
Shared-Memory Branch-and-Reduce for Multiterminal Cuts∗

Monika Henzinger† Alexander Noe ‡ Christian Schulz §

Abstract

We introduce the fastest known exact algorithm for the multiterminal cut problem with
k terminals. In particular, we engineer existing as well as new data reduction rules. We use
the rules within a branch-and-reduce framework and to boost the performance of an ILP for-
mulation. Our algorithms achieve improvements in running time of up to multiple orders of
magnitudes over the ILP formulation without data reductions, which has been the de facto
standard used by practitioners. This allows us to solve instances to optimality that are signif-
icantly larger than was previously possible.

1 Introduction

We consider the multiterminal cut problem with k terminals. Its input is an undirected edge-
weighted graphG = (V,E,w) with edge weights w : E 7→ N>0 and its goal is to divide its set of nodes
into k blocks such that each blocks contains exactly one terminal and the weight sum of the edges
running between the blocks is minimized. The problem has applications in a wide range of areas,
for example in multiprocessor scheduling [38], clustering [36] and bioinformatics [24, 31, 41]. It is a
fundamental combinatorial optimization problem which was first formulated by Dahlhaus et al. [12]
and Cunningham [11]. It is NP-hard for k ≥ 3 [12], even on planar graphs, and reduces to the
minimum s-t-cut problem, which is in P, for k = 2. The minimum s-t-cut problem aims to find
the minimum cut in which the vertices s and t are in different blocks. Most algorithms for the
minimum multiterminal cut problem use minimum s-t-cuts as a subroutine. Dahlhaus et al. [12]
give a 2(1 − 1/k) approximation algorithm with polynomial running time. Their approximation
algorithm uses the notion of isolating cuts, i.e. the minimum cut separating a terminal from all other
terminals. They prove that the union of the k−1 smallest isolating cuts yields a valid multiterminal
cut with the desired approximation ratio. The currently best known approximation algorithm by
Buchbinder et al. [6] uses linear program relaxation to achieve an approximation ratio of 1.323.

While the multiterminal cut problem is NP-hard, it is fixed-parameter tractable (FPT), parame-
terized by the multiterminal cut weight W(G). A problem is fixed-parameter tractable if there is a
parameter σ so that there is an algorithm with runtime f(σ) ·nO(1). Marx [29] proves that the mul-
titerminal cut problem is FPT and Chen et al. [9] give the first FPT algorithm with a running time
of 4W(G) ·nO(1), later improved by Xiao [42] to 2W(G) ·nO(1) and by Cao et al. [7] to 1.84W(G) ·nO(1).
However, to the best of our knowledge, there is no actual implementation for any of these algorithms.

∗The research leading to these results has received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC grant agreement No. 340506
†University of Vienna, Faculty of Computer Science, Vienna, Austria
‡University of Vienna, Faculty of Computer Science, Vienna, Austria
§University of Vienna, Faculty of Computer Science, Vienna, Austria

1

ar
X

iv
:1

90
8.

04
14

1v
2

 [
cs

.D
S]

 1
7

A
ug

 2
01

9

The minimum s-t-cut problem and its equivalent counterpart, the maximum s-t-flow prob-
lem [15] were first formulated by Harris et al. [19]. Ford and Fulkerson [14] gave the first algorithm
for the problem with a running time of O(mnW). One of the fastest known algorithms in practice
is the push-relabel algorithm of Goldberg and Tarjan [18] with a running time of O

(
mn log(n2/m)

)
.

Problems related to the minimum multiterminal cut problem also appear in the data mining
community, namely the very similar and heavily studied seed expansion problem, for which the aim
is to find ground-truth clusters when given a small subset of the cluster vertices. In contrast to
the minimum multiterminal cut problem, these clusters might overlap. There is a multitude of
approaches adding and removing vertices greedily [2, 10, 27, 30]. PageRank [35] is reported to
be well suited for the problem [25] and there are multiple approaches that aim to make PageR-
ank perform even better [1, 4, 26]. Another approach is to use machine learning methods such
as geometric [43] or relational [28] neighborhood classifiers.

Closely related to the problem is also the minimum cut problem. For this problem, the goal is
to divide the set of nodes in an undirected edge-weighted graph into two blocks while minimizing
the weight sum of the cut edges. Both Padberg et al. [34] and Nagamochi et al. [32, 33] give local
conditions that are sufficient to contract edges such that the global minimum cut is maintained
(and hence the problem size is reduced). An efficient implementation of those conditions is given
by Henzinger et al. [23]. In this work, we adapt the conditions from their works that are applicable
to the minimum multiterminal cut problem and use them to reduce the size of the problem.

Our paper has the following main contributions: We engineer existing as well as new data reduc-
tion rules for the minimum multiterminal cut problem with k terminals. These reductions are used
within a branch-and-reduce framework as well as to boost the performance of an ILP formulation for
the problem. Through extensive experiments we show that kernelization has a significant impact on
both, the branch-and-reduce framework as well as the ILP formulation. Our experiments also show
a clear trade-off: combining reduction rules with the ILP is very fast for problems which have a small
kernel but a high cut value and the fixed-parameter tractable branch-and-reduce algorithm is highly
efficient when the cut value is small. Overall, we obtain algorithms that are multiple orders of mag-
nitude faster than the ILP formulation which is de facto standard to solve the problem to optimality.

2 Preliminaries

2.1 Basic Concepts

Let G = (V,E,w) be a weighted undirected graph with vertex set V , edge set E ⊂ V × V and
non-negative edge weights w : E → N. We extend w to a set of edges E′ ⊆ E by summing the
weights of the edges; that is, w(E′) :=

∑
e=(u,v)∈E′ w(u, v). Let n = |V | be the number of vertices

and m = |E| be the number of edges in G. The neighborhood N(v) of a vertex v is the set of vertices
adjacent to v. The weighted degree of a vertex is the sum of the weights of its incident edges. For
a set of vertices A ⊆ V , we denote by E[A] := {(u, v) ∈ E | u ∈ A, v ∈ V \ A}; that is, the set
of edges in E that start in A and end in its complement. A k-cut, or multicut, is a partitioning
of V into k disjoint non-empty blocks, i.e. V1 ∪ · · · ∪ Vk = V . The weight of a k-cut is defined as
the weight sum of all edges crossing block boundaries, i.e. w(E ∩

⋃
i<j Vi × Vj).

2

Figure 1: Graph with 4 terminals. Minimum s-T -cut for each terminal shown in red, C in blue

2.2 Multiterminal Cuts

A multiterminal cut for k terminals T = {t1, ..., tk} is a multicut with t1 ∈ V1, ..., tk ∈ Vk. Thus,
a multiterminal cut pairwisely separates all terminals from each other. The edge set of the mul-
titerminal cut with minimum weight of G is called C(G) and the associated optimal partitioning
of vertices is denoted as V = {V1, . . . ,Vk}. C can be seen as the set of all edges that cross block
boundaries in V, i.e. C(G) =

⋃
{e = (u, v) | Vu 6= Vv}. The weight of the minimum multiterminal

cut is denoted as W(G) = w(C(G)). At any point in time, the best currently known upper bound

for W(G) is denoted as Ŵ(G) and the best currently known multiterminal cut is denoted as Ĉ(G).
If graph G is clear from the context, we omit it in the notation. There may be multiple minimum
multiterminal cuts, however, we aim to find one multiterminal cut with minimum weight.

In this paper we use minimum s-T-cuts. For a vertex s (source) and a non-empty vertex set T
(sinks), the minimum s-T-cut is the smallest cut in which s is one side of the cut and all vertices
in T (except for s, if s ∈ T) are on the other side. This is a generalization of minimum s-t-cuts
that allows multiple vertices in t and can be easily replaced by a minimum s-t-cut by connecting
every vertex in T with a new super-sink by infinite-capacity edges. We denote the capacity of a
minimum-s-T-cut, i.e. the sum of weights in the smallest cut separating s from T , by λ(G, s, T).

The example in Figure 1 shows a graph with 4 terminals. The minimum s-T-cut for each
terminal with T being the set of all terminals is shown in red and the minimum multiterminal cut
is shown in blue. We can see that any k − 1 minimum s-T-cuts (in red) separate all terminals and
are thus a valid multiterminal cut. In our algorithm we use graph contraction and edge deletions.
Given an edge e = (u, v) ∈ E, we define G/e to be the graph after contracting e. In the contracted
graph, we delete vertex v and all incident edges. For each edge (v, x) ∈ E, we add an edge (u, x)
with w(u, x) = w(v, x) to G or, if the edge already exists, we give it the edge weight w(u, x) +
w(v, x). For the edge deletion of an edge e, we define G − e as the graph G in which e has
been removed. Other vertices and edges remain the same.

For a given multiterminal cut S, the graph G\S splits G into k blocks as defined by the cut edges
in S, each containing exactly one terminal. Let the residual R(ti) be the connected component of
G\S containing ti and δ(ti) = |E(R(ti), V \R(ti))| be the edges in S incident to ti.

3 Branch and Reduce for Multiterminal Cut

In this section we give an overview of our approach to find the optimal multiterminal cut in large
graphs. Our algorithm combines kernelization techniques with an engineered bounded search.

3

Figure 2: Reductions. Solid line cannot be minimal as dashed line has smaller weight: (1)
IsolatedVertex, (2) DegreeOne, (3) DegreeTwo , (4) HeavyEdge, (5) HeavyTriangle and (6)
SemiEnclosedVertex

We begin by finding all connected components of G. We can then look at all connected com-
ponents independently from each other, as there is a trivial cut of weight 0 between different
connected components. If a connected component contains only one terminal t, it can be sepa-
rated from all other terminals by using the whole connected component as the block Vt belonging
to terminal t. Due to it being not connected to any other terminals, the cut value is 0. If a
connected component contains no terminals, the result W is identical no matter which block V
the connected component belongs to. For a connected component C with two terminals s and t,
we can run a minimum s-t-cut algorithm on C to find the minimum cut. The optimal blocks Vs
and Vt then consist of the two sides of the s-t-cut. On a connected component with more than
two terminals, the problem is NP-hard [12]. We run our branch and reduce algorithm on this
component. As those runs are completely independent, we only look at one connected component
in the following and disregard the rest of the graph for now.

For a graph G, we can find an upper bound Ŵ which is equal to the sum of minimum s-T-cut
weights minus the heaviest of them. Ŵ(G) =

∑
s∈T λ(G, s, T\{s}) − arg maxs∈Tλ(G, s, T\{s}).

However, this is not necessarily the minimum multiterminal cut.
We can also give a lower bound for the minimum multiterminal cut: as λ(G, s, T\{s}) is by

definition minimal, C has at least as many edges incident to terminal s as λ(G, s, T\{s}). As
this is true for every terminal (and every edge is only incident to two vertices), C(G) · 2 ≥∑
s∈T λ(G, s, T\{s}), so that C(G) ≥

∑
s∈T λ(G, s, T\{s})/2.

In our algorithm, we keep a queue Q of problems. A problem in Q consists of a graph GQ, a set
of terminals, the upper and lower bound forW(GQ) and the weight sum of all deleted edges in GQ.
When our algorithm is initialized, Q is initialized with a single problem, whose graph is G and whose
set of terminals is T . The problem has 0 deleted edges and its lower and upper bound forW(G) can
be set as previously described. As the problem is currently the only one, the global upper bound
Ŵ(G) is equal to the upper bound of G. Over the course of the algorithm, we repeatedly take a
problem from Q and check whether we can reduce the graph size using our kernelization techniques
outlined in Section 4. When possible, we perform the kernelization and push the kernelized problem
to Q. Otherwise, we branch on an edge e adjacent to one of the terminals.

The kernelization techniques detailed in Section 4 reduce the size of the graph by finding edges
that are (1) either guaranteed to be in a minimum multiterminal cut or (2) guaranteed not to be
part of at least one minimum multiterminal cut. As we only want to find a single multiterminal
cut with minimum sum of edge weights, we can delete edges in (1) and contract edges in (2).

In Section 5 we detail the branching procedure which is used if these reduction techniques are
unable to find any further reduction possibilities. For any edge e, either it is in the multiterminal
cut or it is not. We create two subproblems for G: G/e and G−e. We aim to find the minimum mul-

4

titerminal cut on either. Further details on the branching and edge selection are given in Section 5.
We compute upper and lower bounds for each of the problems and follow the branches whose lower
bounds are lower than Ŵ, the best cut weight previously found. In Section 8.3 we discuss queue
implementation and whether using a priority queue to first process ’promising’ problems is useful in
practice. We employ shared-memory parallelism by having multiple threads pull problems from Q.

4 Kernelization

We now show how to reduce the size of our graph to make the problem more manageable. This
is achieved by contracting edges that are guaranteed not to be in the minimum multiterminal
cut and deleting edges that are guaranteed to be in it. Before we detail the kernelization rules
we show that edges not in C can be safely contracted and edges in C can be safely deleted if we
store the weight sum of all deleted edges so far. The kernelization rules given in the following
and outlined in Figure 2 are used to identify such edges.

Lemma 1 [7] If an edge e = (u, v) ∈ G is guaranteed not to be in at least one multiterminal cut
C(G) (i.e. Pu = Pv), we can contract e and W(G/e) =W(G).

Proof 1 As e 6∈ C(G), C(G/e) is equal to C(G) and thus still has weight equal to w(C(G)) =W(G).
As an edge contraction only removes cuts and does not create any new cuts, an edge contraction
can not lower the weight of the minimum multiterminal cut, i.e. W(G/e) ≥ W(G). As C(G/e) has
weight W(G), it is a multiterminal cut in G/e with weight equal to W(G). Thus it is definitely a
minimum multiterminal cut with weight W(G).

Lemma 1 allows us to reduce the graph size by contracting an edge if we can prove that both
incident vertices are in the same partition in V. The lemma can be generalized trivially to contract
a connected vertex set by applying the lemma to each edge connecting two vertices of the set.

Lemma 2 [7] If an edge e = (u, v) ∈ E is guaranteed to be in a minimum multiterminal cut, i.e.
there is a minimum multiterminal cut C(G) in which Pu 6= Pv, we can delete e from G and C(G−e)
is still a valid minimum multiterminal cut.

Proof 2 Let W(G) be the weight of the minimum multiterminal cut C(G). We show that for an
edge e ∈ C(G), W(G−e) =W(G)−w(e). Thus, we can delete e (and thus replace G with G−e) and
store the weight of the deleted edge. Obviously, C(G−e) has weight equal to W(G)−w(e), as we just
deleted e and all other edges in C(G) are still in G. By deleting e, the weight of any multiterminal
cut can be decreased by at most w(e) (as a multiterminal cut is a set of edges and e can at most be
once in that set). As W(G) is minimal by definition and no cut weight can be decreased by more
than w(e), G − e cannot have a minimum multiterminal cut with weight < W(G) − w(e). Thus,
C(G− e) is a minimum multiterminal cut of G− e with weight W(G− e).

Minimum Isolating Cuts When we look at a problem, we first solve the minimum s-T-cut
problem for each terminal s ∈ T . This results in one or multiple minimum cuts that separate s from
all other terminals. We call the side of the cut containing s the isolating cut of s. Dahlhaus et al. [12]
prove that there is a minimum multiterminal cut C in which the complete isolating cut is in Vs.
Thus, according to Lemma 1 we can contract all vertices of the largest isolating cut into a single
vertex. In Figure 1 this would result in contracting the red areas into their respective terminals.

5

This contraction might result in edges connecting terminals. Such an edge e = (u, v), where both
u and v are terminal vertices is guaranteed to be a part of C(G). This comes from the fact that
we know Vu 6= Vv, i.e. u and v are not in the same block in the minimum multiterminal cut, as
both u and v are terminals. According to Lemma 2 they can therefore be deleted.

4.1 Local Contraction

We aim to find edges that cannot be part of the minimum multiterminal cut. If we find an edge
that can be contracted, we mark it in a union find data structure [17]. This union-find structure
is initialized with each vertex as its own block, an edge contraction then merges the two blocks of
incident vertices. After all kernelization criteria are tested, we contract all edges that are marked
as contractible. As a contraction might open up new contractions in its neighborhood, we run
the contraction routines until they do not find any more contractible edges. To ensure low over-
head, we run only the first iteration completely and subsequently check only the neighborhoods
of vertices that were changed in the previous iteration.

Low-Degree Vertices [7] Figures 2.(1), 2.(2) and 2.(3) show examples of why non-terminal
vertices with degree ≤ 2 can be contracted. A non-terminal vertex with no neighbors
(IsolatedVertex) can be deleted as there is no incident edge that could affect a cut. For a
non-terminal vertex v with only one adjacent edge e = (v, x) (DegreeOne), e can not be part of
the minimum multiterminal cut C(G). Any multiterminal cut that contains e can be improved by
removing e and moving v to the block of its neighbour x. Thus, we can contract e. On a non-
terminal vertex with two adjacent edges e1 and e2 (DegreeTwo), the heavier edge e1 can not be part
of C, as replacing it with e2 improves the cut value. If e1 and e2 have equal weight, we can contract
either (but not both!). These reductions are performed in a single run, which we denote as Low.

Heavy Edges We now look to contract heavy edges. HeavyEdge (2.(4)) and HeavyTriangle (2.(5))
are reductions that were originally used for the minimum cut problem [8, 22, 34]. We adapt
them and transfer them to the minimum multiterminal cut problem.

HeavyEdge says that an edge e = (u, v) which has a weight of at least half of the total edge degree
of a non-terminal vertex u can be contracted, as any cut containing e can instead also contain all

other edges incident to u. If e has at least deg(u)
2 , all other incident edges together are not heavier.

For a HeavyTriangle with vertices v1, v2 and v3, we can relax the condition. If for two of
the vertices the incident triangle edges together are at least as heavy as all other incident edges,
we can contract those, as shown in Figure 2.(5). Each of the continuous lines between v1 and v2
can be replaced with the dashed line without increasing the value of the cut. Thus, in every case
(v3 can be on either side of the cut), there is an optimal solution in which v1 and v2 are in the
same block. Thus, we can contract the edge according to Lemma 1.

The condition SemiEnclosed, shown in Figure 2.(6), considers a vertex v which is mostly incident
to terminal vertices. Let t1 be the terminal that is most strongly connected to v and t2 the
terminal with second highest connection strength. Now say that v is contracted into any terminal
vertex. All edges connecting v with other terminals are then edges connecting terminals and are
guaranteed to be in C. If w(v, t1) > w(v, t2) +

∑
u∈V \T w(v, u), i.e. (v, t1) is heavier than the

sum of (v, t2) and all edges connecting v with non-terminals, we can contract v into t1. This
follows from the fact that the weight of cut edges incident to v is at most deg(v) − w(v, t1) if v
is in the same block as t1. If we instead add v to the block of t2 (or any other block), at most

6

in cut not in cut

Figure 3: Branch on marked edge e in G, adjacent to a terminal - create two subproblems, (1) G/e
and (2) G− e.

w(v, t2) +
∑
u∈V \T w(v, u) of the edges incident to v would not be part of the cut. Thus, the

locally best choice is contracting v into t1. As this does not affect any other graph areas, this
choice is guaranteed to be optimal. We check both HeavyEdge and SemiEnclosed in a single run
labelled High. HeavyTriangle is checked in a run named Triangle.

High-connectivity edges The connectivity of an edge e = (u, v) is the value of the minimum

cut separating u and v. If an edge has connectivity ≥ Ŵ(G), it is guaranteed that u and v are in
the same block in V, as there can not be a multiterminal cut that separates them and has value
< Ŵ(G). We can therefore contract u and v. We now show how to improve the bound.

Lemma 3 If for a graph G with best known multiterminal cut Ĉ(G), vertices u and v
belong to different connected components of the minimum multiterminal cut G\C, then

λ(u, v) +
∑

i∈{1,...,t}\max2
λ(G,ti,T\{ti})

4 ≤ |W(G)|, where max2 is the set of the indices of the largest
2 values λ(G, ti, T\{ti}) in the sum.

Proof 3 In Appendix A

We can use Lemma 3 to contract high-connectivity edges. This condition is denoted as

HighConnectivity. For any edge e = (u, v), if λ(u, v) +
∑

i∈{1,...,k}\max2
λ(G,ti,T\{ti})

4 > |W| ≥ |Ŵ|,
u and v are guaranteed to be in the same block in V. Thus, we can contract them
into a single vertex according to Lemma 1.

As it is very expensive to compute the connectivity for every edge, we use the CAPFOR-
EST algorithm of Nagamochi et al. [21, 32, 33] to compute a connectivity lower bound γ(u, v)
for each edge e = (u, v) in G in near-linear time. If the lower bound γ(u, v) fulfills Equa-
tion 1, we can use Lemma 3 to contract u and v.

γ(u, v) > |Ŵ| −
∑
i∈{1,...,k}\max2

λ(G, ti, T\{ti})
4

(1)

5 Branching Tree Search

If our reductions detailed in Section 4 are unable to contract any edges in G, we branch on an edge
adjacent to a terminal. Figure 3 shows an example in which we chose an edge to branch on. For each
edge, there are two options: either the edge is part of the minimum multiterminal cut C(G) or it is

7

not. Lemmas 1 and 2 show that we can delete an edge that is in C(G) and contract an edge that is
not. Therefore we can build two subproblems, G/e and G−e and add them to the problem queue Q.

Both of the subproblems will have a higher lower bound and thus, the algorithm will defi-
nitely terminate. For G − e, we know that e is adjacent to a terminal s but not an edge con-
necting two terminals (otherwise it would have been deleted). Thus, it is in exactly one mini-
mum s-T-cut λ(G, s, T\{s}). For the lower bound, we half the value of all minimum s-T-cuts.
Deleting the edge indicates that it is definitely part of the multiterminal cut. Thus, we in-

creased the lower bound by w(e) − w(e)
2 = w(e)

2 .
For G/e we know that e = (s, v) is part of the largest isolating cut of s (as we contract the largest

isolating cut). In G/e terminal s is guaranteed to have a larger minimum s-T-cut, as otherwise
there would be an isolating cut of equal value containing v, which contradicts the maximality of
the contracted isolating cut. Thus λ(G/e, s, T\{s}) > λ(G, s, T\{s}) and no other minimum s-T-
cut can be decreased by an edge contraction. Thus, the lower bound of W(G/e) and W(G − e)
are both guaranteed to be higher than the lower bound of W(G).

Edge Selection In Section 8.2 we evaluate the following edge selection strategies: HeavyEdge

branches on the heaviest edge incident to a terminal; HeavyVertex branches on the edge between
the heaviest vertex that is in the neighborhood of a terminal to that terminal; Connection searches
the vertex that is most strongly connected to the set of terminals and branches on the heaviest edge
connecting it to a terminal; NonTerminalWeight branches on the edge between the vertex that has
the highest weight sum to non-terminal vertices and the terminal it is most strongly connected
with; and HeavyGlobal branches on the heaviest edge in the graph.

Sub-problem order In Section 8.3 we evaluate the following comparators for the priority queue
Q, i.e. the order in which we look at the problems. A straightforward indicator on whether a
problem can lead to a low cut is the current lower and upper bound for the best solution. If a
problem has a good lower bound, it has a large potential for improvement and if it has a good
upper bound there is already a good solution, potentially close to an even better solution in the
neighborhood. Thus, LowerBound orders the problems by their lower bound and solves the ones
with a better lower bound first while UpperBound first examines problems with a lower bound.
In either comparator, the respective other bound acts as a tie breaker. BoundSum orders prob-
lems by the sum of their upper and lower bound.

BiggerDistance first examines problems in which the distance between lower and upper bound
is very large. The conceptual idea is that those problems still have many unknowns and thus
could be interesting to examine. In contrast to that, LowerDistance first examines problems
with a lower distance of upper and lower bound, as those branches will likely have fewer sub-
branches. Following the same idea, MostDeleted first explores the problem that has the highest
deleted weight. SmallerGraph orders the graphs by the number of vertices and first examines
the smallest graph. As over the course of the algorithm a terminal might become isolated (as all
incident edges were deleted), not all problems have the same amount of terminals. The isolated
terminals are inactive and thus do not need any more flow computations. FewTerminals first ex-
amines problems with a lower number of active terminals. As there are many solutions with the
same amount of terminals, ties are broken using LowerBound.

8

6 Parallel Branch and Reduce

Our algorithm is shared-memory parallel. As we maintain a queue of problems which are inde-
pendent from each other, we can run our algorithm embarassingly parallel. The shared-memory
priority queue of problems is implemented as a separate queue for each thread to pull from. When
a thread adds a problem to the priority queue, it is added to a random queue with minimum queue
size. In order to exploit data and cache locality, we add problems to the queue of the local thread
if it is one of the queues with minimum size. Additionally, we fix each thread to a single CPU
thread in order to actually use those locality benefits. In the beginning of the algorithm, there is
only a single problem, which would leave all except for one processors idle, potentially for a long
time, as we have to solve k flow problems on the whole (potentially very large) graph. Thus, if
there are idle processors, we distribute the flow problems over different threads.

7 Combining Kernelization with ILP

Multiterminal cut problems are generally solved in practice using integer linear pro-
grams [31]. The following ILP formulation is adapted from [20] and implemented using
Gurobi 8.1.1. It is functionally equal to [31].

min
∑

{u,v}∈E

euv · w({u, v})

∀{u, v} ∈ E,∀k : euv ≥ xu,k − xv,k

∀{u, v} ∈ E,∀k : euv ≥ xv,k − xu,k

∀v ∈ V :
∑
k

xv,k = 1

∀i, j : xti,j = [i = j]

Here, xu,k is 1 iff vertex u is in Vk and 0 otherwise and euv is 1 iff (u, v) is a cut edge. We use
this ILP formulation as a baseline of comparison. Additionally, we also create a new algorithm
that combines the kernelization of our algorithm with integer linear programming. Using flow
computations and kernelization routines, we are able to significantly reduce the size of most graphs
while still preserving the minimum multiterminal cut. As the complexity of the ILP depends
on the size of the graph and the complexity of the branch-and-reduce algorithm also depends
on the value of the cut, this is fast on graphs with a high cut value in which the kernelization
routines can reduce the graph to a very small size but with a large cut value. In the following,
our algorithm Kernel+ILP first runs kernelization until no further reduction is possible and then
solves the problem using the above integer linear programming formulation.

8 Experiments and Results

We now perform an experimental evaluation of the proposed algorithms. This is done in the
following order: first analyze the impact of algorithmic components on our branch-and-reduce
algorithm in a non-parallel setting, i.e. we compare different variants for branching edge selection,

9

priority queue comparator and the effects of the kernelization operators. We then report the speedup
over ILP formulation and as well as parallel speedup on a variety of graphs. Lastly, we perform
experiments on large real-world networks of various sources and protein-protein interaction graphs
comparing Kernel+ILP and the branch-and-reduce algorithm.

8.1 Experimental Setup and Methodology

We implemented the algorithms using C++-17 and compiled all codes using g++-7.4.0 with full
optimization (-O3). Our experiments are conducted on a machine with two Intel Xeon Gold
6130 with 2.1GHz with 16 CPU cores each and 256 GB RAM in total. We perform five repe-
titions per instance and report average running time. In this section we first describe experimental
methodology. Afterwards, we evaluate different algorithmic choices in our algorithm and then
we compare our algorithm to the state of the art. When we report a mean result we give the
geometric mean as problems differ strongly in result and time.

Performance plots relate the fastest running time to the running time of each other algorithm on
a per-instance basis. For each algorithm, these ratios are sorted in increasing order. The plots show
the ratio talgorithm/tbest on the y-axis. A point significantly above one indicates that the running
time of the algorithm was considerably worse than the fastest algorithm on the same instance. A
value of one therefore indicates that the corresponding algorithm was one of the fastest algorithms

Table 1: Large Real-world Benchmark Instances

Graph n m

Section 8.7: Social, Web and Map Graphs

bcsstk30 [37] 28 924 1.01M
ca-2010 [3] 710K 1.74M
ca-CondMat [13] 23 133 93 439
cit-HepPh [13] 34 546 422K
eu-2005 [5] 862K 16.1M
higgs-twitter [13] 457K 14.9M
in-2004 [5] 1.38M 13.6M
ny-2010 [3] 350K 855K
uk-2002 [5] 18.5M 261M
vibrobox [37] 12 328 165K

Section 8.8: Protein-protein Interaction

Acidithiobacillus ferrivorans 3 093 5 394
Agaricus bisporus 11 271 14 636
Candida maltosa 5 948 19 462
Escherichia coli 4 127 13 488
Erinaceus europaeus 19 578 68 066
Homo sapiens 19 566 324K
Mesoplasma florum 683 2 365
Saccharomyces cerevisiae 6 691 69 809
Toxoplasma gondii 7 988 11 779
Vitis vinifera 29 697 70 206

10

0 25 50 75 100 125 150 175 200
Instances

1

1.2

1.4

1.6

1.8

2.0
t a

lg
o/t

be
st

Connection
NonTerminalWeight
HeavyEdge
HeavyGlobal
HeavyVertex

(a) RHG graphs with partition centers as terminals

0 10 20 30 40
Instances

1

1.2

1.4

1.6

1.8

2.0

t a
lg

o/t
be

st

Connection
NonTerminalWeight
HeavyEdge
HeavyGlobal
HeavyVertex

(b) Map graphs with partition centers as terminals

Figure 4: Performance plots for branching edge selection variants

to compute the solution. Thus an algorithm is considered to outperform another algorithm if its
corresponding values are below those of the other algorithm.

8.1.1 Instances

We use multiple set a instances to avoid overtuning the branch-and-reduce algorithm. To analyze
the impact of algorithmic components in Sections 8.2 to 8.4, we generate random hyperbolic graphs
using the KaGen graph generator [16]. These graphs have n = 214 − 218 and an average degree of
8, 16 and 32. For each graph size, we use three generated graphs and compute the multiterminal
cut, each with k ∈ {3, 4, 5, 6, 7}. We use randomy hyperbolic graphs as they have power-law degree
distribution and resemble a wide variety of real-world networks. Additionally, we also use a family
of weighted graphs from the 10th DIMACS implementation challenge [3]. These graphs depict US
states, where a vertex depicts a census block and a weighted edge denotes the length of the border
between two blocks. We use the 10 states with fewest census blocks (AK, CT, DE, HI, ME, NH,
NV, RI, SD, VT). For each state, we set the number of terminals k ∈ {3, 4, 5, 6, 7}. A multiterminal
cut on these graphs depicts the shortest border that respects census blocks and separates a set of
pre-defined blocks (or groups of blocks). Here, we use one processor and set a timeout of 3 minutes
and a memory limit of 20GiB. On these instances we also run the ILP and compare the results in
Section 8.5 – note that running the ILP itself without the kernelization rules on the large instances
below is not feasible. We then look at the impact of parallelization for our algorithms in Section 8.6.

When comparing Kernel+ILP with our branch and reduce framework in Sections 8.7 and 8.8
on large instances, we use all 32 cores of the machine (for the ILP as well as the branch and
reduce framework). Here, we set a time limit of 1 hour and a memory limit of 250GiB and use the
following graphs In Section 8.7 we perform experiments on 10 large real-world networks of various
sources. Table 1 shows the sources and properties of the graphs. For each graph, we solve the
minimum multiterminal cut problem for k ∈ {3, 4, 5, 8} terminals and p ∈ {10%, 15%, 20%, 25%}
vertices in the terminal. In Section 8.8 we perform experiments on protein-protein interaction
networks generated from the STRING protein interaction database [39, 40] by using all edges
they predict with a high certainty. We use the protein description to assign functions (block
terminal affiliations) to proteins (vertices). We use the first occurence of a set of pre-defined
function classes. For each graph, we examine problems with the 4, 5, 6, 7, 8 most often occuring
functions and with all (up to 15, if all occuring in an organism) classes.

11

0 10 20 30 40 50 60 70 80
Instances

1

1.2

1.4

1.6

1.8

2.0
t a

lg
o/t

be
st

BoundSum
FewTerminals
LowerBound
BiggerDistance
LowerDistance
MostDeleted
SmallerGraph
UpperBound

(a) Graphs with 20% of vertices in terminal

0 20 40 60 80 100 120 140
Instances

1

1.2

1.4

1.6

1.8

2.0

t a
lg

o/t
be

st

BoundSum
FewTerminals
LowerBound
BiggerDistance
LowerDistance
MostDeleted
SmallerGraph
UpperBound

(b) Graphs with 80% of vertices in terminal

Figure 5: Performance plots for priority queue comparator variants

8.2 Branching Edge Selection

Figure 4 shows the results for the branching edge selection rules. In Subfigure 4a, we show perfor-
mance plots for RHG graphs and in Subfigure 4b we show performance plots for map graphs. To
find terminals, we partition the RHG graphs into k parts and perform a breadth-first search starting
in the block boundary. We define the vertex encountered last as the block center and use it as a
terminal. In this experiment we use the BoundSum comparator and enable all kernelization rules.

As the minimum multiterminal cut of those problems usually turns out to be the trivial
multiterminal cut of k − 1 blocks of size 1 and one block that comprises of the rest of
the graph, we instead pick the last 10 vertices encountered by the breadth-first search per
block and contract them into a terminal. The minimum multiterminal cut of the resulting
graph is usually not equal to the trivial multiterminal cut.

In general, we aim to increase the lower bound by a large margin to reduce the number of
subproblems that need to be checked. When we branch on a heavy edge, this increases the lower
bound for G−e by a large amount. For G/e, the lower bound is increased by half the amount of flow
that is now added to the network. For a vertex that has a large number of edges to non-terminal
vertices, contracting it into a terminal is expected to increase the flow by a large margin. The
variant HeavyVertex chooses the edge e, for which the sum of edge weight and outgoing weights
are maximized. It thus outperforms all other variants in both experiments. The only variant that
is not guaranteed to be fixed-parameter tractable is HeavyGlobal, as this variant can also contract
edges that are not incident to a terminal (and thus do not necessarily increase the lower bound).
However, most edge contractions happen near terminals, so most heavy edges occur near terminals
and thus HeavyGlobal often performs similar to HeavyEdge.

In all following experiments we use HeavyVertex, as it outperforms all other variants consis-
tently.

8.3 Priority Queue Comparator

We now explore the effect of the comparator used in the priority queue Q. The choice of com-
parator decides which problems are highest priority and will be explored first. We want to first
explore the problems and branches which will result in an improved solution, as this allows us to
prune more branches. However, it is not obvious which criterion correctly identifies problems that

12

0 50 100 150 200 250 300 350 400
Instances

1

1.2

1.4

1.6

1.8

2.0
t a

lg
o/t

be
st

L+W+T+HighConnectivity
Low+High+Triangle
Low+High
Low
Disabled

(a) Impact of kernelization on RHG graphs.

0 20 40 60 80 100
Instances

1

1.2

1.4

1.6

1.8

2.0

t a
lg

o/t
be

st

L+W+T+HighConnectivity
Low+High+Triangle
Low+High
Low
Disabled

(b) Impact of kernelization on map graphs.

Figure 6: Performance plots for kernelization variants

might yield improved solutions, either directly on indirectly. Thus, we perform experiments on
the same set of random hyperbolic and map graphs.

On the random hyperbolic graphs examined in the previous experiment, the minimum multi-
terminal cut is often equal to the sum of all minimum-s-T-cuts excluding the heaviest. This is the
cut that is found in the first iteration. If this is also the optimal cut, we definitely have to check
all subproblems whose lower bound is lower than this cut. As the priority queue comparator only
changes the order in which we examine those problems, the experimental results using the same
problems as the previous section turned out very inconclusive. However, if we contract a sizable
fraction of each block into its terminal, the minimum multiterminal cut is usually not equal to
the union of s-T-cuts. Figure 5a shows results for 20% of vertices in the terminal on RHG graphs
and Figure 5b show results for 80% of vertices in the terminal.

LowerBound and FewTerminals are very competitive on most graphs. This indicates that prob-
lems with a low lower bound are very likely to yield improved results. The next fastest variant is
BoundSum, which is almost competitive with 20% of vertices in the terminal but significantly slower
with 80% of vertices in the terminal. However, BoundSum uses far less memory, as the lower bound
of the newly created problems depends on the lower bound of the current problem. BoundSum exam-
ines many problems for which the lower bound is close to the currently best known solution. Thus,
many newly created subproblems are immediately discarded when their lower bound is not lower
than the currently best known solution. None of the other variants have noteworthy performance.

8.4 Kernelization

We now study the effects of the kernelization operations performed in this work. For this purpose,
we compare our algorithm without any kernelization to variants that enable different subsets of the
kernelization operators detailed in Section 4. Figure 6a shows the results on the RHG graphs and
Figure 6b shows the results on the map graphs. We use BoundSum as the priority queue comparator.
In both cases, we combine results of 10 vertices, 20% and 80% of vertices near block center in the
terminal. The requirements in Low and High can be checked quickly whereas checking Triangle

and HighConnectivity requires significant time. Thus, running Low+High is always useful, no
matter how many edges can actually be contracted. On the RHG graphs in Figure 6a, Triangle
does not find a lot of contractible edges that weren’t already found by the previous kernelization
operators. The high-degree vertices in the center of the hyperbolic plane have very high connectivity

13

0 20 40 60 80 100 120 140
Instances

1

10

100

1106
t IL

P/t
ou

r

Figure 7: Speedup of optimized branch-and-
reduce to ILP

1 2 4 8 16 32 64
Processes

1
2
4
6
8
10

Pa
ra

lle
l S

pe
ed

up

Figure 8: Parallel speedup on a variety of
graphs. (low-alpha dot: one graph, solid dot:
average speedup)

and thus, HighConnectivity is able to significantly reduce graph sizes and significantly improve
running times compared to all other variants. In contrast, on the map graphs in Figure 6b, the
connectivity of an edge can only be as high as the border length of the smaller vertex. Thus, we
do not find many contractible edges. Triangle, however, is able to find many edges to contract, as
vertices usually have few high degree neighbours. We can see that the utility of the kernelization
operators depends heavily on the structure of the graph.

8.5 Comparison to ILP

Figure 7 shows the speedup of the engineered branch-and-reduce algorithm, using HeavyVertex

edge selection, LowerBound priority queue comparator and all kernelization rules enabled, to the
ILP on all graphs from the previous subsections in which the ILP managed to find the minimum
multiterminal cut within 3 minutes. The branch-and-reduce algorithm outperforms the ILP on
almost all graphs, often by multiple orders of magnitude. The ILP only solves 24% of all problems,
our algorithm solves 61%; on the problems solved by both, our optimized algorithm has a mean
speedup factor of 67, a median speedup factor of 95 and a maximum speedup factor of 1 106.
The mean speedup factor of the average of our algorithms compared to ILP is 43 with a median
speedup factor of 71. Compared to the original ILP, Kernel+ILP is faster on all instances, has a
mean speedup factor of 44 and a median speedup factor of 49. For figures, see Appendix B.

This allows us to solve instances with more than a million vertices, while the ILP was unable to
solve any instance with more than 100 000 vertices. As the basic ILP is unable to solve any large
instances, we do not use it in the following experiments on large graphs.

8.6 Parallel Branch and Reduce

The previous experiments were all performed sequentially on a single thread. To see parallel
speedup, we chose the 14 RHG and 9 map graphs that required the longest running time out
of all terminated instances and solve them with varying amounts of processes. Figure 8 shows
the speedup for all graphs. The machine has 2 processors with 16 cores each and hyperthread-
ing enabled. We can see that the average speedup factor is 7.9x with 16 threads, i.e. one thread
for each core of a single CPU. The speedup only slightly increases when using both CPUs and
32 cores, to a factor of 9.7x. This is caused by the large amount of data which needs to be

14

0 25 50 75 100 125 150 175
Time [s]

33000

33100

33200

M
in

im
um

 C
ut

 V
al

ue
bcsstk30.graph perc=25% k=8

ILP+Kernelization
bound_sum
few_terminals
lower_bound

0 500 1000 1500 2000 2500 3000 3500
Time [s]

2.2

2.3

2.4

2.5

M
in

im
um

 C
ut

 V
al

ue

1e8ca2010.mtx-metis perc=25% k=8
ILP+Kernelization
bound_sum
few_terminals
lower_bound

0 50 100 150 200 250 300 350 400
Time [s]

98800

98900

99000

99100

M
in

im
um

 C
ut

 V
al

ue

eu-2005.graph perc=25% k=5
ILP+Kernelization
bound_sum
few_terminals
lower_bound

0 500 1000 1500 2000 2500
Time [s]

8860

8880

8900

8920

8940

M
in

im
um

 C
ut

 V
al

ue

in-2004.graph perc=25% k=4
ILP+Kernelization
bound_sum
few_terminals
lower_bound

250 500 750 1000 1250 1500 1750 2000
Time [s]

384590

384600

384610

384620

M
in

im
um

 C
ut

 V
al

ue

uk-2002.graph perc=25% k=3
ILP+Kernelization
bound_sum
few_terminals
lower_bound

0 500 1000 1500 2000 2500 3000 3500
Time [s]

750

800

850

M
in

im
um

 C
ut

 V
al

ue

+1.029e6higgs-twitter perc=25% k=3
ILP+Kernelization
bound_sum
few_terminals
lower_bound

Figure 9: Progression of best result over time. Dot at end symbolizes that algorithm certifies
optimality.

transferred on the comparatively slower connection between the processors. When using hyper-
threading, the average speedup even slows down to a factor of 7.1x.

On a few problems there is almost no parallel speedup. These are the problems in which there
is a large amount of work in a single graph and the flow problems are of starkly different difficulties.
Thus, we would need to solve the flow problems in parallel to achieve a speedup in these graphs. As
we only observed this behaviour in a few cases in the smaller RHG graphs and never in any large
real-world networks, we refrained from including that additional complexity in our algorithm. If
we exclude these 3 problems from the problem set, we have an average speedup factor of 8.9x with
16 threads and of 10.9x with 32 threads. Kernel+ILP achieved almost no parallel speedup on these
problems. This is the case as a large part of the solving time is spent in the sequential root relaxation.

15

Algorithm K+ILP BSum FTerm LBound

best result 118 136 126 125
terminated 46 35 33 33
mean result 146 570 145 961 146 052 146 025
mean time 18,69s 6,71s 6,97s 6,78s

Table 2: Overview of large real-world networks.

Algorithm K+ILP BSum FTerm LBound

best result 57 34 26 23
terminated 57 25 23 21
mean result 4 183 4 210 4 218 4 222
mean time 0,21s 0,33s 0,36s 0,40s

Table 3: Overview of protein-protein-networks.

8.7 Large Real-World Networks

We aim to solve multiterminal cut problems on the large real-world networks in Table 1 from a wide
variety of graph and problem classes. Figure 9 shows the progression of the best result over time for
a set of interesting problems. Table 2 gives an overview over the results. For each variant we show
how often it produced the best result over all variants and how often it terminated with the optimal
result. It also gives the mean result and time for all problems which were solved to optimality by
all variants. Both in Figure 9 and Table 2 we can see that the branch and reduce variants find
good solutions faster than Kernel+ILP. However, the variants often run out of memory in some
of the largest instances. Especially in cases where the best multiterminal cut was already found
(but not confirmed to be optimal) by the kernelization, Kernel+ILP managed to certify optimality
more often than the branching variants. Thus it has the highest amount of terminated results, but
reports significantly worse results in average. Kernel+ILP has about half as much improvements
as the best variant BoundSum. In addition to giving the best results, variant BoundSum also has the
lowest mean time in problems which were solved by all variants, however the improvement over the
other branch-and-reduce variants is miniscule. The correlation between running time and number
of vertices in the kernel graph is much stronger in Kernel+ILP compared to the branching variants.

8.8 Protein-Protein Interaction Networks

Multiterminal cuts can be used for protein function prediction by creating a terminal for each
possible protein function and adding all proteins which have this function to this terminal [24, 31,
41]. Table 3 shows the results for these graphs. We can see that Kernel+ILP outperforms branch-
and-reduce by a large margin on most graphs. This is the case because the kernelization is able
to reduce the size of the graphs severely. These small problems with high cut values are better
suited for Kernel+ILP than the branch-and-bound variants whose running time is more correlated
with the value of the minimum multiterminal cut. The mean times are very low as some problems
can be solved very quickly and thus drag the mean of all algorithms down.

16

9 Conclusion

In this paper, we engineered data reduction rules for the minimum multiterminal cut problem
with k terminals. These reductions are used within a branch-and-reduce framework as well as
to boost the performance of an ILP formulation for the problem. Our experiments a) show that
kernelization – especially our newly introduced kernelization operators – has a significant impact on
both, the branch-and-reduce framework as well as the ILP formulation and b) show a clear trade-
off: combining reduction rules with the ILP is very fast for problems which have a small kernel but
a high cut value and the fixed-parameter tractable branch-and-reduce algorithm is highly efficient
when the cut value is small. Overall, we obtain algorithms that are multiple orders of magnitude
faster than the ILP formulation which is de facto standard to solve the problem to optimality.
Future work includes combining the branching algorithm with integer linear programming so that
all occuring subproblems can be solved using the algorithm best suited for their problem properties.
We also aim to introduce scalable distributed parallelism.

References

[1] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
475–486. IEEE, 2006.

[2] R. Andersen and K. J. Lang. Communities from seed sets. In Proceedings of the 15th interna-
tional conference on World Wide Web, pages 223–232. ACM, 2006.

[3] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Benchmarking
for graph clustering and partitioning. Encyclopedia of Social Network Analysis and Mining,
pages 73–82, 2014.

[4] Y. Bian, J. Ni, W. Cheng, and X. Zhang. Many heads are better than one: Local community
detection by the multi-walker chain. In 2017 IEEE International Conference on Data Mining
(ICDM), pages 21–30. IEEE, 2017.

[5] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proceedings
of the Thirteenth International World Wide Web Conference (WWW 2004), pages 595–601,
Manhattan, USA, 2004. ACM Press.

[6] N. Buchbinder, J. S. Naor, and R. Schwartz. Simplex partitioning via exponential clocks and
the multiway cut problem. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 535–544. ACM, 2013.

[7] Y. Cao, J. Chen, and J.-H. Fan. An o(1.84 k) parameterized algorithm for the multiterminal
cut problem. Information Processing Letters, 114(4):167–173, 2014.

[8] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental study
of minimum cut algorithms. In Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’97), pages 324–333. SIAM, 1997.

[9] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node
multiway cut problem. Algorithmica, 55(1):1–13, 2009.

17

[10] A. Clauset. Finding local community structure in networks. Physical review E, 72(2):026132,
2005.

[11] W. H. Cunningham. The optimal multiterminal cut problem. In Reliability of computer and
communication networks, pages 105–120, 1989.

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

[13] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1, 2011.

[14] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8(3):399–404, 1956.

[15] L. R. Ford Jr and D. R. Fulkerson. Flows in networks. Princeton university press, 2015.

[16] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz. Communication-free
massively distributed graph generation. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 336–347. IEEE, 2018.

[17] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of computer and system sciences, 30(2):209–221, 1985.

[18] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of
the ACM, 35(4):921–940, 1988.

[19] T. Harris and F. Ross. Fundamentals of a method for evaluating rail net capacities. Technical
report, RAND CORP SANTA MONICA CA, 1955.

[20] A. Henzinger, A. Noe, and C. Schulz. ILP-based Local Search for Graph Partitioning. Pro-
ceedings of the 17th International Symposium on Experimental Algorithms (SEA 2018), 2018.

[21] M. Henzinger, A. Noe, and C. Schulz. Shared-memory Exact Minimum Cuts. Proceedings of
the 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019.

[22] M. Henzinger, A. Noe, C. Schulz, and D. Strash. Practical minimum cut algorithms. In
2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 48–61. SIAM, 2018.

[23] M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1919–
1938. SIAM, 2017.

[24] U. Karaoz, T. Murali, S. Letovsky, Y. Zheng, C. Ding, C. R. Cantor, and S. Kasif. Whole-
genome annotation by using evidence integration in functional-linkage networks. Proceedings
of the National Academy of Sciences, 101(9):2888–2893, 2004.

[25] I. M. Kloumann and J. M. Kleinberg. Community membership identification from small seed
sets. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 1366–1375. ACM, 2014.

18

[26] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of algorithms for network
community detection. In Proceedings of the 19th international conference on World wide web,
pages 631–640. ACM, 2010.

[27] F. Luo, J. Z. Wang, and E. Promislow. Exploring local community structures in large networks.
Web Intelligence and Agent Systems: An International Journal, 6(4):387–400, 2008.

[28] S. A. Macskassy and F. Provost. A simple relational classifier. Technical report, NEW YORK
UNIV NY STERN SCHOOL OF BUSINESS, 2003.

[29] D. Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006.

[30] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you know: inferring
user profiles in online social networks. In Proceedings of the third ACM international conference
on Web search and data mining, pages 251–260. ACM, 2010.

[31] E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome predic-
tion of protein function via graph-theoretic analysis of interaction maps. Bioinformatics,
21(suppl 1):i302–i310, 2005.

[32] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992.

[33] H. Nagamochi, T. Ono, and T. Ibaraki. Implementing an efficient minimum capacity cut
algorithm. Mathematical Programming, 67(1):325–341, 1994.

[34] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47(1):19–36, 1990.

[35] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

[36] U. Pferschy, R. Rudolf, and G. J. Woeginger. Some geometric clustering problems. Nord. J.
Comput., 1(2):246–263, 1994.

[37] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and multilevel
optimisation approach to graph-partitioning. Journal of Global Optimization, 29(2):225–241,
2004.

[38] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Trans.
Software Eng., 3(1):85–93, 1977.

[39] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks,
M. Stark, J. Muller, P. Bork, et al. The string database in 2011: functional interaction networks
of proteins, globally integrated and scored. Nucleic acids research, 39(suppl 1):D561–D568,
2010.

[40] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T.
Doncheva, J. H. Morris, P. Bork, et al. String v11: protein–protein association networks with
increased coverage, supporting functional discovery in genome-wide experimental datasets.
Nucleic acids research, 47(D1):D607–D613, 2018.

19

[41] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function prediction
from protein-protein interaction networks. Nature biotechnology, 21(6):697, 2003.

[42] M. Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory of
Computing Systems, 46(4):723–736, 2010.

[43] W. Ye, L. Zhou, D. Mautz, C. Plant, and C. Böhm. Learning from labeled and unlabeled
vertices in networks. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1265–1274. ACM, 2017.

A Proofs

In order to prove Lemma 3 we first prove the following useful claim:

Claim 1 For any two nodes u and v, if u and v belong to different connected components of

G\C(G), then λ(u, v) ≤
∑

i∈{1,...,k} δ(R(ti))

4 + δ(R(u))+δ(R(v))
4 , where δ are the weighted node degrees

in the quotient graph corresponding to C(G) and R(x) is the block of a vertex x as defined by the
cut C(G).

Proof 4 Let GR be the contracted graph where every block R(ti) in G is contracted into a single
vertex and let |S(u, v)| be a minimum u-v-cut in GR. By definition of the minimum cut λ(u, v),
λ(u, v) ≤ |S(u, v)|. Slightly abusing the notation we denote by R(ti) the vertex of GR that results
from contracting the block R(ti).

For every vertex w ∈ GR that does not represent a block that contains either u or v, at most
deg(w)

2 edges are in |S(u, v)|. This follows directly from the assumption that |S(u, v)| is minimal. If

more than deg(w)
2 edges incident to w are in |S(u, v)|, moving w to the other side of the cut would

give a better cut. Thus, at most half of the edges incident to w are in |S(u, v)|.
We can not make this argument for the blocks containing u and v, as potentially all edges incident

to their blocks could be in the minimum multiterminal cut. Thus, 2 · |S(u, v)| ≤
∑

i∈{1,...,k} δ(R(ti))

2 +
δ(R(u))

2 + δ(R(v))
2 . The factor 2 on the left side is caused by the fact that every edge is incident to

two blocks. As we do not know the multiterminal cut S, we need to assume that they could be the
blocks with the largest cuts δ(R(ti)). Dividing each side by 2 finishes the proof.

Claim 2 For any two nodes u and v, if u and v belong to different connected components of G\C(G),

then λ(u, v) +
∑

i∈{1,...,k} δ(R(ti))

4 ≤ W.

Proof 5 Using Claim 1 we know that λ(u, v)+
∑

i∈{1,...,k} δ(R(ti))

4 ≤
∑

i∈{1,...,k} δ(R(ti))

2 . By definition

of δ,
∑

i∈{1,...,k} δ(R(ti))

2 =W(G).

We now use Claims 1 and 2 to prove Lemma 3.

Proof 6 Let vertices u and v be in different blocks. Then λ(u, v) +
∑

i∈{1,...,t}\max2
λ(G,ti,T\{ti})

4 ≤
λ(u, v) +

∑
i∈{1,...,t}\max2

δ(R(ti))

4 ≤
∑

i∈{1,...,t}\max2
δ(R(ti))

2 =W(G).
The first inequality follows from the fact that λ is per definition the minimal cut separating t

from T\{ti} and thus λ(G, ti, T\{ti}) ≤ δ(R(ti)).

Thus, we know that if λ(u, v) +
∑

i∈{1,...,t}\max2
λ(G,ti,T\{ti})

4 > W(G), u and v are in the same
block and the edge connecting them can be safely contracted.

20

B Additional Figures

0 25 50 75 100 125 150 175
Instances

1

10

100

615

t IL
P/t

ou
r

Figure 10: Speedup of Kernel+ILP to ILP

0 20 40 60 80 100 120 140
Instances

1

10

100

1087

t IL
P/t

ou
r

Figure 11: Speedup of avg. branch-and-reduce to ILP

21

	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Multiterminal Cuts

	3 Branch and Reduce for Multiterminal Cut
	4 Kernelization
	4.1 Local Contraction

	5 Branching Tree Search
	6 Parallel Branch and Reduce
	7 Combining Kernelization with ILP
	8 Experiments and Results
	8.1 Experimental Setup and Methodology
	8.1.1 Instances

	8.2 Branching Edge Selection
	8.3 Priority Queue Comparator
	8.4 Kernelization
	8.5 Comparison to ILP
	8.6 Parallel Branch and Reduce
	8.7 Large Real-World Networks
	8.8 Protein-Protein Interaction Networks

	9 Conclusion
	A Proofs
	B Additional Figures

