ
between various pattern implementations (e.g., the
implementation generates some intermediate states,
which are not related to the actual pattern model,
but are used, for example, for collecting statistics),
the correctness can be also checked at any step of
such pattern’s finite execution trace.

Prototype. In this work we have chosen CPN Tools
v4.0 [11] (CPN Tools, visited 03/2019: cpntools.

org) for the modeling and simulation. As compared
to other PN tools like Renew v2.5 (Renew, visited
03/2019: http://www.renew.de/), CPN tools sup-
ports third-party extensions that can address the
persistence and data logic layers of db-nets. More-
over, CPN Tools handles sophisticated simulation
tasks over models that use the deployed extensions.
To support db-nets, our extension11 adds support
for defining view places together with corresponding
SQL queries as well as actions, and realizes the full
execution semantics of db-nets using Java and a
PostgreSQL database.

Simulation. We illustrate the correctness for the
majority of the formalized patterns from Sect. 4
using the simulation in our CPN Tool extension.
We focus on the following case studies: Message
Translator, Splitter, Content Enricher and Aggre-
gator. In addition, we discuss the case of a flawed
example of the Content-based Router pattern from
Example 15. Together, these patterns denote the
most frequently used patterns in practice according

11CPN Tools extension for timed db-net and pattern models
available for download, visited 03/2019: https://github.

com/dritter-hd/db-net-eip-patterns.

CH2

LSTRING

CH1

STRING

"msg1|msg2|msg3"

translate
msg StrToList(msg)

1 1`["msg1","msg2","msg3"]

Figure 21: Message Translator in CPN Tools

to [28] and cover patterns from five out of seven cat-
egories discussed in Sect. 4 (excluding “control flow
only” and “control flow with transacted resources”).
Message Translator, Splitter. The realization of
a variant of the message translator from Fig. 6
is shown in Fig. 21. Here, as input, the pat-
tern receives a delimiter-separated string and trans-
lates it into a list of strings using a special func-
tion StrToList defined in CPN Tools. The fi-
nal marking of the net shows the expected state
sexpected = 〈Iexp,mexp〉 in which the database in-
stance is empty (thus not shown) and the net is
having only CH2 marked such that mexp(CH2) =
{(“msg1”), (“msg2”), (“msg3”)}.

The Splitter from Fig. 7 is implemented as
shown in Fig. 22. In this model, we have
two input messages ([“M1”, “M2”, “M3”],A,B) and
([“M4”, “M5”, “M6”],A,B) consisting of iterable ob-
jects of size three each as well as pre and post data
values A and B. These two messages are then split
into six single objects of a shape (A, “Mi”,B), for
i ∈ 1, . . . , 6. The partial execution of the Split-
ter in Fig. 22 demonstrates the second message to
be already split (see the three output messages in
place CH3), whereas the first message is ready to
be split (i.e., the split transition is enabled12).
Note that the current marking of the net can be
already intermediately tested against the expected
state sexpected = 〈Iexp,mexp〉 in which the database
instance is empty and the marking is having only
CH3 marked such that mexp(CH3) =

{(A, “M1”,B), (A, “M2”,B), (A, “M3”,B),

(A, “M4”,B), (A, “M5”,B), (A, “M6”,B)}.

Indeed, it is easy to see that m(CH3) ∼ mexp \
{(A, “M1”,B), (A, “M2”,B), (A, “M3”,B)}, indicat-
ing that elements of the second message have been
correctly processed, by duly adding pre and post
data values. The correctness of the splitter imple-

12Graphically, enabled transitions are highlighted by a
green frame, indicating that they are ready to fire.

23

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

CH1

DATA

1`(["M1","M2","M3"],A,B) ++
1`(["M4","M5","M6"],A,B)

pre

PRE

post

POST

CH2

ITERABLE

CH3

RESULT

CH4

EMPTRESULT

separate

[obj !=nil]

split

emptiness
check

[obj = nil]

(obj,pre,post)

pre

post

obj el::obj (pre,el,post)

obj

post

pre

(obj,pre,post)

(pre,post)

2 2`A

2 2`B

2

1`[]++
1`["M1","M2","M3"]

3
1`(A,"M4",B)++
1`(A,"M5",B)++
1`(A,"M6",B)

Figure 22: Splitter in CPN Tools

mentation, as it is defined in Def. 11, naturally
follows.
Content Enricher. The Content Enricher
from Fig. 10 can be realized as shown in Fig. 23.
The demonstrated net has three messages (namely,
(13, “msg1′′), (17, “msg2′′) and (2, “msg3′′)) in its
initial marking and in its current state has already
enriched message msg2 by adding to a correspond-
ing token an extra data value “appid-17” from the
storage (see place ch4), that is accessed through the
view place called db. The data in db is stored in a
shape of key-value pairs which are then matched
with messages by their keys (that is, first compo-
nents of the pairs). One can see that the net is ready
to enrich msg1: the enrich msg transition is already
enabled and the data from the storage that match
the key of the token carrying msg1 had been fetched
from db and placed in ch3. While the type of data
used used in different applications may require to
reconfigure the query on the storage as well as to use
a different enrichment function, the topology of the
net representing the enricher remains the same. To
test the correctness, we assume an expected state
with a partial marking only. Specifically, we are
interested in mexp(ch4) =

{(13, “msg1”, “appid-13”),

(17, “msg2”, “appid-17”),

(2, “msg3”, “appid-2”)}.

Given that the current net demonstrates the enricher

being in its intermediate state and having processed
only message one out of three, with its current
marking in ch4 we have that m(ch4) ∼ mexp \
{(13, “msg1”, “appid-13”), (2, “msg3”, “appid-2”)},
and thus can conjecture that the given pattern
realization works as expected.

Aggregator. The Aggregator pattern in Fig. 2 can
be realized using our CPN Tool extension as it
is shown in Fig. 24. Here we neglect the timed
completion condition due to the differing tempo-
ral semantics in the tool. For the ease of simula-
tion, we added a table Test Messages containing
four test messages (1, 1, “text-1′′), (2, 2, “text-2′′),
(3, 1, “text-3′′), (4, 2, “text-4)”, with ids from
{1, . . . , 4}, two sequences {1, 2} and a textual pay-
load. The completion condition is configured to
aggregate after two messages of the same sequence
and the aggregation function concatenates the mes-
sage payloads separated by ’|’. The expected re-
sult in the output place CH out for the first se-
quence is one message with both payloads aggre-
gated (1, “text-3—text-1′′).

Now, when establishing a connection to the
database and to the CPN Tools extension server,
the data from the connected database tables are
queried and the net is initialized with the data
from the database in place CH in. We simu-
lated the aggregator realization in Fig. 24 for the
two test sequences, until one sequence was com-
plete. The intermediate marking in m(CH out) ∼

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

connectDB("Content_Enricher_Connection",9001)
disconnectDB("Content_Enricher_Connection")

view_place : content_enricher.db: SELECT Masterdata.id, Masterdata.value FROM Material_replicate_scenario.Masterdata;

ch2

KEY

db

STORAGE

ch3

EDATA

ch0

MSG

1`(13,"msg1") ++
1`(17,"msg2") ++
1`(2,"msg3")

ch1

MSG

ch4

EMSG

fetch
data

[key=id]

request
key value

enrich
msg

key

(id, value)

(key,value)

key

(key,msg) (key,msg) (key,msg)

(key,value)

(key,msg,value)

3
1`(13,"appid-13") ++ 1`(2,"appid-2")
 ++ 1`(17,"appid-17")

1 1`(13,"appid-13")

1 1 1`(13,"msg1")

11`(17,"msg2","appid-17")

Figure 23: Content Enricher in CPN Tools

connectDB("Aggregator_Connection",9001)

disconnectDB("Aggregator_Connection")

view_place : aggregator.Test_Messages : SELECT "MSG_ID","SEQ","DATA" FROM Aggregator.Test_Messages;

view_place : aggregator.IsFirstInSequence :
SELECT DISTINCT Sequences.SEQ,
NOT EXISTS(SELECT 1
FROM Aggregator.Messages
WHERE Aggregator.Messages.SEQ =
Aggregator.Sequences.SEQ)
FROM Aggregator.Sequences;

view_place : aggregator.Sequences :
SELECT Sequences.SEQ,Sequences.STATUS FROM Aggregator.Sequences;

view_place : aggregator.CompleteSequences: SELECT DISTINCT Sequences.seq
FROM Aggregator.Sequences WHERE NOT EXISTS(SELECT 1
FROM Aggregator.Test_Messages
WHERE Aggregator.Test_Messages."SEQ" = Aggregator.Sequences.seq);

CH_in

MESSAGE

Test_Messages

MESSAGE

IsFirstInSequence

SEQUENCE_COUNT

Sequences

SEQUENCE

CH_out

STRING

CompleteSequences

INT

Append
Message

[isFirst=false]

input (msg_id,seq_id,data);
output ();
action
let
in
ADD_MSG(msg_id,seq_id,data);
DEL_MSG(msg_id)
end;

Aggregate
Message

[status="completed"]

input (seq_id);
output (concat_msg);
action
let
val concat_msg = getAggregatedMsg("Aggregator_Connection",seq_id)
in
concat_msg
end;

Load
Message

CreateFirst
Message

[isFirst=true]

input (msg_id,seq_id,data);
output ();
action
let
in
ADD_MSG(msg_id,seq_id,data);
DEL_MSG(msg_id)
end;

Update
Sequence

Status

input (seq_id);
output ();
action
let
in
CHANGE_SEQ_STATUS(seq_id,"completed");
()
end;

(msg_id,seq_id,data)

msg

(seq_id,isFirst)

(msg_id,seq_id,data) (seq_id,isFirst)

(seq_id,status) concat_msg

seq_id

msg

2 1`(1,false) ++ 1`(2,false)

2
1`(2,"completed") ++ 1`(1,"complete
d")

1 1`"text-3|text-1"

2 1`(1) ++ 1`(2)

Figure 24: Aggregator in CPN Tools

25

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

mexp \ {(“text-4”|“text-2”)}, for mexp(CH out) =

{(“text-3”|“text-1”), (“text-4”|“text-2”)},
will eventually result to the expected outcome in
CH out and the database.
Flawed Content-based Router. While the previously
discussed pattern implementations are correct, we
added a flawed implementation of a Content-based
Router, which is not required for the subsequent
case studies, so as to demonstrate how the simula-
tion could be used to detect an erroneous design. A
Content-based Router, is a pattern that takes one
input message and passes it to exactly one receiver
without changing its content. This is done by evalu-
ating a condition per recipient on the content of the
message. Figure 25(a) shows one out of many router
implementations, which may look correct, but, how-
ever, its process layer violates the correct design.

For the evaluation we use the aforementioned
method for “data and (transacted) resource-bound
patterns”, which is based on the reachability of a cor-
rect database state. Such a correct state would be a
database instance with one entry in table Channel1
and an empty table Channel2. This should happen
due to the fact that the logical expressions on the
arcs outgoing from T are expected to be disjoint.
Now, let us explore the inner workings of the flawed
pattern realization. In Fig. 25(a), transition T reads
the token in place I and then conditionally inserts
it to the two subsequent places. Since the value
of the token matches all conditions, both output
places O1 and O2 receive a copy of the token as it is
shown in Fig. 25(b). In terms of application integra-
tion, this could mean that two companies receive a
payment request or a sales order that was actually
meant for only one of them. In the net, the two
subsequent transitions push1 and push2 are enabled
and fire by executing the database inserts defined in
the ADD TO CHANNEL(i, x) function, where i
is being an index of one of the Channel tables and
x is a data value to be inserted. From the net alone
(i.e., in the initial state in Fig. 25(a)), the pattern
realization seems to be correct. However, after its
execution, we can see that no correct state has been
reached. Indeed, after the tokens have been pro-
cessed on the control layer, the database instance
contains two entries (cf. Fig. 26), one in each table,
that, in turn, would mean that the logical expres-
sions that are meant to guard two different outputs
are not disjoint, and by executing T we populated
both O1 and O2 (instead of generating a token in
only one of them).

Note that, when assuming one input token in I
and a precedence of push1 over push2, and consid-
ering that Iexp = {Channel1(8)}, the final database
instance I(Channel1) comes out to be as expected
(that is, I(Channel1) ∼ I(Channel1)exp), whereas
I(Channel2) 6∼ Iexp(Channel2). It is easy to see
that knowing the control-flow and data aspects a
given timed db-net allows for detecting flaws in a
pattern realizations as well as provide richer infor-
mation for fixing them.
Conclusions. (5) The CPN Tools extension al-
lows for EIP simulation and correctness testing; (6)
model checking implementations beyond correctness
testing are desirable.

6.3. Applicability: Case Studies

The single patterns can be composed to represent
integration scenarios, for which we study the formal-
ism with respect to its applicability to two scenarios
from the analysis: one hybrid OP2C and one D2C
scenario.

6.3.1. Hybrid Integration: Replicate Material

Many organizations have started to connect their
on-premise applications such as Customer Relation-
ship Management (CRM) systems with cloud ap-
plications such as SAP Cloud for Customer (COD)
using integration processes similar to the one shown
in Fig. 27. A CRM Material is sent from the CRM
system via EDI (more precisely SAP IDOC trans-
port protocol) to an integration process running
on SAP Cloud Platform Integration (SAP CPI)13.
The integration process enriches the message header
(MSG.HDR) with additional information based on
a document number for reliable messaging (i.e., Ap-
pID), which allows redelivery of the message in an
exactly-once service quality [4]. The IDOC struc-
ture is then mapped to the COD service description
and sent to the COD receiver.
Formalization. For this study, we manually en-
coded the BPMN scenario into a timed db-net as
shown in Fig. 28. Since the obtained timed db-net
is mainly a composition of two patterns, namely the
Content Enricher in Fig. 10 and the Message Trans-
lator in Fig. 6, we just represent an abstract net

13SAP CPI, visited 03/2019: https://api.sap.com/. The
pattern compositions in this catalog are represented in a
BPMN model (e.g., [4]), and thus we subsequently represent
our examples in this way — this is also more expressive in
terms of message and data representation than the EIP icon
notation [2].

26

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

I

INT

8

O2

INT

O1

INT

T

push1

input (x);
output ();
action
let
in
ADD_TO_CHANNEL(1,x)
end;

push2

input (x);
output ();
action
let
in
ADD_TO_CHANNEL(2,x)
end;

x

if x>7 then 1`x
else empty

if x<10 then 1`x
else empty

x

x

1 1`8

(a) Transition T is enabled

I

INT

8

O2

INT

O1

INT

T

push1

input (x);
output ();
action
let
in
ADD_TO_CHANNEL(1,x)
end;

push2

input (x);
output ();
action
let
in
ADD_TO_CHANNEL(2,x)
end;

x

if x>7 then 1`x
else empty

if x<10 then 1`x
else empty

x

x
1 1`8

1 1`8

(b) Messages duplicated according to the conditions on the arc inscriptions

Figure 25: Flawed Content-based Router in CPN Tools

ID : int data : int

10 8

Channel1
ID : int data : int

11 8

Channel2

Figure 26: Database instance after flawed Content-based
Router PN was executed “successfully”

topology, indicating with places connecting input
and output channels of the patterns and leaving nets
representing patterns as white boxes. The database
schema together with queries from the data logic
layer are omitted since they are identical to those
used for the content enricher in Sect. 4.4. We would
like to mention that, while the message translator is
close to the currently existing CPN solution in [8],
the content enricher (including the need of query-
ing the persistent storage) should be represented in
timed db-nets. Consequently, the enricher is a pat-
tern not covered before, for which neither soundness
nor correctness could be checked. It is also note-
worthy that, given that hybrid integration usually
denotes data movement between on-premise and
cloud applications, which do not require complex

integration logic (see [3]), the timed db-net rep-
resentation for such rather straightforward hybrid
integration scenarios gives richer insight into the
data stored in the database as well as their manipu-
lation (as opposed to, for example, BPMN), while
the models remain still intuitively understandable.

Simulation. The replicate material scenario in a
timed db-net (cf. Fig. 28) is implemented as hierar-
chical net with our CPN Tools extension in Fig. 29,
which references the pattern implementations of the
enricher from Fig. 23 and translator from Fig. 21,
annotated with enricher and translator, respec-
tively. In the hierarchical model representing this
scenario, the MSG message from the ERP system is
enriched with master data. The derived enriched
message of type EMSG is then sent to the translator
that maps the intermediate message format to the
one understood by the COD system, thus generat-
ing a new message of type OUTPUT. Note that here
the arc inscriptions abstractly account for messages
without revealing their concrete structure.

In order to check the correctness of the given
scenario, one has to keep in mind that, in general,
the composition of the single patterns in timed db-

27

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Hybris_Cloud_C4C_with_CRM_v2

In
te

gr
at

io
n

Pr
oc

es
si

ng

Enrich for SAP
RM handling

MSG.PL:
CRMXIF_PRODUCT_MATERIAL_SAVE2

(EDI_DC40,
E101COMXIF_PRODUCT_MATERIAL)

Translate using
CRM_COD_Material_

Replicate_Bulk

MSG.PL: Material Mass
Replication Request (Material,

Material Header);
MSG.HDR: MessageHeader

MSG.HDR:
AppID

Remote
Data

CRM SAP COD

SAP IDOC
(EDI)

SOAP
(SAP RM)

Figure 27: SAP Hybris Cloud Replicate Material from SAP Business Suite (a “hybrid integration” scenario)

 ch
erp

in chout
 chcen

in

ERP / CRM Cloud for Customer

Content
Enricher chmtr

in

Message
Translator chmtr

out

Net

Figure 28: Replicate Material scenario translated into its timed db-net representation (schematic)

nets requires a careful, manual alignment of the
“shared” control places (e.g., ch0, ch4 and ch5) with
respect to the exchanged data and the characteristics
of the neighboring patterns. Thus it is required to
carefully consider various pattern characteristics
together with input and output message types to
ensure its correctness. Assume that the expected
marking in out case is mexp(COD) =

{(13, “DOC-1”, “PROD-1”, “appid-13”),

(17, “DOC-2”, “PROD-1”, “appid-17”),

(2, “DOC-3”, “PROD-2”, “appid-2”)}.

Then, given the intermediate marking in
COD, we can see that m(COD) ∼ mexp \
{(13, “DOC-1”, “PROD-1”, “appid-13”)}(2, “DOC-3”,
“PROD-2”, “appid-2”) and thus conjecture that the
scenario is correct. Note that, while the composition
in Fig. 29 denotes a correct implementation of the
replicate material scenario, the general question of
composition correctness remains open.

Conclusions. (7) timed db-net representations al-
low for an understandable, sound and comprehen-
sive representation of single patterns and their com-
positions; (8) the correctness of the compositions
requires further considerations.

6.3.2. Internet of Things: Predictive Maintenance
and Service (PDMS)

In the context of digital transformation, an auto-
mated maintenance of industrial machinery is im-
perative and requires the communication between
the machines, the machine controller and ERP sys-
tems that orchestrate maintenance and service tasks.
Integrated maintenance is realized by one of the an-
alyzed D2C scenarios in Sect. 6.1, which helps to
avoid production outages and to track the mainte-
nance progress. Thereby, notifications are usually
issued in a PDMS solution as shown in Fig. 30 from
SAP CPI, represented in BPMN according to [4].

Although we simplified the scenario, the relevant
aspects are preserved. Industrial manufacturing
machines, denoted by Machine, measure their own
states and observe their environment with sensors in
a high frequency. When they detect an unexpected
situation (e.g., parameter crosses threshold), they
send an incident to a local endpoint (e.g., IoT edge
system), the PDMS, indicating that a follow-on ac-
tion is required. The PDMS system creates alerts
for the different machines and forwards them to a
mediator, connecting the PDMS to the ERP sys-
tem. To throttle the possibly high frequent alerts,
several incidents are collected (not shown) and sent
as list of alerts. Before the ERP notification can
be created, additional data from the machines are
queried based on the split and single alerts, and

28

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

connectDB("Material_Replication_Connection",9001)

disconnectDB("Material_Replication_Connection")

ch0

MSG

ch4

EMSG

ERP

MSG

1`(13,"DOC-1", "PROD-1") ++
1`(17,"DOC-2", "PROD-1") ++
1`(2,"DOC-3", "PROD-2")

COD

OUTPUT

ch5

OUTPUT

request
from ERP

send
to COD

enricher

enricherenricher

translator

translatortranslator

msg

msg

outpacket

outpacket

2 1`(2,"DOC-3","PROD-2")++
1`(13,"DOC-1","PROD-1")

11`(17,"DOC-2","PROD-1","appid-17")

Figure 29: A pattern composition for the replicate scenario as a hierarchical net in CPN Tools

PDMS_horizontal

Predictive
Maintenance
and Service

(PDMS)

In
te

gr
at

io
n

Pr
oc

es
si

ng

Enrich by
Machine

Data

Split Alerts
by Machine Predict

Failure
Aggregate

Alert Alert w/ data Alert w/ type Create
NotificationAlerts

Machine
Enterprise
Resource

Planning (ERP)

Alerts Machine Data Query

Incident

Create
Notification

Figure 30: Predictive Maintenance — Create Notification scenario as modeled by a user (an “internet of things” scenario)

then enriched with information that adds the fea-
ture type. The information of the single alerts is
used to predict the impact by value and machine
type, and then gets aggregated to be sent to ERP. In
case the notification has been created successfully in
ERP, the PDMS gets notified including the service
task identifier and thus stops sending the alert (not
shown).

Formalization. The BPMN scenario from Fig. 30
has been manually translated into a (schematically
represented) timed db-net in Fig. 31. Since the
scenario mainly relies on the patterns previously
discussed in the paper, we omit their explicit repre-
sentation and put instead white boxes surrounded
with input and output channel places of such pat-
terns so as to indicate the connection points be-
tween them. Like that, we hide the Splitter (Fig. 7),
Content Enricher (Fig. 10) and Aggregator (Fig. 2)
proviso that the queries defined on top of the persis-
tent storage are changed according to the database
schema adopted in this scenario. Namely, the con-
tent enricher will need to query machine states in
order to get data (more precisely, additional in-
formation about feature types) for enriching the
messages, whereas the aggregator will deal with se-
quences based on the machine identifiers and as

the result will produce messages of concatenated
machine names. We reveal the only query, namely
Qalert, that is used to create alerts in the PDMS
system and populates the view place it is assigned
to (chalert) with pairs containing device identifiers
(ID) and corresponding critical values (ACT V AL).
We also add a part representing the predictor pat-
tern. With transition Predict we consume messages
(extrep) produced by the enricher and generate new
ones together with the prediction by calling a func-
tion predict.

Simulation. The predictive maintenance scenario
in timed db-nets (cf. Fig. 30) is implemented as
hierarchical net with our CPN Tools extension
in Fig. 33, which references the pattern imple-
mentations of the enricher from Fig. 23 and
translator from Fig. 24, annotated with enricher,
aggregator, respectively. In the original scenario,
the PDMS sends lists of incidents to the integration
system to reduce the number of requests as shown
in Fig. 32. The incidents have an incident ID, a
machine ID, and the actual critical incident value
(e.g., (101, 1, 76)). Unfortunately, due to the fact
that CPN Tools does not support third party
extensions with complex data types like lists, it was
decided to make the PDMS component emit single

29

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

MeasPointMonitorType
ID: int UPPER_THLD_WARN_VAL: double ... ACT_VAL: double...FEAT_TYPE

DB	schema

Predict

Splitter Content
Enricher Aggregator

ERP
PDMS Machine

chalert

Net

	:- SELECT DISTINCT sid,	act_valeq	FROM MeasPointMonitorType	WHERE	act_val>upper_thld_val;
Queries

Figure 31: Create Notification scenario translated into its timed db-net representation (schematic)

connectDB("Create_Notification_Connection",9001)

disconnectDB("Create_Notification_Connection")

view_place : create_notification.IncidentReports:
SELECT IncidentReport.id, IncidentReport.mid, IncidentReport.aval
FROM create_notification.IncidentReport, create_notification.Machine WHERE Machine.threshold_wrn<IncidentReport.aval;

prediction
result

PREDICTION

ch5

E_REPORT

CH_out

STRING

IncidentReports

REPORT

PDMS

REPORT

ERP

STRING

predict
get

report

input (id,mid,aval);
output ();
action
let
in
DEL_REPORT(id,mid,aval);
()
end;

P_HIGH

send to
ERP

splitter

splitter

message_aggregator

message_aggregator

extrep

(true,extrep)

(id,mid,aval)

concat_msg

concat_msg

(id,mid,aval)

splitter message_aggregator

9
1`(101,1,76) ++ 2`(104,1,88) ++ 2`(
108,2,81) ++ 2`(103,1,99) ++ 2`(106
,1,93)

Figure 32: Create Notification pattern composition as a hierarchical net in CPN Tools (in the initial state)

messages using the get report transition together
with its outgoing place PDMS (see Fig. 32). Con-
sequently, the splitter is not required for separating
the single incidents, but the incident messages
of type REPORT are immediately enriched by the
enricher. After master data has been added to
the message, a new one of type E REPORT has been
produced. The net then immediately proceeds with
predicting the impact using transition predict,
which usually assesses the probability of a timely
machine error based on previous experiences with
the particular machine type. Here, for simplicity,
the prediction is always set to true and the results
are placed into prediction result. Tokens in this
place are then used to aggregate several incidents
by machine, where, for simplicity, we use machine
identifiers to identify aggregator’s sequences. The
aggregated incident messages are then sent to the
ERP system. With the final marking in m(ERP)
and mexp(ERP) = {“Assembly Robot”,

“Engine Robot”|“Engine Robot”|“Engine Robot”},
for the three incidents from machine Engine Robot

and one from Assembly Robot, we can see that
m(ERP) ∼ mexp and thus conjecture that the
scenario is correct.

Although the resulting timed db-net provides so
far unmatched insights into the different aspects of
integration scenarios, the complexity of the com-
posed patterns increased even more, when using
hierarchical nets.
Conclusions. (9) timed db-net representations al-
low for an explicit modeling of all data aspects
in complex data-aware scenarios (e.g., roll-back,
queries); (10) the formalism’s technical complex-
ity might prevent non-technical users from using it
on a regular basis.

6.4. Discussion

With the timed db-net formalization, it is possi-
ble to model and reason about EAI requirements

30

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

disconnectDB("Create_Notification_Connection")

connectDB("Create_Notification_Connection",9001)

view_place : create_notification.IncidentReports:
SELECT IncidentReport.id, IncidentReport.mid, IncidentReport.aval
FROM create_notification.IncidentReport, create_notification.Machine WHERE Machine.threshold_wrn<IncidentReport.aval;

prediction
result

PREDICTION

ch5

E_REPORT

CH_out

STRING

IncidentReports

REPORT

PDMS

REPORT

ERP

STRING

predict
get

report

input (id,mid,aval);
output ();
action
let
in
DEL_REPORT(id,mid,aval);
()
end;

P_HIGH

send to
ERP

enricher

enricher

aggregator

aggregator

extrep

(true,extrep)

(id,mid,aval)

concat_msg

concat_msg

(id,mid,aval)

enricher aggregator

2
1`"Assembly Robot"++
1`"Engine Robot|Engine Robot|Engin
e Robot|Engine Robot"

Figure 33: Create Notification pattern composition as a hierarchical net in CPN Tools (in the final state)

like data, transacted resources and time (cf. con-
clusions (1), (5)), going beyond the simple hybrid
integration scenarios (cf. conclusion (3)). Thereby
the pattern realizations are self-contained, can be
composed into complex integration scenarios (e.g.,
Fig. 31; cf. conclusion (7)) and analyzed (cf. con-
clusions (4)), while leaving the extension of our tool
prototype to model checking as well as a formal
treatment of pattern compositions as future work
(cf. conclusions (6), (8), respectively). The composi-
tion is facilitated through “sharing” control places,
preventing unwanted side-effects between patterns.

However, there are some limitations that we
briefly discuss next. PN classes considered in this
work fall short when it comes to generation of places,
transitions or arcs (cf. conclusion (2)). For example,
Dynamic Router requires a proper representation
of dynamically added or removed channels. Fur-
ther, the deep insights into data-aware patterns and
scenarios lead to the trade-off between sufficient
information and model complexity (cf. conclusion
(9)). The complexity of PN models compared to
their BPMN counterparts in Fig. 30 might not allow
for modeling by non-technical users (cf. conclusion
(10)). Hence, we propose modeling in a less techni-
cal modeling notation, which can be then encoded
into PN models, e.g., for verification. Further, while
the PN formalism closes the conceptual vs. imple-
mentation gap by simulation, we leave a translation
of existing EIP implementations to timed db-nets
for verification as future work.

In summary, timed db-nets allow to represent
patterns not covered before (e.g., the stateful aggre-
gator with a timeout or the content enricher with
external resources) and check their soundness and
correctness. Note that for more complex scenarios
the timed db-net representation might become very
complex, e.g., compared to a BPMN representation,
and thus might be more suitable as formalism and
not as modeling language for the average user (e.g.,
integration developer).

7. Related Work

We discussed related Petri net approaches in
Sect. 2 and 3. We now briefly situate our work
within the context of further Petri net formalisms,
and formalizations from EAI and related domains.

7.1. Petri Net Formalizations

Using PNs, van Hee et al. [40] define an alter-
native approach for representing and reasoning on
database transactions using special token vectors
with identifiers and inhibitor nets. While this could
also be used similar to db-nets, we build our for-
malism on db-nets due to their more comprehensive
focus on (relational) data, operations, and persistent
storage. Furthermore, there is work on ITCPN by
van der Aalst [19] and stochastic PNs by Zenie [25]
that are either too restricted by time intervals with
a single global time in case of ITCPN or hard to
practically reason as in case of the stochastic nets.
However, both works helped during the specification
of timed db-net. Stochastic PNs [25] define a pri-
ority function, whose execution semantics however
does not suffice in representing the required ordering
in REQ-1(a).

7.2. Enterprise Application Integration

We found [3] that the only existing formalization
of EIPs is provided in [8] using CPNs. In particular,
Fahland et al. [8] define messages as colored tokens
and uses PN transition guards as conditions. How-
ever, it does not cover all requirements we singled
out, and hence we employ db-nets [10] as an exten-
sion of CPNs that covers all but one of the EIPs
as discussed before. In the business process domain
PNs were successfully used to model and reason
about workflow nets [41] and some resource- [42]
and data-aware [43]) extensions, without however
tackling EIP requirements. Although our create
notification and predictive maintenance scenarios
have been captured in BPMN [4], we do not consider

31

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

BPMN as a suitable formalism for our objectives
(i)–(iii), however, build on a formalization by PNs,
which were employed to define the BPMN control-
flow semantics [44].

Similar to the BPMN and PN notations, several
domain-specific languages (DSLs) have been devel-
oped that describe integration scenarios. Apart
from the EIP icon notation [2], there is also the
Java-based Apache Camel DSL by Ibsen et al. [31],
and the UML-based Guaraná DSL by Frantz et
al. [45]. However, none of these languages aim to
be verification-friendly formal integration scenario
representations. Conversely, we do not strive to
build another integration DSL. Instead we claim
that all of the integration scenarios expressed in
such languages can be formally represented in our
formalism, so that formal analysis can be applied to
their scenarios.

There is work on formal representations of inte-
gration patterns, e.g., Mederly et al. [46] represents
messages as first-order formulas and patterns as op-
erations that add and delete formulas, and then ap-
plies AI planning to find an process with a minimal
number of components. While this approach shares
the formalization objective, our approach applies
to a broader set of objectives (e.g., formal analysis,
simulation). Furthermore, the data, transactional
database and time semantics are not covered (e.g.,
cf. REQ-2, REQ-3, REQ-4). For the verification of
service-oriented manufacturing systems, Mendes et
al. [47] uses “high-level” Petri nets as a language
instead of integration patterns, similar to the ap-
proach of Fahland and Gierds [8].

7.3. Interaction and Architecture Patterns

In the related service-oriented architecture do-
main, service interactions and service interaction
patterns were formalized. The work on service
interactions largely targets formalizations on ser-
vice orchestration and choreographies (i.e., simi-
lar to compositions of patterns), e.g., for web ser-
vices [48, 49, 50], which are all based on process
algebras that account for our time requirements,
however, lack database transaction semantics (cf.
REQ-4). The same is true for π-calculus approaches
(e.g., by Decker et al. [51]) and similarly in the
workflow domain by Puhlmann et al. [52].

The approaches to formalize object-oriented, ar-
chitectural patterns, or component-based systems
(e.g., Alencar et al. [53], Allen et al. [54]) focus on
pattern descriptions up to runtime instantiation,

however, do not cover, e.g., time, transaction and
execution semantics (cf. REQ-3, REQ-4).

7.4. Business Process Management

Early algorithmic work by Sadiq and Or-
lowska [55] applied reduction rules to workflow
graphs for the visual identification of structural con-
flicts (e.g., deadlocks) in business processes. From
a control flow perspective, we use a similar base
representation, which we extend by data, transacted
database semantics, and time (e.g., cf. REQ-2, REQ-
3, REQ-4). Furthermore, we use graph rewriting for
optimization purposes. In Cabanillas et al. [56], the
structural aspects are extended by a data-centered
view of the process that allows to analyze the life
cycle of an object, and check data compliance rules.
Although this adds a view on the required data,
it neither covers transactional database or time as-
pects (e.g., cf. REQ-3, REQ-4) nor proposes formal
analysis capabilities for the extended EIPs. The
main focus is rather on the object life cycle analysis
of the process.

In the workflow interaction domain, again work-
flow nets and workflow modules are used, e.g., by
van der Aalst and Weske [57], and Martens [58], re-
spectively. Furthermore, service interaction patterns
are formalized using the composition capabilities of
Petri nets provided by open nets (e.g., by van der
Aalst et al. [59] or as open workflow nets by Mas-
suthe et al [60]) that will become of interest for
formalizing compositions of timed db-nets, which is
left as future work.

8. Conclusion

This work aims at providing the formal underpin-
ning for responsible EAI along research questions
Q1–Q4. Responsible EAI means to ground EIPs as
basic building blocks on a formalization that meets
relevant EAI requirements with respect to control
flow, data, time, and transactional properties (7→
Q1). Q1 could be sufficiently addressed by a thor-
ough analysis of EAI requirements in comparison
with existing formalisms and the development of
the timed-db-net formalism that adds the crucial,
yet missing time requirement to existing formalism
of db-nets [10]. Moroever, the formalism is sup-
posed to be equipped with full execution semantics
which was achieved for timed-db-net in this work
(7→ Q2). With this the formalization and executiom
of EIPs becomes possible. In order to bridge the

32

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

EIP formalization to EIP realizations, an instruc-
tive catalog of realizations of EIPs as timed-db-net
was provided (7→ Q3). With the verification results
and the possibility of correctness testing based on
execution traces validation of EIPs realizations is
enabled (7→ Q4). This is complemented with the
possibility to simulate EIP realizations through a
prototypical implementation (7→ Q4). In summary,
the research questions and objectives set out in the
beginning of the paper could be addressed.

This work focuses on the formalization and re-
alization of EIPs in an isolated manner. EAI so-
lutions, however, often require the composition of
EIPs. Such EIP composition necessitate formal
treatment as well. Putting the responsible design
of EIPs at stake through their informal composi-
tions is counterproductive. Hence, future work will
address the formalization and realization of EIP
compositions in interplay with the formalization
and realization of EIPs as proposed in this work.

Acknowledgements

This research has been partially supported by
the project Planning for WORkflow Management
(PWORM), funded through the 2017 call issued by
the Research Committee of the Free University of
Bozen-Bolzano.

References

[1] D. S. Linthicum, Enterprise Application Integration,
Addison-Wesley, 2000 (2000).

[2] G. Hohpe, B. Woolf, Enterprise integration patterns:
Designing, building, and deploying messaging solutions,
Addison-Wesley, 2004 (2004).

[3] D. Ritter, N. May, S. Rinderle-Ma, Patterns for emerging
application integration scenarios: A survey, Information
Systems 67 (2017) 36–57 (2017).

[4] D. Ritter, J. Sosulski, Exception handling in message-
based integration systems and modeling using BPMN,
Int. J. Coop. Inf. Syst 25 (2) (2016).

[5] D. Ritter, S. Rinderle-Ma, Toward a collection of cloud
integration patterns, arXiv preprint arXiv:1511.09250
(2015).

[6] D. Ritter, M. Holzleitner, Integration adapter modeling,
in: International Conference on Advanced Information
Systems Engineering (CAiSE), Springer, 2015, pp. 468–
482 (2015).

[7] V. G. Cerf, Responsible programming, Commun. ACM
57 (7) (2014) 7 (2014).

[8] D. Fahland, C. Gierds, Analyzing and completing mid-
dleware designs for enterprise integration using coloured
petri nets, in: International Conference on Advanced
Information Systems Engineering (CAiSE), 2013, pp.
400–416 (2013).

[9] D. Ritter, S. Rinderle-Ma, M. Montali, A. Rivkin,
A. Sinha, Formalizing application integration patterns,
in: 2018 IEEE 22nd International Enterprise Distributed
Object Computing Conference (EDOC), IEEE, 2018,
pp. 11–20 (2018).

[10] M. Montali, A. Rivkin, Db-nets: On the marriage of
colored petri nets and relational databases, T. Petri
Nets and Other Models of Concurrency 12 (2017) 91–
118 (2017).

[11] K. Jensen, L. M. Kristensen, L. Wells, Coloured petri
nets and cpn tools for modelling and validation of con-
current systems, International Journal on Software Tools
for Technology Transfer 9 (3-4) (2007) 213–254 (2007).

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chat-
terjee, A design science research methodology for in-
formation systems research, JMIS 24 (3) (2007) 45–77
(2007).

[13] S. Lasota, Decidability border for petri nets with data:
WQO dichotomy conjecture, in: PN, Springer, 2016, pp.
20–36 (2016).

[14] F. Rosa-Velardo, D. de Frutos-Escrig, Decidability and
complexity of petri nets with unordered data, Theoreti-
cal Computer Science 412 (34) (2011) 4439–4451 (2011).

[15] M. Triebel, J. Sürmeli, Homogeneous equations of alge-
braic petri nets, arXiv preprint arXiv:1606.05490 (2016).

[16] J. Hidders, et al., DFL: A dataflow language based on
petri nets and nested relational calculus, Information
Systems 33 (3) (2008) 261–284 (2008).

[17] E. Badouel, L. Hélouët, C. Morvan, Petri nets with struc-
tured data, in: Petri Nets, 2015, pp. 212–233 (2015).

[18] D. Ritter, Database processes for application integra-
tion, in: British International Conference on Databases
(BICOD), Springer, 2017, pp. 49–61 (2017).

[19] W. M. van der Aalst, Interval timed coloured petri nets
and their analysis, in: ICATPN, 1993, pp. 453–472
(1993).

[20] J. Sifakis, Use of petri nets for performance evaluation,
Acta Cybernetica 4 (2) (1980) 185–202 (1980).

[21] L. Jacobsen, M. Jacobsen, M. H. Møller, J. Srba, Sofsem,
Springer, 2011, pp. 46–72 (2011).

[22] W. Zuberek, D-timed petri nets and modeling of time-
outs and protocols., Trans. Soc. Comp. Simul. 4 (4)
(1987) 331–357 (1987).

[23] B. Berthomieu, M. Diaz, Modeling and verification of
time dependent systems using time petri nets, IEEE
Trans. Software Eng. 17 (3) (1991) 259–273 (1991).

[24] S. Akshay, B. Genest, L. Hélouët, Decidable classes of
unbounded petri nets with time and urgency, in: PN,
Springer, 2016, pp. 301–322 (2016).

[25] A. Zenie, Colored stochastic petri nets, in: Interna-
tional Workshop on Timed Petri Nets, 1985, pp. 262–271
(1985).

[26] G. Balbo, Introduction to stochastic petri nets, in:
FMPA, Vol. 2090, Springer, 2001, pp. 84–155 (2001).

[27] Y. Hu, S. Sundara, J. Srinivasan, Supporting time-
constrained sql queries in oracle, in: VLDB, 2007, pp.
1207–1218 (2007).

[28] D. Ritter, N. May, K. Sachs, S. Rinderle-Ma, Bench-
marking integration pattern implementations, in: Pro-
ceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, ACM, 2016, pp.
125–136 (2016).

[29] H. Zhu, X. He, A methodology of testing high-level petri
nets, Information and Software Technology 44 (8) (2002)
473–489 (2002).

33

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[30] A. Kolmogorov, Sulla determinazione empirica di una
leggi di distribuzione, Inst. Ital. Attuari, Giorn. 4 (1933)
83–91 (1933).

[31] C. Ibsen, J. Anstey, Camel in Action, Manning, 2010
(2010).

[32] B. Beizer, Software testing techniques, Dreamtech Press,
2003 (2003).

[33] G. J. Myers, T. Badgett, T. M. Thomas, C. Sandler,
The art of software testing, Vol. 2, Wiley Online Library,
2004 (2004).

[34] R. N. Taylor, D. L. Levine, C. D. Kelly, Structural
testing of concurrent programs, IEEE Transactions on
Software Engineering 18 (3) (1992) 206–215 (1992).

[35] S. Morasca, M. Pezze, Using high-level petri nets for test-
ing concurrent and real-time systems, Real-time systems:
theory and applications 132 (1990) 119–131 (1990).

[36] D. Lee, M. Yannakakis, Principles and methods of test-
ing finite state machines-a survey, Proceedings of the
IEEE 84 (8) (1996) 1090–1123 (1996).

[37] R. M. Hierons, Checking states and transitions of a set
of communicating finite state machines, Microprocessors
and Microsystems 24 (9) (2001) 443–452 (2001).

[38] B. Beizer, Software Testing Techniques (2Nd Ed.), Van
Nostrand Reinhold Co., New York, NY, USA, 1990
(1990).

[39] B. Farwer, I. A. Lomazova, A systematic approach to-
wards object-based petri net formalisms, in: Perspec-
tives of System Informatics, 4th International Andrei Er-
shov Memorial Conference, PSI 2001, Akademgorodok,
Novosibirsk, Russia, July 2-6, 2001, Revised Papers,
2001, pp. 255–267 (2001).

[40] K. M. Van Hee, N. Sidorova, et al., Generation of
database transactions with petri nets, Fund. Inf. 93 (1-3)
(2009) 171–184 (2009).

[41] W. M. Van der Aalst, The application of petri nets to
workflow management, Journal of circuits, systems, and
computers 8 (01) (1998) 21–66 (1998).

[42] M. Martos-Salgado, F. Rosa-Velardo, Dynamic sound-
ness in resource-constrained workflow nets, in: Formal
Techniques for Distributed Systems, Springer, 2011, pp.
259–273 (2011).

[43] R. De Masellis, C. Di Francescomarino, C. Ghidini,
M. Montali, S. Tessaris, Add data into business pro-
cess verification: Bridging the gap between theory and
practice., in: AAAI, 2017, pp. 1091–1099 (2017).

[44] R. M. Dijkman, M. Dumas, C. Ouyang, Formal seman-
tics and analysis of bpmn process models using petri
nets, Tech. rep., Queensland University of Technology
(2007).

[45] R. Z. Frantz, A. M. Reina Quintero, R. Corchuelo, A
domain-specific language to design enterprise application
integration solutions, International Journal of Coopera-
tive Information Systems 20 (02) (2011) 143–176 (2011).

[46] P. Mederly, M. Lekavỳ, M. Závodský, P. Navra, Con-
struction of messaging-based enterprise integration solu-
tions using AI planning, in: CEE-SET, 2009, pp. 16–29
(2009).

[47] J. M. Mendes, P. Leitão, A. W. Colombo, F. Restivo,
High-level petri nets for the process description and
control in service-oriented manufacturing systems, Inter-
national Journal of Production Research 50 (6) (2012)
1650–1665 (2012).

[48] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo, Formal-
izing web service choreographies, Electronic notes in
theoretical computer science 105 (2004) 73–94 (2004).

[49] R. Gorrieri, C. Guidi, R. Lucchi, Reasoning about inter-
action patterns in choreography, in: Formal Techniques
for Computer Systems and Business Processes, Springer,
2005, pp. 333–348 (2005).

[50] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavat-
taro, Choreography and orchestration: A synergic ap-
proach for system design, in: International Conference
on Service-Oriented Computing, Springer, 2005, pp. 228–
240 (2005).

[51] G. Decker, F. Puhlmann, M. Weske, Formalizing ser-
vice interactions, in: International Conference on Busi-
ness Process Management, Springer, 2006, pp. 414–419
(2006).

[52] F. Puhlmann, M. Weske, Using the π-calculus for formal-
izing workflow patterns, in: International Conference
on Business Process Management, Springer, 2005, pp.
153–168 (2005).

[53] P. S. Alencar, D. D. Cowan, C. J. P. d. Lucena, A
formal approach to architectural design patterns, in:
International Symposium of Formal Methods Europe,
Springer, 1996, pp. 576–594 (1996).

[54] R. Allen, D. Garlan, A formal basis for architectural
connection, ACM Transactions on Software Engineering
and Methodology (TOSEM) 6 (3) (1997) 213–249 (1997).

[55] W. Sadiq, M. E. Orlowska, Analyzing process models
using graph reduction techniques, Information systems
25 (2) (2000) 117–134 (2000).

[56] C. Cabanillas, M. Resinas, A. Ruiz-Cortés, A. Awad,
Automatic generation of a data-centered view of business
processes, in: International Conference on Advanced
Information Systems Engineering (CAiSE), Springer,
2011, pp. 352–366 (2011).

[57] W. M. van der Aalst, M. Weske, The p2p approach
to interorganizational workflows, in: International Con-
ference on Advanced Information Systems Engineering
(CAiSE), Springer, 2001, pp. 140–156 (2001).

[58] A. Martens, Analyzing web service based business pro-
cesses, in: International Conference on Fundamental
Approaches to Software Engineering, Springer, 2005, pp.
19–33 (2005).

[59] W. M. van der Aalst, A. J. Mooij, C. Stahl, K. Wolf,
Service interaction: Patterns, formalization, and anal-
ysis, in: International School on Formal Methods for
the Design of Computer, Communication and Software
Systems, Springer, 2009, pp. 42–88 (2009).

[60] P. Massuthe, W. Reisig, K. Schmidt, An Operating
Guideline Approach to the SOA, Humboldt-Universität
zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II, Institut für Informatik, 2005 (2005).

34

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Highlights:
- Introducing the notion of responsible development of Enterprise Application
Intigration solutions based on formalized Enterprise Integration Patterns (EIPs)
- Extensive requirements analysis for EIP formalization based on 139 EIPs and
existing work
- timed db-nets as formalization for EIPs based on requirements, fully equipped
with execution semantics
- Realization of EIP representatives formalized as timed db-nets (instructive
pattern formalization)
- Correctness criterion for EIP executions and how to test it for control flow,
data flow (incl. transacted resources), and time EIP requirements
- Prototype support for testing correctness for EIP realizations based on
simulations
- Case studies: Replicate Material and Predictive Maintenance scenarios from SAP
Cloud Intgration

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

	Formal foundations for responsible application integration

