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The most efficient algorithms for finding maximum independent sets in both theory and practice use reduc-
tion rules to obtain a much smaller problem instance called a kernel. The kernel can then be solved quickly
using exact or heuristic algorithms—or by repeatedly kernelizing recursively in the branch-and-reduce par-
adigm. Current algorithms are either slow but produce a small kernel or fast and give a large kernel. Yet it is
of critical importance for these algorithms that kernelization is fast and returns a small kernel. We attempt to
accomplish both of these goals simultaneously by giving an efficient parallel kernelization algorithm based
on graph partitioning and parallel bipartite maximum matching.

We combine our parallelization techniques with two techniques to accelerate kernelization further: depen-
dency checking that prunes reductions that cannot be applied, and reduction tracking that allows us to stop
kernelization when reductions become less fruitful. Our algorithm produces kernels that are orders of mag-
nitude smaller than the fastest kernelization methods while having a similar execution time. Furthermore,
our algorithm is able to compute kernels with size comparable to the smallest known kernels but up to two
orders of magnitude faster than possible previously. Finally, we show that our kernelization algorithm can be
used to accelerate existing state-of-the-art heuristic algorithms, allowing us to find larger independent sets
faster on large real-world networks and synthetic instances.
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1 INTRODUCTION

The maximum independent set (MIS) problem is a classic NP-hard problem [22] with applications
spanning many fields, such as classification theory, information retrieval, computer vision [19],
computer graphics [38], map labeling [23], and routing in road networks [31]. Given a graph G =
(V ,E), our goal is to compute a maximum cardinality set of vertices I ⊆ V such that no vertices
in I are adjacent to one another. Such a set is called a maximum independent set. As a concrete
application, independent sets are essential in labeling strategies for maps [23], where the objective
is to maximize the number of visible nonoverlapping labels on a map. This problem can solved by
constructing the label conflict graph, in which any two conflicting/overlapping labels are connected
by an edge, and then computing an MIS in this graph.

One of the most powerful techniques for solving the MIS problem in practice is kernelization—
reducing the input to its most difficult part, the kernel. A kernel (for the MIS problem) of a graphG is
a graph r (G ) of smaller or equal size, obtained by applying a specified polynomial time algorithm
to G that reduces its size while preserving the information required to find an MIS in G. The
algorithm is often composed of a set of algorithms (so-called reduction rules), which are applied
exhaustively. After finding a MIS in r (G ), we “undo” the kernelization to find an MIS of G. Fixed-
parameter tractable algorithms for the MIS problem are exponential in the size of the kernel, and
therefore the MIS problem is considered “hard” for a particular instance when its kernel size is
large [42]. Thus, it is often desirable to apply many different reduction rules to reduce the input
size as much as possible when solving the problem exactly.

In practice, kernelization is used as a preprocessing step to other algorithms [9, 14, 15, 37, 42,
45], where speeding up kernelization directly speeds up the algorithm. However, kernelization
may also be applied repeatedly as part of an algorithm [2, 12, 32]. In either case, the smallest
kernels (or seemingly equivalently, the most varied reductions) give the best chance at finding
solutions. For instance, the reductions used by Akiba and Iwata [2] are the only ones known to
compute an exact MIS on certain large-scale graphs, and these reductions are further successful in
computing exact solutions in an evolutionary approach [32]. However, it is not always beneficial
to compute the smallest kernel possible. Fast and simple reductions can compute kernels that are
“small enough” for local search to quickly find high-quality, and even exact, solutions much faster
than the reductions used to find the smallest kernels [12, 15]. Fast and simple reductions can even
be used to solve many large-scale instances exactly [42] just as quickly as the algorithm by Akiba
and Iwata [2].

Thus, for kernelization, there is a trade-off between kernel size and kernelization time. The
smallest kernels are necessary to solve the most number of instances to optimality, but the fastest
reductions have just enough power to solve most instances quickly. However, when run on the
largest instances, the large kernels given by simple rules may make it prohibitive to solve these
instances exactly, or even near optimally with heuristic methods. Thus, to be effective for a ma-
jority of applications, kernelization routines should compute a kernel that is as small as possible
as quickly as possible.

1.1 Our Results

To this end, we develop an efficient shared-memory parallel kernelization algorithm based on
graph partitioning and parallel bipartite maximum matching. We combine our parallelization
with dependency checking—a strategy for pruning inapplicable reductions—as well as reduction

tracking that allows us to stop kernelization when reductions become less fruitful. These prun-
ing techniques achieve large additional speedups over the kernelization of Akiba and Iwata [2],
which computes similarly sized kernels. Our experimental evaluation shows that on average, our
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algorithm finds kernels that are seven times smaller than the algorithms of Chang et al. [12] while
having similar a running time. At the same time, our algorithms are 41 times faster on average
than other algorithms that are able to find kernels of similar size. In further experiments, we apply
our kernelization algorithm to state-of-the-art heuristic MIS algorithms and find that our ker-
nels can be used to find larger independent sets faster in large real-world networks and synthetic
instances.

2 RELATED WORK

The maximum clique and minimum vertex cover problems are equivalent to the MIS problem: a

maximum clique in the complement graph G is an MIS in G, and a minimum vertex cover C in
G is the complement of an MIS V \C in G. Thus, an algorithm that solves one of these problems
can be used to solve the others. Many branch-and-bound algorithms have been developed for the
maximum clique problem [40, 41, 44], which use vertex reordering and pruning techniques based
on approximate graph coloring [44] or MaxSAT [33], and can be further sped up by applying local
search to obtain an initial solution of high quality [7].

A common theme among algorithms for these (and other) NP-hard problems is that of
kernelization—reducing the input to a smaller instance that, when solved optimally, optimally
solves the original instance. Rules that are used to reduce the graph while retaining the ability
to compute an optimal solution are called reductions. Reductions and kernelization have long been
used in algorithms for the minimum vertex cover and MIS problems [1, 13, 21, 43], for efficient
exact algorithms and heuristics alike.

2.1 Exact Algorithms

Butenko et al. [9] and Butenko and Trukhanov [11] were able to find exact MIS in graphs with
thousands of vertices by first applying reductions. Further works have introduced reductions to
more quickly solve the maximum clique problem [37, 45] and enumerate k-plexes [14]. Although
these works apply reduction techniques as a preprocessing step, many works apply reductions
as a natural step of the algorithm. Reductions were originally used by Tarjan and Trojanowski
[43] to reduce the running time of the brute force O (n22n ) algorithm to time O (2n/3), and reduc-
tions are further used to give the fastest known polynomial space algorithm with running time
ofO∗ (1.1996n ) by Xiao and Nagamochi [48]. These algorithms apply reductions during recursion,
only branching when the graph can no longer be reduced [20]—known as the branch-and-reduce
method.

Akiba and Iwata [2] were the first to show the effectiveness of the branch-and-reduce method for
solving the minimum vertex cover problem in practice for large sparse real-world graphs. Using
a large collection of reductions, they solve graphs with millions of vertices within seconds. In
contrast, most instances cannot be solved by the MCS clique solver [44] within a 24-hour time
limit [2]. However, as later shown by Strash [42], many of these same instances can be solved
just as quickly by first kernelizing with two simple standard reductions (namely, isolated vertex
removal and vertex folding reductions) and then running MCS.

2.2 Heuristic Algorithms

Kernelization and reductions play an important role in heuristic algorithms as well. Lamm et al.
[32] showed that including reductions in a branch-and-reduce–inspired evolutionary algorithm
enables finding exact solutions much faster than provably exact algorithms. Dahlum et al. [15]
further showed how to effectively combine reductions with local search, and they found that stan-
dard kernelization techniques are too slow to be effective for local search and show that apply-
ing simple reductions in an online fashion improves the speed of local search. Chang et al. [12]
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improved on this result by implementing reduction rules to reduce the lead time for kerneliza-
tion for local search. They introduce two kernelization techniques: a reduction rule to collapse
maximal degree-two paths in a single shot, resulting in a fast linear-time kernelization algorithm
(LinearTime), and a near linear-time algorithm (NearLinear) that uses triangle counting to detect
when the domination reduction can be applied. NearLinear has running time O (Δm) , where Δ
is the maximum degree of the graph. They further introduce “reducing–peeling” to find a large
initial solution for local search. This technique can be viewed as computing one path through the
search space of a branch-and-reduce algorithm: they repeatedly exclude high-degree vertices and
kernelize the graph until it is empty, then take the independent set found as an initial solution for
local search. Their NearLinear algorithm is able to find kernels small enough and fast enough to
be effectively used with local search1; however, their kernels are much larger than those of Akiba
and Iwata [2], who use many more advanced reduction rules. Hence, their technique may not be
effective for solving large instances exactly.

3 PRELIMINARIES

Basic Concepts. Let G = (V ,E) be an undirected graph on n = |V | nodes and m = |E | edges. We
assume that V = {0, . . . ,n − 1}, and to eliminate ambiguity, we at times denote by V [G] and E[G]
the sets V and E, respectively, for a particular graph G. Throughout this article, we assume that
G is simple: it has no multiedges or selfloops. The set N (v ) = {u | {v,u} ∈ E} denotes the open

neighborhood (also simply called the neighborhood) ofv . We further define the open neighborhood
of a set of nodes U ⊆ V to be N (U ) = ∪v ∈U N (v ). We similarly define the closed neighborhood as
N [v] = N (v ) ∪ {v} and N [U ] = N (U ) ∪U . We sometimes use NG to denote the neighborhood in
a particular graph G. A graph H = (VH ,EH ) is said to be a subgraph of G = (V ,E) if VH ⊆ V and
EH ⊆ E. We callH an induced subgraph when EH = {{u,v} ∈ E | u,v ∈ VH }. For a set of nodesU ⊆
V , G[U ] denotes the subgraph induced by U . A set I ⊆ V of vertices is said to be an independent

set if all nodes in I are pairwise nonadjacent—that is, E[G[I]] = ∅. The MIS problem is that of
finding a maximum cardinality independent set, which is called a maximum independent set.

The graph partitioning problem is to partition V into k blocks V1 ∪ · · · ∪Vk = V with Vi ∩Vj =

∅,∀i � j while optimizing a given cost function—typically the number of edges with end vertices
in different blocks. Additionally, a balance constraint is applied, which demands that the blocks
have approximately equal size with respect to the number of vertices or, alternatively, the sum of
weights associated with the vertices. Boundary vertices are adjacent to vertices in other blocks, and
cut edges cross block boundaries.

3.1 Reductions

We now briefly describe the reduction rules that we consider. Each reduction allows us to choose
vertices that are in some MIS by following simple rules. If an MIS is found on the kernel graphK ,
then each reduction may be undone, producing an MIS in the original graph.

3.1.1 Reductions of Akiba and Iwata [2]. Akiba and Iwata [2] use a full suite of advanced reduc-
tion rules, which can efficiently solve the minimum vertex cover problem for a variety of instances.
Here, we briefly describe the reductions we use, but for the MIS problem. Note that Akiba and Iwata
further use packing [2] and alternative [47] reductions. For brevity, we do not describe them here.

Vertex Folding [13]. For a vertex v with degree two whose neighbors u and w are not adjacent,
eitherv is in some MIS, or bothu andw are in some MIS. Therefore, we can contractu,v , andw to
a single vertexv ′ and decide which vertices are in the MIS later. Ifv ′ is in the computed MIS, then

1Although their implementation of NearLinear has O (
√

nm) time, it includes the linear programming reduction.
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u and w are added to the independent set; otherwise, v is added. Thus, a vertex fold contributes a
vertex to an independent set.

Linear Programming Relaxation [36]. A well-known linear programming relaxation for the MIS
problem with a half-integral solution (i.e., using only values 0, 1/2, and 1) can be solved using bipar-
tite matching: maximize

∑
v ∈V xv such that ∀(u,v ) ∈ E, xu + xv ≤ 1 and ∀v ∈ V , xv ≥ 0. Vertices

with value 1 must be in the MIS and can thus be removed fromG along with their neighbors. Note
that there is a version of this reduction [28] that computes a solution whose half-integral part is
minimal. However, preliminary experiments showed that in practice no additional vertices can be
removed.

Unconfined [47]. Although there are several definitions of unconfined vertex in the literature,
we use the simple one from Akiba and Iwata [2]. A vertexv is unconfined when determined by the
following simple algorithm. First, initialize S = {v}. Then find a u ∈ N (S ) such that |N (u) ∩ S | = 1
and |N (u) \ N [S]| is minimized. If there is no such vertex, then v is confined. If N (u) \ N [S] = ∅,
thenv is unconfined. If N (u) \ N [S] is a single vertexw , then addw to S and repeat the algorithm.
Otherwise, v is confined. Unconfined vertices can be removed from the graph, as there always
exists an MIS that contains no unconfined vertices.

Diamond. Although not mentioned in their work, Akiba and Iwata [2] extend the unconfined
reduction in their implementation [27]. Let S be the set constructed in the unconfined reduction for
a vertexv that is not unconfined. If there are nonadjacent vertices u1, u2 in N (S ) such that N (u1) \
N (S ) = N (u2) \ N (S ) = {v1,v2}, then we can removev from the graph because there always exists
a MIS that does not contain v . Note that this implies that {v1,v2} ⊆ S .

Twin [47]. Let u and v be vertices of degree three with N (u) = N (v ). IfG[N (u)] has edges, then
add u and v to I and remove u, v , N (u), N (v ) from G. Otherwise, some vertices in N (u) may
belong to some MIS I. We still removeu,v , N (u) and N (v ) fromG and add a new gadget vertexw
to G with edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in the computed
MIS, then none of u’s two-neighbors are in I, and therefore N (u) ⊆ I. Otherwise, if w is not in
the computed MIS, then some of u’s two-neighbors are in I, and therefore u andv are added to I.

3.1.2 The Reduction of Butenko et al. [10]. We describe one reduction that was not included in
the algorithm by Akiba and Iwata [2] but was shown by Butenko et al. [10] to be highly effective
on medium-size graphs derived from error-correcting codes.

Isolated Vertex Removal [10]. If a vertexv forms a single cliqueC with all of its neighbors, thenv
is called isolated (simplicial is also used in the literature) and is always contained in some MIS. To
see this, at most one vertex from C may be in any MIS. Either it is v or, if a neighbor of v is in an
MIS, we select v instead. Note that this reduction rule is completely contained in the unconfined
reduction rule as every neighbor u ∈ N (v ) of a simplicial vertex v is unconfined, leaving only v
without any neighbors in the graph. As it can be implemented more efficiently than the uncon-
fined reduction, we apply the reduction by isolated vertex removal before removing unconfined
vertices.

3.1.3 The Linear Time Algorithm by Chang et al. [12]. Chang et al. [12] present a kernelization
algorithm LinearTime that runs in time O (m). It removes vertices of degree zero and one and uses
a reduction rule using maximal paths of degree two. They split the rule into five cases depending
on the length of the maximal degree two path and the endpoints of the path. The full description
can be found in their work [12]. The degree-two path rule is a specialization of the vertex fold-
ing rule explained earlier and does not cover the case of a vertex with two neighbors of degree
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higher than two. However, in contrast to the vertex folding rule, it has linear time complexity. This
algorithm often removes a large fraction of a graphs vertices in very little time; however, it still
leaves the possibility to apply more powerful but time-consuming reduction rules. We therefore
run LinearTime as a preprocessing step of our algorithm.

4 PARALLEL KERNELIZATION

As current machines usually have more than one processor and kernelization can run for hours
on large instances, parallelization is a promising way to make larger graphs feasible for MIS algo-
rithms. In this section, we describe how we parallelize kernelization: we partition the graph into
blocks so that “local” reductions can be run on blocks in parallel, and perform parallel maximum
bipartite matching for the “global” reduction by linear programming. Our algorithm first applies
the reductions parallelized by partitioning exhaustively. We then apply the reduction by linear
programming. These steps are repeated until no more vertices can be removed from the graph.
(See pseudocode in Algorithm 1.)

ALGORITHM 1: Algorithm Overview

G ← input graph
{V1, . . . ,Vk } ← partition(G,k )
while G changed in last iteration do

for all blocks Vi in parallel do

G ← localReductions (G,Vi )
end for

G ← parallelLinearProдramminдReduction(G )
end while

4.1 Blockwise Reductions

Many reductions have an element of locality. In particular, we call a reduction local if it is ap-
plied one vertex at a time, if determining that the reduction can be applied is based on local graph
structure (e.g., by its neighborhood or by neighbors of neighbors), and the reduction itself mod-
ifies only local graph structure. A challenge in parallelizing local reductions is in how to apply
them simultaneously. Fine-grain parallelism would require locks, as attempting to simultaneously
remove or contract (near-)neighboring vertices in the graph results in a race condition: these (near-
)neighbors may both be mistakenly added to the independent set or the graph may be modified
incorrectly. However, with locks, local reductions become more expensive—reductions must wait
if they overlap other reductions in progress.

To avoid locks altogether, we partition the graph into vertex-disjoint blocks and perform local
reductions on each block in parallel (i.e., blockwise). Note that the only way for two blockwise
reductions to simultaneously (mistakenly) reduce neighbors is if they are incident to a cut edge.
We therefore avoid race conditions by restricting reductions to only read and write to vertices
and neighborhoods within a single block. As reductions may still be applied, we call the resulting
graph a quasi kernel instead of a kernel. By using a high-quality partitioning that minimizes the
number of cut edges, we expect the number of vertices excluded from these local reductions to be
small. To avoid race conditions when removing boundary vertices from the graph, we leave the
adjacency lists of neighboring vertices unchanged and only mark vertices as removed from the
graph. We only change the adjacency list of vertices when performing vertex contractions.

We now explain how to apply each local reduction in our parallel framework. Let Vi be the
block in which we are applying the reduction. Let a reduction on a vertex v ∈ Vi only depend on
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Fig. 1. Verticesv andv ′ are simplicial but lie in different blocks; they are not removed from the graph. Vertex

u is simplicial and is not a boundary vertex, so N [u] is removed.

(and modify) vertices R (v ) ⊆ Vi . Then no other vertex u ∈ Vj for all i � j is traversed or modified
as the result of this reduction. Thus, we apply this reduction to v correctly: changes to it and/or
adjacency lists of vertices in R (v ) do not affect vertices of other blocks.

Further, let Bk denote the set of vertices of distance at most k from some boundary vertex in
our partitioning. Note that B0 is the set of boundary vertices and Bk = N [Bk−1].

Vertex Folding. Let v ∈ Vi be a vertex with neighborhood {u,w } ⊂ Vi . Contracting v,u,w into
v ′ will cause a race condition whenever u,w ∈ Vi ∩ B0, as their neighbors in some other block Vj

must have their adjacency lists updated to include v ′. In these cases, we do not apply the vertex
folding reduction. We handle vertex folding with two cases. First, foru,w ∈ Vi \ B0 (or equivalently,
v ∈ Vi \ B1), we apply the reduction normally. Then N ({u,w }) ⊆ Vi and there is no race condition.
Second, without loss of generality, ifu ∈ Vi ∩ B0 andw ∈ Vi \ B0 we still apply vertex folding, using
u as the new vertex v ′. Neighborhoods of vertices in N (u) \ {v} � Vi remain unchanged.

Isolated Vertex Removal. Let v ∈ Vi \ B0 be an isolated vertex. Then we add v to I and remove
N [v] ⊆ Vi from the graph as usual. (See Figure 1.)

Twin. Letu,v ∈ Vi such that N (u) = N (v ) ⊆ Vi , and note thatu,v will not be boundary vertices,
as otherwise N (u) � Vi . We have two cases:

G[N (u)] has edges: Sinceu,v are not boundary vertices, we addu,v to I and remove {u,v} ∪
N (u) ⊆ Vi from the graph.

G[N (u)] has no edges: We only apply this reduction when N [N [u]] ⊆ Vi : we remove {u,v} ∪
N (u) and create a new vertexw ∈ Vi with neighborhood N (w ) = N [N [u]]; otherwise, we
would modify the adjacency list of a vertex in a different block.

Unconfined. Unlike other blockwise reductions, every vertexv ∈ Vi is eligible for the unconfined
reduction, including boundary vertices. If a vertex is unconfined, we mark it as excluded from the
independent set and remove it from the graph (by setting a flag ifv is a boundary vertex). However,
the algorithm for finding unconfined vertices must be adapted—it does not simply rely on a (two-
)neighborhood but depends on an expanding set of vertices S , which should be drawn from Vi to
avoid a race condition. In particular, a vertex u ∈ N (S ) can only be used if u ∈ Vi and S ⊆ Vi must
hold. This way, we ensure that all vertices that we classify as unconfined are truly unconfined and
can be removed from the graph. We might, however, falsely classify some vertices as confined.

Diamond. As with the unconfined reduction, we can safely remove even boundary vertices from
the graph by using the diamond reduction. However, since vertices in V \Vi cannot be inserted
into S during the blockwise unconfined reduction, there might be u1,u2 such that N (u1) \ N (S ) =
N (u2) \ N (S ) = {v1,v2} and {v1,v2} � S because they are located in different blocks, so we have
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to check that v1,v2 ∈ S . If not, they might be removed by another reduction that can lead to race
conditions.

4.2 Parallel Linear Programming

Unlike the local reductions, the reduction by linear programming is not applied to single vertices
and their (near-)neighbors. It instead relies on a global view of the graph to find a set of vertices
that can be removed at once. Therefore, our parallelization strategy for local reductions cannot be
applied to the linear programming reduction. The computationally expensive part of this reduction
is finding a maximum bipartite matching of the bi-double graph: B (G ) = (LV ∪ RV ,E

′), where
LV = {lv | v ∈ V },RV = {rv | v ∈ V }, and E ′ = {{lu , rv } | {u,v} ∈ E}.

Azad et al. [4] give a parallel augmenting path-based algorithm for maximum bipartite matching.
Their algorithm requires a maximal matching as input, which we first compute using the maximal
matching algorithm by Karp and Sipser [30], which was parallelized by Azad et al. [5]. For better
performance when repeatedly applying the reduction, we reuse the parts of the previous matching
that are still part of the graph. If the graph has changed only slightly since the last application,
this is still close to a maximum matching, which results in less work for the maximum matching
algorithm. This technique is also used by Akiba and Iwata [2]. To obtain the half-integral result of
the linear program, we use the set of vertices reachable by alternating paths starting from matched
vertices in LV . To find these, we start a depth-first search from each vertex v ∈ LV in parallel and
mark all reached vertices. We then obtain the result by iterating in parallel over all vertices in the
original graph and checking whether their respective vertices in LV and LR are marked.

5 PRUNING REDUCTIONS

5.1 Dependency Checking

To compute a kernel, Akiba and Iwata [2] apply their reductions r1, . . . , r j by iterating over all
reductions and trying to apply the current reduction ri to all vertices. If ri reduces at least one
vertex, they restart with reduction r1. When reduction r j is executed but does not reduce any
vertex, all reductions have been applied exhaustively, and a kernel is found. Trying to apply every
reduction to all vertices can be expensive in later stages of the algorithm where few reductions
succeed. The algorithm may repeatedly attempt to apply the same reduction to a vertex even
though the graph has not changed sufficiently to allow the reduction to succeed. For example, let
G ′ be a graph obtained by applying reductions to a graph G. If vertex v is not isolated in G and
NG′[v] = NG [v], then v is still not isolated in G ′ and can be pruned from further attempts.

We define a scheme for checking dependencies between reductions, which allows us to avoid
applying isolated vertex removal, vertex folding, and twin reductions when they will provably not
succeed. After unsuccessfully trying to apply one of these reductions to a vertex v , one only has
to considerv again for reduction after its neighborhood has changed. We therefore keep a set D of
viable candidate vertices: vertices whose neighborhood has changed and vertices that have never
been considered for reductions. Initially, we set D = V . Then for each v ∈ D, we remove v from D
and try to apply our reductions tov . Ifv is removed from the graph (or a new vertexw is inserted),
we set D = D ∪ N (v ) (or D = D ∪ N [w]). We repeat until D is empty. Figure 2 shows an example
for isolated vertex removal.

Using this technique, we reduce the amount of work for kernelization, especially in the later
stages of the algorithm, where only few reductions are left to apply. Dependency checking can
also help finding a kernel faster after finding a quasi kernel using our parallel algorithm: as most
parts of the graph are already fully reduced, we expect dependency checking to quickly prune these
parts and focus further kernelization on the boundaries when running the sequential version of our
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Fig. 2. After removing isolated vertex v and N (v ), u is isolated. Orange vertices are in D.

algorithm on the quasi kernel. Note that this strategy does not support unconfined and diamond
reductions, as they depend on a set S that can grow arbitrarily large, and include vertices with
large distances from the starting vertex. Thus, a vertex can become unconfined due to a change in
the graph outside of its neighborhood. Neither does it support the linear programming reduction,
which operates on the entire graph instead of a single vertex. However, when performing these
reductions, we continue to add vertices whose neighborhoods have changed to D, saving effort
when next attempting isolated vertex removal, vertex folding, and twin reductions.

We briefly mention that targeted forms of dependency checking have been used before. Previous
works, including Akiba and Iwata [2] and Chang et al. [12], perform so-called iterated reductions,
which allow for the repeated application of successful reductions. These include, for example, iter-
atively removing degree-one and -zero vertices (including any newly introduced degree-one and
-zero vertices) until none remain, and applying the domination reduction when triangle counts
change [12]. Unlike these previous works, our focus is on eliminating reductions that cannot be
applied, as is not targeted at any particular reduction but a collection of reductions. Strash [42] im-
plements similar dependency checking for isolated vertex and vertex folding reductions, although
it is not mentioned in his work. We are the first to introduce such a strategy that can be used with
any collection of reductions.

5.2 Reduction Tracking: Counteracting Diminishing Returns

It is not always ideal to apply reductions exhaustively—for example, if only few reductions will
succeed and they are costly. We note that during later stages of our algorithm, local reductions
may lead to very few graph changes, whereas the linear programming reduction often signifi-
cantly reduces the graph size. Therefore, it may be better to stop local reductions early before
applying the linear programming reduction, as any remaining local reductions can still be applied
afterward. Furthermore, in our parallel algorithm, applying the local reductions exhaustively can
take significantly longer for some blocks than for others. In other words, the total graph size is not
significantly reduced once the first threads finish their blocks.

We therefore implement reduction tracking to detect and stop local reductions when they are not
quickly reducing the graph. Once the first thread finishes applying local reductions, we assign it to
sample the current graph size at fixed time intervals. We then stop local reductions on all threads
when the change in graph size becomes small relative to the rate of vertex removals and switch
to the linear programming reduction. We continue local reductions afterward. For the sequential
case, we start sampling the current size immediately when starting the local reductions. In our
implementation, sampling is performed by an additional thread; however, it does not introduce
significant overhead and can be done in the same thread.
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6 EXPERIMENTAL EVALUATION

Methodology. We implement our algorithm using C++ and compile all code using gcc 5.4.0 with
full optimizations turned on (-O3 flag). For shared memory parallelization, we use OpenMP 4.0.
Our implementation includes the parallel application of reduction rules, the dependency check-
ing scheme, and the reduction tracking technique. Our source code is available on GitHub,2 and a
sequential version of our algorithm has been integrated into the KaMIS software for finding high-
quality independent sets.3 For graph partitioning, we use ParHIP [35], the parallel version of the
KaHIP graph partitioner [39]. We compare against several existing sequential kernelization tech-
niques. For fast reduction strategies, we compare against the kernelization routines LinearTime

and NearLinear recently introduced by Chang et al. [12]. We use the authors’ original implemen-
tation, written in C. For extensive reduction strategies, we use VCSolver, the full reduction suite
of Akiba and Iwata [2].4 We modify their code to stop execution after kernelization and output the
kernel size. For all instances, we perform three independent runs of each algorithm. Their code
was compiled and run sequentially with Java 1.8.0_102. All results are averages over three runs on
a machine with 512GB RAM and two Intel Xeon E5-2683 v4 processors with 16 cores running at
2.1GHz each.

Data Structure Details. We represent our graph using adjacency lists. For every vertex, we store
an array of its neighbors ids. When a vertex is removed from the graph, it is not removed from
the adjacency lists of its neighbors but instead is marked as removed in an array accessible by all
threads. Note that we cannot store all edges of the graph consecutively as the vertex folding and
twin reductions can increase the number of neighbors of a vertex. To efficiently check the degree
of a vertex or its number of incident cut edges, we store these values using atomic integers.

For each block, we additionally store the following data structures that are only used by the
thread that is handling the respective block. To efficiently iterate over vertices that have not been
removed from the graph, we keep a consecutive array of vertex ids from the respective block. For
constant time removal of vertices from this array, we store additional pointers from the vertex id
to the position in the array. This data structure is also used in our dependency checking technique
to store the vertices that have to be considered for reduction.

Algorithm Configuration. We run our algorithm with all reduction rules explained in this article
but restrict the isolated vertex removal reduction to cliques of size 3 or less. We use the ultrafast

configuration of the parallel partitioner and default values for all other parameters. When running
our algorithm in parallel on p threads, we partition the graph into p blocks. We stop applying
local reduction rules when the reduction in graph size per time during the last time interval is
less than 5% of the average size reduction per time since starting to apply local reductions (i.e.,
since the last application of the linear programming reduction). An experimental evaluation of
this technique can be found in Section 6.3. As the LinearTime algorithm by Chang et al. [12] has
very low running times and reduces the initial graph size, we run it as a preprocessing step using
the original implementation. We then partition the resulting kernel and process it with our parallel
kernelization algorithm. Throughout this section, we will refer to sequential runs of our algorithm
as FastKer and to parallel runs (32 threads, unless otherwise stated) as ParFastKer. All repetitions
of ParFastKer use the same partitioning of the input.

Instances. We perform experiments on large web [8] and road networks [6, 17], random (hyper)-
geometric graphs [26, 46] and Delaunay triangulations [6, 35]. Basic instance properties can be

2https://github.com/Hespian/ParFastKer.
3http://algo2.iti.kit.edu/kamis/.
4https://github.com/wata-orz/vertex_cover.
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Table 1. Basic Properties of the Graphs Used in Our Evaluation

Name Type Vertices (#) Edges(#) From

uk-2002 web 18.5M 261.8M [6]
arabic-2005 web 22.7M 553.9M [8]
gsh-2015-tpd web 30.8M 489.7M [8]
uk-2005 web 39.5M 783.0M [8]
it-2004 web 41.3M 1 027.5M [8]
sk-2005 web 50.6M 1 810.1M [8]
uk-2007-05 web 105.9M 3 301.9M [8]
webbase-2001 web 118.1M 854.8M [8]
asia.osm road 12.0M 12.7M [6]
road_usa road 23.9M 28.9M [17]
europe.osm road 50.9M 54.1M [6]
rgg26 rgg 67.1M 574.6M [6]
rhg rhg 100.0M 1 999.5M [46]
del24 Delaunay 16.8M 50.3M [6]
del26 Delaunay 67.1M 201.3M [35]

found in Table 1. These instances are all large (>10M vertices) and kernelization takes a consid-
erable amount of time on them. As our methods introduce some overhead compared to other
kernelization algorithms, we focus our attention on speeding up kernelization for these hard
instances.

6.1 Comparison with State of the Art

We now compare our implementation to the implementations of VCSolver by Akiba and Iwata
[2] and the LinearTime and NearLinear algorithm by Chang et al. [12]. Table 2 and Figure 3 give
an overview. Figure 3 normalizes running time and kernel size on each instance by the result of
VCSolver. See Appendix A for more detailed results.

First note that LinearTime’s running time is almost negligible compared to that of VCSolver,
almost never surpassing 1% of VCSolver’s time. LinearTime also decreases the graph size signif-
icantly for most graphs (except for the Delaunay triangulations, where LinearTime is not able to
reduce the graph size at all); however, the LinearTime kernel is still orders of magnitude larger
than VCSolver’s kernel. Due to fast running time and graph size reduction, we use LinearTime as
a preprocessing step to our algorithm.

The NearLinear algorithm by Chang et al. [12] uses fewer reduction rules than our algorithm,
so it finds larger kernels, often orders of magnitude larger than the kernels by VCSolver and our
algorithms. The largest relative difference to the smallest kernel size of NearLinear is the 1,329,923-
vertex kernel for europe.osm. This is 159 times larger than the smallest kernel and 94 times larger
than the quasi kernel found by ParFastKer. For the Delaunay triangulations and the random geo-
metric graph, the relative kernel size difference is comparatively low. This is because the kernel for
these graphs is still very large compared to the input size, but we find quasi kernels much closer to
the size found by VCSolver than NearLinear. LinearTime actually cannot remove any vertices from
the Delaunay instances and only very few from the random geometric instance. In the geometric
mean, LinearTime’s kernel is a factor 12 larger than ParFastKer’s quasi kernel and NearLinear’s
kernel is a factor 7 larger. Due to NearLinear’s fast worst-case running time, it runs faster than
FastKer on 8 out of 12 instances and on 2 instances even faster than ParFastKer. As LinearTime is
a preprocessing step of our algorithm, it is of course always faster.
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Table 2. Running Times and Kernel Sizes (|K |) for All Algorithms

Graph LinearTime NearLinear VCSolver FastKer ParFastKer

Name n |K | Time |K | Time |K | Time |K | Time |K | Time SU

uk-2002 19M 11.7M 1.5 4.0M 28.0 0.2M 336.9 0.3M 60.1 0.3M 11.8 28.4

arabic-2005 23M 15.6M 2.6 6.7M 246.1 0.6M 1,033.2 0.6M 148.0 0.6M 25.7 40.2

gsh-2015-tpd 31M 2.0M 11.6 1.2M 97.4 0.4M 372.3 0.4M 66.4 0.5M 32.0 11.7

uk-2005 39M 28.2M 2.5 5.9M 60.5 0.8M 541.4 0.9M 131.9 0.9M 53.3 10.1

it-2004 41M 27.1M 3.3 11.3M 1,544.6 1.6M 6,749.0 1.7M 499.7 1.7M 151.8 44.4

sk-2005 51M * * * * 3.2M 10,010.5 3.3M 2,349.8 3.5M 178.3 56.1

uk-2007-05 106M * * * * 3.5M 18,829.4 3.6M 2,073.4 3.7M 372.4 50.6

webbase-2001 118M 51.7M 13.0 17.3M 121.1 0.7M 4,207.8 0.8M 290.8 0.9M 54.9 76.6

asia.osm 12M 626.7K 0.8 594.4K 1.4 15.2K 204.7 34.9K 1.6 34.9K 1.2 169.8

road_usa 24M 2.5M 2.5 2.4M 4.1 0.2M 310.0 0.2M 8.0 0.2M 4.1 76.0

europe.osm 51M 1,500.0K 4.1 1,329.9K 6.1 8.4K 302.4 14.1K 5.8 14.2K 4.9 61.3

rgg26 67M 67.1M 1.0 51.3M 172.6 49.6M 9,887.7 49.8M 13,572.6 49.8M 150.3 65.8

rhg 100M * * * * 0 124.0 0 164.5 16 64.6 1.9

del24 17M 16.8M 0.2 15.6M 12.7 12.4M 4,789.5 12.9M 142.0 12.9M 51.5 93.1

del26 67M 67.1M 0.7 62.5M 53.3 49.9M 20,728.7 51.7M 718.9 51.7M 179.0 115.8

The column “SU” is the speedup of ParFastKer over VCSolver. Instances marked with an asterisk (*) cannot be processed by

the NearLinear and LinearTime implementations due to the 32-bit implementation. All times are in seconds. Quasi kernel

sizes that differ from VCSolver’s kernel size by at most 0.5% of the graph size are emphasized in bold.

Fig. 3. Comparison of

kernelization algorithms

against VCSolver.5

Fig. 4. Scaling experiments on the six hardest instances of the bench-

mark set for the overall algorithm (left), blockwise reductions (center), and

the reduction by linear programming (right). Speedups are relative to two

threads.

As VCSolver implements a larger set of reduction rules, adding the desk and funnel reductions
by Xiao and Nagamochi [47], as well as the packing reduction rule of Akiba and Iwata [2], it
achieves smaller kernel sizes. In the geometric mean, ParFastKer’s quasi kernel’s are 20% larger
than VCSolver’s (excluding rhg, which has an empty kernel). However, comparing the kernel sizes
to the size of the input network, these differences in size are negligible. The largest obtained dif-
ference relative to the size of the input network among all graphs we tested is 2.9% on del24 (0.6%
on sk-2005 when only considering the real-world instances). In addition, VCSolver only applies
a scheme similar to our dependency checking for the removal of degree zero and one vertices, so
our algorithm runs faster on all instances except rhg and rgg26. ParFastKer, however, is faster
than VCSolver on these instance. On 11 of 15 instances, FastKer is faster by a factor of more than 5

5As empty kernels lead to a division by zero for this plot, graphs with an empty kernel are not shown here.
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than VCSolver and on 5 instances even by a factor of more than 28. The largest speedup of FastKer

over VCSolver is 129 on asia.osm, and the geometric mean of the speedups is 10. As FastKer is
the sequential version of our algorithm, this is a purely algorithmic speedup. Using parallelization,
ParFastKer achieves speedups of 41 over VCSolver in the geometric mean, combining the algorith-
mic speedup with parallel speedup. On all instances, except for rhg, the speedup is more than 10
and on 9 instances more than 50.

6.2 Scalability

Figure 4 shows the parallel speedup of our algorithm on the six hardest instances of our benchmark
set (i.e., those with the longest sequential running time). The left plot shows the total speedup rela-
tive to two threads for all parts of our algorithm combined: LinearTime preprocessing, partitioning
and parallel reductions with dependency checking, and inexact reduction pruning. The center and
right plots show the speedups for the reductions parallelized by partitioning and the reduction by
linear programming, respectively. The preprocessing step of our algorithm, the LinearTime algo-
rithm by Chang et al. [2], is sequential and thus limits the possible scalability of our parallelization;
however, running times are very short.

We observe that, due to the overhead caused by having to find a partition of the graph, the
single-threaded execution is on average 1.7 times faster than the parallelization using 2 threads.
However, our algorithm scales well so that parallelization brings better performance for higher
numbers of threads. Compared to the two-threaded case, our highest speedup is 46.5 for rgg26 on
32 threads. The main reason for this is that reductions on this graph are so slow that for low thread
counts, our inexact reduction pruning technique stops local reductions early, switching to a very
long lasting reduction by linear programming. For the other graphs, the speedup on 32 threads
compared to 2 threads is between 6 and 16.3, with 16 being perfect speedup. The speedup relative
to the single-threaded case is between 3.3 and 13.1 (42.1 for rgg26).

Figure 4 shows that local reductions parallelized by partitioning are faster single threaded than
on 2 threads. This is caused by our inexact reduction pruning technique, which starts after the
first thread finishes reductions. When the number of threads is low, reductions might already have
become too slow when the first thread finishes, causing longer times of slow size reduction. For
higher thread counts, there is always a thread that finishes while other threads are still applying
reductions fast, and thus less time is wasted by slow reductions. After the drop at 2 threads, the
speedup for 32 threads compared to 2 threads for these reductions is between 8 and 37 (between
4.8 and 32 compared to 1 thread). For some graphs, the reduction by linear programming, which
we parallelized using the parallel maximum bipartite matching algorithm by Azad et al. [4], is a
bottleneck of our algorithm, as it does not scale as well as the rest of the reductions. In many cases,
about half of the reduction time is spend on this reduction rule alone.

6.3 Reduction Tracking: Counteracting Diminishing Returns

Table 3 shows the effect of our reduction tracking technique described in Section 5.2 on ParFastKer.
It shows the algorithmic speedup over ParFastKer achieved by enabling reduction tracking. We
also show the relative quasi kernel size increase caused by using reduction tracking.

Our experiments show that stopping long-lasting reductions early can lead to significant
speedups on some graphs with close to no penalty on the quasi kernel size. The quasi kernel
size found with reduction tracking enabled is less than 0.1% larger than without it on all but two
of our test instances. And even for these two instances, the difference is only minor (at most 0.6%).
In fact, the quasi kernel is sometimes even slightly smaller. The reason for this is that different
orders of reduction application can lead to different kernel sizes.
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Table 3. Speedup and Relative Change in

Kernel Size Change Achieved by Using

Reduction Tracking

Graph Speedup Δ Size
uk-2002 1.1 +0.0%
arabic-2005 2.2 −0.0%
gsh-2015-tpd 1.0 −0.0%
uk-2005 1.0 −0.0%
it-2004 1.8 −0.0%
sk-2005 135.0 −0.0%
uk-2007-05 2.4 +0.1%
webbase-2001 1.3 +0.0%
asia.osm 1.0 −0.0%
road_usa 1.0 +0.0%
europe.osm 1.0 +0.6%
rgg26 1.2 +0.0%
rhg 1.0 +0.0%
del24 1.0 +0.0%
del26 1.0 +0.0%

6.4 Impact of Partitioning

In this section, we assess the impact of the partitioning quality on ParFastKer. We compare
ParHIP’s fastest configuration (ultrafast), which we used for our other experiments, with a higher-
quality configuration (fast), as well as a size-constrained label propagation algorithm (SC-LPA)
[34]. SC-LPA is a simple graph partitioning algorithm with fast running time; however, it usually
gives low-quality output. We set the imbalance for all three algorithms to 3%.

Table 4 shows that with ParHIP’s fast configuration, the total time for kernelization increases
by a factor of 1.52 in the geometric mean compared to the ultrafast configuration. The kernel size,
however, remains largely unchanged. Focusing on the difference in the number of edges cut, we
clearly see that ParHIP’s fast configuration gives only minimally better partitions than the ultrafast
configuration: on all instances except for sk-2005, the difference is under 0.03%. Although this
might be important for certain applications, it does not seem to be worth the longer running time
for our algorithm, as the quasi kernel size changes only slightly, at most 1% on most instances.
Note that rhg has an empty kernel and ParFastKer using ParHIP’s ultrafast configuration finds a
quasi kernel of size 16, so the size difference reported in Table 4 is negligible.

However, using the size-constrained label propagation algorithm, the kernel size increases dras-
tically due to the much larger amount of cut edges. We see that SC-LPA produces up to 12% larger
cuts than ParHIP’s ultrafast configuration, resulting in quasi kernels larger by a factor of 2.4 in the
geometric mean as more reductions are skipped because they lie on boundaries between blocks. It
is also important to note that our implementation of SC-LPA is sequential—it is possible that total
kernelization time would be faster with a parallel size-constrained label propagation than with
ParHIP’s ultrafast configuration. However, these experiments show that this simple partitioning
algorithm does not produce partitions of high enough quality to be used by ParFastKer—even with
faster running times—as quasi kernel sizes become too large.

6.5 Local Search on the Quasi Kernel

We now demonstrate the impact that quickly finding a small quasi kernel has on algorithms for
finding large independent sets with local search. Currently, the algorithms with the best trade-off
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Table 4. Comparison of ParFastKer’s Running Time and

Quasi Kernel Size with the Ultrafast Configuration of ParHIP to the

Fast Configuration and an SC-LPA

ParHIP (Fast) SC-LPA
Graph Δ Cut Time |K | Δ Cut Time6 |K |
uk-2002 −0.00% 1.56 1.00 +3.59% 4.89 1.80
arabic-2005 −0.01% 1.75 1.00 +4.77% 4.26 1.73
gsh-2015-tpd −0.00% 1.71 1.00 +6.47% 1.16 1.13
uk-2005 −0.02% 1.87 1.00 +4.68% 3.28 1.35
it-2004 −0.01% 1.36 1.00 +5.08% 1.94 1.51
sk-2005 −0.49% 1.68 0.97 * * *
uk-2007 −0.03% 1.68 0.99 * * *
webbase-2001 −0.00% 1.43 1.00 +2.84% 4.21 2.18
asia.osm −0.00% 1.18 0.99 +9.41% 1.22 8.69
road_usa 0.00% 1.30 1.00 +9.70% 1.54 5.94
europe.osm 0.00% 1.14 0.99 +8.71% 1.21 33.02
rgg26 −0.01% 1.20 1.00 +10.79% 2.84 1.02
rhg −0.00% 1.94 0.62 * * *
del24 −0.01% 1.70 1.00 +12.27% 1.11 1.16
del26 −0.01% 1.64 1.00 +12.30% 1.27 1.16

Times and kernel sizes are divided by the respective value for the ultrafast configura-

tion. The column “Δ cut” gives the difference in the number edges cut by the partition

divided by the total number of edges in the graph (in comparison to ParHIP’s ultrafast

configuration).

between speed and solution quality are LinearTime and NearLinear by Chang et al. [12]. In our
previous experiments, we compared only against the LinearTime and NearLinear kernelization.
However, we now run the full algorithm of Chang et al. [2], which first kernelizes the graph,
then invokes “reducing-peeling” to compute an initial solution for local search, and then runs
local search [3] on the kernel. We compare their original algorithms against variants that first
kernelize the graph with ParFastKer and then run on the quasi kernel. We use a time limit of
30 minutes, including kernelization and finding an initial solution. Figure 5 shows the size of the
independent set found over time for the largest web graph, road network, and generated graph
from our benchmark set (excluding graphs that cannot be processed due to the original 32-bit
implementation of LinearTime and NearLinear). We ran local search three times using a different
input seed for each run; however, we use the same input graph (either the original graph or a quasi
kernel found by ParFastKer) for each run. The plots show at any given time the geometric mean
of the current best solution of all runs.

For web graphs, we see that using ParFastKer’s quasi kernel, the independent set found is much
larger (80,009,858 for webbase-2001) than the one found by LinearTime (18,286 vertices less), and
NearLinear only converges to approximately the size found using the quasi kernel after several
hundred seconds. On road networks, we observe interesting behavior: local search seemingly
converges for all algorithms but to different independent set sizes: the smaller the initial kernel
size, the larger independent set size. On europe.osm, the final solution size is 25,633,238 for
LinearTime, 84 more for NearLinear, and 188 more for both versions that use ParFastKer’s quasi

6The implementation we use for SC-LPA is a 32-bit implementation. Graphs that cannot be processed by it are marked

with an asterisk (*).
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Fig. 5. Solution size over time of LinearTime and NearLinear in the original version and with ParFastKer

as preprocessing step (marked with ”ParFastKer +”). On rgg26, NearLinear did not find an initial solution

within the time limit. Note that by LinearTime and NearLinear, we refer to the full local search algorithms,

not just their kernelization parts.

kernel. In addition, using ParFastKer’s quasi kernel, the algorithm converges much faster. In
particular, after an initial improvement over the starting solution, which takes about 0.1 seconds
plus the time for kernelization and finding an initial solution (which is about 5 seconds), very few
changes occur with ParFastKer’s quasi kernel. LinearTime and NearLinear, however, make an
increase of several hundred vertices for the first 30 to 40 seconds. On the Delaunay triangulation
graphs, the smaller quasi kernel enables local search to find larger independent sets.

6.6 Improving High-Quality Heuristic Algorithms

We now show the impact that our fast kernelization makes on a heuristic algorithm that is tai-
lored toward very high quality solutions. In particular, we consider ReduMIS by Lamm et al. [32].
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Fig. 6. Experimental results for different variations of ReduMIS. Variants marked with (preprocessing) use

the indicated kernelization algorithm as preprocessing and then run the original ReduMIS algorithm on the

resulting kernel. The other variants replace the kernelization algorithm used inside of ReduMIS. All runs

were done with a time limit of 2 hours.

ReduMIS first finds the kernel of the input graph using VCSolver’s kernelization algorithm and
then uses an evolutionary algorithm to find a large independent set of the kernel. It then fixes
the 10% lowest degree vertices from the independent set into the solution, removing them and
their neighborhood. After removal, the graph has changed and kernelization can be run again.
This is repeated until a time limit is met or the graph has been fully reduced. We show results
for two different experiments: replacing the kernelization algorithm used by ReduMIS internally
by integrating a different kernelization algorithm, and first reducing the input graph using differ-
ent kernelization algorithms as a preprocessing step and then using the resulting kernel as input
to the original version of ReduMIS that uses VCSolver for kernelization. The time limit for all
experiments in this section was set to 2 hours. Figure 6 shows the results of these experiments.
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We see that for many instances, the versions with FastKer and ParFastKer outperform the other
versions. The algorithm starts finding solutions earlier and thus has more time to improve its solu-
tion until the time limit is met. On some graphs, the version that integrates FastKer into ReduMIS

performs significantly better than the versions that use our algorithms as a preprocessing step:
on 6 of 12 instances ReduMIS + FastKer performs best among all other variants and on 5 of 12
instances ReduMIS + ParFastKer (preprocessing) outperforms the other variants—only slightly in
some cases, however. The advantage of the integrated version is especially noticeable on del26,
where the nonintegrated versions fail to find a solution within the time limit, and it-2004 and
del24, where the nonintegrated versions start finding solutions much later than the integrated
version and thus have less time to improve their initial solution. Possible explanations for this are
that VCSolver (which is used by ReduMIS in all versions that just use a different kernelization
algorithm as preprocessing step) is slow in applying the remaining reductions that FastKer and
ParFastKer did not apply, or that there are large graph size reductions in later stages of the algo-
rithm that can be sped up in the integrated version. As on most graphs, the plots for the integrated
FastKer version and the preprocessing versions behave quite similarly after finding a first solution;
we assume the former to be the case.

The version with integrated LinearTime kernelization cannot reduce the graph enough for
ReduMIS to find any solution on the graphs with high-degree vertices (road networks and the
geometric graph instances shown here usually do not have high-degree vertices).

7 CONCLUSION

We presented an efficient parallel kernelization algorithm based on graph partitioning and parallel
bipartite maximum matching, vertex pruning, and reduction tracking. On the one hand, our algo-
rithm produces kernels that are orders of magnitude smaller than the fastest kernelization methods
while having a similar execution time. On the other hand, our algorithm is able to compute kernels
with size comparable to the smallest known kernels, but up to two orders of magnitude faster that
previously possible. Experiments with local search algorithms show that we find larger indepen-
dent sets faster. In future work, we want to parallelize the LinearTime algorithm by Chang et al.
[12] so that our algorithm is fully parallel; apply our parallel kernelization techniques in more
MIS algorithms, such as exact branch-and-reduce [2]; explore techniques for further parallelizing
the LP reduction; and transfer our techniques to other problems that use kernelization [16, 18,
24, 29].

APPENDIX

A DETAILED RESULTS

Here we provide detailed results of our experiments. In addition to the time to reach a quasi
kernel, Tables 5 and 6 provide the time it takes to reach a full kernel. We do this by first applying
our algorithm as described throughout the article to find a quasi kernel. We then apply the
remaining reductions by running sequentially and disabling the inexact reduction pruning
technique described in Section 5.2.

In the comparisons to VCSolver, Table 7 provides columns for a “same size comparison.” This
is found by logging the current time and size throughout the algorithms. When comparing two
algorithms with different kernel sizes, the time column of the same size comparison then reports
the first timestamp at which the algorithm with the smaller kernel size logged a size smaller than
(or equal to) the final size of the algorithm with the larger kernel.
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Table 5. Kernel Sizes and Kernelization Times for FastKer to Reach a Quasi Kernel and to Reach a Full

Kernel by Running Our Algorithm without Stopping the Reduction Application on the Quasi Kernel

Quasi Kernel Kernel

Graph |K | LinearTime (s) All Reductions (s) Total (s) |K | Time (s) Total (s)

uk-2002 255,497 1.5 58.6 60.1 255,497 1.6 61.7

arabic-2005 610,715 2.6 145.5 148.0 610,697 4.4 152.5

gsh-2015-tpd 425,645 11.6 54.8 66.4 425,645 1.8 68.2

uk-2005 854,511 2.5 129.3 131.9 854,511 3.7 135.6

it-2004 1,651,630 3.3 496.4 499.7 1,645,591 741.7 1,241.5

sk-2005 3,265,615 * 2,349.8 2,349.8 3,256,645 793.0 3,142.8

uk-2007-05 3,631,546 * 2,073.4 2,073.4 3,627,912 2,830.7 4,904.1

webbase-2001 821,492 13.0 277.8 290.8 821,092 59.2 350.0

asia.osm 34,930 0.8 0.8 1.6 34,930 0.1 1.6

road_usa 247,395 2.5 5.4 8.0 247,395 0.4 8.3

europe.osm 14,066 4.1 1.7 5.8 14,066 0.1 5.9

rgg26 49,843,887 1.0 13,571.6 13,572.6 49,838,878 1,024.9 14,597.6

rhg 0 * 164.5 164.5 0 11.3 175.8

del24 12,884,514 0.2 141.8 142.0 12,877,164 173.4 315.4

del26 51,701,698 0.7 718.2 718.9 51,624,241 708.3 1,427.2

Table 6. Kernel Sizes and Kernelization Times for ParFastKer to Reach a Quasi Kernel and to

Reach a Full Kernel by Running Our Algorithm Sequentially and without Stopping the

Reduction Application on the Quasi Kernel

Quasi Kernel Kernel

Graph |K | LinearTime (s) Part. (s) All Reductions (s) Total (s) |K | Time (s) Total (s)

uk-2002 266,328 1.5 4.9 5.4 11.8 255,594 4.8 16.6

arabic-2005 628,850 2.6 8.3 14.8 25.7 610,288 21.0 46.6

gsh-2015-tpd 486,328 11.6 13.5 6.6 31.7 425,751 19.7 51.5

uk-2005 901,896 2.5 35.5 14.8 52.8 854,383 18.1 70.9

it-2004 1,697,934 3.3 30.0 117.8 151.1 1,645,643 148.2 299.3

sk-2005 3,504,786 * 70.0 104.8 174.8 3,256,591 211.7 386.6

uk-2007-05 3,735,056 * 71.0 298.5 369.5 3,629,214 510.0 879.5

webbase-2001 869,443 13.0 18.3 23.6 54.9 821,131 14.8 69.7

asia.osm 34,851 0.8 0.3 0.1 1.2 34,823 0.1 1.3

road_usa 246,939 2.5 1.2 0.4 4.0 246,939 0.3 4.3

europe.osm 14,152 4.1 0.7 0.2 5.0 14,096 0.1 5.2

rgg26 49,847,428 1.0 44.2 103.7 148.9 49,838,810 780.7 929.6

rhg 16 * 44.4 20.7 65.1 0 28.0 93.0

del24 12,901,142 0.2 31.7 19.0 50.9 12,877,029 135.0 185.8

del26 51,668,286 0.7 86.9 88.5 176.1 51,624,361 611.0 787.0

The implementation by Chang et al. [12] uses 32-bit integers as edge identifiers, so they cannot
process graphs with 232 ≈ 4.29B or more edges. Respective entries in the tables are marked with
an asterisk (*). As our algorithm uses their LinearTime implementation as a preprocessing step, for
graphs with too many edges, we use the original graph as input to our algorithm instead of the
kernel found by LinearTime.
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Table 7. Comparison between VCSolver and ParFastKer

VCSolver ParFastKer Same Size Comparison

Graph |K | Time (s) |K | Time (s) Speedup Time (s) Speedup

uk-2002 241,517 336.9 266,328 11.8 28.6 199.5 16.9

arabic-2005 574,878 1,033.2 628,850 25.7 40.3 509.5 19.9

gsh-2015-tpd 417,031 372.3 486,328 31.7 11.7 139.5 4.4

uk-2005 835,480 541.4 901,896 52.8 10.2 137.1 2.6

it-2004 1,602,560 6,749.0 1,697,934 151.1 44.7 4,108.9 27.2

sk-2005 3,200,806 10,010.5 3,504,786 174.8 57.3 2,822.2 16.1

uk-2007-05 3,514,783 18,829.4 3,735,056 369.5 51.0 11,828.5 32.0

webbase-2001 736,842 4,207.8 869,443 54.9 76.7 2,626.6 47.9

asia.osm 15,201 204.7 34,851 1.2 172.3 159.5 134.3

road_usa 169,808 310.0 246,939 4.0 77.3 91.6 22.8

europe.osm 8,366 302.4 14,152 5.0 60.0 214.5 42.6

rgg26 49,590,973 9,887.7 49,847,428 148.9 66.4 1,637.8 11.0

rhg 0 124.0 16 65.1 1.9 113.4 1.7

del24 12,417,301 4,789.5 12,901,142 50.9 94.2 1,002.4 19.7

del26 49,864,448 20,728.7 51,668,286 176.1 117.7 4,713.6 26.8

”Same size comparison” compares the time that the algorithm with the smaller kernel size takes to reach the final

size of the algorithm with the larger kernel.
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