
Scalable Edge Partitioning∗

Sebastian Schlag† Christian Schulz‡ Daniel Seemaier§ Darren Strash¶

Abstract
Edge-centric distributed computations have appeared as a
recent technique to improve the shortcomings of think-like-
a-vertex algorithms on large scale-free networks. In order
to increase parallelism on this model, edge partitioning—
partitioning edges into roughly equally sized blocks—has
emerged as an alternative to traditional (node-based) graph
partitioning. In this work, we develop a fast parallel split-
and-connect graph construction algorithm in the distributed
setting and show that combining our parallel construction
with advanced parallel node partitioning algorithms yields
high-quality edge partitions in a scalable way. Our technique
scales to networks with billions of edges, and runs efficiently
on thousands of PEs. Our extensive experiments show that
our algorithm computes solutions of high quality on large
real-world networks and large hyperbolic random graphs—
which have a power law degree distribution and are therefore
specifically targeted by edge partitioning.

1 Introduction
With the recent stagnation of Moore’s law, the primary
method for gaining computing power is to increase the
number of available cores, processors, or networked ma-
chines (all of which are generally referred to as process-
ing elements (PEs)) and exploit parallel computation.
One increasingly useful method to take advantage of
parallelism is found in graph partitioning [6, 10, 56],
which attempts to partition the vertices of a graph
into roughly equal disjoint sets (called blocks), while
minimizing some objective function—for example min-
imizing the number of edges crossing between blocks.
Graph partitioning is highly effective, for instance, for
distributing data to PEs in order to minimize commu-
nication volume [24], and to minimize the overall run-

∗The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506. This work was partially supported by
DFG grants SA 933/10-2.
†Institute for Theoretical Informatics, Karlsruhe Institute of

Technology, Karlsruhe, Germany.
‡Faculty of Computer Science, University of Vienna, Vienna,

Austria.
§Karlsruhe Institute of Technology, Karlsruhe, Germany.
¶Department of Computer Science, Hamilton College, Clinton,

NY, USA.

ning time of jobs with dependencies between computa-
tion steps [57].

This traditional (node-based) graph partitioning
has also been essential for making efficient distributed
graph algorithms in the Think Like a Vertex (TLAV)
model of computation [43]. In this model, node-
centric operations are performed in parallel, by mapping
nodes to PEs and executing node computations in
parallel. Nearly all algorithms in this model require
information to be communicated between neighbors
— which results in network communication if stored
on different PEs — and therefore high-quality graph
partitioning directly translates into less communication
and faster overall running time. As a result, graph
partitioning techniques are included in popular TLAV
platforms such as Pregel [40] and GraphLab [39].

However, node-centric computations have serious
shortcomings on power law graphs — which have a
skewed degree distribution. In such networks, the over-
all running time is negatively affected by very high-
degree nodes, which can result in more communication
steps. To combat these effects, Gonzalez et al. [23] in-
troduced edge-centric computations, which duplicates
node-centric computations across edges to reduce com-
munication overhead. In this model, edge partitioning—
partitioning edges into roughly equally sized blocks—
must be used to reduce the overall running time. How-
ever, like node-based partitioning, edge partitioning is
NP-hard [9].

Similar to (node-based) graph partitioning, the
quality of the edge partitioning can have a dramatic
effect on parallelization [38, 47]. Noting that edge
partitioning can be solved directly with hypergraph
partitioners, such as hMETIS [32, 33] and PaToH [13],
Li et al. [38] showed that these techniques give the
highest quality partitionings; however, they are also
slow. Therefore, a balance of solution quality and
speed must be taken into consideration. This balance is
struck well for the split-and-connect (SPAC) method
introduced by Li et al. [38]. In the SPAC method,
vertices are duplicated and weighted so that a (typically
fast) standard node-based graph partitioner can be used
to compute an edge partitioning; however, this method
was only studied in the sequential setting. While this
is a great initial step, the graphs that benefit the most

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited211

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

from edge partitioning are massive—and therefore do
not fit on a single machine [28].

However, distributed algorithms for the problem
fare far worse [9, 23]. While adding much computational
power with many processing elements (PEs), edge parti-
tioners such as PowerGraph [23] and Ja-Be-Ja-VC [50],
produce partitionings of significantly worse quality than
those produced with hypergraph partitioners or SPAC.
Thus, there is no clear winning algorithm that gives high
quality while executing quickly in a distributed setting.

1.1 Our Results. In this paper, we give the first
high-quality distributed memory parallel edge parti-
tioner. Our algorithm scales to networks with billions
of edges, and runs efficiently on thousands of PEs. Our
technique is based on a fast parallelization of split-and-
connect graph construction and a use of advanced node
partitioning algorithms. Our experiments show that
while hypergraph partitioners outperform SPAC-based
graph partitioners in the sequential setting regarding
both solution quality and running time, our new algo-
rithms compute significantly better solutions than the
distributed memory hypergraph partitioner Zoltan [20]
in shorter time. For large random hyperbolic graphs,
which have a power law degree distribution and are
therefore specifically targeted by edge partitioning, our
algorithms compute solutions that are more than a fac-
tor of two better. Moreover, our techniques scale well to
2 560 PEs, allowing for efficient partitioning of graphs
with billions of edges within seconds.

2 Preliminaries
2.1 Basic Concepts. Let G = (V = {0, . . . , n −
1}, E, c, ω) be an undirected graph with edge weights
ω : E → R>0, node weights c : V → R≥0, n =
|V |, and m = |E|. We extend c and ω to sets,
i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e).

N(v) := {u : {v, u} ∈ E} denotes the neighbors of v
and E(v) := {e : v ∈ e} denotes the edges incident to v.
Given a positive integer k, we are looking for blocks of
nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V
and Vi ∩ Vj = ∅ for i 6= j. A node v ∈ Vi that has a
neighbor w ∈ Vj , i 6= j, is a boundary node. The balance
constraint demands that ∀i ∈ {1..k} : c(Vi) ≤ Lmax :=

(1 + ε)d c(V)
k e for some imbalance parameter ε. The ob-

jective is to minimize the total cut
∑

i<j w(Eij) where
Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. Similar to the
node partitioning problem, the edge partitioning prob-
lem asks for blocks of edges E1, . . . , Ek that partition
E, i.e. E1∪· · ·∪Ek = E and Ei∩Ej = ∅ for i 6= j. The
balance constraint demands that ∀i ∈ {1..k} : ω(Ei) ≤
(1 + ε)

⌈
ω(E)
k

⌉
. The objective is to minimize the vertex

cut
∑

v∈V |I(v)| − 1 where I(v) := {i : E(v) ∩ Ei 6= ∅}.
Intuitively, the objective expresses the number of re-
quired replicas of nodes: if a node v has to be copied to
each block that has edges incident to v, the number of
required replicas of that node is |I(v)| − 1.

2.2 Hypergraphs. An undirected hypergraph H =
(V,E, c, ω) is defined as a set of n vertices V and a set of
m hyperedges/nets E with vertex weights c : V → R>0

and net weights ω : E → R>0, where each net is a subset
of the vertex set V (i.e., e ⊆ V). The vertices of a net are
called pins. As before, c and ω are extended to work on
sets. A vertex v is incident to a net e if v ∈ e. The size
|e| of a net e is the number of its pins. A k-way partition
of a hypergraph H is a partition of its vertex set into k
blocks Π = {V1, . . . , Vk} such that

⋃k
i=1 Vi = V , Vi 6= ∅

for 1 ≤ i ≤ k and Vi∩Vj = ∅ for i 6= j. A k-way partition
Π is called ε-balanced if each block Vi ∈ Π satisfies
the balance constraint : c(Vi) ≤ Lmax := (1 + ε)d c(V)

k e
for some parameter ε. Given a k-way partition Π,
the number of pins of a net e in block Vi is defined
as Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. For each net e,
Λ(e) := {Vi | Φ(e, Vi) > 0} denotes the connectivity set
of e. The connectivity of a net e is the cardinality of its
connectivity set: λ(e) := |Λ(e)|. A net is called cut net if
λ(e) > 1. The k-way hypergraph partitioning problem is
to find an ε-balanced k-way partition Π of a hypergraph
H that minimizes an objective function over the cut nets
for some ε. The most commonly used cost functions
are the cut-net metric cut(Π) :=

∑
e∈E′ ω(e) and the

connectivity metric (λ−1)(Π) :=
∑

e∈E′(λ(e)−1) ω(e),
where E′ is the set of all cut nets [19, 21]. Optimizing
each of these objective functions is NP-hard [36].

2.3 The Split-and-Connect (SPAC) Method.
One technique to compute an edge partitioning is to
first form a hypergraph with a node for each edge
in E, and a hyperedge for each node, consisting of
the edges to which it is incident. Thus, hypergraph
partitioners optimizing the connectivity metric can be
applied to this problem [38]; however, they are more
powerful than necessary, as this conversion has mostly
small hyperedges.

The problem can also be solved with node-
based graph partitioning by creating a new graph G′

with the split-and-connect transformation (SPAC) of
Li et al. [38]. More precisely, given an undirected, un-
weighted graph G = (V,E), they construct the split-
and-connect graph G′ = (V ′, E′, c′, ω′) as follows: for
each node v ∈ V , create a set of split nodes Sv :=
{v′1, . . . , v′d(v)} that are connected to a cycle by auxil-
iary edges with edge-weight one, i.e. edges {v′i, v′i+1}
for i = 1, . . . , d(v) − 1 and {v′d(v), v

′
1}. In the connect

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited212

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

u

v

w

x

(a)

Sv

Su Sw

Sx

(b)

Figure 1: (a) The input graph. (b) The resulting split-
and-connect graph. Each node v is replaced by a set Sv

of split nodes that form a cycle (if |Sv| ≥ 3). Auxiliary
edges are drawn thin, dominant edges are drawn thick.

phase, split nodes are connected by edges, i.e. for each
edge e = {u, v} in G, a corresponding dominant edge
{u′, v′} in G′ is created. This is done such that overall
both u′ ∈ Su and v′ ∈ Sv are connected to one and only
one dominant edge. Those dominant edges get assigned
edge weight infinity. Figure 1 gives an example.

Note that the original version of the SPAC method
connects the split nodes of the same split set to an
induced path rather than a cycle. Exchanging them for
cycles simplifies implementation and does not change
the theoretical approximation bound [38].

To partition the edges of G, a node-based parti-
tioning algorithm is run on G′. Since dominant edges
have edge weight infinity, it is infeasible to cut dominant
edges for the node-based partitioning algorithm. Thus,
both endpoints of a dominant edge are put into the
same partition. To obtain an edge partition of the in-
put graph, one transfers the block numbers of those end-
points to the edge in G that induced the dominant edge.

Each distinct node partition occurring in a split
node set cuts at least one auxiliary edge, unless the set is
fully contained in a single partition. Hence, the number
of node replicas is at most the number of edge cuts.

Since the vertex cut is always smaller than or equal
to the edge cut, a good node partition of the split-and-
connect graph intuitively leads to a good edge partition
of the input graph. Note that the node-based partition-
ing algorithm is a parameter of the algorithm. Overall,
their approach is shown to be up to orders of magnitude
faster than the hypergraph partitioning approaches us-
ing hMetis [30] and PaToH [14] and considered compet-
itive in terms of the number of replicas [38].

3 Related Work
There has been a huge amount of research on graph
and hypergraph partitioning so that we refer the reader
to existing literature [6, 10, 46, 56] for most of the
material. Here, we focus on issues closely related to
our main contributions. Since both graph partitioning
algorithms using the method by Li et al. [38] and
hypergraph partitioning algorithms are useful to solve

the edge partitioning problem, we start this section with
reviewing literature for those problems and then finish
with edge partitioning algorithms.

3.1 Node Partitioning. One of the most prominent
methods for computing high-quality node partitions on
large real-world graphs is the multilevel scheme. In
the multilevel graph partitioning (MGP) method, the
input graph is recursively contracted to achieve smaller
graphs which should reflect the same basic structure as
the input graph. After applying an initial partitioning
algorithm to the smallest graph, the contraction is
undone and, at each level, a local search method is
used to improve the partitioning induced by the coarser
level. Well-known software packages based on this
approach include KaHIP [54], Jostle [64], METIS [31]
and Scotch [15].

Most probably the fastest available parallel code is
the parallel version of METIS, ParMETIS [29]. This
parallelization has difficulty maintaining the balance of
the partitions since at any particular time, it is difficult
to say how many nodes are assigned to a particular
block. PT-Scotch [15], the parallel version of Scotch,
is based on recursive bipartitioning.

Within this work, we use sequential and distributed
memory parallel algorithms of the open source multi-
level graph partitioning framework KaHIP [54] (Karl-
sruhe High Quality Partitioning). This framework tack-
les the node partitioning problem using the edge cut as
objective. ParHIP [44] is a distributed memory parallel
node partitioning algorithm. The algorithm is based on
parallelizing and adapting the label propagation tech-
nique originally developed for graph clustering [49]. By
introducing size constraints, label propagation becomes
applicable for both the coarsening and the refinement
phase of multilevel graph partitioning. The resulting
system is more scalable and achieves higher quality than
commonly-used partitioners like ParMETIS and PT-
Scotch.

3.2 Hypergraph Partitioning. Driven by applica-
tions in VLSI design and parallel scientific computing,
hypergraph partitioning (HGP) has evolved into a broad
research area since the 1990s and lead to the devel-
opment of multiple HGP software packages with cer-
tain distinguishing characteristics. Well-known sequen-
tial systems—all of which use the multilevel paradigm—
include PaToH [13] (originating from scientific comput-
ing), hMetis [32, 33] (originating from VLSI design),
KaHyPar [1, 25, 55] (n-level, general purpose), Mon-
driaan [62] (targeted at partitioning sparse rectangu-
lar matrices), MLPart [3] (targeted at circuit partition-
ing), Zoltan-AlgD [58] (coarsening inspired by algebraic

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited213

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

multigrid methods), UMPa [61] (directed hypergraph
model, multi-objective partitioning), and kPaToH [4]
(multiple constraints, fixed vertices). Distributed HGP
systems include Zoltan [20] and Parkway [60] (multi-
level), and SHP [28] (non-multilevel).

3.3 Edge Partitioning. While hypergraph parti-
tioning and the SPAC method are effective for comput-
ing an edge partitioning of small graphs, different tech-
niques are used for graphs that do not fit in the memory
of a single computer. In the Chaos graph processing
system [52], edges are partitioned randomly. Gonzalez
et al. [23] study the streaming case, where edges are
assigned to partitions in a single pass over the graph.
They investigate randomly assigning edges to partitions,
as well as a greedy strategy (which they call Oblivious).
Using their greedy method, the average number of repli-
cas is around 5 for their collection of power-law graphs.
Bourse et al. [9] later improved the replication factor by
performing a similar process, but weighting each vertex
by its degree. The degree-based hashing (DBH) method
of Xie et al. [66] and the high-degree replicated first
(HDRF) approach of Petroni et al. [48] are streaming
edge partitioning algorithms that exploit power-law de-
gree distributions by using information about the ver-
tex degrees in the partitioning process. Sheep [41] is
a distributed algorithm that partitions an elimination
tree of the input graph and then uses the tree partition
to derive an edge partition. The neighborhood expan-
sion (NE) algorithm of Zhang et al. [67] computes each
block of the edge partition separately and bases edge
assignment decisions on the neighborhood structure of
already assigned vertices. It has been shown to per-
form better than DBH [66], Oblivious [23], HDRF [48],
and Sheep [41]. ADWISE [42] is a streaming edge parti-
tioning algorithm that is positioned between single-edge
streaming algorithms and traditional graph partition-
ing approaches that consider the entire input graph,
because it operates on a sliding window of edges at a
time. With Ja-Be-Ja-VC, Rahimian et al. [50] present a
distributed parallel algorithm for edge-based partition-
ing of large graphs which is essentially a local search
algorithm that iteratively improves upon an initial ran-
dom assignment of edges to partitions. Mykhailenko
et al. [45] propose a distributed edge partitioning frame-
work based on simulated annealing, which is not yet able
to consistently perform better than Ja-Be-Ja-VC.

4 Engineering a Parallel Edge Partitioner
We now present our algorithm to quickly compute
high quality edge partitions in the distributed memory
setting. Roughly speaking, we engineer a distributed
version of the SPAC algorithm (dSPAC) and then

use a distributed memory parallel node-based graph
partitioning to partition the model. We start this
section by giving a description of the data structures
that we use and then explain the parallelization of the
SPAC algorithm.

4.1 Graph Data Structure. We start with details
of the parallel graph data structure and the implemen-
tation of the methods that handle communication. First
of all, each PE gets a subgraph, i.e. a contiguous range
of nodes a..b, of the whole graph as its input, such that
the subgraphs combined correspond to the input graph.
Each subgraph consists of the nodes with IDs from the
interval I := a..b and the edges incident to at least one
node in this interval, and includes vertices not in I that
are adjacent to vertices in I. These vertices are referred
to as ghost nodes (also referred to elsewhere in the lit-
erature as halo nodes). Note that every non-local node
can induce at most one ghost node. Note that each PE
may have edges it shares with another PE and the num-
ber of edges assigned to the PEs may therefore vary sig-
nificantly. The subgraphs are stored using a standard
adjacency array representation—we have one array to
store edges and one array for nodes, which stores head
pointers into the edge array. However, for the parallel
setting, the node array is divided into two parts: the
first part stores local nodes and the second part stores
ghost nodes. The method used to keep local node IDs
and ghost node IDs consistent is explained next.

Instead of using the node IDs provided by the input
graph (i.e., the global IDs), each PE p maps those IDs
to the range 0 .. np − 1, where np is the number of
distinct nodes of the subgraph on that PE. Note that
this number includes the number of ghost nodes stored
on PE p. The number of local nodes is denoted by `p.
Each global ID i ∈ a .. b is mapped to a local node ID
i − a. The IDs of the ghost nodes are mapped to the
remaining np−(b−a+1) local IDs in the order in which
they appeared during the construction of the graph data
structure. Transforming a local node ID to a global ID
or vice versa, can be done by adding or subtracting a.
We store the global ID of the ghost nodes in an extra
array and use a (local) hash table to transform global
IDs of ghost nodes to their corresponding local IDs.
Additionally, we store for each ghost node the ID of its
corresponding PE, using an array PE for O(1) lookups.
We call a node an interface node if it is adjacent to at
least one ghost node. The PE associated with the ghost
node is called an adjacent PE.

Our data structure stores undirected edges as two
directed edges, a forward and a backward edge. Similar
to node IDs, directed edges are mapped to the range
0 ..mp − 1 of local edge IDs, where mp denotes the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited214

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

number of local directed edges of the subgraph on PE p.
Edges that start from node v ∈ V (G) have consecutive
edge IDs ev .. ev+d(v)−1. A roughly equal distribution
of nodes to PEs is suboptimal for the SPAC algorithm
since the size of the split-and-connect graph mostly
depends on the number of edges. Hence, we improve
load imbalance by distributing the graph such that the
number of edges is roughly the same on each PE. We
do this by assigning consecutive nodes to a PE until the
number of edges incident to those nodes exceeds the
average number of edges per processor m/P .

4.2 Distributed Split-And-Connect Graph
Construction. We use G to denote the input graph
with np nodes and mp edges on PE p and construct
the split-and-connect graph G′ with n′p nodes and m′p
edges on the same PE. A pseudocode description of
our distributed SPAC algorithm (dSPAC) is given in
Algorithm 1.

First, recall that the split-and-connect graph con-
tains a set Sv of d(v) split nodes for each node v ∈ V (G).
For a node v, we create the nodes of the split-and-
connect graph on the PE that owns v. Thus, the number
of local split-and-connect graph nodes on PE p is equal
to the number of local edges of the input graph on PE
p, i.e. n′p = mp. Since the edges incident to the same
node have consecutive IDs, we can use edge IDs from
G as local node IDs in the split-and-connect graph G′.
To transform those local node IDs to global ones, we
need the overall number of edges on PEs that have a
smaller PE ID than p. This can be easily computed in
parallel by computing a prefix sum over the number of
local edges mp of each PE p. This takes O(log p) time
and linear work [34].

Afterwards, the SPAC transformation requires us
to connect split nodes by auxiliary edges and domi-
nant edges. Auxiliary edges with edge-weight one are
inserted between split nodes v ∈ Sv to connect them
to an induced cycle. Since Sv is fully contained on a
single PE, we can create the auxiliary edges indepen-
dently on each PE.

Recall that dominant edges are induced by undi-
rected edges {u, v} in G. These edges connect split
nodes, i.e. nodes from the sets Su and Sv, such that
each split node is incident to precisely one (undirected)
dominant edge. To construct dominant edges, global
coordination is required: say that u has neighbors on
two different PEs. Both neighbors do not know about
each other, since u is only available as ghost node
on those PEs, i.e. without information about its adja-
cency. Yet, both neighbors must choose a unique split
node from the set Su.

Algorithm 1: Our dSPAC algorithm on PE p

Input: Graph G with np nodes, mp edges on PE p
Input: Empty split-and-connect graph G′
n′p := mp // one split node per local edge
mglobal

p := prefixSum(mp) // i.e.,
∑p−1

p′=0mp

for i := 0; i < n′p; ++i do // create split nodes ...
G′.insertNode(mglobal

p + i)// ... with global IDs
// compute E ′p values for all interface nodes
foreach u ∈ V (G) do // i.e., u ∈ 0 .. lp − 1

p′ := −1
foreach e ∈ E(u) do // i.e., e ∈ eu .. eu+d(u)−1

v := edgeTarget(e)
if PE[v] 6= p′ then

p′ := PE[v]
Ep′(a+ u) := mglobal

p + e

// exchange E ′p values with adjacent PEs
foreach PE p′ 6= p do

send Ep′ values to PE p′

receive Ep values from PE p′

// insert auxiliary and dominant edges
foreach u ∈ V (G) do // i.e., u ∈ 0 .. lp − 1

foreach e ∈ E(u) do // i.e., e ∈ eu .. eu+d(u)−1
v := edgeTarget(e)
v′ := globalID(v)
u′ := e+mglobal

p // global ID of split node u′
// insert dominant edge with edge-weight ∞
G′.insertEdge(u′, Ep(v′),∞)
Ep(v′) := Ep(v′) + 1
if d(u) > 1 then // insert auxiliary edges

// compute target nodes for aux. edge
uprev := e− eu − 1 mod d(u)
unext := e− eu + 1 mod d(u)
// local → global ID for target node
v′ := eu +mglobal

p + unext
G′.insertEdge(u′, v′, 1)
if uprev 6= unext then

// local → global ID for target node
v′ := eu +mglobal

p + uprev
G′.insertEdge(u′, v′, 1)

Output: distributed split-and-connect graph G′

Our algorithm solves this problem as follows. First,
the adjacency lists of each node are ordered by their
global node ID. We assume that this is already the
case for the input network, otherwise one can simply
run a sorting algorithm on the neighborhood of each
vertex. Since nodes are assigned consecutively among
the processors, this implies that the adjacency list of
each interface node in the input graph is ordered by the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited215

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

B A

C

e2
e3

e4

v
e1

Figure 2: A node v ∈ V (G) on PE A with neighbors on
PEs A, B and C. Neighbors are traversed in the order
of the edges. PEs are ordered A < B < C.

target processor, i.e. the processor that owns the target
of the edge. Figure 2 gives an example.

For an interface node u ∈ V (G) on PE p, let Ep′(u)
be the global ID of the first edge {u, v} with v ∈ V (G)
on PE p′. In the split-and-connect graph G′ this ID
corresponds to the global ID of the first split node
in Su that will be adjacent to a split node of Sv

on PE p′. Due to the order of the vertices, these
values can be easily computed for all adjacent PEs
by scanning the neighborhood of that vertex. We
send the corresponding value to PE p′. Using this
information, we will be able to construct dominant edges
in the desired way. To avoid startup overheads, we
first compute all Ep′(vI) values for all adjacent interface
nodes vI and then send a single message from p to p′
that contains all values. Hence, the total message size
for PE p is O(npIP

p
A) where npI is the number of interface

nodes on PE p and P p
A is the number of PEs adjacent

to PE p.
We now create dominant edges by using the just

computed values as follows. First of all, each processor
traverses its nodes in the order of their IDs. Let
u ∈ V (G) be a node on PE p with its ordered neighbors
being v1, . . . , vd(v). For each edge {u, vi}, we create a
dominant edge from u’s i-th split node to Ep(vi), i.e. we
create the dominant edge {u′i, Ep(vi)}. Note that the
value E was initially sent from the PE that contains vi.
Afterwards, we increment Ep(vi) by one, so that the next
neighbor of vi that is on PE p connects a dominant edge
to vi’s next split node.

Lemma 4.1. Our parallel SPAC algorithm creates a
valid split-and-connect graph.

Proof. First note that, by the process above, we cre-
ate precisely one dominant edge for each split node.
Hence, it is sufficient to show that the resulting split-
and-connect graph is undirected. Consider a pair of
adjacent nodes u, v ∈ V (G) where u is owned by PE
p and v is owned by PE p′. We show that both ver-
tices pick the correct split node — hence, forming an
undirected (dominant) edge.

Roughly speaking, by the order in which the nodes
and their incident edges are traversed it is ensured that
the values E used for the creation of the edges point to
the correct split node. More precisely, let u ∈ V (G)
be a node of the input graph and its ordered neighbors
be v1, . . . , vd(u). We consider {u, vi} and argue that its
induced dominant edge is indeed undirected. For this
purpose, let u be owned by PE p and vi be owned by
PE p′. On PE p, we create a directed edge (u′i, v

′),
where u′i is u’s i-th split node and v′ is some split
node of v defined by the process above. We argue that
PE p′, creates an edge (v′, u′i) which makes the graph
undirected. It is sufficient to argue that both edges
include u′i, since we can use the same argument with
u and vi reversed to imply that the other endpoint is
correct too. Node u chooses u′i for the dominant edge
from Su to Svi , because it traverses its neighbors in
order and vi is its i-th neighbor. In the other direction,
vi chooses the split node of u based on Ep′(u). We claim
that it chooses u′i. Let vj be the first neighbor of u on
PE p′. Since the neighborhood is ordered as described
above, vj , . . . , vi are all on PE p′ and moreover, they are
traversed in the same order on PE p′ (thus construct
their dominant edges in the same order). Thus, vi
connects the dominant edge to Ep′(u) + (i − j), since
that is the total increment of Ep′(u) at the time when vi
constructs its dominant edges. But by the definition of
Ep′(u), we have that Ep′(u) is the global split node ID of
u′j . Thus, vi connects to u’s j+(i−j) = i-th split node.

Assuming that the adjacency list of the nodes are
already sorted by global ID, our algorithm performs a
linear amount of work. Thus split-and-connect graph
construction takes O(m/p+log p) time, if edges are dis-
tributed evenly.

After computing the split-and-connect graph, we
use the distributed parallel node-partitioning algo-
rithms ParHIP [44] and ParMETIS [29] to partition it.
To obtain an edge partition of the input graph, we trans-
fer the block numbers of those endpoints to the edge in
G that induced the dominant edge.

5 Experimental Evaluation
In this section we evaluate the performance of the pro-
posed algorithm. We start by presenting our methodol-
ogy and setup, the system used for the evaluation and
the benchmark set that we used. We then look at solu-
tion quality, running time, and scalability of (d)SPAC-
based GP as well as HGP, and compare our algorithm
to those systems.

5.1 Methodology and Setup. We implemented the
distributed split-and-connect graph construction algo-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited216

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

AB

C

0

12

3

4

01
2

3

4

5

6

7

8

9

1011

(a)

� A B C

A EB(0) = 1
EB(1) = 5

EC(0) = 3

B EA(2) = 5
EA(3) = 7

EC(3) = 8

C EA(4) = 9 EB(4) = 10

(b)

3
0

1

2

4
57

6
8
9

1011
C

AB

(c)

Figure 3: (a) The input graph, distributed across three PEs (indicated by the dashed delimiters). IDs of directed
edges are drawn next to their sources. (b) The Ep(·) messages each PE sends to other PEs: the messages in the
i-th row and j-th column are sent from PE i to PE j. (c) The constructed split-and-connect graph. Auxiliary
edges are drawn thin, dominant edges are drawn thick.

rithm described in Section 4 in the ParHIP graph parti-
tioning framework [44]. In the following, we use SPAC
when referring to sequential split-and-connect graph
construction and use dSPAC to denote our algorithm
in the distributed setting. The code is written in C++,
compiled with g++ 7.3.0, and uses OpenMPI 1.10 as
well as KaHIP v2.01.

In order to establish the state-of-the-art regarding
edge partitioning, we perform a large number of experi-
ments using several partitioning tools including sequen-
tial and distributed graph and hypergraph partitioners.

For graph partitioning, our experimental compar-
isons use the sequential systems KaHIP [53] and
METIS [31] as well as their respective distributed ver-
sions ParHIP [44] and ParMETIS [29]. For hyper-
graph partitioning, we use the sequential tools Pa-
ToH [13], Zoltan-AlgD [58], the k-way (hMetis-K) and
the recursive bisection variant (hMetis-R) of hMetis
2.0 (p1) [32, 33], and KaHyPar-MF [26]. To evaluate
distributed hypergraph partitioning approaches, we in-
clude Zoltan [20]. We also tried to use Parkway [59],
but were not able work with the current version pro-
vided online2, because the code has deadlocks and hangs
on many instances. Note that although Zoltan-AlgD
is implemented in the Zoltan framework, it does not
work in parallel mode. We chose these HGP systems
because of the following reasons: KaHyPar performs
better than hMetis and PaToH [26], but has not been
compared to Zoltan-AlgD yet. PaToH in turn produces
better quality than Zoltan’s native parallel hypergraph
partitioner (PHG) in serial mode [8, 20] and has been
shown to shown to compute better solutions than Mon-
driaan [7, 51] and MLPart [12]. Additionally, MLPart
is restricted to bisections [11, 16]. The performance of
SHP is comparable to the performance of Zoltan and

1The source code and detailed per-instance results of our
experiments are available from: https://algo2.iti.kit.edu/
edge_partitioning/.

2https://github.com/parkway-partitioner/parkway

Mondriaan [28]. UMPa does not improve on PaToH
when optimizing single objective functions that do not
benefit from the directed hypergraph model [19]. Fur-
thermore kPaToH [4] does not perform better than Pa-
ToH for standard hypergraph partitioning [1].

For edge partitioning, we include the distributed
Ja-Be-Ja-VC algorithm and the sequential NE algo-
rithm [67]. Since there is no implementation of the
Ja-Be-Ja-VC algorithm [50] publicly available, we in-
clude our own implementation. Judging from the re-
sults presented in [50], both implementations provide
comparable solution quality. However, since Ja-Be-Ja-
VC performed significantly worse than all other parti-
tioning approaches in our experiments, we only consider
it in a sequential setting. Furthermore we do not re-
port running times for Ja-Be-Ja-VC, because all other
systems are highly engineered, while our Ja-Be-Ja-VC
implementation is a prototype. For partitioning, we use
ε = 0.03 as the imbalance factor for all tools except
h-METIS-R, which treats the imbalance parameter dif-
ferently. We therefore use an adjusted imbalance value
as described in [55].

For each algorithm, we perform five repetitions with
different seeds and use the arithmetic mean to average
solution quality and running time of the different runs.
When averaging over different instances, we use the ge-
ometric mean in order to give every instance a compa-
rable influence on the final result.

We furthermore use performance plots [55] to com-
pare the best solutions of competing algorithms on a
per-instance basis. For each algorithm, these plots re-
late the smallest minimum vertex cut of all algorithms
to the corresponding vertex cut produced by each algo-
rithm on a per-instance basis. These ratios are then
sorted in decreasing order for each algorithm. The
plots show 1 − (best/algorithm) on the y-axis to high-
light the instances were each partitioner performs badly
and use a cube root scale on the y-axis to reduce right
skewness [17]. A point close to one indicates that the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited217

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://algo2.iti.kit.edu/edge_partitioning/
https://algo2.iti.kit.edu/edge_partitioning/
https://github.com/parkway-partitioner/parkway

partition produced by the corresponding algorithm was
considerably worse than the partition produced by the
best algorithm. A value of zero therefore indicates that
the corresponding algorithm produced the best solu-
tion. Thus an algorithm is considered to outperform
another algorithm if its corresponding ratio values are
below those of the other algorithm. Points above one
correspond to infeasible solutions that violate the bal-
ance constraint.

5.2 System and Instances. We use the ForHLR
II cluster (Forschungshochleistungsrechner) for our ex-
perimental evaluation. This cluster has 1 152 compute
nodes, each of which is equipped with 64 GB main mem-
ory and two Intel Xeon E5-2660 Deca-Core v3 proces-
sors (Haswell) clocked at 2.6 GHz. A single Deca-Core
processor has 25 MB L3-Cache, and every core has 256
KB L2-Cache and 64 KB L1-Cache. All cluster nodes
are connected by an InfiniBand 4X EDR interconnect.

We evaluate the algorithms on the graphs listed
in Table 1, which include standard partitioning bench-
mark instances (Walshaw + SPMV), larger real-world
instances, and randomly generated instances. Random
geometric rggX graphs have 2X nodes and were gen-
erated using code from [27]. Random hyperbolic rhgX
graphs are generated using [22] with power law exponent
2.2 and average degree 8. rhgX graphs were chosen since
their degree distributions follow a power law (and are
thus targeted by edge partitioning techniques). SPMV
graphs are bipartite locality graphs for sparse matrix
vector multiplication (SPMV), which were also used to
evaluate the sequential SPAC algorithm in [38]. Given
a n× n matrix M (in our case the adjacency matrix of
the corresponding graph), an SPMV graph correspond-
ing to an SPMV computation Mx = y consists of 2n
vertices representing the xi and yi vector entries and
contains an edge (xi, yj) if xi contributes to the compu-
tation of yj , i.e. ifMij 6= 0. To evaluate the hypergraph
approaches, we transform the graphs into hypergraphs
as described in Section 2.3. A hypergraph contains one
hypernode for each undirected edge in the graph and a
hyperedge for each graph node that contains the hyper-
nodes corresponding to its incident edges.

5.3 Solution Quality of SPAC+X and HGP.
We start by exploring the solution quality provided by
the different sequential algorithmic approaches to the
edge partitioning problem, i.e., we consider the results
of Ja-Be-Ja-VC and the NE algorithm, as well as the
vertex cut that is obtained by applying the partition
of the SPAC or hypergraph model to the input graph.
We restrict the benchmark set to the Walshaw graphs,

Graph n m Type Ref.

Walshaw Graph Archive
add20 ≈ 2.3K ≈ 7.4K M [63]
data ≈ 2.8K ≈ 15K M [63]
3elt ≈ 4.7K ≈ 13.7K M [63]
uk ≈ 4.8K ≈ 6.8K M [63]
add32 ≈ 4.9K ≈ 9.4K M [63]
bcsstk33 ≈ 8.7K ≈ 291K M [63]
whitaker3 ≈ 9.8K ≈ 289K M [63]
crack ≈ 10K ≈ 30K M [63]
wing_nodal ≈ 10K ≈ 75K M [63]
fe_4elt2 ≈ 11K ≈ 32K M [63]
vibrobox ≈ 12K ≈ 165K M [63]
bcsstk29 ≈ 13K ≈ 302K M [63]
4elt ≈ 15K ≈ 45K M [63]
fe_sphere ≈ 16K ≈ 49K M [63]
cti ≈ 16K ≈ 48K M [63]
memplus ≈ 17K ≈ 54K M [63]
cs4 ≈ 22K ≈ 43K M [63]
bcsstk30 ≈ 28K ≈ 1M M [63]
bcsstk31 ≈ 35K ≈ 572K M [63]
fe_pwt ≈ 36K ≈ 144K M [63]
bcsstk32 ≈ 44K ≈ 985K M [63]
fe_body ≈ 45K ≈ 163K M [63]
t60k ≈ 60K ≈ 89K M [63]
wing ≈ 62K ≈ 121K M [63]
brack2 ≈ 62K ≈ 366K M [63]
finan512 ≈ 74K ≈ 261K M [63]
fe_tooth ≈ 78K ≈ 452K M [63]
fe_rotor ≈ 99K ≈ 662K M [63]
598a ≈ 110K ≈ 741K M [63]
fe_ocean ≈ 143K ≈ 409K M [63]
144 ≈ 144K ≈ 1M M [63]
wave ≈ 156K ≈ 1M M [63]
m14b ≈ 214K ≈ 1.6M M [63]
auto ≈ 448K ≈ 3.3M M [63]
rhgX 210 – 218 ≈ 3.6K – 976K S [22]

SPMV Graphs
cant_spmv ≈ 125K ≈ 2M SP [65]
scircuit_spmv ≈ 350K ≈ 100K SP [18]
mc2depi_spmv ≈ 1M ≈ 2.1M SP [65]
in-2004_spmv ≈ 2.5M ≈ 17M SP [35]
circuit5M_spmv ≈ 11M ≈ 60M SP [18]

Large Graphs
amazon ≈ 407K ≈ 2.3M S [37]
eu-2005 ≈ 862K ≈ 16.1M S [5]
youtube ≈ 1.1M ≈ 2.9M S [37]
in-2004 ≈ 1.4M ≈ 27M S [5]
packing ≈ 2.1M ≈ 17.4M M [5]
channel ≈ 4.8M ≈ 42.6M M [5]
road_central ≈ 14M ≈ 34M R [5]
hugebubble-10 ≈ 18.3M ≈ 27.5M M [5]
uk-2002 ≈ 18.5M ≈ 262M S [35]
nlpkkt240 ≈ 27.9M ≈ 373M M [18]
europe_osm ≈ 51M ≈ 108M R [5]
rhgX 220 – 226 ≈ 4M – 280M S [22]

Huge Graphs
rggX 225 – 228 ≈ 550M – 5G M [27]

Table 1: Our benchmark set. Type ‘S’ stands for social
or web graphs, ‘M’ is used for mesh type networks, ‘R’
is used for road networks, SP(MV) is used for graphs
for sparse matrix-vector multiplication.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited218

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

SPMV graphs with up to 1M nodes3 and rhg10 – rhg18,
since the running times for hypergraph partitioners were
too high for larger instances. We run all partitioners on
one PE, i.e., one core of a single node. Each instance is
partitioned into k blocks for k ∈ {2, 4, 8, 16, 32, 64, 128}.

The results are presented in Figure 4 and Figure 5.
Both Ja-Be-Ja-VC and NE can not compete with hyper-
graph partitioning and SPAC-based graph partitioning
approaches in terms of solution quality. The inferior
performance of these flat (i.e., non-multilevel) edge par-
titioning algorithms echoes the intuition that by provid-
ing a more global view of the partitioning problem on
the coarser levels, multilevel schemes enable local search
algorithms, which are known to easily get stuck in local
optima [32], to explore local solution spaces very effec-
tively. Furthermore note that NE computes imbalanced
solutions in 42 cases. Most of these correspond to par-
titions of rhgX graphs with large values of k. Since the
algorithm does not explicitly check the current size of
a block Ei (i.e., number of edges already assigned to
Ei) while allocating incident edges of core vertices to
block Ei, it is likely to produce imbalanced solutions
for graphs having a power-law degree distribution.

In the experiments of Li et al. [38], SPAC+METIS
was significantly faster than the hypergraph partitioners
hMetis and PaToH, while achieving comparable solution
quality. However, this comparison was restricted to five
graphs. In our experiments using a larger benchmark
set, all hypergraph partitioners except Zoltan perform
better than SPAC+METIS for most instances, with
PaToH being roughly a factor of 1.6 slower on average.
This result could be explained by the choice of k—
the number of blocks used for partitioning. While we
use standard values for (node-based) graph partitioning
benchmarks [63], Li et al. [38] choose k such that
each block contains approximately 10 240 edges. Thus
some instances are partitioned into up to 1 692 and
5 952 blocks, which might be too large for current
partitioning tools.

Looking at the solution quality of different
SPAC+X approaches, we see that KaHIP performs bet-
ter than METIS when using its strong configuration
at the cost of an increased running time. However,
partitioning the hypergraph model with KaHyPar-MF,
which dominates all other hypergraph partitioners in
terms of solution quality, overall results in the low-
est vertex cuts, while also being slightly faster than
SPAC+KaHIP on average. In a sequential edge par-
titioning setting with a reasonable number k of blocks,
we therefore conclude that both the existing flat edge
partitioning and the SPAC-based graph partitioning ap-

3scircuit_spmv, cant_spmv and mc2depi_spmv

infeasible solutions

0.00

0.01

0.05

0.10

0.20

0.40

0.60

0.80

1.00

1 50 100 150 200 250 300
Instances

1-
(B

es
t/
A
lg
or
it
h
m
)

Algorithm
JaBeJa-VC
NE
METIS

Zoltan
Zoltan-AlgD
PaToH

KaHIP-Strong
hMetis-R
hMetis-K

KaHyPar-MF

Figure 4: Comparing solution quality of SPAC+X, sev-
eral HGP tools, JaBeJa-VC, and NE on small graphs.

1

50

250

1000

2500

5000

10000

15000

R
u
n
n
in
g
T
im

e
[s
]

Algorithm
hMetis-R
hMetis-K

PaToH
Zoltan

Zoltan-AlgD
KaHyPar-MF

KaHIP-Strong
METIS

NE

Figure 5: Running time comparison for SPAC+X,
several HGP systems, and NE on small graphs. Note
the cube root scale on the y-axis.

proaches are outperformed by hypergraph partitioning
regarding solution quality (using KaHyPar-MF).

5.4 Solution Quality of dSPAC+X and dHGP.
We now investigate state-of-the-art methods for com-
puting edge partitions in the distributed memory set-
ting. Here, we use the large graphs from Table 1 in-
cluding rhg20 – rhg26, as well as the two large SPMV
graphs in-2004_spmv and circuit5M_smpv. Since Ja-
Be-Ja-VC [50] already produced low quality solutions
on small graphs, we restrict the following compar-
ison to distributed memory hypergraph partitioning
(dHGP) with Zoltan and distributed graph partitioning
using our distributed split-and-connect graph construc-
tion (dSPAC) in combination with both ParMETIS
and ParHIP. All instances are again partitioned into

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited219

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

infeasible solutions

0.00

0.01

0.05

0.10

0.20

0.40

0.60

0.80

1.00

1 25 50 75 100 125
Instances

1-
(B

es
t/
A
lg
or
it
h
m
)

Algorithm ParHIP-Eco ParHIP-Fast ParMETIS Zoltan

Figure 6: Solution quality for distributed SPAC+X and
HGP approaches on large graphs. Instances4 for which
Zoltan ran out of memory are set to 1.

k ∈ {2, 4, 8, 16, 32, 64, 128} blocks. This time, we
run all algorithms on 32 cluster nodes (i.e., with 640
PEs in total). As can be seen in Figure 6 and
Figure 7, the results differ from the sequential set-
ting. The dSPAC-based graph partitioning approach
outperforms the hypergraph partitioning approach us-
ing Zoltan in both solution quality and running time.
While dSPAC+ParMETIS is the fastest configuration,
dSPAC+ParHIP-Eco provides the best solution quality.
ParMETIS furthermore performs better than ParHIP-
Fast by computing solutions of comparable quality in
less time. In a distributed setting, we thus conclude
that combining the SPAC approach with a high quality
distributed graph partitioner is currently the best ap-
proach for computing edge partitions of large graphs, in
particular if sequential partitioning is not an option.

5.5 Scalability and Solution Quality of
dSPAC+X. Finally, we look at the scaling be-
havior of distributed SPAC graph construction and
partitioning using ParMETIS and ParHIP-Fast. To
simplify the evaluation, we restrict the experiments
in this section to partitioning the eight largest graphs
(including rgg25 - rgg28) into k = 2 blocks on an
increasing number of PEs. We start with a single PE
on a single node and then go up to all 20 PEs of a
single node. From there on we double the number of
nodes in each step, until we arrive at 128 nodes with a
total of 2 560 PEs. The results are shown in Figure 9.
Results for the remaining large graphs can be found
in Figure 10 in Appendix A. The running times of
dSPAC+X are dominated by the running times of the
distributed graph partitioners (see Figure 8). While
dSPAC+ParMETIS is faster than dSPAC+ParHIP-

1

25

100

250

500

750

R
u
n
n
in
g
T
im

e
[s
]

Algorithm ParHIP-Fast ParHIP-Eco ParMETIS Zoltan

Figure 7: Running times of distributed approaches on
large social graphs, meshes, road networks, and SPMV
graphs. Instances5 for which Zoltan ran out of memory
are excluded. Note the cube root scale on the y-axis.

1

3

7

1 10 50 100 200 350 600
Partitioning Time [s]

SP
A

C
C

on
st

ru
ct

io
n

T
im

e
[s

]

Algorithm ParHIP-Eco ParHIP-Fast ParMETIS

Figure 8: Comparing the running times of distributed
split-and-connect graph construction and partitioning.

Fast, the latter scales slightly better than the former.
Regarding solution quality, For large numbers of
PEs, ParHIP-Fast computes better solutions than
ParMETIS (see detailed per-instance results). By
combining our distributed split-and-connect graph
construction algorithm with high quality distributed
graph partitioning algorithm, we are able to compute
edge partitions of huge graphs that were previously not
solvable on a single PE, or even a small number of PEs.

6 Conclusion and Future Work
We presented an efficient distributed memory parallel
edge partitioning algorithm that computes solutions of
very high quality. By efficiently parallelizing the split-
and-connect graph construction, our dSPAC+X algo-

5nlpkkt240 with k ∈ {2, 4, 8, 16, 32, 64, 128}.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited220

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0.1

1

10

80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
nlpkkt240 rgg25 rgg26 rgg27

rgg28 rhg25 rhg26 uk-2002

(a) Running time for distributed split-and-connect graph
construction.

10

100

1000

80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
nlpkkt240 rgg25 rgg26 rgg27

rgg28 rhg25 rhg26 uk-2002

(b) Running time for dSPAC+ParHIP-Fast.

1

10

100

80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
nlpkkt240 rgg25 rgg26 rgg27

rgg28 rhg25 rhg26 uk-2002

(c) Running time for dSPAC+ParMETIS.

Figure 9: Comparing the running times of dis-
tributed split-and-connect graph construction (a),
dSPAC+ParHIP-Fast (b), and dSPAC+ParMETIS (c)
for the eight largest graphs of our benchmark set on an
increasing number of PEs.

rithm scales to graphs with billions of edges and runs
efficiently on up to 2 560 PEs. Our extensive experi-
ments furthermore show that in a sequential setting hy-
pergraph partitioners still outperform node-based graph
partitioning methods based on the SPAC approach re-
garding solution quality while maintaining similar run-
ning time. Hence, further research into hypergraph par-
titioning must be done in order to narrow the gap be-
tween dSPAC+X and dHGP. In the future, we would
like to run a working implementation of Parkway in or-
der to get a complete overview regarding the state-of-
the-art in distributed HGP. Furthermore it would be in-

teresting to combine ParHIP with the the shared mem-
ory parallel MT-KaHIP [2] partitioner in order to get a
partitioner that uses shared memory parallelism within
a cluster node, while cluster nodes themselves still work
in a distributed memory fashion.

Acknowledgments. This work was performed on the
computational resource ForHLR II funded by the
Ministry of Science, Research and the Arts Baden-
Württemberg.

References
[1] Y. Akhremtsev, T. Heuer, P. Sanders, and

S. Schlag. Engineering a direct k -way hypergraph
partitioning algorithm. In 19th Workshop on Algo-
rithm Engineering and Experiments, (ALENEX),
pages 28–42, 2017.

[2] Y. Akhremtsev, P. Sanders, and C. Schulz. High-
quality shared-memory graph partitioning. In
M. Aldinucci, L. Padovani, and M. Torquati, edi-
tors, Euro-Par 2018: Parallel Processing, volume
11014 of LNCS, pages 659–671. Springer, 2018.
doi:10.1007/978-3-319-96983-1_47.

[3] C. J. Alpert, J.-H. Huang, and A. B. Kahng.
Multilevel Circuit Partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems, 17(8):655–667, 1998.

[4] C. Aykanat, B. B. Cambazoglu, and B. Uçar.
Multi-level Direct K-way Hypergraph Partition-
ing with Multiple Constraints and Fixed Vertices.
Journal of Parallel and Distributed Computing, 68
(5):609–625, 2008. ISSN 0743-7315.

[5] D. Bader, A. Kappes, H. Meyerhenke, P. Sanders,
C. Schulz, and D. Wagner. Benchmarking for
Graph Clustering and Partitioning. In Ency-
clopedia of Social Network Analysis and Mining.
Springer, 2014.

[6] C. Bichot and P. Siarry, editors. Graph Partition-
ing. Wiley, 2011.

[7] R. H. Bisseling, B. O. Fagginger Auer, A. N. Yzel-
man, T. van Leeuwen, and Ü. V. Catalyürek. Two-
dimensional Approaches to Sparse Matrix Parti-
tioning. In Combinatorial Scientific Computing,
pages 321 – 349. CRC Press, New York, 2012.

[8] E. Boman, K. Devine, V. Leung, S. Rajamanickam,
L. A. Riesen, and Ü. V. Catalyürek. Zoltan User’s
Guide. http://www.cs.sandia.gov/Zoltan/ug_
html/ug_alg_patoh.html, 2012.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited221

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://dx.doi.org/10.1007/978-3-319-96983-1_47
http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_patoh.html
http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_patoh.html

[9] F. Bourse, M. Lelarge, and M. Vojnovic. Bal-
anced Graph Edge Partition. In Proc. 20th ACM
SIGKDD International Conf. on Knowledge Dis-
covery and Data Mining, KDD ’14, pages 1456–
1465. ACM, 2014.

[10] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent Advances in Graph Partitioning.
In Algorithm Engineering - Selected Results and
Surveys, pages 117–158. Springer, 2016.

[11] A. Caldwell, A. Kahng, and I. Markov. Improved
Algorithms for Hypergraph Bipartitioning. In
Design Automation Conference, 2000. Proceedings
of the ASP-DAC 2000., pages 661–666, June 2000.

[12] Ü. V. Catalyürek. ISPD98 Benchmark. http:
//bmi.osu.edu/umit/PaToH/ispd98.html.

[13] Ü. V. Catalyürek and C. Aykanat. Hypergraph-
Partitioning-Based Decomposition for Parallel
Sparse-Matrix Vector Multiplication. IEEE Trans-
actions on Parallel and Distributed Systems, 10(7):
673–693, Jul 1999. ISSN 1045-9219.

[14] Ü. V. Catalyürek and C. Aykanat. PaToH: Parti-
tioning Tool for Hypergraphs. http://bmi.osu.
edu/umit/PaToH/manual.pdf, 1999.

[15] C. Chevalier and F. Pellegrini. PT-Scotch. Parallel
Computing, 34(6-8):318–331, 2008.

[16] J. Cong, M. Romesis, and M. Xie. Optimality,
scalability and stability study of partitioning and
placement algorithms. In International Symposium
on Physical Design, ISPD, pages 88–94. ACM,
2003.

[17] N. J. Cox. Stata tip 96: Cube roots.
Stata Journal, 11(1):149–154(6), 2011. URL
http://www.stata-journal.com/article.
html?article=st0223.

[18] T. Davis. The University of Florida Sparse
Matrix Collection, http://www.cise.ufl.edu/
research/sparse/matrices, 2008.

[19] M. Deveci, K. Kaya, B. Uçar, and Ü. V.
Çatalyürek. Hypergraph partitioning for multiple
communication cost metrics: Model and methods.
Journal of Parallel and Distributed Computing, 77:
69–83, 2015.

[20] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H.
Bisseling, and Ü. V. Catalyürek. Parallel Hyper-
graph Partitioning for Scientific Computing. In

20th International Conference on Parallel and Dis-
tributed Processing (IPDPS), pages 124–124. IEEE,
2006.

[21] W. Donath. Logic partitioning. Physical Design
Automation of VLSI Systems, pages 65–86, 1988.

[22] D. Funke, S. Lamm, P. Sanders, C. Schulz,
D. Strash, and M. von Looz. Communication-free
massively distributed graph generation. In IEEE
International Parallel and Distributed Processing
Symposium, IPDPS, 2018.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs. In Pre-
sented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pages 17–30. USENIX, 2012.

[24] B. Hendrickson and T. G. Kolda. Graph Parti-
tioning Models for Parallel Computing. Parallel
Computing, 26(12):1519–1534, 2000.

[25] T. Heuer and S. Schlag. Improving Coarsening
Schemes for Hypergraph Partitioning by Exploiting
Community Structure. In 16th International Sym-
posium on Experimental Algorithms, (SEA), pages
21:1–21:19, 2017.

[26] T. Heuer, P. Sanders, and S. Schlag. Network
Flow-Based Refinement for Multilevel Hypergraph
Partitioning. In 17th International Symposium on
Experimental Algorithms (SEA), volume 103, pages
1:1–1:19, 2018.

[27] M. Holtgrewe, P. Sanders, and C. Schulz. Engi-
neering a Scalable High Quality Graph Partitioner.
Proceedings of the 24th IEEE International Paral-
lal and Distributed Processing Symposium, pages
1–12, 2010.

[28] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev,
A. Shalita, A. Presta, and Y. Akhremtsev. So-
cial Hash Partitioner: A scalable distributed hy-
pergraph partitioner. Proceedings VLDB Endow.,
10(11):1418–1429, August 2017.

[29] G. Karypis and V. Kumar. Parallel Multilevel
k-way Partitioning Scheme for Irregular Graphs.
In Proceedings of the ACM/IEEE Conference on
Supercomputing’96, 1996.

[30] G. Karypis and V. Kumar. hMETIS: A hypergraph
partitioning package, version 1.5.3. user manual,
23, 1998.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited222

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://bmi.osu.edu/umit/PaToH/ispd98.html
http://bmi.osu.edu/umit/PaToH/ispd98.html
http://bmi.osu.edu/umit/PaToH/manual.pdf
http://bmi.osu.edu/umit/PaToH/manual.pdf
http://www.stata-journal.com/article.html?article=st0223
http://www.stata-journal.com/article.html?article=st0223
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

[31] G. Karypis and V. Kumar. A Fast and High
Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs. SIAM Journal on Scientific Comput-
ing, 20(1):359–392, 1998.

[32] G. Karypis and V. Kumar. Multilevel K-way
Hypergraph Partitioning. In Proceedings of the
36th ACM/IEEE Design Automation Conference,
pages 343–348. ACM, 1999.

[33] G. Karypis, R. Aggarwal, V. Kumar, and
S. Shekhar. Multilevel Hypergraph Partitioning:
Applications in VLSI Domain. IEEE Transactions
on Very Large Scale Integration VLSI Systems, 7
(1):69–79, 1999.

[34] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to parallel computing: design and
analysis of algorithms, volume 400. Ben-
jamin/Cummings Redwood City, 1994.

[35] Laboratory of Web Algorithms, University of
Milano. Datasets, http://law.dsi.unimi.it/
datasets.php.

[36] T. Lengauer. Combinatorial Algorithms for Inte-
grated Circuit Layout. John Wiley & Sons, Inc.,
1990.

[37] J. Leskovec. Stanford Network Analysis Pack-
age (SNAP). http://snap.stanford.edu/index.
html.

[38] L. Li, R. Geda, A. B. Hayes, Y. Chen, P. Chaud-
hari, E. Z. Zhang, and M. Szegedy. A simple yet
effective balanced edge partition model for parallel
computing. SIGMETRICS Perform. Eval. Rev., 45
(1):6–6, June 2017.

[39] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab:
A new parallel framework for machine learning.
In P. Grünwald and P. Spirtes, editors, Proc.
26th Conf. on Uncertainty in Artificial Intelligence
(UAI), pages 340–349. AUAI Press, 2010.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:
A System for Large-scale Graph Processing. In
Proc. 2010 ACM SIGMOD International Conf. on
Management of Data, SIGMOD ’10, pages 135–
146. ACM, 2010.

[41] D. W. Margo and M. I. Seltzer. A scalable
distributed graph partitioner. PVLDB, 8(12):1478–
1489, 2015.

[42] C. Mayer, R. Mayer, M. A. Tariq, H. Heiko Gep-
pert, L. Laich, L. Rieger, and K. Rothermel. AD-
WISE: adaptive window-based streaming edge par-
titioning for high-speed graph processing. In 38th
International Conference on Distributed Comput-
ing Systems (ICDCS) 2018, pages 685–695, 2018.

[43] R. R. McCune, T. Weninger, and G. Madey. Think-
ing Like a Vertex: A Survey of Vertex-Centric
Frameworks for Large-Scale Distributed Graph
Processing. ACM Comput. Surv., 48(2):25:1–25:39,
Oct. 2015.

[44] H. Meyerhenke, P. Sanders, and C. Schulz. Parallel
graph partitioning for complex networks. In 2015
IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 1055–1064, May 2015.

[45] H. Mykhailenko, G. Neglia, and F. Huet. Simu-
lated annealing for edge partitioning. In Conference
on Computer Communications Workshops (INFO-
COM), pages 54–59, 2017.

[46] D. A. Papa and I. L. Markov. Hypergraph Parti-
tioning and Clustering. In T. F. Gonzalez, editor,
Handbook of Approximation Algorithms and Meta-
heuristics. Chapman and Hall/CRC, 2007.

[47] M. M. A. Patwary, R. H. Bisseling, and F. Manne.
Parallel greedy graph matching using an edge par-
titioning approach. In Fourth International Work-
shop on High-level Parallel Programming and Ap-
plications, HLPP ’10, pages 45–54, 2010.

[48] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali,
and G. Iacoboni. HDRF: stream-based partitioning
for power-law graphs. In 24th International Confer-
ence on Information and Knowledge Management,
(CIKM), pages 243–252, 2015.

[49] U. N. Raghavan, R. Albert, and S. Kumara.
Near Linear Time Algorithm to Detect Commu-
nity Structures in Large-Scale Networks. Physical
Review E, 76(3), 2007.

[50] F. Rahimian, A. H. Payberah, S. Girdzijauskas,
and S. Haridi. Distributed vertex-cut partition-
ing. In K. Magoutis and P. Pietzuch, editors, Dis-
tributed Applications and Interoperable Systems,
pages 186–200, Berlin, Heidelberg, 2014.

[51] S. Riyavong. Experiments on Sparse Matrix Par-
titioning. Technical Report CERFACS Working
Note WN/PA/03/32, CERFACS, 2003.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited223

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://law.dsi.unimi.it/datasets.php
http://law.dsi.unimi.it/datasets.php
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html

[52] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: scale-out graph process-
ing from secondary storage. In 25th Symposium on
Operating Systems Principles (SOSP), pages 410–
424, 2015.

[53] P. Sanders and C. Schulz. Engineering Multilevel
Graph Partitioning Algorithms. In Proceedings
of the 19th European Symposium on Algorithms,
volume 6942 of LNCS, pages 469–480. Springer,
2011.

[54] P. Sanders and C. Schulz. Think Locally, Act
Globally: Highly Balanced Graph Partitioning. In
Proceedings of the 12th International Symposium
on Experimental Algorithms (SEA’12), LNCS.
Springer, 2013.

[55] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke,
P. Sanders, and C. Schulz. k-way Hypergraph Par-
titioning via n-Level Recursive Bisection. In 18th
Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pages 53–67, 2016.

[56] K. Schloegel, G. Karypis, and V. Kumar. Graph
Partitioning for High Performance Scientific Simu-
lations. In The Sourcebook of Parallel Computing,
pages 491–541, 2003.

[57] C. Schulz and D. Strash. Graph partitioning:
Formulations and applications to big data. In
S. Sakr and A. Zomaya, editors, Encyclopedia of
Big Data Technologies, pages 1–7. Springer, 2018.

[58] R. Shaydulin and I. Safro. Aggregative Coars-
ening for Multilevel Hypergraph Partitioning. In
17th International Symposium on Experimental Al-
gorithms (SEA), volume 103, pages 2:1–2:15, 2018.

[59] A. Trifunovic and W. J. Knottenbelt. Parkway
2.0: A Parallel Multilevel Hypergraph Partitioning
Tool. In Computer and Information Sciences -
ISCIS 2004, volume 3280, pages 789–800. Springer,
2004.

[60] A. Trifunovic and W. J. Knottenbelt. Parallel
Multilevel Algorithms for Hypergraph Partition-
ing. Journal of Parallel and Distributed Computing,
68(5):563 – 581, 2008.

[61] Ü. V. Çatalyürek and M. Deveci and K. Kaya
and B. Uçar. UMPa: A multi-objective, multi-
level partitioner for communication minimization.
In D. A. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner, editors, Graph Partitioning and Graph
Clustering - 10th DIMACS Implementation Chal-
lenge Workshop, Georgia Institute of Technology,

Atlanta, GA, USA, February 13-14, 2012. Proceed-
ings, volume 588 of Contemporary Mathematics,
pages 53–66. AMS, 2012.

[62] B. Vastenhouw and R. H. Bisseling. A Two-
Dimensional Data Distribution Method for Paral-
lel Sparse Matrix-Vector Multiplication. SIAM Re-
view, 47(1):67–95, 2005.

[63] C. Walshaw and M. Cross. Mesh Partitioning: A
Multilevel Balancing and Refinement Algorithm.
SIAM Journal on Scientific Computing, 22(1):63–
80, 2000.

[64] C. Walshaw and M. Cross. JOSTLE: Parallel Mul-
tilevel Graph-Partitioning Software – An Overview.
In Mesh Partitioning Techniques and Domain De-
composition Techniques, pages 27–58. Civil-Comp
Ltd., 2007.

[65] S. Williams, L. Oliker, R. Vuduc, J. Shalf,
K. Yelick, and J. Demmel. Optimization of sparse
matrix-vector multiplication on emerging multicore
platforms. Parallel Computing, 35(3):178 – 194,
2009. Revolutionary Technologies for Acceleration
of Emerging Petascale Applications.

[66] C. Xie, L. Yan, W. Li, and Z. Zhang. Distributed
power-law graph computing: Theoretical and em-
pirical analysis. In Neural Information Processing
Systems (NIPS), pages 1673–1681, 2014.

[67] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and L. Z.
Graph edge partitioning via neighborhood heuris-
tic. In 23rd International Conference on Knowledge
Discovery and Data Mining (KDD), pages 605–614,
2017.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited224

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

A Additional Experimental Results for dSPAC+X

1

10

100

1000

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
rhg20 rhg21 rhg22 rhg23

rhg24 rhg25 rhg26

(a) Running time for dSPAC+ParHIP-Fast.

1

10

100

1000

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph

amazon channel circuit5M_spmv eu-2005

europe_osm hugebubble-10 in-2004 in-2004_spmv

packing road_central youtube

(b) Running time for dSPAC+ParHIP-Fast.

1

10

100

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
rhg20 rhg21 rhg22 rhg23

rhg24 rhg25 rhg26

(c) Running time for dSPAC+ParMETIS.

0.1

1

10

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]
Graph

amazon channel circuit5M_spmv eu-2005

europe_osm hugebubble-10 in-2004 in-2004_spmv

packing road_central youtube

(d) Running time for dSPAC+ParMETIS.

0.1

1

10

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph
rhg20 rhg21 rhg22 rhg23

rhg24 rhg25 rhg26

(e) Running time for distributed split-and-connect graph
construction.

0.1

1

10

1 20 40 80 160 320 640 1280 2560
Number of PEs

T
im

e
[s

]

Graph

amazon channel circuit5M_spmv eu-2005

europe_osm hugebubble-10 in-2004 in-2004_spmv

packing road_central youtube

(f) Running time for distributed split-and-connect graph
construction.

Figure 10: Running times for dSPAC+ParHIP-Fast (a, b), dSPAC+ParMETIS (c, d) and the time it takes to
compute the distributed split-and-connect graph (e, f) on increasing numbers of PE.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited225

D
ow

nl
oa

de
d

10
/0

8/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Our Results.

	Preliminaries
	Basic Concepts.
	Hypergraphs.
	The Split-and-Connect (SPAC) Method.

	Related Work
	Node Partitioning.
	Hypergraph Partitioning.
	Edge Partitioning.

	Engineering a Parallel Edge Partitioner
	Graph Data Structure.
	Distributed Split-And-Connect Graph Construction.

	Experimental Evaluation
	Methodology and Setup.
	System and Instances.
	Solution Quality of SPAC+X and HGP.
	Solution Quality of dSPAC+X and dHGP.
	Scalability and Solution Quality of dSPAC+X.

	Conclusion and Future Work
	Additional Experimental Results for dSPAC+X

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryList_V1
 qi2base

