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Abstract
We present the winning solver of the PACE 2019 Im-
plementation Challenge, Vertex Cover Track. The min-
imum vertex cover problem is one of a handful of prob-
lems for which kernelization—the repeated reducing of
the input size via data reduction rules—is known to be
highly effective in practice. Our algorithm uses a port-
folio of techniques, including an aggressive kernelization
strategy, local search, branch-and-reduce, and a state-
of-the-art branch-and-bound solver. Of particular inter-
est is that several of our techniques were not from the
literature on the vertex over problem: they were origi-
nally published to solve the (complementary) maximum
independent set and maximum clique problems.

Aside from illustrating our solver’s performance in
the PACE 2019 Implementation Challenge, our exper-
iments provide several key insights not yet seen be-
fore in the literature. First, kernelization can boost
the performance of branch-and-bound clique solvers
enough to outperform branch-and-reduce solvers. Sec-
ond, local search can significantly boost the perfor-
mance of branch-and-reduce solvers. And finally, some-
what surprisingly, kernelization can sometimes make
branch-and-bound algorithms perform worse than run-
ning branch-and-bound alone.

1 Introduction
A vertex cover of a graph G = (V,E) is a set of vertices
S ⊆ V of G such that every edge of G has at least one
of member of S as an endpoint (i.e., ∀(u, v) ∈ E [u ∈
S or v ∈ S]). The minimum vertex cover problem—that
of computing a vertex cover of minimum cardinality—is
a fundamental NP-hard problem, and has applications
spanning many areas. These include computational
biology [12], classification [20], mesh rendering [35], and
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many more through its complementary problems [19,
18, 21, 45].

Complementary to vertex covers are independent
sets and cliques. An independent set is a set of vertices
I ⊆ V , all pairs of which are not adjacent, and an
clique is a set of vertices K ⊆ V all pairs of which
are adjacent. A maximum independent set (maximum
clique) is an independent set (clique) of maximum
cardinality. The goal of the maximum independent set
problem (maximum clique problem) is to compute a
maximum independent set (maximum clique).

Many techniques have been proposed for solving
these problems, and papers in the literature usually fo-
cus on one of these problems in particular. However,
all of these problems are equivalent: a minimum vertex
cover C in G is the complement of a maximum indepen-
dent set V \ C in G, which is a maximum clique V \ C
in G. Thus, an algorithm that solves one of these prob-
lems can be used to solve the others. To win the PACE
2019 Implementation Challenge, we deployed a portfo-
lio of solvers, using techniques from the literature on all
three problems. These include data reduction rules and
branch-and-reduce for the minimum vertex cover prob-
lem [2], iterated local search for the maximum indepen-
dent set problem [3], and a state-of-the-art branch-and-
bound maximum clique solver [28].

Our Results. In this paper, we describe our tech-
niques and solver in detail and analyze the results of
our experiments on the data sets provided by the chal-
lenge. Not only do our experiments illustrate the power
of the techniques spanning the literature, they also pro-
vide several new insights not yet seen before. In partic-
ular, kernelization followed by branch-and-bound can
outperform branch-and-reduce solvers; seeding branch-
and-reduce by an initial solution from local search can
significantly boost its performance; and, somewhat sur-
prisingly, kernelization is sometimes counterproductive:
branch-and-bound algorithms can perform significantly
worse on the kernel than on the original input graph.

Organization. We first briefly describe related
work in Section 3. Then in Section 4 we outline each
of the techniques that we use, and in Section 5 finally
describe how we combine all of the techniques in our
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final solver that scored the most points in the PACE
2019 Implementation Challenge. Lastly, in Section 6 we
perform an experimental evaluation to show the impact
of the components used on the final number of instances
solved during the challenge.

2 Preliminaries
We work with an undirected graph G = (V,E) where
V is a set of n vertices and E ⊂ {{u, v} | u, v ∈ V }
is a set of m edges. The open neighborhood of a
vertex v, denoted N(v), is the set of all vertices w
such that (v, w) ∈ E. We further denote the closed
neighborhood byN [v] = N(v)∪{v}. We similarly define
the open and closed neighborhoods of a set of vertices
U to be N(U) =

⋃
u∈U N(u) and N [U ] = N(U) ∪ U ,

respectively. The set of vertices of distance d of a vertex
u is denoted by Nd(u), where N2(u) is called the two-
neighborhood of u. Lastly, for vertices S ⊆ V , the
induced subgraph G[S] ⊆ G is the graph on the vertices
in S with edges in E between vertices in S.

3 Related Work
Research results in the area can be found through work
on the minimum vertex cover problem and its comple-
mentary maximum clique and independent set prob-
lems, and can often be categorized depending on the an-
gle of attack. For exact exponential (theoretical) algo-
rithms, the maximum independent set problem is canon-
ically studied, for parameterized algorithms, the mini-
mum vertex cover problem is studied, and the maximum
clique problem is normally solved exactly in practice
(though there are recent exceptions). However, these
problems are only trivially different — techniques for
solving one problem require only subtle modifications
to solve the other two.

Exponential-time Algorithms. The maximum
independent set problem is most often considered
when designing exact (exponential-time) algorithms,
and much research has be devoted to reducing the base
of the exponential running time. A primary technique
is to develop rules to modify the graph, removing or
contracting subgraphs that can be solved simply, which
reduces the graph to a smaller instance. These rules
are referred to as data reduction rules (often simpli-
fied to reduction rules or reductions). Reduction rules
have been used to reduce the running time of the brute
force O(n22n) algorithm to the O(2n/3) time algorithm
of Tarjan and Trojanowski [38], and to the current
best polynomial space algorithm with running time of
O∗(1.1996n) by Xiao and Nagamochi [44].

The reduction rules used for these algorithms are
often staggeringly simple, including pendant vertex re-
moval, vertex folding [10] and twin reductions [43],

which eliminate nearly all vertices of degree three or
less from the graph. These algorithms apply reductions
during recursion, only branching when the graph can
no longer be reduced [17], and are referred to as branch-
and-reduce algorithms. Further techniques used to ac-
celerate these algorithms include branching rules [25, 16]
which eliminate unnecessary branches from the search
tree, as well as faster exponential-time algorithms for
graphs of small maximum degree [44].

Parameterized Algorithms. For parameterized
algorithms, we now turn to the minimum vertex cover
problem. The most efficient algorithms for computing
a minimum vertex cover in both theory and practice re-
peatedly apply data reduction rules to obtain a (hope-
fully) much smaller problem instance. If this smaller
instance has size bounded by a function of some param-
eter, it’s called a kernel, and producing a polynomially-
sized kernel gives a fixed-parameter tractable in the
chosen parameter. Reductions are surprisingly effec-
tive for the minimum vertex cover problem. In par-
ticular, letting k be the size of a minimum vertex cover,
the well-known crown reduction rule produces a kernel
of size 3k [13] and the LP-relaxation reduction due to
Nemhauser and Trotter [30], produces a kernel of size
2k [10]. Chen et al. [11] developed the current best pa-
rameterized algorithm for minimum vertex cover, giv-
ing a branch-and-reduce algorithm with running time
O(1.2738k + kn) and polynomial space. For more infor-
mation on the history of vertex cover kernelization, see
the recent survey by Fellows et al. [15].

Exact Algorithms in Practice. The most effi-
cient maximum clique solvers use a branch-and-bound
search with advanced vertex reordering strategies and
pruning (typically using approximation algorithms for
graph coloring, MaxSAT [27] or constraint satisfaction).
The long-standing canonical algorithms for finding the
maximum clique are the MCS algorithm by Tomita et
al. [39] and the bit-parallel algorithms of San Segundo
et al. [32, 33]. However, recently Li et al. [28] introduced
the MoMC algorithm, which uses incremental MaxSAT
logic to achieve speed ups of up to 1 000 over MCS. Ex-
periments by Batsyn et al. [4] show that MCS can be
sped up significantly by giving an initial solution found
through local search. However, even with these state-of-
the-art algorithms, graphs on thousands of vertices re-
main intractable. For example, a difficult graph on 4 000
required 39 wall-clock hours in a highly-parallel MapRe-
duce cluster, and is estimated to require over a year of
sequential computation [42]. Recent clique solvers for
sparse graphs investigate applying simple data reduc-
tion rules, using an initial clique given by some inexact
method [40, 34, 8]. However, these techniques rarely
work on dense graphs, such as the complement graphs



that we consider here. A thorough discussion of many
results in clique finding can be found in the survey of
Wu and Hao [41].

Data reductions have been successfully applied in
practice to solve many problems that are intractable
with general algorithms. Butenko et al. [5, 7] were the
first to show that simple reductions could be used to
compute exact maximum independent sets on graphs
with hundreds vertices for graphs derived from error-
correcting codes. Their algorithm works by first apply-
ing isolated clique removal reductions, then solving the
remaining graph with a branch-and-bound algorithm.
Later, Butenko and Trukhanov [6] introduced the crit-
ical independent set reduction, which was able to solve
graphs produced by the Sanchis graph generator. Lar-
son [26] later proposed an algorithm to find a maximum
critical independent set, but in experiments it proved to
be slow in practice [36]. Iwata et al. [24] then showed
how to remove a large collection of vertices from a max-
imum matching all at once; however, it is not known if
these reductions are equivalent.

For the minimum vertex cover problem, it has
long been known that two such simple reductions,
called pendant vertex removal and vertex folding, are
particularly effective in practice. However, two seminal
experimental works explored the efficacy of further
reductions. Abu-Khzam et al. [1] showed that crown
reductions are as effective (and sometimes faster) in
practice than performing the LP relaxation reduction
(which, as they show in the paper, removes crowns)
on graphs. We briefly note that critical independent
sets, together with their neighborhoods, are in fact
crowns, and thus in some ways the work of Butenko and
Trukhanov [6] replicates that by Abu-Khzam et al. [1],
though their experiments are run on different graphs.

Later, Akiba and Iwata [2] showed that an exten-
sive collection of advanced data reduction rules (to-
gether with branching rules and lower bounds for prun-
ing search) are also highly effective in practice. Their
algorithm finds exact minimum vertex covers on a cor-
pus of large social networks with hundreds of thousands
of vertices or more in mere seconds. More details on the
reduction rules follow in Section 4.

We briefly note that we considered other reduction
techniques that emphasize fast computation at the cost
of a larger (irreducible) graph [9, 36, 22]; however, we
did not find them as effective as Akiba and Iwata [2]
for exactly solving difficult instances. This is somewhat
expected, however, since these techniques are optimized
to produce fast high-quality solutions when combined
with inexact methods such as local search.

4 Techniques
We now describe techniques that we use in our solver.

4.1 Kernelization. The most efficient algorithms for
computing a minimum vertex cover in both theory and
practice use data reduction rules to obtain a much
smaller problem instance. If this smaller instance
has size bounded by a function of some parameter,
it’s called a kernel.

We use an extensive (though not exhaustive) collec-
tion of data reduction rules whose efficacy was studied
by Akiba and Iwata [2]. To compute a kernel, Akiba
and Iwata [2] apply their reductions r1, . . . , rj by iter-
ating over all reductions and trying to apply the cur-
rent reduction ri to all vertices. If ri reduces at least
one vertex, they restart with reduction r1. When re-
duction rj is executed, but does not reduce any ver-
tex, all reductions have been applied exhaustively, and
a kernel is found. Following their study we order the
reductions as follows: degree-one vertex (i.e., pendant)
removal, unconfined vertex removal [43], a well-known
linear-programming relaxation [24, 30] (which, conse-
quently, removes crowns [1]), vertex folding [10], and
twin, funnel, and desk reductions [43].

To be self-contained, we now give a brief description
of those reductions, in order of increasing complexity.
Each reduction allows us to choose vertices that are
either in some minimum vertex cover, or for which
we can locally choose a vertex in a minimum vertex
cover after solving the remaining graph, by following
simple rules. If a minimum vertex cover is found in the
kernel, then each reduction may be undone, producing
a minimum vertex cover in the original graph. Refer to
Akiba and Iwata [2] for a more thorough discussion,
including implementation details. Our implementation
of the reductions is an adaptation of Akiba and Iwata’s
original code.

Pendant vertices: Any vertex v of degree one, called
a pendant, then its neighbor is in some minimum vertex
cover, therefore v and its neighbor u can be removed
from G.

Vertex folding: For a vertex v with degree 2 whose
neighbors u and w are not adjacent, either v is in some
minimum vertex cover, or both u and w are in some
minimum vertex cover. Therefore, we can contract u,
v, and w to a single vertex v′ and decide which vertices
are in the vertex cover after computing a minimum
vertex cover on the reduced graph.

Linear Programming Relaxation: First introduced
by Nemhauser and Trotter [30] for the vertex



packing problem, they present a linear programming
relaxation with a half-integral solution (i.e., using
only values 0, 1/2, and 1) which can be solved
using bipartite matching. Their relaxation may be
formulated for the minimum vertex cover problem
as follows: minimize

∑
v∈V xv, such at for each

edge (u, v) ∈ E, xu + xv ≥ 1 and for each vertex
v ∈ V , xv ≥ 0. There is a minimum vertex cover
containing no vertices with value 1, and therefore
their neighbors are added to the solution and removed
together with the vertices from the graph. We use
the further improvement from Iwata et al. [24], which
computes a solution whose half-integral part is minimal.

Unconfined [43]: Though there are several definitions
of an unconfined vertex in the literature, we use the
simple one from Akiba and Iwata [2]. A vertex v is
unconfined when determined by the following simple
algorithm. First, initialize S = {v}. Then find a
u ∈ N(S) such that |N(u) ∩ S| = 1 and |N(u) \ N [S]|
is minimized. If there is no such vertex, then v is
confined. If N(u) \ N [S] = ∅, then v is unconfined.
If N(u) \ N [S] is a single vertex w, then add w to S
and repeat the algorithm. Otherwise, v is confined.
Unconfined vertices can be removed from the graph,
since there always exists a minimum vertex cover that
contains unconfined vertices.

Twin [43]: Let u and v be vertices of degree 3
with N(u) = N(v). If G[N(u)] has edges, then add
N(u) to the minimum vertex cover and remove u,
v, N(u), N(v) from G. Otherwise, some u and v
may belong to some minimum vertex cover. We
still remove u, v, N(u) and N(v) from G, and
add a new gadget vertex w to G with edges to u’s
two-neighborhood (vertices at a distance 2 from u).
If w is in the computed minimum vertex cover, then
u’s (and v’s) neighbors are in some minimum vertex
cover, otherwise u and v are in a minimum vertex cover.

Alternative: Two sets of vertices A and B are set to
be alternatives if |A| = |B| ≥ 1 and there exists an
minimum vertex cover C such that C∩(A∪B) is either A
or B. Then we remove A and B and C = N(A)∩N(B)
from G and add edges from each a ∈ N(A) \ C to
each b ∈ N(B) \ C. Then we add either A or B to
C, depending on which neighborhood has vertices in C.
Two structures are detected as alternatives. First, if
N(v) \ {u} induces a complete graph, then {u} and {v}
are alternatives (a funnel). Next, if there is a cordless
4-cycle a1b1a2b2 where each vertex has at least degree 3.
Then sets A = {a1, a2} and B = {b1, b2} are alternatives

(called a desk) when |N(A) \ B| ≤ 2, |N(A) \ B| ≤ 2,
and N(A) ∩ N(B) = ∅.

4.2 Branch-and-Reduce. Branch-and-reduce is a
paradigm that intermixes data reduction rules and
branching. We use the algorithm of Akiba and Iwata,
which exhaustively applies their full suite of reduction
rules before branching, and includes a number of ad-
vanced branching rules as well as lower bounds to prune
search.

Branching. When branching, a vertex of maxi-
mum degree is chosen for inclusion into the vertex cover.
Mirrors and satellites are detected when branching, in
order to eliminate branching on certain vertices. A
mirror of a vertex v is a vertex u ∈ N2(v) such that
N(v)\N(u) is a clique or empty. Fomin et al. [16] show
that either the mirrors of v or N(v) is in a minimum ver-
tex cover, and we can therefore branch on all mirrors at
once. This branching prevents branching on mirrors in-
dividually and decreases the size of the remaining graph
(and thus the depth of the search tree). A satellite of
a vertex v is a vertex u ∈ N2(v) such that there exists
a vertex w ∈ N(v) such that N(w) \ N [v] = {u}. If a
vertex has no mirrors, then either v is in a minimum
vertex cover or the neighbors of v’s satellites in a min-
imum vertex cover. Akiba and Iwata [2] further intro-
duce packing branching, maintaining linear inequalities
for each vertex included or excluded from the current
vertex cover (called packing constraints) throughout re-
cursion; when a constraint is violated, further branching
can be eliminated.

Lower Bounds. We briefly remark that Akiba and
Iwata [2] implement lower bounds to prune the search
space. Their lower bounds are based on clique cover,
the LP relaxation, and cycle covers (see their paper for
further details). The final lower bound used for pruning
is the maximum of these three.

4.3 Branch-and-Bound. Experiments by
Strash [36] show that the full power of branch-
and-reduce is only needed very rarely in real-world
instances; kernelization followed by a standard branch-
and-bound solver is sufficient for many real-world
instances. Furthermore, branch-and-reduce does not
work well on many synthetic benchmark instances,
where data reduction rules are ineffective [2], and
instead add significant overhead to branch-and-bound.
We use a state-of-the-art branch-and-bound maximum
clique solver (MoMC) by Li et al. [28], which uses
incremental MaxSAT reasoning to prune search, and
a combination of static and dynamic vertex ordering
to select the vertex for branching. We run the clique
solver on the complement graph, giving a maximum



independent set from which we derive a minimum
vertex cover. In preliminary experiments, we found
that a kernel can sometimes be harder for the solver
than the original input; therefore, we run the algorithm
on both the kernel and on the original graph.

4.4 Iterated Local Search. Batsyn et al. [4] showed
that if branch-and-bound search is primed with a high-
quality solution from local search, then instances can
be solved up to thousands of times faster. We use the
iterated local search algorithm by Andrade et al. [3] to
prime the branch-and-reduce solver with a high-quality
initial solution. To the best of our knowledge, this
has not been tried before. Iterated local search was
originally implemented for the maximum independent
set problem, and is based on the notion of (j, k)-swaps.
A (j, k)-swap removes j nodes from the current solution
and inserts k nodes. The authors present a fast linear-
time implementation that, given a maximal independent
set, can find a (1, 2)-swap or prove that none exists.
Their algorithm applies (1, 2)-swaps until reaching a
local maximum, then perturbs the solution and repeats.
We implemented the algorithm to find a high-quality
solution on the kernel. Calling local search on the kernel
has been shown to produce a high-quality solution much
faster than without kernelization [9, 14].

5 Putting it all Together
Our algorithm first runs a preprocessing phase, followed
by 4 phases of solvers.

Phase 1. (Preprocessing) Our algorithm starts by
computing a kernel of the graph using the reduc-
tions by Akiba and Iwata [2]. From there we use
iterated local search to produce a high-quality so-
lution Sinit on the (hopefully smaller) kernel.

Phase 2. (Branch-and-Reduce, short) We prime
a branch-and-reduce solver with the initial solution
Sinit and run it with a short time limit.

Phase 3. (Branch-and-Bound, short) If Phase 2 is
unsuccessful, we run the MoMC [28] clique solver
on the complement of the kernel, also using a short
time limit1. Sometimes kernelization can make the
problem harder for MoMC. Therefore, if the first
call was unsuccessful we also run MoMC on the
complement of the original (unkernelized) input
with the same short time limit.

1Note that repeatedly checking the time can slow down a
highly optimized branch-and-bound solver considerably; we there-
fore simulate time checking by using a limit on the number of
branches.

Phase 4. (Branch-and-Reduce, long) If we have
still not found a solution, we run branch-and-
reduce on the kernel using initial solution Sinit
and a longer time limit. We opt for this second
phase because, while most graphs amenable to re-
ductions are solved very quickly with branch-and-
reduce (less than a second), experiments by Akiba
and Iwata [2] showed that other slower instances
either finish in at most a few minutes, or take sig-
nificantly longer—more than the time limit allotted
for the challenge. This second phase of branch-and-
reduce is meant to catch any instances that still
benefit from reductions.

Phase 5. (Branch-and-Bound, remaining time)
If all previous phases were unsuccessful, we run
MoMC on the original (unkernelized) input graph
until the end of the time given to the program by
the challenge. This is meant to capture only the
hardest-to-compute instances.

The algorithm time limits (discussed in the next
section) and ordering were carefully chosen so that
the overall algorithm outputs solutions of the “easy”
instances quickly, while still being able to solve hard
instances.

6 Experimental Results
We now look at the impact of the algorithmic com-
ponents on the number of instances solved. Here,
we focus on the public instances of the PACE 2019
Implementation Challenge, Vertex Cover Track A,
obtained from https://pacechallenge.org/files/
pace2019-vc-exact-public-v2.tar.bz2. This set
contains 100 instances overall. We also summarize the
results comparing against the second and third best
competing algorithms on the private instances dur-
ing the challenge (which can be found at https://
pacechallenge.org/2019/ and https://www.optil.
io/optilion/problem/3155). Note that further com-
parisons are not yet possible, as the private instances
have not yet been released.

6.1 Methodology and Setup. All of our experi-
ments were run on a machine with four sixteen-core
Intel Xeon Haswell-EX E7-8867 processors running at
2.5 GHz, 1 TB of main memory, and 32 768 KB of L2-
Cache. The machine runs Debian GNU/Linux 9 and
Linux kernel version 4.9.0-9. All algorithms were imple-
mented in C++11 and compiled with gcc version 6.3.0
with optimization flag -O3. Our source code is publicly
available under the MIT license at [23]. Each algorithm
was run sequentially with a time limit of 30 minutes—
the time allotted to solve a single data set in the PACE

https://pacechallenge.org/files/pace2019-vc-exact-public-v2.tar.bz2
https://pacechallenge.org/files/pace2019-vc-exact-public-v2.tar.bz2
https://pacechallenge.org/2019/
https://pacechallenge.org/2019/
https://www.optil.io/optilion/problem/3155
https://www.optil.io/optilion/problem/3155


2019 Implementation Challenge. Our primary focus is
on the total number of instances solved.

6.2 Evaluation. We now explain the main configu-
ration that we use in our experimental setup. In the
following, MoMC runs the MoMC clique solver by Li et
al. [28] on the complement of the input graph; RMoMC
applies reductions to the input graph exhaustively, and
then runs MoMC on the complement of the result-
ing kernel; LSBnR applies reductions exhaustively, then
runs local search to obtain a high-quality solution on the
kernel which is used as a initial bound in the branch-
and-reduce algorithm that is run on the kernel; BnR ap-
plies reductions and then runs the branch-and-reduce
algorithm on the kernel (no local search is used to im-
prove an initial bound); FullA is the full algorithm as de-
scribed in the previous section, using a short time limit
of one second and a long time limit of thirty seconds.

Tables 1 and 2 give an overview of the instances that
each of the solver solved, including the kernel size, and
the minimum vertex cover size for those instances solved
by any of the four algorithms. Overall, MoMC can
solve 30 out of the 100 instances. Applying reductions
first enables RMoMC to solve 68 instances. However,
curiously, there are two instances (instances 131 and
157) that MoMC solves, but that RMoMC can not solve.
In these cases, kernelization reduced the number of
nodes, but increased the number of edges. This is due
to the alternative reduction, which in some cases can
create more edges than initially present. This is why
we choose to also run MoMC on the unkernelized input
graph in FullA (in order to solve those instances as well).

LSBnR solves 55 of the 100 instances. Priming the
branch-and-reduce algorithm with an initial solution
computed by local search has a significant impact:
LSBnR solves 13 more instances than BnR, which solve
42 instances. In particular, using local search to find
an initial bound helps to solve large instances in which
the initial kernelization step does not reduce the graph
fully. Surprisingly, RMoMC solves 26 instances that BnR
does not (and even LSBnR is only able to solve one of
these instances). To the best of our knowledge, this
is the first time that kernelization followed by branch-
and-bound is shown to significantly outperform branch-
and-reduce. Our full algorithm FullA solves 82 of the
100 instances and, as expected, dominates each of the
other configurations. This can be further seen from the
plot in Figure 1, which shows how many instances each
algorithm solves over time (this includes all 100 public
and 100 private instances of the challenge). Note that
LSBnR and RMoMC solve more instances in narrow time
gaps, due to FullA’s set up cost and running multiple
algorithms. However, FullA quickly makes up for this
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Figure 1: Number of instances solved over time by each
algorithm over all instances. At each time step t, we
count each instance solved by the algorithm in at most
t seconds.

and overtakes all algorithms at approximately eight
seconds. In addition to the 100 public instances, the
PACE Implementation Challenge tests all submissions
on 100 private instances. Tables 3 and 4 give detailed
per instances results on those instances. The results
are similar to the results on the private instances. On
the private instances, MoMC can solve 35 out of the
100 instances, RMoMC solves 62, LSBnR solves 58 and
BnR solves 35 instances. Our full algorithm FullA solved
87 of the 100 instances, which is 10 more instances than
the second-place submission (peaty [31], solving 77), and
11 more than the third-place submission (bogdan [46]),
solving 76). Our solver dominates these other solvers:
with the exception of one graph, our algorithm solves
all instances that peaty and bogdan can solve combined.

We briefly describe these two solvers. The peaty
solver uses reductions to compute a problem kernel
of the input followed by an unpublished maximum
weight clique solver on the complement of each of
the connected components of the kernel to assemble a
solution. The clique solver is similar to MaxCLQ by
Li and Quan [29], but is more general. Local search is
used to obtain an initial solution. On the other hand,
bogdan implemented a small suite of simple reductions
(including vertex folding, isolated clique removal, and
degree-one removal) together with a recent maximum
clique solver by Szabó and Zavalnij [37].

Lastly, we note that our choice of using MoMC as
our chosen branch-and-bound solver is significant on the
private instances. Eight instances solved exclusively by
our solver are solved in Phase 5, where MoMC is run
until the end of the challenge time limit.



7 Conclusion
We presented the winning solver of the PACE 2019 Im-
plementation Challenge Vertex Cover Track. Our algo-
rithm uses a portfolio of techniques, including an ag-
gressive kernelization strategy with all known reduction
rules, local search, branch-and-reduce, and a state-of-
the-art branch-and-bound solver. Of particular interest
is that several of our techniques were not from the liter-
ature on the vertex over problem: they were originally
published to solve the (complementary) maximum in-
dependent set and maximum clique problems. Lastly,
our experiments show the impact of the different solver
techniques on the number of instances solved during the
challenge. In particular, the results emphasize that data
reductions play an important tool to boost the perfor-
mance of branch-and-bound, and local search is highly
effective to boost the performance of branch-and-reduce.
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Table 1: Detailed per instance results for public instances. The columns n and m refer to the number of nodes and
edges of the input graph, n′ and m′ refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and |V C| refers to the size of the minimum vertex cover of the input graph. We
list a ‘X’ when a solver successfully solved the given instance in the time limit, and ‘-’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA |V C|
001 6 160 40 207 0 0 - X X X X 2 586
003 60 541 74 220 0 0 - X X X X 12 190
005 200 819 192 800 X X X X X 129
007 8 794 10 130 0 0 - X X X X 4 397
009 38 452 174 645 0 0 - X X X X 21 348
011 9 877 25 973 0 0 - X X X X 4 981
013 45 307 55 440 0 0 - X X X X 8 610
015 53 610 65 952 0 0 - X X X X 10 670
017 23 541 51 747 0 0 - X X X X 12 082
019 200 884 194 862 X X X X X 130
021 24 765 30 242 0 0 - X X X X 5 110
023 27 717 133 665 0 0 - X X X X 16 013
025 23 194 28 221 0 0 - X X X X 4 899
027 65 866 81 245 0 0 - X X X X 13 431
029 13 431 21 999 0 0 - X X X X 6 622
031 200 813 198 818 X X X X X 136
033 4 410 6 885 138 471 - X X X X 2 725
035 200 884 189 859 X X X X X 133
037 198 824 194 810 X X X X X 131
039 6 795 10 620 219 753 - X X X X 4 200
041 200 1 040 200 1 023 X X X X X 139
043 200 841 198 844 X X X X X 139
045 200 1 044 200 1 020 X X X X X 137
047 200 1 120 198 1 080 X X X X X 140
049 200 957 198 930 X X X X X 136
051 200 1 135 200 1 098 X X X X X 140
053 200 1 062 200 1 026 X X X X X 139
055 200 958 194 938 X X X X X 134
057 200 1 200 197 1 139 X X X X X 142
059 200 988 193 954 X X X X X 137
061 200 952 198 914 X X X X X 135
063 200 1 040 200 1 011 X X X X X 138
065 200 1 037 200 1 011 X X X X X 138
067 200 1 201 200 1 174 X X X X X 143
069 200 1 120 196 1 077 X X X X X 140
071 200 984 200 952 X X X X X 136
073 200 1 107 200 1 078 X X X X X 139
075 26 300 41 500 500 3 000 - - X - X 16 300
077 200 988 193 954 X X X X X 137
079 26 300 41 500 500 3 000 - - X - X 16 300
081 199 1 124 197 1 087 X X X X X 141
083 200 1 215 198 1 182 X X X X X 144
085 11 470 17 408 3 539 25 955 - - - - -
087 13 590 21 240 441 1 512 - X - - X 8 400
089 57 316 77 978 16 834 54 847 - - - - -
091 200 1 196 200 1 163 X X X X X 145
093 200 1 207 200 1 162 X X X X X 143
095 15 783 24 663 510 1 746 - X - - X 9 755
097 18 096 28 281 579 1 995 - X - - X 11 185
099 26 300 41 500 500 3 000 - - X - X 16 300



Table 2: Detailed per instance results for public instances. The columns n and m refer to the number of nodes and
edges of the input graph, n′ and m′ refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and |V C| refers to the size of the minimum vertex cover of the input graph. We
list a ‘X’ when a solver successfully solved the given instance in the time limit, and ‘-’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA |V C|
101 26 300 41 500 500 3 000 - - X - X 16 300
103 15 783 24 663 513 1 752 - X - - X 9 755
105 26 300 41 500 500 3 000 - - X - X 16 300
107 13 590 21 240 435 1 500 - X - - X 8 400
109 66 992 90 970 20 336 66 350 - - - - -
111 450 17 831 450 17 831 X X - - X 420
113 26 300 41 500 500 3 000 - - X - X 16 300
115 18 096 28 281 573 1 986 - X - - X 11 185
117 18 096 28 281 582 2 007 - X - - X 11 185
119 18 096 28 281 588 2 016 - X - - X 11 185
121 18 096 28 281 579 1 998 - X - - X 11 185
123 26 300 41 500 500 3 000 - - X - X 16 300
125 26 300 41 500 500 3 000 - - X - X 16 300
127 18 096 28 281 582 2 001 - X - - X 11 185
129 15 783 24 663 507 1 752 - X - - X 9 755
131 2 980 5 360 2 179 6 951 X - - - X 1 920
133 15 783 24 663 507 1 746 - X - - X 9 755
135 26 300 41 500 500 3 000 - - X - X 16 300
137 26 300 41 500 500 3 000 - - X - X 16 300
139 18 096 28 281 579 1 995 - X - - X 11 185
141 18 096 28 281 576 1 995 - X - - X 11 185
143 18 096 28 281 582 2 001 - X - - X 11 185
145 18 096 28 281 576 1 989 - X - - X 11 185
147 18 096 28 281 567 1 974 - X - - X 11 185
149 26 300 41 500 500 3 000 - - X - X 16 300
151 15 783 24 663 501 1 728 - X - - X 9 755
153 29 076 45 570 2 124 16 266 - - - - -
155 26 300 41 500 500 3 000 - - X - X 16 300
157 2 980 5 360 2 169 6 898 X - - - X 1 920
159 18 096 28 281 582 2 004 - X - - X 11 185
161 138 141 227 241 41 926 202 869 - - - - -
163 18 096 28 281 582 2 004 - X - - X 11 185
165 18 096 28 281 576 1 995 - X - - X 11 185
167 15 783 24 663 510 1 746 - X - - X 9 755
169 4 768 8 576 3 458 11 014 - - - - -
171 18 096 28 281 576 1 989 - X - - X 11 185
173 56 860 77 264 17 090 55 568 - - - - -
175 3 523 6 446 2 723 8 570 - - - - -
177 5 066 9 112 3 704 11 797 - - - - -
179 15 783 24 663 504 1 740 - X - - X 9 755
181 18 096 28 281 573 1 989 - X X - X 11 185
183 72 420 118 362 30 340 133 872 - - - - -
185 3 523 6 446 2 723 8 568 - - - - -
187 4 227 7 734 3 264 10 286 - - - - -
189 7 400 13 600 5 802 18 212 - - - - -
191 4 579 8 378 3 539 11 137 - - - - -
193 7 030 12 920 5 510 17 294 - - - - -
195 1 150 81 068 1 150 81 068 - - - - -
197 1 534 127 011 1 534 127 011 - - - - -
199 1 534 126 163 1 534 126 163 - - - - -



Table 3: Detailed per instance results for private instances. The columns n and m refer to the number of nodes
and edges of the input graph, n′ and m′ refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and |V C| refers to the size of the minimum vertex cover of the input graph. We
list a ‘X’ when a solver successfully solved the given instance in the time limit, and ‘-’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA |V C|
002 51 795 63 334 0 0 - X X X X 10 605
004 8 114 26 013 0 0 - X X X X 2 574
006 200 751 188 716 X X X X X 126
008 7 537 72 833 0 0 - X X X X 3 345
010 199 774 189 756 X X X X X 127
012 53 444 68 044 0 0 - X X X X 10 918
014 25 123 31 552 0 0 - X X X X 5 111
016 153 802 153 802 - - - - -
018 49 212 63 601 0 0 - X X X X 10 201
020 57 287 71 155 0 0 - X X X X 11 648
022 12 589 33 129 0 0 - X X X X 6 749
024 7 620 47 293 0 0 - X X X X 4 364
026 6 140 36 767 0 0 - X X X X 2 506
028 54 991 67 000 0 0 - X X X X 11 211
030 62 853 79 557 0 0 - X X X X 13 338
032 1 490 2 680 1 081 3 426 X - - - X 960
034 1 490 2 680 1 090 3 467 X X - - X 960
036 26 300 41 500 500 3 000 - X X X X 16 300
038 786 14 024 460 6 623 X X X X X 605
040 210 625 210 625 X X - - X 145
042 200 974 200 952 X X X X X 136
044 200 1 186 200 1 147 X X X X X 142
046 200 812 200 812 X X X X X 137
048 200 1 052 198 1 022 X X X X X 138
050 200 1 048 200 1 025 X X X X X 140
052 200 1 019 198 1 000 X X X X X 138
054 200 985 198 951 X X X X X 137
056 200 1 117 200 1 089 X X X X X 141
058 200 1 202 200 1 171 X X X X X 142
060 200 1 147 200 1 118 X X X X X 141
062 199 1 164 199 1 128 X X X X X 141
064 200 1 071 198 1 040 X X X X X 138
066 200 884 198 875 X X X X X 134
068 200 983 198 961 X X X X X 135
070 200 887 198 856 X X X X X 133
072 200 1 204 198 1 176 X X X X X 140
074 200 820 194 785 X X X X X 132
076 26 300 41 500 500 3 000 - X X - X 16 300
078 11 349 17 739 357 1 245 - X - - X 7 015
080 26 300 41 500 500 3 000 - - X - X 16 300
082 200 978 196 956 X X X X X 138
084 13 590 21 240 435 1 503 - X - - X 8 400
086 26 300 41 500 500 3 000 - X X - X 16 300
088 26 300 41 500 500 3 000 - X X - X 16 300
090 11 349 17 739 357 1 245 - X - - X 7 015
092 450 17 794 450 17 794 X X - - X 420
094 5 960 10 720 4 217 13 456 - - - - -
096 26 300 41 500 500 3 000 - - X - X 16 300
098 26 300 41 500 500 3 000 - - X - X 16 300
100 26 300 41 500 500 3 000 - X X X X 16 300



Table 4: Detailed per instance results for private instances. The columns n and m refer to the number of nodes
and edges of the input graph, n′ and m′ refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and |V C| refers to the size of the minimum vertex cover of the input graph. We
list a ‘X’ when a solver successfully solved the given instance in the time limit, and ‘-’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA |V C|
102 26 300 41 500 500 3 000 - - X - X 16 300
104 26 300 41 500 500 3 000 - - X - X 16 300
106 2 980 5 360 2 136 6 809 X - - - X 1 920
108 26 300 41 500 500 3 000 - - X - X 16 300
110 98 128 161 357 29 168 140 392 - - - - -
112 18 096 28 281 576 1 992 - X - - X 11 185
114 15 783 24 663 504 1 740 - X - - X 9 755
116 26 300 41 500 500 3 000 - - X - X 16 300
118 26 300 41 500 500 3 000 - - X - X 16 300
120 70 144 116 378 6 029 38 285 - - - - -
122 26 300 41 500 500 3 000 - - X - X 16 300
124 26 300 41 500 500 3 000 - - X - X 16 300
126 18 096 28 281 582 2 001 - X - - X 11 185
128 26 300 41 500 500 3 000 - - - - -
130 26 300 41 500 500 3 000 - - X - X 16 300
132 15 783 24 663 513 1 755 - X - - X 9 755
134 26 300 41 500 500 3 000 - - X - X 16 300
136 18 096 28 281 585 2 007 - X - - X 11 185
138 18 096 28 281 576 1 992 - X - - X 11 185
140 26 300 41 500 500 3 000 - - X - X 16 300
142 2 980 5 360 2 180 6 946 X - - - X 1 920
144 26 300 41 500 500 3 000 - - X - X 16 300
146 26 300 41 500 500 3 000 - - X - X 16 300
148 26 300 41 500 500 3 000 - - X - X 16 300
150 26 300 41 500 500 3 000 - - X - X 16 300
152 13 590 21 240 438 1 506 - X X - X 8 400
154 15 783 24 663 504 1 737 - X - - X 9 755
156 450 17 809 450 17 809 X X - - X 420
158 15 783 24 663 507 1 746 - X - - X 9 755
160 18 096 28 281 576 1 989 - X - - X 11 185
162 50 635 83 075 13 066 63 758 - - - - -
164 29 296 46 040 1 210 8 666 - - - - -
166 3 278 5 896 2 400 7 643 X - - - - 2 112
168 2 980 5 360 2 180 6 943 X - - - X 1 920
170 15 783 24 663 507 1 746 - X - - X 9 755
172 4 025 7 435 3 158 9 863 - - - - -
174 2 980 5 360 2 180 6 955 X - - - X 1 920
176 15 783 24 663 501 1 734 - X - - X 9 755
178 18 096 28 281 573 1 995 - X - - X 11 185
180 15 783 24 663 501 1 731 - X - - X 9 755
182 26 300 41 500 500 3 000 - - X - X 16 300
184 6 290 11 560 4 904 15 397 - - - - -
186 26 300 41 500 500 3 000 - - X - X 16 300
188 6 660 12 240 5 220 16 375 - - - - -
190 3 875 7 090 2 997 9 424 - - - - -
192 2 980 5 360 2 180 6 941 X - - - X 1 920
194 1 150 80 851 1 150 80 851 X X - - X 1 100
196 1 534 126 082 1 534 126 082 - - - - -
198 1 150 80 072 1 150 80 072 X X - - X 1 100
200 1 150 80 258 1 150 80 258 X X - - X 1 100
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