
How to Make the Preconditioned Conjugate Gradient Method
Resilient Against Multiple Node Failures
Carlos Pachajoa
University of Vienna

Faculty of Computer Science
Vienna, Austria

carlos.pachajoa@univie.ac.at

Markus Levonyak
University of Vienna

Faculty of Computer Science
Vienna, Austria

markus.levonyak@univie.ac.at

Wilfried N. Gansterer∗
University of Vienna

Faculty of Computer Science
Vienna, Austria

wilfried.gansterer@univie.ac.at

Jesper Larsson Träff
TU Wien

Faculty of Informatics
Vienna, Austria

traff@par.tuwien.ac.at

ABSTRACT
We study algorithmic approaches for recovering from the failure
of several compute nodes in the parallel preconditioned conjugate
gradient (PCG) solver on large-scale parallel computers. In partic-
ular, we analyze and extend an exact state reconstruction (ESR)
approach, which is based on a method proposed by Chen (2011). In
the ESR approach, the solver keeps redundant information from
previous search directions, so that the solver state can be fully
reconstructed if a node fails unexpectedly. ESR does not require
checkpointing or external storage for saving dynamic solver data
and has low overhead compared to the failure-free situation.

In this paper, we improve the fault tolerance of the PCG algo-
rithm based on the ESR approach. In particular, we support recov-
ery from simultaneous or overlapping failures of several nodes for
general sparsity patterns of the system matrix, which cannot be
handled by Chen’s method. For this purpose, we refine the strategy
for how to store redundant information across nodes. We analyze
and implement our new method and perform numerical experi-
ments with large sparse matrices from real-world applications on
128 nodes of the Vienna Scientific Cluster (VSC). For recovering
from three simultaneous node failures we observe average runtime
overheads between only 2.8% and 55.0%. The overhead of the im-
proved resilience depends on the sparsity pattern of the system
matrix.

CCS CONCEPTS
• Mathematics of computing → Solvers; Mathematical soft-
ware performance; • Computing methodologies → Parallel
algorithms.
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337849

ACM Reference Format:
Carlos Pachajoa, Markus Levonyak, Wilfried N. Gansterer, and Jesper Lars-
son Träff. 2019. How to Make the Preconditioned Conjugate Gradient
Method Resilient Against Multiple Node Failures. In 48th International
Conference on Parallel Processing (ICPP 2019), August 5–8, 2019, Kyoto, Japan.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3337821.3337849

1 INTRODUCTION
One of the major challenges in current and, even more, in future
high-performance computing (HPC) is the increasing failure rate
caused by increasing complexity and an ever-growing number of
interconnected components [16, 29]. Among the most common
types of failures in large-scale parallel computers are fail-stop fail-
ures, where a failing process stops and its data is lost [11, 14, 26, 27].
In order to support long-running scientific applications also on
failure-prone HPC systems, new strategies and resilient algorithms
are necessary [17].

We consider the preconditioned conjugate gradient (PCG) method
(cf. Sec. 2.1), an important iterative method for solving symmetric
and positive-definite (SPD) sparse linear systems on large-scale
parallel computers. We study settings where the PCG solver is exe-
cuted on parallel computers that are susceptible to node failures, a
common type of fail-stop failures which is critical in practice [17].
In contrast to previous work that also aims to make the PCGmethod
resilient against unexpected node failures without expensive check-
pointing (cf. Sec. 1.2), we do not only consider single node failures
but multiple node failures which occur simultaneously or are over-
lapping in time. The exact state reconstruction (ESR) approach (cf.
Sec. 2.2), which was introduced by Chen [11] and refined by Pacha-
joa et al. [23], was shown to be the most efficient checkpointing-free
algorithmic fault-tolerance technique for protecting the PCG solver
against unexpected single node failures [23].

In this paper, we assume that a large sparse linear systemAx = b,
where A is SPD, is given and shall be solved with the PCG method
on a parallel computer. The preconditionerM for solving this linear
system is either explicitly or implicitly given. We enhance the ESR
approach so that it becomes capable of protecting the PCG method
against unexpected simultaneous or overlapping failures of multi-
ple nodes, theoretically analyze the communication overhead for
this improved resilience, and demonstrate low runtime overheads

https://doi.org/10.1145/3337821.3337849
https://doi.org/10.1145/3337821.3337849

ICPP 2019, August 5–8, 2019, Kyoto, Japan C. Pachajoa, M. Levonyak, W.N. Gansterer, and J.L. Träff

in numerical experiments. Although we cannot provide details due
to space restrictions, our proposed algorithmic modifications can
also be applied to the ESR approach [11] for the Jacobi, Gauss-Seidel,
successive overrelaxation (SOR), symmetric successive overrelaxation
(SSOR), split preconditioner conjugate gradient (SPCG) [23] and pre-
conditioned bi-conjugate gradient stabilized (BiCGSTAB) algorithms
in order to make them resilient against multiple simultaneous or
overlapping node failures.

1.1 Problem setting and assumptions
We consider the parallel execution of the PCG solver on N compute
nodes of a distributed-memory parallel computer, which communi-
cate over an interconnection network. Each compute node consists
ofm processors such that the solver is executed on M B N ×m
processors in total. Each processor shares its memory with all other
processors on the same compute node.

In the event of a single processor failure, exactly one processor
on one compute node fails, but the shared memory on this node
stays intact. Hence, no data is lost and the remaining processors
on the node can take over the workload of the failed processor.
The same holds for multiple processor failures where at least one
processor per compute node survives. In this paper, we consider a
more complicated event: a node failure, where a compute node fails
as a whole and the data in the memory of the affected node is lost.

Node failures may occur for several reasons: for example, all
m processors of a node fail, the shared memory of a node gets
corrupted, or a node loses its connection to the interconnection
network. In case of a single node failure, exactly one compute node
fails at a time. If more than one node fails at a time, we talk about
multiple node failures. Nodes that continue working after a node
failure and keep all their data are called surviving nodes. A node
that becomes unavailable after a node failure is referred to as a
failed node, and a node that takes the place of a failed node in the
recovery process is called a replacement node (which could be a
spare node or one of the surviving nodes).

1.1.1 Failure detection and node replacement. We assume the avail-
ability of a parallel runtime environment that provides functionality
comparable to state-of-the-art implementations of the industry-
standard Message Passing Interface (MPI) [20]. This particularly
comprises efficient collective communication capabilities like the
Allreduce function of MPI. Beyond that, we assume that the un-
derlying runtime environment supports some basic fault-tolerance
features. A prototypical example is the MPI extension User Level
Failure Mitigation (ULFM) [6, 21] which supports the detection of
node failures, the prevention of indefinitely blocking synchroniza-
tions or communications, the notification of the surviving nodes
that a failure has occurred and which nodes have failed, and a
mechanism for providing replacement nodes.

1.1.2 Data distribution. Analogously to [11], we assume that the
fundamental problem-defining static input data, i.e., the system
matrix A ∈ Rn×n , the right-hand-side vector b ∈ Rn , and the pre-
conditionerM ∈ Rn×n (cf. Sec. 2.1), can be retrieved from reliable
external storage (e.g., from a checkpoint prior to entering the linear
solver, cf. the ABFT&PeriodicCkpt algorithm [7, 8, 17], see Sec. 1.2),
and thus does not have to be reconstructed after a node failure.

In accordance with typical distributions of sparse matrices in
widely used high-performance numerical libraries like PETSc [4],
we consider a block-row data distribution of all matrices and vectors
among the N nodes of the parallel computer. More precisely, every
node owns blocks of n/N contiguous rows (if n = cN with c ∈ N,
otherwise some nodes own ⌊n/N ⌋ and others ⌈n/N ⌉ rows) of both
thematricesA andM as well as each of the vectorsb,x , and all other
vectors maintained by the PCG solver (cf. Sec. 2.1). On one node,
the owned block rows, which are stored in the shared memory of
the node, are evenly distributed among them processors, i.e., each
processor owns (approximately) n/M rows of each of the matrices
and vectors. Globally used scalars are replicated on all N nodes.

Since each node owns block rows of all matrices and vectors, a
node failure affects a part of each matrix and vector. Block rows of
dynamic data which were owned by the failed node are lost and
need to be reconstructed on the replacement node (cf. Sec. 2.2).

1.1.3 Notation. We use a notation similar to [2] to denote sections
of matrices and vectors. We refer to the set of all indices as I B
{1, 2, . . . ,n}. The cardinality n of I is equal to the size of the vectors.
The index subset representing the rows assigned to node i is denoted
as Ii . Given a vectorv(j), where j denotes the iteration number of
the linear solver,v(j)

Ii
refers to the subset of elements of the vector

at iteration j owned by node i . Row and column selections of a
matrix B are designated with index sets as well: BIi ,Ik refers to
the selection of rows and columns of B corresponding to the index
subsets Ii and Ik , respectively.

The failed node is referred to as node f , and its index set is
hence denoted as If . With the state of an iterative solver we mean
the—not necessarily minimal—set of data that completely defines
the future behavior of this iterative solver. The state of the PCG
solver in iteration j can be defined as comprising the iterate x (j)

(i.e., the current approximation to the solution x), the residual r (j),
the preconditioned residual z(j), and the search direction p(j).

1.2 Related work
The existing literature on resilient iterative linear solvers distin-
guishes between two different kinds of failures: soft errors and node
failures. The former refers to spontaneous changes of the state of
the solver (e.g., bit flips), potentially leading to a wrong result. In
this category, we find work by Sao and Vuduc [25] which proposes
strategies to ensure that the conjugate gradient (CG) method will
converge to the right solution after a soft error. However, their
approach requires some operations to be performed reliably.

Bronevetsky and de Supinski [9] evaluate the effects of soft
errors on iterative linear solvers including the CG method. Bit flips
are introduced at random times and positions, and the effects are
classified according to the resulting runtimes and solution errors.
Dichev and Nikolopoulos [13] propose and experimentally evaluate
a specific form of dual modular redundancy, where all computations
are performed twice for improved redundancy, in order to detect
and correct soft errors in the PCG method. More work in the area
of soft error detection and correction in the CG and PCG methods
has been published by Shantharam et al. [28] and Fasi et al. [15].
All these approaches have in common that they are not applicable
to our problem of the PCG solver subject to node failures.

How to Make the PCG Method Resilient Against Multiple Node Failures ICPP 2019, August 5–8, 2019, Kyoto, Japan

Pachajoa and Gansterer [22] experimentally evaluate the inher-
ent resilience of the CG method after a single node failure. The
currently in practice most commonly used class of fault-tolerance
techniques to cope with node failures is checkpoint/restart (C/R).
These techniques frequently save the current state of a running
application and roll back to the latest saved state in case of a node
failure. C/R has been investigated as a general-purpose technique
(e.g. [30]), and also for specific problem settings (e.g. [19]). Herault
et al. [17] provide a comprehensive overview of different variants
of this approach.

To avoid the overhead of continuously saving the state, Chen [11]
exploits specific properties of the PCG solver and other iterative
methods such that the state of the solver can be recovered without
checkpointing after a single node failure occurred. For storing the
necessary redundant information, he chooses the intuitive approach
of sending it to the closest node (cf. Sec. 3). Pachajoa et al. [23] refine
Chen’s approach [11] by distinguishing different common types of
preconditioners.

In [23], the approach from [11] is experimentally compared to
a heuristic strategy proposed by Langou et al. [18]. This heuristic
interpolation/restart strategy is applicable to iterative linear solvers
in general to recover from a node failure by approximating the lost
iterate. The submatrix of the replacement node is used to produce
an interpolated approximation of the iterate before the node failure
occurred. Agullo et al. [1, 2] extend this approach by using all the
information of the matrix in the interpolation, which produces a
reconstructed iterate whose error norm is guaranteed to be smaller
than the error norm of the iterate before the node failure, albeit
with significant communication overhead.

Bosilca et al. [7, 8, 17] introduce the ABFT&PeriodicCkpt algo-
rithm, which combines algorithm-based fault tolerance (ABFT) with
periodic checkpointing in order to make entire applications (and
not just operations that can be protected by ABFT) resilient to
node failures. The longer the phases protected by ABFT, the fewer
checkpoints are necessary and the cheaper resilience against node
failures usually becomes (assuming that the used ABFT method is
more efficient than checkpointing).

1.3 Contributions of this work
To the best of our knowledge, there has been neither a detailed
discussion nor a thorough analysis of a generalized ESR approach
for protecting the PCGmethod againstmultiple node failures. In this
paper, we propose a strategy that precisely defines how and where
to store redundant information so that the PCG solver becomes
resilient against multiple node failures. In particular, we analyze
the communication overhead and evaluate the performance penalty
for the improved resilience capabilities of being able to tolerate
multiple simultaneous node failures. In numerical experiments on
the Vienna Scientific Cluster (VSC), a medium-scale HPC system,
we eventually demonstrate the low runtime overhead of our new
strategies for the improved resilience.

The remainder of this paper is organized as follows. In Sec. 2, we
briefly review the PCG method and the ESR approach as presented
in [11, 23]. Afterwards, in Sec. 3, we summarize the concept of
Chen [11] for keeping redundant information in the ESR approach
such that single node failures can be tolerated. Then, in Sec. 4, we

1: r (0) B b −Ax (0), z(0) B M−1r (0),p(0) B z(0)

2: for j = 0, 1, . . . , until convergence do

3: α (j) B r (j)Ëz(j)/p(j)ËAp(j)

4: x (j+1) B x (j) + α (j)p(j)

5: r (j+1) B r (j) − α (j)Ap(j)

6: z(j+1) B M−1r (j+1)

7: β (j) B r (j+1)Ëz(j+1)/r (j)Ëz(j)

8: p(j+1) B z(j+1) + β (j)p(j)

9: end for

Algorithm 1: Preconditioned conjugate gradient (PCG)
method [24, Alg. 9.1]

1: Retrieve the static data AIf ,I , PIf ,I , and bIf

2: Gather r (j)I\If
and x (j)I\If

3: Retrieve the redundant copies of β (j−1), p(j−1)If
, and p(j)If

4: Compute z(j)If B p(j)If
− β (j−1)p(j−1)If

5: Computev B z(j)If
− PIf ,I\If r

(j)
I\If

6: Solve PIf ,If r
(j)
If
= v for r (j)If

7: Computew B bIf − r (j)If
−AIf ,I\If x

(j)
I\If

8: Solve AIf ,If x
(j)
If
= w for x (j)If

Algorithm 2: ESR reconstruction phase for the PCGmethod
on the replacement node f (P B M−1 is given) [23, Alg. 4]

propose modifications and extensions of the ESR approach for sys-
tems that are prone to multiple simultaneous or overlapping node
failures. Apart from that, we theoretically analyze the communica-
tion overhead of our novel algorithm for supporting multiple node
failures. In Sec. 5, we discuss the most important aspects regarding
the impact of the sparsity pattern of the system matrix. Next, in
Sec. 6, we summarize our implementation for conducting numerical
experiments. Subsequently, in Sec. 7, we present our experimen-
tal results and discuss how they relate to our theoretical analysis.
Finally, our conclusions are summarized in Sec. 8.

2 ALGORITHMIC BACKGROUND
In this section, we first review the PCG method in Sec. 2.1 and
afterwards the ESR approach [11, 23] in Sec. 2.2. In Sec. 3, we
then look at the details of how Chen [11] is keeping redundant
information in order to guarantee protection against single node
failures.

2.1 Preconditioned conjugate gradient method
The (P)CG method iteratively solves a linear systemAx = b, where
both the SPD matrix A ∈ Rn×n and the right-hand-side vector
b ∈ Rn are given. The search directions p(j), along which the
quadratic potential defined by A is minimized, are chosen to be

ICPP 2019, August 5–8, 2019, Kyoto, Japan C. Pachajoa, M. Levonyak, W.N. Gansterer, and J.L. Träff

A-orthogonal, i.e., p(j)ËAp(k) = 0 for all j , k . The residual r (j) is
defined as r (j) = b −Ax (j).

In the PCG method, which is listed in Alg. 1, a preconditioner
M ∈ Rn×n is used for accelerating convergence. Instead of the
original system, the linear systemM−1Ax = M−1b is solved.M is
assumed to be an SPD matrix as well [24, p. 276] and is to be chosen
such that κ(M−1A) < κ(A), where κ(B) denotes the condition num-
ber of a matrix B. The PCG method stores the distributed vectors
x (j), r (j), z(j), p(j), and Ap(j) as well as the replicated scalars α (j)

and β (j), which in total require memory for 5n + 2N floating-point
numbers (not including the static data A,M , and b).

2.2 Exact state reconstruction (ESR)
In contrast to checkpoint/restart methods, which—even in the
failure-free case—impose a usually considerable runtime overhead
due to continuously saving the state of the solver [17], the ESR
approach [11, 23] is able to exploit the algorithmic properties of
the PCG solver so that the complete state can be reconstructed
after a node failure with low overhead. During the failure-free PCG
iterations, only little or—depending on the sparsity structure of
A—no additional communication is necessary for achieving this.
Only the local memory requirements are slightly higher than in
the standard (non-resilient) PCG variant.

At iteration j of the PCG algorithm, the product Ap(j) is com-
puted in a sparse matrix-vector multiplication (SpMV) operation
(cf. Alg. 1, lines 3 and 5). In the non-resilient PCG solver, all but the
own block p(j)Ii can be dropped on node i after the product has been
computed. In the resilient algorithm, we also drop most of p(j) on
each node after the SpMV. The crucial difference to non-resilient
PCG is that now each node also stores the elements of at least one
other node in addition to its own block (for details see Sec. 3).

Overall, there is a redundant copy of each element of p(j) after
computing Ap(j). Hence, in case of a node failure, this redundant
copy can be sent to the replacement node in order to completely
recover the most recent search direction. For the reconstruction of
the complete state after a node failure, we need to recover the two
most recent search directions [11, Sec. 5.2] and thus have to keep
redundant copies of each element of not only p(j) but also p(j−1).
The local memory overhead of 2n/N vector elements per node and
2n vector elements in total is negligible compared to the overall
memory requirement O(n2) of the PCG solver (cf. Sec. 2.1).

The procedure to reconstruct the complete state of the PCG
solver is outlined in Alg. 2. It is assumed that a preconditioner
P B M−1 is given. Variants for cases where M (not M−1) or a
split preconditioner M = LLË is given are shown in [23, Alg. 3
and 5]. The scalar β (j−1) can easily be recovered since it is replicated
on every node (cf. Sec. 2.1), i.e., β (j−1) has the same value on all
nodes. Furthermore, the reconstruction of the lost parts r (j)If

and

z(j)If
of the (preconditioned) residuals r (j) and z(j) takes place on

the replacement node f . MatrixAIf ,If of the linear system in line 8
of Alg. 2 is SPD, has full rank, and is much smaller than the full
system matrixA. Therefore, this linear system can be solved locally
on the replacement node f (only the involved vectors need to be
gathered first on node f). Detailed derivations of the ESR approach
can be found in [11, 23].

3 SINGLE NODE FAILURE
We now discuss details of how and where to store the redundant
copies of the twomost recent search directions. For this purpose, we
review the strategy proposed by Chen [11] for protecting the PCG
method against a single node failure. However, as we will see, this
strategy is not suitable for multiple simultaneous or overlapping
node failures. Later, in Sec. 4, we present our new strategy for
handling multiple simultaneous or overlapping node failures.

In PCG, the SpMV operation for obtaining u(j) = Ap(j), which
can be rewritten as

u(j)I1
= AI1,I1p

(j)
I1
+AI1,I2p

(j)
I2
+ · · · +AI1,IN p

(j)
IN

u(j)I2
= AI2,I1p

(j)
I1
+AI2,I2p

(j)
I2
+ · · · +AI2,IN p

(j)
IN

...

u(j)IN
= AIN ,I1p

(j)
I1
+AIN ,I2p

(j)
I2
+ · · · +AIN ,IN p

(j)
IN
,

(1)

is performed at each iteration (cf. lines 3 and 5 of Alg. 1). When
ignoring possible optimizations due to the sparsity pattern of A,
p(j)Ii

is sent from node i to node k in iteration j such that u(j)Ik =

AIk ,I1p
(j)
I1
+ · · · +AIk ,Iip

(j)
Ii
+ · · · +AIk ,IN p

(j)
IN

can be computed on
node k . For a more optimized algorithm that, during SpMV, only
sends the minimum set of elements required due to the sparsity
pattern of A, we define

Si B all elements of p(j)Ii ,

Sik B elements of p(j)Ii sent to node k computing Ap(j),

Ri B

(i−1⋃
k=1

Sik

)
∪

(N⋃
k=i+1

Sik

)
, and Rci B Si − Ri

(2)

in accordance with Chen [11]. p(j)Ii can be completely recovered
after a node failure if Ri = Si . In order to ensure this, Chen proposes
to send Rci to node di B (i + 1) mod N (together with Sidi).

Unfortunately, this strategy is not capable of coping with simul-
taneous or overlapping failures of multiple nodes. For example, if
both nodes i and i + 1 fail simultaneously and Rci , ∅, the search
direction vector elements in Rci are lost and the state of the PCG
solver cannot be reconstructed. The problem obviously worsens if
more than two nodes fail simultaneously.

4 MULTIPLE NODE FAILURES
In this section, we extend the ESR approach for coping with mul-
tiple simultaneous or overlapping node failures. Originally, the
ESR method considers exactly one node failure at a time, i.e., it is
assumed that the reconstruction process finishes before another
node failure occurs (cf. Sec. 2.2 and Sec. 3). For coping with up to
ϕ < N uniformly distributed node failures that may overlap in
time, we need to keep ϕ redundant copies of each block of the two
most recent search directionsp(j−1) andp(j) on ϕ different compute
nodes [23]. In the following, we design a resilient algorithm based
on this idea in detail and analyze its communication overhead.

How to Make the PCG Method Resilient Against Multiple Node Failures ICPP 2019, August 5–8, 2019, Kyoto, Japan

4.1 Tolerating multiple node failures
To keep ϕ redundant copies of each block of the two most recent
search direction vectors, a similar strategy can be pursued as in the
special case ϕ = 1. Let (Si ,mi) be a multiset with the multiplicity

mi : Si → N0
s 7→ number of nodes s is sent to

during the computation of Ap(j).
(3)

Note that we assume here—as it is common for SpMV—that s is
only sent to nodes with corresponding non-zero entries in their
rows of A. Hence, the number of nodes s is sent to depends on the
sparsity pattern of A. Comparing the definition of the multiplicity
m in Eqn. (3) with the definition of Rci in Eqn. (2), it follows that

Rci = {s ∈ Si | mi (s) = 0} . (4)

For supporting up to ϕ simultaneous (or overlapping) node failures,
we need to store at least ϕ redundant copies of each element of p(j)Ii ,
i ∈ {1, 2, . . . ,N }, on ϕ different nodes other than node i . Let

dik B


(
i +

⌈
k
2

⌉)
mod N , if k odd(

i − k
2

)
mod N , if k even

(5)

and let дi (s) denote the number of sets Sidik with s ∈ Sidik for all
k ∈ {1, 2, . . . ,ϕ}. Then, the required redundancy for tolerating up
to ϕ simultaneous node failures can be achieved by sending

Rcik B
{
s ∈ Si

�� s < Sidik ∧ mi (s) − дi (s) ≤ ϕ − k
}

(6)

to node dik for all i ∈ {1, 2, . . . ,N } and k ∈ {1, 2, . . . ,ϕ}. Note that
the sets Rcik are of minimal size such that the required number ϕ of
redundant copies of each search direction vector element is ensured.
It holds that |Rci1 | ≥ |Rci2 | ≥ · · · ≥ |Rciϕ |.

The strategy proposed in Eqn. (5) for selecting the nodes to
keep the redundant copies of p(j−1)Ii

and p(j)Ii is a reasonably good
heuristic for minimizing communication overheads during SpMV
if we assume that the entries of the system matrix A are mostly
clustered around the diagonal (since it then is likely that there
are some elements which have to be sent anyway from node i
to node dik and, thus, there is no extra latency for establishing
a new connection; see Sec. 5 for a more detailed discussion). For
matrices with very different sparsity patterns, strategies different
from Eqn. (5) may be preferable. A comprehensive analysis of the
interaction between a given sparsity pattern and the optimal choice
of the “backup nodes” is work in progress.

When the backup strategy based on Eqns. (5) and (6) is employed,
we have ϕ + 1 copies of each element of p(j−1)Ii

and p(j)Ii on ϕ + 1
different nodes (including node i that owns the block) and the two
most recent search directions p(j−1) and p(j) can be fully recovered
after a simultaneous or overlapping failure of up to ϕ arbitrary
nodes. If the node failures do not happen simultaneously but are
overlapping in time, i.e., more node failures occur during the recon-
struction phase, the reconstruction process must be restarted after
each node failure (an efficient implementation can of course skip
steps that have already been performed and are not affected by the
subsequent node failures).

We consider ψ ≤ ϕ node failures. Let f1, f2, . . . , fψ denote the
nodes that fail. Then, we can define If B If1 ∪ If2 ∪ · · · ∪ Ifψ and

use a similar reconstruction procedure as in the case of a single
node failure. Some of the reconstruction steps of Alg. 2 can be
performed locally on each of the replacement nodes f1, f2, . . . , fψ .
However, for computing the matrix-vector products and solving the
linear systems in lines 5 to 8 of Alg. 2, additional communication
between the ψ replacement nodes is necessary. In Sec. 4.2, we
show analytically that the capability of tolerating up to ϕ node
failures may incur increased communication cost. Hence, ϕ should
be chosen only as large as necessary for handling the expected
number of simultaneous or overlapping node failures on a given
parallel computer.

4.2 Analysis
Communication time usually is the main cost for a parallel algo-
rithm, dominating the computation time [5]. For analyzing the
communication overhead of sending the additional elements of the
sets Rcik as defined in Eqn. (6), we adopt a latency-bandwidth com-
munication model [10] and assume that the communication cost
solely depends on latencies λik > 0—which may vary for different
sending nodes i and corresponding receiving nodes dik according
to Eqn. (5)—and cost µ > 0 per vector element. We further assume
that each node is able to send and receive exactly one element at a
time. If Sidik , ∅, the additional elements of Rcik are sent together
with the elements of Sidik , which have to be sent anyway during
computing the sparse matrix-vector product Ap(j).

If this is the case for all pairs of nodes for a fixed k ∈ {1, 2, . . . ,ϕ},
which we refer to as communication round k , no extra latency
cost applies in that round, and the overhead is maxi |Rcik |µ. In
contrast, if ∀i ∈ {1, 2, . . . ,N } : Sidik = ∅ in communication round
k ∈ {1, 2, . . . ,ϕ}, extra latencies λik incur for all pairs of nodes,
and the overhead is maxi (λik + |Rcik |µ) ≤ maxi λik +maxi |Rcik |µ.
Hence, in communication round k ∈ {1, 2, . . . ,ϕ}, it holds for the
communication overhead O that

0 ≤ max
i

��Rcik �� µ ≤ O

≤ max
i

(
λik +

��Rcik �� µ) ≤ max
i

λik +max
i

��Rcik �� µ,
where i ∈ {1, 2, . . . ,N } and maxi |Rcik |µ = 0 if and only if
∀i : |Rcik | = 0, i.e., there are at least ϕ − k + 1 redundant copies
of all elements of p(j) due to the sparsity pattern of A. For all ϕ
communication rounds, it follows that

0 ≤ max
i

ϕ∑
k=1

��Rcik �� µ ≤

ϕ∑
k=1

max
i

��Rcik �� µ ≤ O

≤

ϕ∑
k=1

max
i

(
λik +

��Rcik �� µ) ≤

ϕ∑
k=1

(
max
i

λik +max
i

��Rcik �� µ)
=

ϕ∑
k=1

max
i

λik︸ ︷︷ ︸
≤ λmax

+

ϕ∑
k=1

max
i

��Rcik ��︸ ︷︷ ︸
≤ ⌈ nN ⌉

µ ≤ ϕλmax + ϕ
⌈ n
N

⌉
µ,

where λmax B maxi ,k λik . Hence, the communication overhead O

for keeping ϕ redundant copies of all elements of p(j) lies between

ICPP 2019, August 5–8, 2019, Kyoto, Japan C. Pachajoa, M. Levonyak, W.N. Gansterer, and J.L. Träff

the lower bound 0 and the upper bound ϕ
(
λmax +

⌈ n
N

⌉
µ
)
. The ac-

tual communication overhead within that interval entirely depends
on the sparsity pattern ofA, which determines the elements in Rcik .

5 INFLUENCE OF THE SPARSITY PATTERN
In this section, we take a closer look at the implications of our
theoretical analysis in Sec. 4. As we showed in Sec. 4.2, there exist
matrices with sparsity patterns which lead to zero communication
overhead during the failure-free execution of the PCG solver, i.e.,
no extra communication is necessary for distributing ϕ redundant
copies of all elements of the search direction vector p(j) during
the computation of the sparse matrix-vector product Ap(j). On the
other hand, other matrix sparsity patterns may lead to significant
communication overhead during the SpMV operation.

Independent of the particular strategy for selecting the backup
nodes, it is clearly beneficial for having a low communication over-
head if mi (s) ≥ ϕ (cf. Eqn. (3)) holds for most or even all s ∈ Si
and i ∈ {1, 2, . . . ,N } or, in other words, if most or all elements
of p(j) anyway—i.e., due to the sparsity pattern of A—have to be
communicated to at least ϕ different nodes during the computation
of the product Ap(j).

If this is not the case, a possibly considerable number of extra
vector elements has to be transferred during the SpMV operation.
Since the number of extra elements to be sent is determined by the
sparsity pattern ofA, communication cost can then only be reduced
by avoiding extra latencies, i.e., by sending the extra elements to
nodes where also other elements have to be sent to. In general,
our strategy defined by Eqns. (5) and (6) performs well if A is not
too sparse within a bandwidth of ⌈ϕn/(2N)⌉ around the diagonal
(but can still be very sparse overall). More formally, if for all i ∈
{1, 2, . . . ,N } and k ∈ {1, 2, . . . ,ϕ} at least one element in each
submatrix AIdik ,Ii

is not equal to zero, no cost because of extra
latencies is incurred. The corresponding proofs are straightforward,
but we are omitting them due to space restrictions.

6 IMPLEMENTATION
Up to this point, we have analyzed the algorithms in theoretical
terms. We now describe how the reconstruction is realized in a
real-life, finite-precision machine.

We implement Chen’s algorithm [11] and our novel extensions
as described in Sec. 3 and Sec. 4 using the PETSc framework [3, 4].
PETSc provides the CG solver and linear algebra operations, and it
also manages communication between nodes. We use operations
offered by the framework to transfer the information required for
the recovery from node failures. We use a block Jacobi as a pre-
conditioner during the regular operation of the solver, solving the
preconditioner blocks exactly.

To impart fault tolerance, the SpMV is modified to transfer the ad-
ditional data required to obtain the desired level of data redundancy.
In PETSc, the SpMV operation is realized with a generalized scatter:
A node determines, from the non-zero entries in its matrix rows,
what vector components it requires from its neighbors to perform
the SpMV product. With this information, PETSc collectively cre-
ates a communication context for the generalized scatter operation,
defining what entries of a distributed vector are communicated,
and where they must be communicated to.

In our experiments, we simulate node failures. Instead of taking
down nodes and producing replacements during the reconstruc-
tion phase, a node will perform the operations and communication
required to restore the solver state. The reconstruction process re-
quires sending the surviving entries of the search direction vector to
replacement nodes. In our experiments, this is achieved by reversing
the communication that takes place during the matrix-vector prod-
uct. PETSc already provides this functionality. However, reversing
the communication that occurs during the matrix-vector product is
not a well-defined operation. To see this, imagine a communication
context that dictates that the entry in position i0 of a vector, located
in some node A, must be transferred to positions i1, in node B, and
i2, in node C . In the reverse communication process, entries in po-
sitions i1 and i2 will hold candidates for the value of that entry to
be transferred to position i0. In the absence of node-failures, both
candidates will be the same value, because they are copies of the
original entry in i0, and the operation is then well defined, but, in
the event of a node failure, it is possible that one of these entries is
lost and the resulting candidates are different, conflicting values.
Therefore, in such cases, the reverse communication process used
in the reconstruction could be non-deterministic. We cope with this
issue by keeping the search directions in the nodes simulating a
node failure. If this information is stored, communication with the
reversed context is deterministic, because there would never be a
conflict between the candidates.

This problem arises because we use the reverse of a communica-
tion context intended for SpMV. In a more optimized implementa-
tion, a tailored communication context can be produced after the
node failure takes place, which avoids this problem altogether by
selecting the entries that we need for the reconstruction.

In our implementation, the linear system arising in line 8 of
Alg. 2, is solved using a PCG solver assembled with global oper-
ations. In particular, the matrix-vector products of the submatrix
AIf ,If and the subvector x (j)If are performed by multiplying the en-

tire matrixAwith a modified vector x (j), whose appropriate entries
were set to zero. The desired AIf ,If x

(j)
If

is a subvector of the result
of this global operation. This is less efficient than working with
the actual submatrix of A, but some of the changes we introduced
to increase redundancy conflict with PETSc’ ability to create sub-
matrices. The cost to reconstruct the solution, however, remains
very small compared to the overall runtime. The CG solver for the
subsystem uses a block Jacobi preconditioner, with blocks matching
the process’ index set. We use an approximate solver based on ILU
factorization for the blocks.

Avoiding loss of orthogonality
For this section it is useful to distinguish between the solver residual,
that is, vectorr (j) fromAlg. 1, and the vectorb−Ax (j). These vectors
are, in general, not equal in a finite-precision machine.

The CG algorithm in floating-point arithmetic undergoes loss
of orthogonality, where roundoff error accumulates and the con-
jugacy of the search directions is lost as the solver progresses.
Consequently, in regular PCG the solver residual and the vector
b −Ax will differ slightly after convergence. Because we work with
finite precision, and because we solve the local linear system in the

How to Make the PCG Method Resilient Against Multiple Node Failures ICPP 2019, August 5–8, 2019, Kyoto, Japan

reconstruction process (line 8 of Alg. 2) iteratively, our algorithm
only reconstructs an approximation of the solver state before the
node failures take place, thus potentially further contributing to
this loss of orthogonality: Consequently, the ESR solver residual
after convergence can be larger than the solver residual of PCG. The
largest source of deviations is the solution of the local linear system
of line 8 of Alg. 2. The loss of orthogonality relative to regular PCG
can be controlled with the tolerance of this linear system.

To compare the accuracies of ESR and PCG in this regard, we
define the relative residual difference metric:

∆ESR =
∥rESR∥2 − ∥b −AxESR∥2

∥b −AxESR∥2

∆PCG =
∥rPCG∥2 − ∥b −AxPCG∥2

∥b −AxPCG∥2
.

(7)

Here, rESR and rPCG are the solver residual vectors of ESR with
reconstruction and reference PCG respectively after convergence,
and xESR and xPCG are the corresponding iterands.

A side-by-side comparison of the ESR method and regular PCG
can show that the former is as accurate as the latter. In Sec. 7.2 we
show that the effects of using finite-precision arithmetic can be
made negligible. Since node failures are uncommon and reconstruc-
tion is relatively cheap to perform, we can set the tolerance for the
local system to a very small value, so that ESR converges, while the
reconstruction overhead remains low.

7 NUMERICAL EXPERIMENTS
Now we summarize our experimental setup and discuss our results.

7.1 Experimental setup
We use SPDmatrices from the SuiteSparse Matrix Collection [12] as
test problems, selecting problems from different application areas.
Their properties are summarized in Table 1. We select medium (M1,
M2) and large (M3-M8) size problems. The latter are among the
largest available SPD matrices in the SuiteSparse Matrix Collection.
There are problems with different numbers of non-zeros. Large ma-
trices with relatively few non-zeros are common, but problems with
more non-zero entries are more expensive to compute and would
benefit the most from resilience schemes to protect the resource
investment.

Our experiments are run on 128 nodes of the VSC3 system of the
Vienna Scientific Cluster. Although our algorithm is well suited for
multiple processes per node, we use only one process per node in
our experiments. The argument for this decision is twofold: Firstly,
from the point of view of resilience, the number of processes per
node (cf. Sec. 1.1) makes no difference since the redundant vector
elements always have to be stored on a different node (not just in
the memory of another process). Secondly, the runtimes obtained in
our experiments are based on simulations of node failures without
ULFM (cf. Secs. 1.1 and 6). Hence, the relative runtime differences
are more significant than the absolute runtimes (and, thus, improve-
ments of the absolute runtimes due to multiple processes per node).
Experiments for a matrix are run on the same set of nodes of VSC3.
The system’s topology is a fat tree. We use the following libraries:
• Intel MPI 5.1.3 • PETSc 3.10.4 • Intel MKL 2018.3. We use the In-
tel C compiler 18.0.5 with compiler flags -O3, -march=native and

Table 1: SPD matrices from [12] used in the experiments. n:
Problem size. NNZ : Number of non-zero entries. The matri-
ces are ordered by increasing number of non-zero entries,
with a larger ID indicating a larger number of non-zeros.

Name Id Problem type n NNZ

parabolic_fem M1 Fluid dynamics 525 825 3 674 625
offshore M2 Electromagnetics 259 789 4 242 673
G3_circuit M3 Circuit simulation 1 585 478 7 660 826
thermal2 M4 Thermal 1 228 045 8 580 313
Emilia_923 M5 Structural 923 136 40 373 538
Geo_1438 M6 Structural 1 437 960 60 236 322
Serena M7 Structural 1 391 349 64 131 971
audikw_1 M8 Structural 943 695 77 651 847

-mtune=native. We terminate the solver once the relative residual
norm has been reduced by a factor of 108. The local linear system
used during the reconstruction is terminated once its residual norm
is reduced by a factor of 1014.

We measure the runtime of the solver for several problem set-
tings. Node failures are introduced once for each simulation, with
either one, three or eight simultaneous node failures taking place
at either 20%, 50% or 80% of the solver progress (measured in num-
ber of iterations). These failures are placed in contiguous ranks.
Simultaneous node failures can well be caused by a faulty switch,
therefore it seems like a realistic assumption that they are clustered:
The node failures are introduced in neighbouring ranks either at the
beginning or in the center of the vector, starting from rank 0 or 64
respectively. Additionally, we have results for runs without failures
with either one, three or eight redundant copies. Each measurement
in this test constellation is repeated at least 5 times.

7.2 Experimental results
Our experimental results are summarized in Tab. 2. Statistics for
node failures are computed over at least 15 values: at least 5 mea-
surements for node failures introduced at either 20%, 50% and 80%
of the solver’s progress.

As expected, a larger number of redundant copies leads to larger
overheads. In general, the reconstruction time remains small, with
larger relative reconstruction costs for matrices with smaller run-
times, where the absolute cost is consequently smaller.

The overall relative overhead with node failures, shown in the
last three columns of Tab. 2, corresponds to the sum of the relative
overhead of the undisturbed case plus the relative runtime cost
of the reconstruction. These columns roughly match the sum, as
expected, with some variation arising from the variation in runtime
of running the code in a real machine, and from differences in the
number of iterations caused by the reconstruction (cf. [23]).

Tab. 2 also shows that the location of the node failure does af-
fect the reconstruction cost, as the runtime is, in general, different
for node failures at the start (lower indexes) or the center (middle
indexes) of the vectors. These differences come from different diag-
onal linear systems in the reconstruction: Submatrices formed from
the index sets of different failed nodes have different properties, and

ICPP 2019, August 5–8, 2019, Kyoto, Japan C. Pachajoa, M. Levonyak, W.N. Gansterer, and J.L. Träff

1 3 8
Number of copies / Number of nodes failing

45.0

47.5

50.0

R
un

ti
m
e
[s
]

M5 at center

0.0

0.1

0.2

R
el
at
iv
e
ov
er
he

ad

Figure 1: Runtimes and relative overhead for the matrix M5
of Tab. 1, for node failures introduced close to the center of
the vector. The blue line at the bottom of the figure repre-
sents the reference time obtained solving the system using
PETSc without modifications, with respect to which the rel-
ative overhead is measured, and the band around it extends
for one standard deviation in each direction. The x-axis indi-
cates the number of copies the resilient solver holds. Boxes
include points in the interquartile range, and whiskers ex-
tend up to 1.5 times the width of the interquartile range.
Blue boxes (to the left of a group) represent runs with the
resilient solver without node failures. Orange boxes (to the
right of a group) represent runs with node failures. In ex-
periments with node failures, we introduce as many simul-
taneous failures as the solver can tolerate (one, three or eight
failures respectively.) Orange boxes include experiments for
failures introduced at 20%, 50% or 80% progress of the solver.

they will not converge at the same rate with an ILU preconditioner,
thus affecting the reconstruction time.

Our experiments show that our algorithm is very efficient for
matrices with many non-zeros contained in a band close to the
diagonal. Relatively denser matrices also take longer to reach con-
vergence because of the longer time required for the matrix-vector
product, so it makes a lot of sense to protect the time investment
in the solution process with a resilience technique like the one
presented in this paper.

Fig. 1 is an example of the runtimes and overheads obtained with
our novel resilient algorithm for the matrix M5. For this matrix, the
state reconstruction operation takes very little time: The runtimes
for cases with failures, (orange boxes) are very close to the failure-
free cases (blue boxes). In this case, the overhead for the method
comes predominantly from the additional communication required
to maintain redundant data.

In Fig. 2 the boxes corresponding to three redundant copies
indicate a smaller runtime for simulations with node failures than
for the failure-free case. As mentioned before, this can happen,
since the number of iterations required after reconstruction can be
a smaller than in the failure-free run (cf. [23]).

Fig. 3 shows a test case where the overhead required to keep
redundant data increases superlinearly with the number of node

1 3 8
Number of copies / Number of nodes failing

2.2

2.4

2.6

2.8

R
un

ti
m
e
[s
]

M1 at start

0.0

0.1

0.2

R
el
at
iv
e
ov
er
he

ad

Figure 2: Runtimes and relative overheads for matrix M1
with node failures occurring close to the start (lower in-
dices) of the vectors. This figure uses the same conventions
as Fig. 1, and showcases a situation, for three redundant
copies, where the solver converges faster after performing
reconstruction after a node failure due to the reduction of
the number of iterations until convergence.

1 3 8
Number of copies / Number of nodes failing

19

20

21

R
un

ti
m
e
[s
]
M8 at center

0.00

0.05

0.10

R
el
at
iv
e
ov
er
he

ad

Figure 3: Runtimes and relative overheads for matrix M8
with node failures occurring close to the start of the vectors.
This figure uses the same conventions as Fig. 1, and shows su-
perlinear increase of the overhead with respect to the num-
ber of redundant copies held.

failures tolerated, As explained in Sec. 5, the growth of the overhead
with the number of node failures tolerated strongly depends on
the sparsity pattern of A. The matrix M8 contains many non-zeros
in a band around the diagonal in the middle indexes. As expected
from the analysis of Sec. 5, this is a particularly favorable case for
our method: It can resist three simultaneous node failures with an
overhead of around 2.5%, and eight node failures with an overhead
of around 10%.

In general, the iteration at which the node failures are introduced
has little influence on the runtime of the solver. Fig. 4 illustrates this
for M5. We observed the same behaviour for the other test cases.

In Sec. 6, we discuss the potential loss of orthogonality that
occurs when performing the reconstruction. Tab. 3 shows that the

How to Make the PCG Method Resilient Against Multiple Node Failures ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 2: Summarized experimental results. Values are aggregated for experiments with different times (iteration numbers)
when the failures are introduced. Matrices are ordered by descending reference runtime, with the ID number of a matrix
growing with increasing number of non-zeros. t0: average reference time for the reference runs with regular (non-fault tol-
erant) PCG. ϕ: number of redundant copies for the search direction. ψ : number of simultaneous node failures introduced.
The column “relative overhead undisturbed” shows the mean overhead of modified ESR-capable PCG, with a given number of
redundant copies ϕ, with respect to the reference time t0 if no reconstruction takes place. The columnsmarked “relative recon-
struction time” indicate the time that it takes to reconstruct the state of the solver, expressed as a percentage of the reference
time t0, plus/minus a standard deviation. The columns marked “relative overhead with failures” show the mean, plus/minus
a standard deviation, of the overall relative overhead, that is, the relative overhead for the total time until convergence, when
node failures occur and the state of the solver is reconstructed, with respect to the reference runtime t0.

ID t0 [s]
Relative overhead
undisturbed [%] Failure

location

Relative reconstruction
time [%] Overhead with failures [%]

ϕ = 1 ϕ = 3 ϕ = 8 ψ = ϕ = 1 ψ = ϕ = 3 ψ = ϕ = 8 ψ = ϕ = 1 ψ = ϕ = 3 ψ = ϕ = 8

M5 43.29 0.4 5.1 16.3 start 0.2 ± 0.1 0.3 ± 0.1 0.6 ± 0.1 1.2 ± 0.5 6.0 ± 0.3 19.6 ± 0.7
center 0.0 ± 0.1 0.1 ± 0.1 0.4 ± 0.1 1.2 ± 0.6 5.6 ± 0.3 20.5 ± 6.0

M8 19.12 1.5 2.2 8.2 start 1.4 ± 0.1 3.5 ± 0.2 10.7 ± 0.2 3.8 ± 1.0 5.6 ± 0.7 19.9 ± 0.9
center 0.4 ± 0.1 0.8 ± 0.1 1.4 ± 0.1 1.9 ± 0.4 2.8 ± 1.0 10.4 ± 1.1

M6 11.70 0.3 3.1 15.1 start 1.3 ± 0.1 2.4 ± 0.2 5.3 ± 0.2 1.4 ± 0.3 5.9 ± 0.4 21.2 ± 1.2
center 0.3 ± 0.1 0.6 ± 0.1 1.6 ± 0.1 0.7 ± 0.4 4.0 ± 0.3 18.3 ± 0.7

M7 6.48 0.2 4.3 13.6 start 2.6 ± 0.1 8.2 ± 0.3 23.4 ± 0.6 2.9 ± 0.3 13.7 ± 0.6 39.6 ± 1.4
center 1.2 ± 0.1 1.5 ± 0.1 21.1 ± 0.7 1.2 ± 0.2 7.1 ± 0.6 36.7 ± 1.7

M4 6.31 8.2 22.8 65.6 start 2.0 ± 0.1 3.1 ± 0.1 4.9 ± 0.3 9.6 ± 0.8 26.4 ± 1.1 66.0 ± 7.9
center 1.3 ± 0.1 3.8 ± 0.2 5.2 ± 0.4 9.2 ± 2.6 35.7 ± 2.2 63.4 ± 9.3

M1 2.25 3.6 5.1 24.5 start 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 5.1 ± 1.2 4.3 ± 0.9 23.8 ± 2.1
center 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 5.0 ± 1.0 5.1 ± 1.3 25.4 ± 1.8

M2 1.58 8.0 8.1 21.1 start 4.0 ± 0.2 7.0 ± 0.3 9.7 ± 0.4 7.3 ± 4.6 15.6 ± 2.3 30.1 ± 5.5
center 2.1 ± 0.3 3.5 ± 0.2 4.4 ± 0.3 10.0 ± 4.6 14.2 ± 2.6 23.8 ± 3.0

M3 1.16 5.0 24.1 91.3 start 0.6 ± 0.1 1.0 ± 0.1 1.9 ± 0.1 6.3 ± 1.7 24.8 ± 1.8 93.6 ± 6.0
center 8.0 ± 0.5 32.2 ± 1.2 58.1 ± 1.4 14.8 ± 2.0 55.0 ± 3.2 147.6 ± 5.0

20% 50% 80%
Progress at failure

44

45

46

47

To
ta
lr
un

ti
m
e
[s
]

M5 at center. Three node failures

Figure 4: Runtime for matrix M5 when introducing the fail-
ure of three nodes at the center (middle indexes) of the
vectors and at different iterations along the progress of
the solver. The boxes contain runtimes in the interquartile
range, and the whiskers extend up to 1.5 times the width of
the interquartile range.

relative residual difference for our method is comparable to the one
for the reference results, even for its maximum value among all
experiments for a given matrix. The deviations for both methods
are tiny in comparison to the reduction of the residual norm by a
factor of 108 from the solver.

8 CONCLUSIONS
In this paper, we first reviewed the ESR approach, which was ini-
tially proposed by Chen [11] and later refined by Pachajoa et al. [23],
an efficient fault-tolerance technique to protect the PCG method
against a single node failure (cf. Secs. 2.2 and 3). We then proposed
an enhancement to the ESR approach that allows the PCG method
to tolerate simultaneous or overlapping failures of multiple nodes
(cf. Sec. 4.1). Our new strategy determines where to efficiently store
redundant information in order to support up to ϕ < N simulta-
neous node failures. In a theoretical analysis, we found that the
communication overhead due to the distribution of the required
additional redundant vector copies strongly depends on the sparsity
pattern of the given system matrix (cf. Secs. 4.2 and 5).

In order to investigate the effects of floating-point arithmetic and
the runtime performance of our novel algorithm, we implemented

ICPP 2019, August 5–8, 2019, Kyoto, Japan C. Pachajoa, M. Levonyak, W.N. Gansterer, and J.L. Träff

Table 3: Evaluation of the metric of Eqn. (7). The first col-
umn shows the maximum value of the relative residual de-
viation for all experiments with node failures for a matrix.
The second column shows the relative residual deviation for
the reference run.

ID max ∆ESR ∆PCG

M1 3.46 × 10−7 −1.63 × 10−7
M2 2.24 × 10−7 1.86 × 10−7
M3 1.57 × 10−7 1.57 × 10−7
M4 1.96 × 10−7 9.06 × 10−8
M5 3.59 × 10−5 1.81 × 10−6
M6 8.80 × 10−8 −3.31 × 10−8
M7 1.32 × 10−7 −7.24 × 10−8
M8 2.64 × 10−3 1.49 × 10−3

it based on the widely used library PETSc (cf. Sec. 6) and conducted
numerical experiments on 128 nodes of the Vienna Scientific Cluster
(cf. Sec. 7). The results of our experiments with eight large sparse
matrices from real-world applications show that the proposed en-
hanced ESR approach is very efficient. Compared to a non-resilient
PCG run, we measured runtime overheads between 2.2% and 24.1%
for an undisturbed run with up to three tolerated simultaneous
node failures and between 2.8% and 55.0% for a run with three
actual simultaneous node failures including reconstruction.

In futurework, we are going to further enhance the ESR approach
such that it automatically adapts to different sparsity patterns of ma-
trices. Moreover, we want to investigate communication-avoiding
PCG methods. Another interesting future direction is to find a vari-
ant of the ESR approach that does not depend on the availability of
replacement nodes for failed nodes.

ACKNOWLEDGMENTS
This work has been funded by the Vienna Science and Technol-
ogy Fund (WWTF) through project ICT15-113. The computational
results presented have been achieved using the Vienna Scientific
Cluster (VSC).

REFERENCES
[1] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon. 2013. Towards

resilient parallel linear Krylov solvers: recover-restart strategies. Research Report
RR-8324. INRIA.

[2] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon. 2016. Numerical
recovery strategies for parallel resilient Krylov linear solvers. Numer. Lin. Algebra.
Appl. 23, 5 (2016), 888–905.

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. Curfman
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H.
Zhang, and H. Zhang. 2018. PETSc Users Manual. Technical Report ANL-95/11 -
Revision 3.9. Argonne National Laboratory.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. 1997. Efficient Management
of Parallelism in Object-Oriented Numerical Software Libraries. Birkhäuser Boston,
163–202.

[5] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz.
2014. Communication lower bounds and optimal algorithms for numerical linear
algebra. Acta Numer. 23 (2014), 1–155.

[6] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. 2013. Post-failure
recovery of MPI communication capability: Design and rationale. Int. J. High
Perform. Comput. Appl. 27, 3 (2013), 244–254.

[7] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and J. Dongarra. 2014. Assessing the
Impact of ABFT and Checkpoint Composite Strategies. In 2014 IEEE International
Parallel Distributed Processing Symposium Workshops. 679–688.

[8] G. Bosilca, A. Bouteiller, T. Herault, Y. Robert, and J. Dongarra. 2015. Com-
posing resilience techniques: ABFT, periodic and incremental checkpointing.
International Journal of Networking and Computing 5, 1 (2015), 2–25.

[9] G. Bronevetsky and B. R. de Supinski. 2008. Soft Error Vulnerability of Itera-
tive Linear Algebra Methods. In Proceedings of the 22nd Annual International
Conference on Supercomputing. ACM, 155–164.

[10] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn. 2007. Collective
communication: theory, practice, and experience. Concurrency and Computation:
Practice and Experience 19, 13 (2007), 1749–1783.

[11] Z. Chen. 2011. Algorithm-based Recovery for Iterative Methods Without Check-
pointing. In Proceedings of the 20th International Symposium on High Performance
Distributed Computing. ACM, 73–84.

[12] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software 38, 1 (2011), 1:1–1:25.

[13] K. Dichev and D. S. Nikolopoulos. 2016. TwinPCG: Dual Thread Redundancy
with Forward Recovery for Preconditioned Conjugate Gradient Methods. In 2016
IEEE International Conference on Cluster Computing (CLUSTER). 506–514.

[14] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson. 2002. A Survey of Rollback-
recovery Protocols in Message-passing Systems. ACM Comput. Surv. 34, 3 (2002),
375–408.

[15] M. Fasi, J. Langou, Y. Robert, and B. Uçar. 2016. A backward/forward recovery
approach for the preconditioned conjugate gradient method. J. Comput. Sci.
(2016), 522–534.

[16] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari. 2017. Failures in Large Scale
Systems: Long-term Measurement, Analysis, and Implications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’17). ACM, 44:1–44:12.

[17] T. Herault and Y. Robert (Eds.). 2015. Fault-Tolerance Techniques for High-
Performance Computing. Springer International Publishing.

[18] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. 2007. Recovery Patterns for
Iterative Methods in a Parallel Unstable Environment. SIAM J. Sci. Comput. 30, 1
(2007), 102–116.

[19] H. Ltaief, E. Gabriel, and M. Garbey. 2008. Fault tolerant algorithms for heat
transfer problems. J. Parallel Distrib. Comput. 68, 5 (2008), 663 – 677.

[20] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface
Standard. https://www.mpi-forum.org/docs/.

[21] Message Passing Interface Forum. 2017. User Level Failure Mitigation. http:
//fault-tolerance.org/.

[22] C. Pachajoa and W. N. Gansterer. 2018. On the Resilience of Conjugate Gradient
and Multigrid Methods to Node Failures. In Euro-Par 2017: Parallel Processing
Workshops. Springer, 569–580.

[23] C. Pachajoa, M. Levonyak, and W. N. Gansterer. 2018. Extending and Evaluating
Fault-Tolerant Preconditioned Conjugate Gradient Methods. In 2018 IEEE/ACM
8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS). 49–58.

[24] Y. Saad. 2003. Iterative Methods for Sparse Linear Systems (2nd ed.). SIAM.
[25] P. Sao and R. Vuduc. 2013. Self-stabilizing Iterative Solvers. In Proceedings of

the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA ’13). ACM, 4:1–4:8.

[26] R. D. Schlichting and F. B. Schneider. 1983. Fail-stop Processors: An Approach
to Designing Fault-tolerant Computing Systems. ACM Trans. Comput. Syst. 1, 3
(1983), 222–238.

[27] B. Schroeder and G. Gibson. 2010. A Large-Scale Study of Failures in High-
Performance Computing Systems. IEEE Transactions on Dependable and Secure
Computing 7, 4 (2010), 337–350.

[28] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. 2012. Fault Tolerant Precon-
ditioned Conjugate Gradient for Sparse Linear System Solution. In Proceedings of
the 26th ACM International Conference on Supercomputing. ACM, 69–78.

[29] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,
P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. DeBardeleben,
P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson,
S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J.
Stearley, and E. Van Hensbergen. 2014. Addressing failures in exascale computing.
Int. J. High Perform. Comput. Appl. 28, 2 (2014), 129–173.

[30] D. Tiwari, S. Gupta, and S. S. Vazhkudai. 2014. Lazy Checkpointing: Exploiting
Temporal Locality in Failures to Mitigate Checkpointing Overheads on Extreme-
Scale Systems. In 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks. 25–36.

https://www.mpi-forum.org/docs/
http://fault-tolerance.org/
http://fault-tolerance.org/

	Abstract
	1 Introduction
	1.1 Problem setting and assumptions
	1.2 Related work
	1.3 Contributions of this work

	2 Algorithmic background
	2.1 Preconditioned conjugate gradient method
	2.2 Exact state reconstruction (ESR)

	3 Single node failure
	4 Multiple node failures
	4.1 Tolerating multiple node failures
	4.2 Analysis

	5 Influence of the sparsity pattern
	6 Implementation
	7 Numerical experiments
	7.1 Experimental setup
	7.2 Experimental results

	8 Conclusions
	Acknowledgments
	References

