
On the Design and Architecture of Deployment Pipelines in Cloud- and
Service-Based Computing – A Model-Based Qualitative Study

Uwe Zdun, Evangelos Ntentos, Konstantinos Plakidas, Amine El Malki
University of Vienna, Vienna, Austria

Faculty of Computer Science, Research Group Software Architecture
firstname.lastname@univie.ac.at

Daniel Schall, Fei Li
Siemens Corporate Technology

Vienna, Austria
firstname.lastname@siemens.com

Abstract—DevOps and Continuous Delivery (CD) are becom-
ing the de-facto standard for software deployment in the cloud.
Deployment pipelines are a core artefact in such practices, but
so far their design is largely discussed informally, and existing
sources on DevOps and CD practices are often inconsistent
or incomplete. The lack of a generic, complete, tool-agnostic,
and application-independent treatment of deployment pipeline
design and architecture impedes their understanding by human
designers and the creation of generic tools that work across
different technologies and applications. To alleviate this prob-
lem, we have performed a qualitative, in-depth study of 25
deployment practice descriptions by practitioners containing
informal deployment pipeline models. From our study we
derived a precisely specified model of deployment pipeline
architectures. We can show that the formal model substantially
increases the precision of the modelling compared to the
informally modelled pipelines in the original sources.

I. INTRODUCTION

A core trend in cloud- and service-based computing is the
steady increase of the frequency of change required in those
systems: continuous releases are becoming the expected
norm rather than the exception. Deployment pipelines [1]
are the centrepiece of most DevOps and CD practices. So
far the design of deployment pipelines is largely discussed
informally (cf. [2], [3]). At a first glance, such informal
models by practitioners give a good overview of all de-
ployment structures. However, experience in the field and
a detailed study of these informal descriptions immediately
reveal that almost all realistic deployment pipelines require
complex architectures of various tools and components,
including deployment target environments and tool integra-
tion architectures (cf. [1]). The complexity of this overall
architecture is usually not covered well in the informal
models, nor are all aspects of the deployment pipeline itself.
This impedes building generic tools operating on the whole
pipeline, such as architecture consistency checkers or static
analysis tools. Common abstractions, and consequently in-
terfaces, are missing, which hinders understanding by human
designers beyond a single set of technologies, environments,
and applications.

To alleviate these problems, we have performed a qualita-
tive, in-depth study of 25 deployment practice descriptions

by practitioners containing informal deployment pipeline
models. We followed the model-based qualitative research
method described in [4], based on the established Grounded
Theory (GT) [5] qualitative research method, together with
methods for studying established practices like pattern min-
ing and their combination with GT [6]. The knowledge-
mining procedure is applied in many iterations until reaching
theoretical saturation [5], as is widely accepted in qualitative
research. In our study, we decided to stop our analysis when
7 additional knowledge sources did not add anything new
to our understanding of the research topic. This is a rather
conservative operationalisation of theoretical saturation; our
study converged already after 10 knowledge sources in the
sense that no substantial new formal model elements were
created. We used this method to examine the following
research questions:

RQ1 What are recurring established practices for design-
ing deployment pipeline structures?

RQ2 What are the relevant environments in deployment
pipelines?

RQ3 What are the architectural elements relevant for
building a deployment pipeline infrastructure?

Our result is a precisely specified model comprising
views for modelling deployment pipeline structures, deploy-
ment environments, and infrastructure architecture. We also
precisely define the links between the model elements in
each view, as well as consistent links between the different
views. For each of the informal pipeline models studied,
we contribute a precisely modelled instance of our model.
Finally, in a preliminary evaluation, we can show that the
formal models result in a total average improvement of
134.72% in modelling accuracy compared to the informally
modelled pipelines in the original sources1.

II. RELATED WORK

Informal descriptions of deployment pipelines and asso-
ciated architectures dominate the literature (cf. [7], [1], [3]),

1For space reasons, we have omitted the sources used and a thorough
discussion and evaluation of the model process and results. We refer the
interested reader to an online long version of this paper: https://doi.org/10.
5281/zenodo.2671625



but they usually fail to fully cover either the complexity
of these designs and architectures or all aspects of the
deployment pipeline itself, and are often inconsistent. While
many scientific works use and improve deployment pipelines
(cf. [8], [9]), and first studies on deployment practices in or-
ganizations have emerged [10], [11], a generic, tool-agnostic,
and application-independent treatment of deployment archi-
tectures is missing today. Our study aims to provide the first
systematic and precise specification approach for CD archi-
tectures, laying the foundations for automated quality control
of the design of deployment architectures. This would enable
checking, e.g., whether a pipeline design performs too few
or too manual quality controls, is missing important steps
(like forgetting to model a commit trigger), links to the
environment (like a cloud test environment that is launched
but not torn down), or is performing time-consuming or
resource-intensive steps too early. So far, such design issues
have been identified in the literature as red flags [1], [2], but
their automatic detection is not possible as it requires precise
models of all elements of the deployment architectures.Many
sources also point at the need to substantially alter the ar-
chitecture of the target systems for supporting rapid releases
[9], [10], [11]. For instance, decomposition of a system into
microservices is extensively studied (cf. [8], [12], [13]), but
the impact on the associated deployment architectures has
not yet been studied in a systematic way. Our work aims
to provide the groundwork needed to perform such studies,
by enabling formal reasoning, validation, and verification
through a precise and consistent modelling foundation for
the CD parts.

III. CD PIPELINE MODEL

Our studies have led to a model DOM for CD pipelines
which formally is a tuple (CP, CN, dtypeCP , typeCP ,

CPT, stypeCPT , dtypeCN , typeCN , CNT, stypeCNT , DN,

NH, typeNH , NHT, DR, typeDR, DRT, DE, EE, dtypeEE ,

typeEE , EET, stypeEET , AN, AE, CON, IN, FIN, FON,

JON, DEN, MEN, ACT, AEA, SSA, PE, PN, dtypePN ,

typePN , PNT, stypePNT , PAE, typePAE , PAET, PSS,

typePSS , PSST, PDN, typePDN , PDNT ). All the tuple
elements are defined in the subsections below. We first dis-
cuss two prerequisites for modelling deployment pipelines:
components of the deployment infrastructure and deploy-
ment environments. Then we discuss specifying the structure
of the deployment pipeline. We have made our generated
models available online2.

Each aspect of our model is discussed in two parts: First
we discuss generic modelling notions that should suffice
for modelling the elements of a CD model instance and
their relations. Second, based on the recurring CD-specific
elements found in our study, we specify CD-specific set
members and rules (all summarized in Table I). For instance,

2https://swa.univie.ac.at/cd-pipeline-models/cd-pipeline-models.zip

we first define the generic notion of a pipeline node and then
specify all the possible pipeline node types and their type
hierarchy relations that we have observed in our study in
Table I. We expect that the generic aspects will likely remain
stable in the future, whereas the elements in Table I might
require changes or extensions. Please note that we consider
this list of elements in Table I complete with regard to the
sources we have studied, but these sets and rules can be
extended or redefined when using or applying our model
(e.g., for modelling CD/DevOps aspects we have not yet
covered in our study, or for future technologies).

A. Modelling the Deployment Infrastructure Architecture

An important result of our study was that the focus of
informal descriptions of deployment pipelines is only in
exceptional cases solely on the structure of the pipeline.
Instead, almost always the components which represent the
infrastructure of the deployment pipeline, such as continuous
integration (CI) tools or deployment pipeline orchestration
components, and their interconnections are described as
well. To formally capture this, we first model component
nodes and their connectors: CP is a finite set of component
nodes. CN ⊆ CP ×CP is a finite set of connector edges.

CD infrastructure components are typically categorized
along their main function, which can be modelled using
types in type hierarchies. For example, deployment pipeline
orchestration and package tools are important recurring
types of such components, and package tool is a subtype
of development tool. In our model, component types are
defined as follows: CPT is a finite set of component types.
stypeCPT : CPT → P(CPT ) is a function called compo-
nent type hierarchy. stypeCPT (cpt) (with cpt ∈ CPT ) is
the set of direct supertypes of cpt; cpt is called the subtype
of those supertypes. The transitive closure stype∗CPT =⋃∞

i=0 stype
i
CPT defines the inheritance in the hierarchy such

that stype∗CPT (cpt) (with cpt ∈ CPT ) contains the direct
and indirect supertypes of cpt. The inheritance hierarchy is
cycle free, i.e., ∀cpt ∈ CPT : stype∗CPT (cpt) ∩ {cpt} = ∅.
dtypeCP : CP → P(CPT ) is a function that maps each
component node cp ∈ CPT to its set of direct component
types. typeCP : CP → P(CPT ) is a function that maps
each component node cp ∈ CPT to its set of direct and
transitive types, i.e., ∀cp ∈ CP, dt ∈ dtypeCP (cp) :
typeCP (cp) ⊇ {dt} ∪ stype∗CPT (dt).

CD infrastructure connectors have types and a type hier-
archy, too; e.g., components can launch another component
or read an artefact from another component, and here launch
and read are connector types. In our model, CNT is a finite
set of connector types. It has a type hierarchy definition
exactly identical to the one of CPT (see specification
above) with analogous function definitions for stypeCNT ,
dtypeCN , and typeCN (omitted here for brevity).

In our study we found a number of recurring types of com-
ponents and connectors used in infrastructure architectures



of deployment pipelines. All component and connector types
that were included in our study according to our inclusion
criteria, as well as their relations in two type hierarchies, are
formally defined in the first four rows of Table I.

B. Modelling Deployment Environments
A second prerequisite for precisely specifying a deploy-

ment pipeline, which is used in almost all our sources,
is the notion of deployment environments. They are used
first to model the deployment environments to which the
pipeline deploys, such as a test environment in a virtual
private cloud or a production environment in a public cloud.
Second, they are used to describe the environments in which
the deployment infrastructure (see previous section) itself is
deployed. For instance, sometimes the deployment pipeline
orchestrator or a continuous integration tool run in the
same cloud environment the system is deployed to, or a
local or server environment are distinguished from a cloud
environment if both are used in a pipeline.

The main deployment environment elements of our model
are the deployment nodes: DN is a finite set of deployment
nodes. These can be connected with each other, such as
a production and a test environment running on a cloud
environment: DNR ⊆ DN × DN is a finite set of de-
ployment node relations. Different types of relations might
exist such as part-of, connects-to, or runs-on: DNRT is a
finite set of deployment node relation types. typeDNR :
DNR→ DNRT is a function that maps each deployment
node relation dnr ∈ DNRT to its type.

Components of the deployment infrastructure have rela-
tions to these deployment nodes: DR ⊆ CP×DN is a finite
set of deployment relations. Different types of deployments
exist such as deployed-on, uses, or launches: DRT is a finite
set of deployment relation types. typeDR : DR → DRT
is a function that maps each deployment relation dr ∈ DRT
to its type.

There are specific kinds of deployment nodes: DE ⊆ DN
is a finite set of devices. EE ⊆ DN is a finite set of execu-
tion environments. EE is used to model the environments
a system can be deployed to, which is modelled in a type
hierarchy: EET is a finite set of execution environment
types. It has a type hierarchy definition exactly identical to
the one defined for CPT (see specification above in Section
III-A) with analogous function definitions for stypeEET ,
dtypeEE , and typeEE (omitted here for brevity).

Again, we have specified those CD-specific set members
and type hierarchy rules that we have observed in our study
as well. Rows 5–8 of Table I contain formal definitions
for the environment types, their type hierarchy, and their
relations that we have observed in the informal deployment
pipeline descriptions analysed in this study.

C. Modelling Deployment Pipeline Structures
Deployment pipelines are often modelled as behaviour

models resembling UML activities. As a basis for mod-

elling pipeline specifics we thus have chosen abstractions
resembling the basic elements of activities – but excluded
all abstractions of activities in UML that we have not
empirically observed in our study – to keep our model much
simpler than UML activities: AN is a finite set of activity
nodes. AE ⊆ AN × AN is a finite set of activity edges.
CON ⊆ AN is a finite set of control nodes. IN ⊆ CON
is a finite set of initial nodes. FIN ⊆ CON is a finite set
of final nodes. FON ⊆ CON is a finite set of fork nodes.
JON ⊆ CON is a finite set of join nodes. DEN ⊆ CON
is a finite set of decision nodes. MEN ⊆ CON is a finite
set of merge nodes. ACT ⊆ AN is a finite set of actions.
AEA ⊆ ACT is a finite set of accept event actions. ATA
⊆ AEA is a finite set of accept time event actions. SSA
⊆ ACT is a finite set of send signal actions.

All special kinds of nodes in a deployment pipeline are
subsets of some of those activity nodes. In addition they are
subsets of PE which is a finite set of pipeline elements.
For PE we define a number of functions used to specify
important properties of pipeline elements. aut : PE →
{True, False} is a function that determines whether a
pipeline element is automatically processed in the pipeline or
requires manual work. The following functions are used to
specify important links to infrastructure components and
environments (as defined in the previous sections): run :
PE → CP is a function that determines the component this
pipeline element runs in. inv : PE → {(l1, l2, ..., ln) : l1 ∈
CP, l2 ∈ CP, ..., ln ∈ CP} is a function that determines
the components this pipeline element can invoke. inp :
PE → {(l1, l2, ..., ln) : l1 ∈ CP, l2 ∈ CP, ..., ln ∈ CP}
is a function that determines the components providing
inputs to a pipeline element (like an artefact passed to a
pipeline element). out : PE → {(l1, l2, ..., ln) : l1 ∈
CP, l2 ∈ CP, ..., ln ∈ CP} is a function that determines
the components providing outputs of a pipeline element (like
an artefact produced by a pipeline element) env : PE →
{(l1, l2, ..., ln) : l1 ∈ DN, l2 ∈ DN, ..., ln ∈ DN} is a
function that determines the deployment nodes used by a
pipeline element.

The core element in a typical deployment pipeline are
pipeline nodes, modelled as elements of PN (with PN ⊆
PE, PN ⊆ AN ) which is a finite set of pipeline nodes.
PNT is a finite set of pipeline node types. Exemplary
CD-specific PN members are pipeline nodes for building,
packaging, unit testing, and so on. PNT has a type hierar-
chy definition exactly identical to the one defined for CPT
(see specification above in Section III-A) with analogous
function definitions for stypePNT , dtypePN , and typePN

(omitted here for brevity).
Mainly for triggering the pipeline, we further define

special accept event actions: PAE (with PAE ⊆ PE,
PAE ⊆ AEA) is a finite set of pipeline accept event ac-
tions. PAET is a finite set of pipeline accept event action
types; it is used to model for instance a trigger by a commit



Table I
CD-SPECIFIC SET MEMBERS AND RULES FOR APPLICATION OF THE CD PIPELINE MODEL

Name Definition

Component Types CPT ⊇ {Version Control Repository, Deployment Pipeline Control UI, Artifact Repository, Deployment Tool, Deployment Pipeline Orchestration,
Machine Images Builder, Deployment Target, Collaborative Review Tool, API, Cloud API, Administration Tool, Review Tool, Build Tool, Code Analysis
Tool, Test Tool, Package Tool, Continuous Integration Tool, Database, Binary Repository, App Store, Container Manager}

Component Type Hier-
archy

∀(c, SCS) ∈ {(Binary Repository, {Artifact Repository}), (App Store, {Binary Repository})}: stypeCPT (c) = SCS

Connector Types CNT ⊇ {checks in, checks out, reads artifacts, writes artifacts, deploys artifacts, reads images, writes images, deploys images, uses, extends,
launches, API call}

Connector Type Hier-
archy

∀(c, SCS) ∈ {(reads images, {reads artifacts}), (writes images, {writes artifacts}), (deploys images, {deploys artifacts})}: stypeCNT (c) =
SCS

Deployment Relation
Types

DRT ⊇ {deployed on, uses, launches, provides deployment artifacts}

Deployment Node Re-
lation Types

DNRT ⊇ {part of, runs on, connects to}

Execution
Environment Types

EET ⊇ {Cloud, Public Cloud, Private Cloud, Virtual Private Cloud, Server, Virtual Machine, Container, Cluster, Test Environment, On-Premises,
Datacenter, Production Environment}

Execution
Environment
Hierarchy

∀(c, SCS) ∈ {(Public Cloud, {Cloud}), (Private Cloud, {Cloud}), (Virtual Private Cloud, {Cloud})}: stypeEET (c) = SCS

Pipeline Node Types PNT ⊇ {Deployment to Production, Partial Rollout, Canary Release Deployment, Blue/Green Deployment, Dark Launch Deployment, A/B Test
Deployment, Deployment Notification, Build, Package, Publish Package, Code Analysis, Code Review, Code Internal Use and Review, Code Peer
Review, System Tests, Formal Code Review, Machine Image Build, Container Image Build, Generate Documentation, Tests, Unit Tests, Regression Tests,
Integration Tests, Quality Assurance Tests, System Acceptance Tests, User Acceptance Tests, Production Validation Tests, Automated User Interface
Tests, Performance Tests, Security Tests, Operations Tests, Smoke Test, Infrastructure Smoke Test, Infrastructure Test, Exploratory Test, Resilience
Test, Create Environment, Teardown Environment, Configure Environment, Create Test Environment, Teardown Test Environment, Configure Test
Environment, Deployment, Deployment to Test Environment}

Pipeline Node Hierar-
chy

∀(c, SCS) ∈ {(Deployment to Production, {Deployment}), (Partial Rollout, {Deployment}), (Canary Release Deployment, {Partial Rollout}),
(Blue/Green Deployment, {Partial Rollout}), (Dark Launch Deployment, {Partial Rollout}), (A/B Test Deployment, {Deployment}), (Code Internal
Use and Review, {Code Review}), (Code Peer Review, {Code Review}), (System Tests, {Tests}), (Formal Code Review, {Code Review}), (Unit
Tests, {Tests}), (Regression Tests, {Tests}), (Integration Tests, {Tests}), (Quality Assurance Tests, {Tests}), (System Acceptance Tests, {Tests}), (User
Acceptance Tests, {Tests}), (Production Validation Tests, {Tests}), (Automated User Interface Tests, {Tests}), (Performance Tests, {Tests}), (Security
Tests, {Tests}), (Operations Tests, {Tests}), (Smoke Test, {Tests}), (Infrastructure Smoke Test, {Tests}), (Infrastructure Test, {Tests}), (Exploratory
Test, {Tests}), (Resilience Test, {Tests}), (Create Test Environment, {Create Environment}), (Teardown Test Environment, {Teardown Environment}),
(Configure Test Environment, {Configure Environment}), (Deployment to Test Environment, {Deployment})}: stypePNT (c) = SCS

Accept Event Action
Types

PAET ⊇ {Accept Event Action, Poll for Event, Triggered by Commit Event, Triggered by Manual Start, Triggered by External Event}

Accept Event Action
Hierarchy

∀(c, SCS) ∈ {(Poll for Event, {Accept Event Action}), (Triggered by Commit Event, {Accept Event Action}), (Triggered by Manual Start, {Accept
Event Action}), (Triggered by External Event, {Accept Event Action})}: stypePAET (c) = SCS

Send Signal Action
Types

PSST ⊇ {Send Signal Action, Scheduled Event, Scheduled Commit Event, Trigger Event, Commit Event}

Send Signal Action Hi-
erarchy

∀(c, SCS) ∈ {(Scheduled Event, {Send Signal Action}), (Scheduled Commit Event, {Commit Event}), (Trigger Event, {Send Signal Action}),
(Commit Event, {Send Signal Action})}: stypePSST (c) = SCS

Decision Node Types PDNT ⊇ {Pipeline Decision Node, Approval Gate}

Decision Node Hierar-
chy

∀(c, SCS) ∈ {(Approval Gate, {Pipeline Decision Node})}: stypePDNT (c) = SCS

event vs. a manual trigger. typePAE : PAE → PAET
is a function that maps each pipeline accept event action
pae ∈ PAET to its type.

To model commit events (which can also happen during a
pipeline run), we model a special send signal action: PSS
(with PSS ⊆ PE, PSS ⊆ SSA) is a finite set of pipeline
send signal actions. PSST is a finite set of pipeline send
signal action types. typePSS : PSS → PSST is a function
that maps each pipeline send signal action pss ∈ PSST to
its type.

Finally, for defining decision such as approval gates, we
model a special decision node: PDN (with PDN ⊆ PE,
PDN ⊆MEN ) is a finite set of pipeline decision nodes.
PDNT is a finite set of pipeline decision node types.
typePDN : PDN → PDNT is a function that maps each

pipeline decision node pdn ∈ PDNT to its type.
Those CD-specific set members and type hierarchy rules

that we have observed for pipeline elements in our study are
specified in rows 6-11 of Table I. They contain formal def-
initions for the environment types, their type hierarchy, and
their relations we have observed in the informal deployment
pipeline descriptions analysed in this study.

IV. THREATS TO VALIDITY

To increase internal validity we decided to use practitioner
reports that were produced independent of our study. This
avoids any bias, e.g. compared to interviews in which the
practitioners would have known that their answers are used
in a study. However, this introduces a different internal
validity threat: Some important information might be miss-



ing in the reports, which would have been revealed in
an interview. We tried to mitigate this threat by looking
at many more sources than needed to reach theoretical
saturation, as it is unlikely that all different sources miss the
same important information. The different members of the
author team have cross-checked all models independently
to minimize researcher bias. The threat to internal validity
that the researcher team is biased in some sense remains,
however. The experience and search-based procedure for
finding knowledge sources may have introduced some kind
of bias as well. However, this threat is mitigated to a
large extent by the chosen research method, which requires
just additional sources corresponding to the inclusion and
exclusion criteria, not a specific distribution of sources. Due
to the many included sources, it is likely our results can be
generalized to a larger population of similar pipeline models
and architectures. However, the threat to external validity
remains that our results are only applicable to similar kinds
of pipeline models and architectures; generalization to novel
or unusual pipeline models and architectures might not be
possible without modification of our models.

V. CONCLUSION

We have performed a qualitative study in which we have
studied the design and architecture of deployment pipelines
from 25 unique and independent sources. Our study led to
a detailed model precisely describing the recurring pipeline
structures and their links as an extension of mainly activity
model abstractions to answer RQ1. To answer RQ2, we have
extended mainly deployment model abstractions to specify
the environment in which deployment pipelines run and to
which they deploy. Finally, to model the deployment pipeline
infrastructures for RQ3, we have extended mainly compo-
nent model abstractions. In all three cases, we observed
theoretical saturation relatively early and could precisely
model almost all main concepts described in the original
sources. This leads us conclude that the found models are
very likely adequate representations of the original sources
and can express almost all major concepts expressed therein.
We have thoroughly cross-checked all models independently
by the different researches in the author team to minimize
researcher bias. In addition to the DevOps models as our
major contribution, another contribution of our study is a
set of 25 formal CD model instances. These might be useful
as a basis for further research in the area. In this paper we
have used formal models and detailed object notations to
present the details of our approach; in practice the models
should be rendered using more appealing notations e.g. akin
to UML component, deployment, and activity diagrams,
which is easily possible as an extension of our model-driven
tools. As future work we plan to realize constraint checkers
to implement static analysis tools for deployment pipeline
architectures. For such tools, precise abstractions as provided
in this paper are a necessary prerequisite.

Acknowledgments. This work was supported by: FFG
(Austrian Research Promotion Agency) project DECO, no.
864707; FWF (Austrian Science Fund) project ADDCom-
pliance: I 2885-N33

REFERENCES

[1] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment Au-
tomation. Addison-Wesley, 2010.

[2] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective. Addison-Wesley, 2015.

[3] C. Posta, “The hardest part of microservices: Calling your
services,” http://blog.christianposta.com/microservices/the-
hardest-part-of-microservices-calling-your-services/, 2018.

[4] U. Zdun, M. Stocker, O. Zimmermann, C. Pautasso, and
D. Lübke, “Supporting architectural decision making on
quality aspects of microservice apis,” in 16th International
Conference on Service-Oriented Computing (ICSOC 2018).
Hangzhou, Zhejiang, China: Springer, November 2018.

[5] B. G. Glaser and A. L. Strauss, The Discovery of Grounded
Theory. de Gruyter, 1967.

[6] C. Hentrich, U. Zdun, V. Hlupic, and F. Dotsika, “An ap-
proach for pattern mining through grounded theory tech-
niques and its applications to process-driven soa patterns,”
in Proceedings of the 18th European Conference on Pattern
Languages of Program, 2015, pp. 9:1–9:16.

[7] K. L. Beck, D. G. Feitelson, and E. Frachtenberg, “Develop-
ment and deployment at facebook,” IEEE Internet Computing,
vol. 17, pp. 8–17, 2013.

[8] W. Hasselbring and G. Steinacker, “Microservice architec-
tures for scalability, agility and reliability in e-commerce,”
in Software Architecture Workshops (ICSAW), 2017 IEEE
International Conference on. IEEE, 2017, pp. 243–246.

[9] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
architecture enables devops: Migration to a cloud-native ar-
chitecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

[10] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. C.
Gall, “We’re doing it live: A multi-method empirical study
on continuous experimentation,” Information and Software
Technology, vol. 99, pp. 41–57, 2018.

[11] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the
stairway to heaven–a mulitiple-case study exploring barriers
in the transition from agile development towards continuous
deployment of software,” in 38th Conference on Software
Engineering and Advanced Applications (SEAA). IEEE,
2012, pp. 392–399.

[12] L. Baresi, M. Garriga, and A. De Renzis, “Microservices
identification through interface analysis,” in European Con-
ference on Service-Oriented and Cloud Computing, 2017.

[13] U. Zdun, E. Navarro, and F. Leymann, “Ensuring and assess-
ing architecture conformance to microservice decomposition
patterns,” in International Conference on Service-Oriented
Computing. Springer, 2017, pp. 411–429.


