
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

„LeMATo - LexicoMetric Analysis TOol“

verfasst von / submitted by

Martin Albin Perdacher, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree

Diplom-Ingenieur (Dipl-Ing.)

Wien, 2016 / Vienna, 2016

Studienkennzahl lt. Studienblatt / A 066 940
degree programme code as it appears on
the student record sheet

Studienrichtung lt. Studienblatt:/ Masterstudium Scientific Computing
degree programme as it appears on
the student record sheet

Betreut von / Supervisor: ao. Univ.-Prof. MMag. Dr. Werner Winiwarter

Danksagungen

Ich möchte meinem Betreuer Herrn Prof. MMag. Dr. Winiwarter danken, dass er mir sehr
viel Raum für meine eigenen Ideen gegeben hat und dass ich diese auch verwirklichen durfte.
Seine genaue und zügige Arbeitsweise, sowie seine wissenschaftliche Beratung haben zum
Gelingen dieser Arbeit beigetragen.

Besonderen Dank möchte ich auch meinen Eltern Monika und Albin Perdacher für Ihre Un-
terstützung in jeglicher Hinsicht durch mein gesamtes Leben ausprechen. Viele Dinge hätte
ich ohne sie nicht erreichen können.

Auch meiner Frau Eva Perdacher möchte ich hier auf diesem Weg danken. Ihre Geduld,
ihr Vertrauen und ihr unglaublich großes Herz haben mir unzählige Male die nötige Ruhe
gegeben, die für ein Studium notwendig ist.

Eine Arbeit beginnt mit der Idee. Hierfür danke ich meinem Freund Alexander Böckmann.

Zu guter Letzt möchte ich auch meiner Großmutter Theresia Rasinger danken. Ohne Ihre
Unterstützung hätte ich diese Arbeit nicht fertigstellen können.

Contents

I Introduction and preliminaries

1 Introduction 1

2 Comparison of tools applied in lexicometrics 3

II Theory 7

3 Lexicometrics, support for discourse analysis 9
3.1 Notes on lexicometrics . 10

3.1.1 Corpus compilation . 10
3.1.2 Corpus-based vs corpus-driven . 10
3.1.3 Linguistic preprocessing . 11

3.2 Frequency analysis . 12
3.3 Concordance analysis . 14
3.4 Analysis of characteristics in sub-corpora . 14
3.5 Co-occurrence analysis . 15
3.6 Grouping support . 16
3.7 Micro analysis . 16

4 Discourse theory 21
4.1 Post-structuralism . 21

4.1.1 Structuralism . 21
4.1.2 Language as a representational system of society 22
4.1.3 French discourse analysis . 22

4.2 Discourse methodology with lexicometrics . 23
4.2.1 Lexicometrics as macro analysis . 24

5 Finding themes 27
5.1 What is a theme? . 27
5.2 The word space model . 29

5.2.1 Related vector spaces . 29
5.2.2 Hyperspace analogue to language . 30

5.3 Clustering . 31
5.3.1 Related clustering of word-context matrices 32
5.3.2 Hierarchical agglomerative clustering 32

6 Calculations in the vector space 35
6.1 Co-occurrence measures . 35
6.2 Adjusting the weights . 37

6.2.1 Tf-idf . 37
6.2.2 Point-wise mutual information . 37

6.3 Smoothing the matrix . 38
6.4 Similarities and dissimilarities . 39

6.4.1 Similarities . 39
6.4.2 Dissimilarities . 40
6.4.3 Implementation notes . 41

6.5 Linkage criteria . 41
6.5.1 Maximum or complete-linkage clustering 41
6.5.2 Minimum or single linkage clustering 41
6.5.3 UPGMA . 42
6.5.4 WPGMC . 42
6.5.5 Implementation notes . 42

7 Significant words 43
7.1 Comparing words using reference corpora with test statistics 44

7.1.1 Chi-square test . 44
7.1.2 Log-likelihood ratio test . 45

7.2 Comparing words using reference corpora with frequency adjustment 46
7.2.1 Characteristic Element Diagnostic - ced 46

7.3 Notes on corpus comparison . 48

III Implementation 51

8 Requirements on LeMATo 53

9 Software Stack 57
9.1 Groovy and Grails . 57
9.2 Elasticsearch . 58
9.3 The S-Space Package . 60
9.4 Other software dependencies . 61

9.4.1 Querying and using Elasticsearch . 61
9.4.2 Layout and appearance . 62

10 Design of LeMATo 65
10.1 Grails MVC(S) . 65
10.2 Elasticsearch . 66

10.2.1 Relational Elasticsearch . 66
10.2.2 Obtaining an Elasticsearch client . 67

10.3 Frequency analysis . 70
10.4 Concordance analysis . 71
10.5 Significance analysis . 71

10.5.1 Significance measure . 71
10.5.2 Grouping words according to their similarity 71

10.6 Latency . 73

IV Evaluation and conclusion 75

11 Evaluation of results in LeMATo 77
11.1 Frequency analysis . 77
11.2 Significance analysis . 81
11.3 Themes . 82

12 Concluding remarks 89
12.1 Lessons learned . 90
12.2 Outlook . 90

Appendices 93

A Abstract 95
A.1 English abstract . 95
A.2 Deutsche Zusammenfassung . 96

B User Guide 97
B.1 Corpus definition . 97
B.2 Querying in LeMATo . 98
B.3 Frequency analysis . 100
B.4 Concordance analysis . 102
B.5 Characteristics analysis of sub-corpora . 102

C Supplementary material 109

List of Figures

3.1 Preprocessing of a text stream. The text stream gets tokenized and filtered to
process the stream into terms. Terms are the basic unit in the vocabulary of a
corpus, which gets counted and leads to term frequencies. 12

3.2 Web-flow for the frequency analysis. The frequency table (a) gives a good
overview of the most frequent words. They could be further explored in the
diachronic view (b) as well as the word frequencies for each period (c). 13

3.3 Word tree for the concordance analysis of the word “dance” in the following
three sentences: “how they dance in the courtyard”, “some dance to remember”
and “some dance to forget”. The words “some” and “to” have a larger font,
because they appear two times in the text. 14

4.1 The Saussurian sign. 22
4.2 Workflow performed in “Die neoliberale Stadt” [78]. 24
4.3 Selected collocations with “Köln”. The closer a word is placed in the centre, the

higher the ced-value. The font-size corresponds to the word frequency. Figure
taken from [78]. Mattissek permits us to distribute the figure through this
master thesis. 25

4.4 Collocations of keywords referring to the city image marketing. The thicker the
arrows, the more often terms co-occur. This figure is made by hand. Figure
taken from [78]. Mattissek permits us to distribute the figure through this
master thesis. 26

5.1 The aim of this grouping is to increase the legibility for the reader. There are
media related terms on the left and social themes to the right. Terms are the
more significant (CED value, see Section 7.2.1), the more they are placed to the
center. Figure taken from [78]. Mattissek permits us to distribute the figure
through this master thesis. 28

5.2 Enumeration describing the theme finding process. 29
5.3 A simplified representation of theme finding. Six words are applied to the

word vector space according to their spatial proximity within the corpus. A
clustering algorithm finds two groups (a fire fighting group marked in green
and a media related group marked in red). 29

5.4 Dendrogram for the sentence in the Hyperspace Analogue to Language (HAL)-
matrix (see Table 5.1). 34

6.1 L1 metric (red dashed line) and L2 metric (green dashed line) in a two dimen-
sional plot. 40

7.1 Calculation of the ced-value: Hyper-geometric distribution (corpus size (N):
160000, size of sub-corpus (n): 20000, word frequency in the whole corpus (M):
36). 47

8.1 Use case diagram for LexicoMetric Analysis TOol (LeMATo). Each analysis
requires a corpus definition. 56

9.1 Depicting Grails architecture. 57

10.1 Grails Model-View-Controller-Service (MVCS) paradigm as it is used in LeMATo 65
10.2 Sequence diagram of MVCS archtecture. 66
10.3 Class diagram. 68
10.4 Obtaining an Elasticsearch client using Spring factory. 69
10.5 Web flow for the frequency analysis. 70
10.6 For the calculation of significant terms in the subset, we are using the superset

of the corpus as a background reference. 72
10.7 Steps to perform the significance analysis. 72
10.8 Latency for the frequency analysis. See Table 10.1 for details to our testing

environment. 74
10.9 Latency for the significance pipeline. See Table 10.1 for details to our testing

environment. 74

11.1 Comparing frequencies observed in LeMATo (built with stemming and stop-
words) with frequencies observed in AntConc (built with lemmatisation). . . . 78

11.2 Term frequencies of the sub-corpora. 81
11.3 Comparison of the significance calculation in AntConc and in LeMATo for the

sub-corpus labelled with the tag “Frankfurt”. 84
11.4 Comparison of the significance calculation in AntConc and in LeMATo for the

sub-corpus labelled with the tag “Leipzig”. 85
11.5 Comparison of the significance calculation in AntConc and in LeMATo for the

sub-corpus labelled with the tag “Köln”. 86
11.6 Dendrogram on the discourse of the expansion of the airport in Frankfurt. . . 87

B.1 Creating a new corpus with name and description. 98
B.2 Importing a LexisNexis file and adding it to the corpus. 99
B.3 Parameter selection for frequency analysis. 100
B.4 Frequency distributions for the overall corpus. From left to right: term fre-

quencies, document frequencies, paragraph frequencies and sentence frequencies.101
B.5 Table of words with top frequencies within the corpus. The columns from left

to right: rank (order of highest document frequency, keyword (term), document
frequency, term frequency and kendall’s τ). 102

B.6 Diachronic view for selected terms. From left to right: term frequencies, doc-
ument frequencies, paragraph frequencies and sentence frequencies. 103

B.7 List of documents with the occurrence of the term “berlin” in the year 2001.
The columns of the table from left to right: tags, date, starts with (the first
100 characters of the document), keyword frequency (how often does the term
occur in the document) . 104

B.8 Parameter selection for the concordance analysis. 104
B.9 Double word tree for all occurrences of the term “Berlin”. 104

B.10 Concordance analysis table for all occurrences of the term “Berlin”. The
columns from left to right: date, tags and the text fragment, where the word
occurs. 105

B.11 Table for the characteristics analysis of subcorpora for the tag: “Frankfurt” . 105
B.12 Scatterchart of document frequencies against the score (Chi-square significance).106
B.13 Part of dendrogram for the tag “Frankfurt” (size: 50 terms). 107
B.14 All significant terms of a subbranch. Obtained through a right-click on a node

in the dendrogram. 108

List of Tables

2.1 Related programs. 6

5.1 Example matrix (Hyperspace Analogue to Language (HAL)) for the sentence
“I saw the man with the binoculars” and a window width of five words. Words
are weighted inversely proportional to the distance of the focus word. 31

5.2 Similarities based on the city-block metric between all rows of the HAL-matrix
(see Table 5.1 on page 31). 33

5.3 Similarities are joined with the maximum linkage criterion. 33

7.1 An example of a contingency table. The frequencies of the word “foo” are
queried in two different corpora. In the wikipedia corpus (en) the word “foo”
occurs 4500 times and in the BNC the word “foo” occurs 40 times. The size
of the wiki corpus is 1.9 billion words and the size of the BNC is 100 million
words. The label “not foo” refers to all other words. 43

7.2 Contingency table with observed and expected values calculated with frequen-
cies of Table 7.1. The expected frequencies are calculated with a simple cross-
multiplication. The expected frequency for “foo” in the wiki corpus is calculated
as follows: c∗ a+b

c+d . We assume an equal distribution of the words for both corpora. 44

10.1 Hardware used for testing the latency. 73

11.1 Querying the top three terms in Elasticsearch yields a wrong term frequency
of 10 for the term “foo”. This is due to top aggregation on each shard. 79

11.2 Stop-words in Lucene 4.10.4. These stop-words are obtained through the fol-
lowing code snippet: GermanAnalyzer.getDefaultStopSet(). The stop-words
marked in red have a apparent difference in their frequency (see Table 11.3). . 79

11.3 Top fourty term frequencies of our reference corpus with the frequencies ob-
served in LexicoMetric Analysis TOol (LeMATo) and AntConc. Stop-words
are marked in red. 80

C.1 Top 500 frequencies of our reference corpus with the term frequencies observed
in LeMATo and AntConc (ordered by Elasticsearch document frequencies).
Higher term frequency scores are marked for LeMATo in blue and AntConc in
red. 109

Part I

Introduction and preliminaries

Chapter 1

Introduction

Discourse analysis is a general term in various disciplines, including linguistics, sociology, an-
thropology, human geography and communication studies, to name just a few. The focus of
discourse analysis is to build up meaning in larger communicative rather than grammatical
units. Furthermore, discourse analysis aims to reveal connections of text and speech to in-
stitutional structures. Discourse analysis connects text to a historical or social context. The
analysis of the text differs among several disciplines. In social sciences and humanities, con-
tent analysis has become the state of the art approach to analyse written text of various types,
including writings, images, recordings and cultural artefacts. In content analysis, one starts
with inferences about the antecedents and the characteristics of the communication. These
assumptions about the content enable the content analyst to reveal the meaning of the text
within a category system. Discourse analysis criticises the supposition about the inferences
and especially French discourse analysts emphasise, that such a category system increases the
risk to generate tautologies [14, as cited in 33].

The methods of lexicometrics and corpus linguistics have their roots in Saussure’s structural
linguistics [108] and enable the distinction of words with different meanings in discursive
formations. Corpus linguistics is a methodology in linguistics to develop theories about lan-
guages based on statistical data gained from textual corpora. Corpus linguistics assumes that
the analysis of a large amount of text explores the language in a meaningful way. In classi-
cal corpus linguistics, general statements could be made about the properties of a particular
language. There are databases for language-specific reference corpora (e.g. Brown corpus
[41] in the USA, British National Corpus [1] in Great Britain, Frantext [76] in France or the
Russian Reference Corpus [115] in Russia) These databases enable the measurement of the
characteristics with the help of computer programs.

Lexicometrics could be seen as a part of corpus linguistics, but unlike corpus linguistics,
which deals mainly with language-specific reference corpora, the corpora in lexicometrics are
compiled concerning the research question. Lexicometrics has its tradition especially in the
French discourse analysis. The first contribution to lexicometrics goes back to Michel Pêcheux
at the end of the 60s. He published a work on automated discourse analysis [92]. This work
is an attempt to provide a scientific instrument for discourse analysis that serves as means
for the researcher to get rid of the subjective readings of texts. His work is a cornerstone in
the modern lexicometric analysis.

1

Lexicometric methods investigate the quantitative relationships between lexical items in closed
corpora. A closed corpus is fixed in definition and compilation, which is not changed during
the research process. In the context of discourse-oriented approaches, lexicometric methods
are used to infer from discursive structures and their differences between different contexts.
The goal of lexicometric methods is to extract a large-scale meaning of the textual corpora.
The focus of lexicometrics is the relationship of lexical elements (e.g. words) within the corpus,
and the interpretation happens at the end of the research process [33]. Lexicometric analysis
has been applied in social science and human geographic studies (e.g. [78], [109], [32] and
[121]).

In this thesis, we introduce LexicoMetric Analysis TOol (LeMATo), a lexicometric web ap-
plication, which enables the analysis of lexical elements in a closed corpus. LeMATo analyses
the corpus in a four stage process, and each step is based on the promising ideas, published
in [33], for lexicometric analysis as a methodological approach for discourse analysis. First,
the frequency analysis constructs a list with terms and their frequencies and examines the fre-
quency development in time for a subset of words. Second, the concordance analysis provides
a Key-Word In Context (KWIC) analysis, which reveals the context of a queried term (i.e.
the keyword). Third, the analysis of characteristics in sub-corpora groups the most frequent
lexical elements into families based on annotations from a reference corpus. Fourth, the co-
occurrence analysis uses the most frequent terms of the concordance analysis to measure their
distance in document, section and sentence to extract the most significant words. At the end
of each stage LeMATo shows a meaningful visualisation of the results.

There are many programs for corpus linguistics and the analysis of language-specific features
in texts, but there is no program, designed as a tool for discourse analysis to perform a
lexicometric analysis. In Chapter 2 we list different corpus linguistic programs and argue
for the development of LeMATo. At next, in Chapter 3 we introduce lexicometrics and
the concept of the four anlyses in LeMATo. In Chapter 4 we introduce the background of
discourse analysis and outline the methodological approach of a human geographic study
(i.e., [78]), which is used in this thesis as a reference study. Therefore, we are using the same
corpus here. In two stages of our four stage analysis process, we want to put words gained
from different statistical filterings into groups. Therefore, we introduce our approach to the
problem of “theme finding” as a transformation of the corpus into a vector space model, which
is presented in Chapter 5. We explain the mathematical formulations of the vector space in
Chapter 6. In the analysis of characteristics in sub-corpora and in the co-occurrence analysis
we need to examine significant words. What significance in the context of corpus comparison
means, we explain in Chapter 7.

In the next part of this thesis, we present the implementation of LeMATo. In Chapter 8
we start with a summary of the needs in lexicometrics and formulate the requirements for
LeMATo. At next in Chapter 9 we give an overview in the different pieces of frameworks
and databases we use. The interaction of the different software pieces and how they are used
describes the design of LeMATo in Chapter 10.

In the final part we evaluate LeMATo. We compare the results of LeMATo with the results
gained from AntConc [3] in Chapter 11. We give some concluding remarks in Chapter 12. In
the appendices we provide an user guide and supplementary material.

2

Chapter 2

Comparison of tools applied in lexico-
metrics

There are various programs for different operating systems, which aid a lexicometric analysis.
These programs are designed to address particular linguistic problems and come with a large
number of different features. For example, AntConc [3] is intended to perform a concordance
analysis and Ngram Statistic Package (NSP) [8] [86] is designed to perform n-gram statistics
on words and characters. Wordsmith [112] and Lexico3 [67] are two programs, which have
been already used in socio-scientific studies (cf. [33, p. 250]). The strength of these two
programs is that they offer essential lexicometric features like frequency analysis, concordance
and co-occurrence analysis as well as n-gram statistics. Table 2.1 summarises key issues for
lexicometrics.

AntConc [3] started as a relatively simple concordance program, but it grew into a useful text
analysis software. A concordance plot visualises the concordances and outlines the occurrences
of a word within a file. Each context could also get looked up in its origin (i.e. the text file).
The concordance plot enables the researcher to look at every use of a word. This feature, the
easy use, and the availability across the most common operating systems makes AntConc a
comprehensive lexicometric tool.

The current version of Lexico3 [67] was published in 2001 and provides lexicometric features
such as text segmentation, frequency analysis, concordance analysis and comparison of sub-
corpora based on the Characteristic Element Diagnostic (CED) statistics. In the case of
a multivariate analysis, Lexico3 offers a factor analysis, but only for six dimensions. The
program is free of charge for temporary personal work, but for commercial and university
use a license is required. Unfortunately, it was not possible to make Lexico3 (version 3.45)
run with the current Windows operating system (version 8.1), not even in the Windows95 or
WindowsME compatibility mode.

WordSmith Tools [112]) can be used in 80 different languages and the core software pack-
age includes three modules: Concord, WordList and KeyWord. Concord is a concordancer;
WordList displays the frequencies of words with some statistics and KeyWord helps to find
significant words with different word forms within the text. Different corpora can be com-
pared with word lists using statistical tests and the Sørenson-Dice coefficient (see Section 6.1)
to compare vocabularies of two texts. Wordsmith has been used to investigate the size of

3

reference corpora [11].

Programs performing multivariate analysis like cluster or factor analysis are rare and offer
limited possibilities. Two exemplary programs for this purpose are SenseClusters [87] and
HyperBase [124] [17].

SenseClusters [87] is a bundle of Perl scripts, which allows a user to cluster similar contexts
using unsupervised learning approaches. There are three different native applications for
SenseClusters: Word-sense discrimination, context clustering and word clustering. Word-
sense discrimination discovers different meanings of a target word. Context clustering groups
headless contexts (e.g. documents, short messages or emails) based on their topic. Word
clustering builds up a word-by-word matrix based on co-occurrences (or bigrams) in a common
context and clusters according to the vector similarity. The input for SenseClusters is an XML
file with a SENSEVAL-2 format (see http://www.senseval.org/). The use of Perl scripts
and the conversion to the specific format raise some challenges to social scientists.

HyperBase [124] [17] in its current version is free of charge. It enables basic lexicometric
approaches like frequency analysis, concordance analysis, as well as multivariate analysis like
factor analysis. HyperBase generates some nice histograms to analyse the significance in
corpora and a tree view, which’s reminiscent of a dendrogram that reveals distances of text
fragments 1. The documentation to HyperBase is written in French and is almost exclusively
used in France and Canada.

There are also online databases for corpora, like Cosmas II [51], DWDS [60] or CCDB [22]
which allow querying without the use of a program. They provide some basic lexicometric
analysis, but it is not possible to upload and use a customised corpus compilation. All these
three do not offer any multivariate analysis.

Tools for qualitative data analysis like MAXQDA [118] or Atlas.ti [6] are powerful in
systematically evaluating and interpreting texts, but do not provide any corpus linguistic
features. For discourse oriented analysis in social science, it is desirable to add corpus linguistic
features to these tools.

There are a lot of command line tools for certain tasks in sociolinguistic studies. One example
is TinyCC [13], which calculates co-occurrences of words and provides a list of significant
neighbour co-occurrences, but lacks in lemmatisation and legibility of the results.

Finally, there is no program designed for the use in a socio-scientific and discourse oriented
context. Programs like Lexico3 and WordSmith lack the visualisation of frequencies and co-
occurrences on a flexible document compilation, e.g. characteristics in sub-corpora. There is
no program which aids the analysis of the frequency development in newspaper articles over
several years (i.e. diachronic frequencies). For every distinction in the analysis, a new corpus
definition has to be made, which is cumbersome in standard corpus linguistic tool suites. None
of the programs for corpus linguistics are concurrent and take advantage of today’s multi-core
architectures.

Our tool LexicoMetric Analysis TOol (LeMATo) analyzes the corpus in a four stage process.
Each stage of LeMATo is based upon the promising ideas of theoretical discourse analysis
published in [33] and includes a diachronic frequency analysis and a concordance analysis
which reveals the context of a queried word. LeMATo provides two multivariate analyses

1see http://fr.wikipedia.org/wiki/Hyperbase, last visit at 30th of May 2015.

4

http://www.senseval.org/
http://fr.wikipedia.org/wiki/Hyperbase

with the analysis of characteristics in sub-corpora and the co-occurrence analysis. These four
analysis steps are introduced and explained in Chapter 3.

5

nam
e

concordancer
platform

com
p.

corpora
m
ultiv.

analysis
price

A
ntC

onc
m
utualinform

ation
Linux

M
ac

W
indow

s
no

no
free

Lexico3
yes

W
indow

s
yes

no
≥

150
e

T
inyC

C
no

Linux
M
ac

W
indow

s
no

no
free

W
ordSm

ith
T
ools

yes
W

indow
s

yes
no

≥
50

£
SenseC

lusters
no

perlscripts
no

vector
space

free
H
yperB

ase
yes

W
indow

s
yes

factor
analysis

free

T
able

2.1:
R
elated

program
s.

6

Part II

Theory

7

Chapter 3

Lexicometrics, support for discourse
analysis

All intelligent thoughts have
already been thought; what is
necessary is only to try to think
them again.

Johann Wolfgang von Goethe in
Journeyman Years, 1821-1829

The methods of lexicometrics and corpus linguistics have their basis in de Saussure’s structural
linguistics and enable the distinction of words with different meanings in discursive formations
[108]. Corpus linguistics is the study of language based on large corpora samples. In classical
corpus linguistics, general statements could be made about the properties of a particular
language. Furthermore, corpus linguistics develops theories about how language is governed
by rules and the relatedness to another language [79]. As in corpus linguistics, lexicometrics
also deals with quantitative relationships of lexical elements, such as frequencies and distances
of words, therefore lexicometrics could be seen as a part of corpus linguistics.

Content analysis is a family of a large set of diverse research approaches and techniques in
social science and humanities to identify methods for studying and retrieving meaningful in-
formation from text. Content analysis usually has an assumption about the documents or the
corpus itself [62]. Lexicometrics is not a replacement for content analysis. In lexicometrics, the
process of interpretation shifted to the end of the study, which makes it, in contrast to content
analysis, a suitable tool for discourse analysis. Lexicometrics is a computational approach to
capturing the quantitative properties of a corpus and revealing linguistic structures of large
corpora. Lexicometrics is used to explore the corpus and formulate impartial assumptions,
which could be employed in a follow-up content analysis study [33].

Lexicometric methods and their use in linguistics go back to Zelig Harris in 1954 [47]. His
intention was to take into account the structure of the text for his linguistic transformation.
Several studies used lexicometrics until now 1. Lexicometric analysis has been used to anal-
yse the discourse on the Arab Spring [121]. The frequency of keywords, collocations and a

1[121], [78], [32] and [109]

9

concordance analysis, calculated by AntConc [3], is used to visualize positions, developments
over time, breaks and shifts in the discourse (see [121]).

The aim of lexicometric approaches in discourse studies is to identify significant semantic
structures in digital corpora and carve out similarities and differences in sub-corpora. In the
following Section 3.1, we introduce the lexicometric vocabulary and outline some considera-
tions, before doing a lexicometric study. LexicoMetric Analysis TOol (LeMATo) follows the
concepts and ideas published in [33]. These concepts are explained in the following. LeMATo
analyses the corpus in a four stage process. First, the frequency analysis constructs a list
with terms and their frequencies and works out the diachronic frequency development for a
subset of words (see Section 10.3). Second, the concordance analysis provides a Key-Word
In Context (KWIC) analysis for one selectable word (see Section 10.4). Third, the analysis
of characteristics in sub-corpora brings out the most frequent and the most specific lexical
elements (see Section 3.4) of a sub-corpus. Fourth, the co-occurrence analysis reveals the
most significant words in text units, where a queried word co-occurs (see Section 3.5). We
provide a meaningful visualization to each of the four analyses in LeMATo.

3.1 Notes on lexicometrics

3.1.1 Corpus compilation

A linguistic analysis is performed on a corpus, a large digital collection of text. The corpus
contains written language, spoken language or both. In lexicometrics, the corpus is fixed in
the definition (i.e. the corpus is closed), this means that the corpus will not change during the
investigation. A closed corpus claims to contain all or nearly all of the data from a particular
field (all texts of a particular newspaper, periodic reports of an organisation, all speeches of
Presidents). Often it is not possible to fulfil this criterion. The alternative approach is to
filter the whole corpus with certain keywords or to filter based on thematic groups [33]. In
addition to that, the corpus is split in several sub-corpora. This annotation of sub-corpora
enables the distinction of different communication channels, speaker positions or text genres.
In our reference study [78] the corpus got filtered on city names to define three sub-corpora
(see Section 4.2).

Speaker positions (according to [40]) are most often important and representative persons of
organisations, which occur in scientific texts or newspaper articles. For bigger studies there
are often a series of publications published by an organisation, which could be used to perform
a lexicometric analysis [33].

It is far beyond this thesis to give a detailed description of the compilation of the corpus. For
a more detailed description see [7].

3.1.2 Corpus-based vs corpus-driven

The methods for lexicometrics fall in two different approaches: corpus-based and corpus-
driven. In the first one, the researcher has a particular hypothesis about the linguistic pattern
of the corpus. The researcher queries the corpus to explore this pattern and examines the
distribution of the lexical items. This is the corpus-based approach because the researcher

10

validates his theory using the corpus data. The second approach is called corpus-driven. Here
the researcher uses the corpus itself for the source of his hypothesis about language. It is the
corpus-driven method, which

“. . . builds up the theory step by step in the presence of the evidence, the ob-
servation of certain patterns leads to a hypothesis, which in turns leads to the
generalisation in terms of rules of usage and finally finds unification in a theoret-
ical statement.” [116]

This quotation means that the corpus-driven method itself embodies the structures of the
corpus and is the source of the hypothesis and thus makes the corpus-driven method more
inductive. This enables the researcher to make findings of the structures of the text, which
have not been subject at the beginning of the investigation [116]. In LeMATo, we provide two
analyses, namely the analysis of characteristics in sub-corpora (see Section 3.4) and the co-
occurrence analysis (see Section 3.5), which are nearly corpus-driven. These analyses analyse
the corpus without further dictionaries but use a query to distinguish between subcorpora.
This query does not infer on the corpus itself, it only distinguishes between different sub-
corpora.

3.1.3 Linguistic preprocessing

Here we describe the substantive linguistic issues of tokenization, stemming and filtering,
which determine the vocabulary of terms which LeMATo uses. Tokenization is the process of
chopping a stream into meaningful elements called tokens (see Figure 3.1). This also includes
the removal of punctuation marks.

Stop words occur very frequently in language and do not support to find any characteristics
within text units. Stop words include function words, such as “the”, “is”, “at”, “which” or “on”
and are filtered out in the linguistic preprocessing (see “filtering” in Figure 3.1). Filtering of
stop words could be an issue for the particular search on names that include stop words, such
as “The Who” or “Take That”.

After the filtering processes, the filtered tokens are reduced to a basic form. This generalisation
of tokens to terms is necessary, due to the nature of text with their different forms of words.
Verbs occur in various conjugation forms, as well as nouns, adjectives or pronouns occur in
various declension forms. For most of the cases, these different inflexions have to be grouped
together according to the identification rules of a single form. In other words, the lexical items
need to be lemmatised [69].

The lemmatisation of the vocabulary from a corpus could lead to some ambiguities of lemmas
in different forms, also called homographs (e.g. match from the competitive sports event or
match in referring to the equivalence of two or more items with the same characteristics). That
is not a great deal as long as it does not violate the theoretical assumptions or hypothesis.
For example, in a German gender specific study, it might be necessary to distinguish between
the female (“Lehrerin”) or male form (“Lehrer”) or even the gendered form (“LehrerIn”) of a
word.

As well as lemmatisation, stemming is also focused on reducing the inflectional form or
derivative-like form to a common base form. Stemming is a naive algorithm, where the ending
of the word is chopped off in the hope of doing it most of the time correctly. Lemmatisation

11

Stream of text: The lazy dog jumps.

tokenisation

Tokens: The lazy dog jumps

filtering

Filterd tokens: lazy dog jumps

stemming or lemmatization

Terms: lazy dog jump

Figure 3.1: Preprocessing of a text stream. The text stream gets tokenized and filtered to
process the stream into terms. Terms are the basic unit in the vocabulary of a corpus, which
gets counted and leads to term frequencies.

applies a full morphological analysis to accurately identify the lemma of a word, but it comes
at a cost of computation time [75]. Unfortunately, lemmatisation was not possible with the
current software stack, especially with Elasticsearch. There are some attempts for lemmati-
sation in Elasticsearch2, but at the time of writing they do not apply to our Elasticsearch
version.

In this section we have only scratched the surface of the issues in linguistic preprocessing. For
a more in depth discussion on this topic we refer to [75].

3.2 Frequency analysis

The frequency analysis enables the discourse analysts to have a detailed view on absolute and
relative frequencies (relative to the total term frequency) of lexical items. Often the analysts
are also interested in consecutive words or a sequence of lexical items, also called N-grams.

Diachronic corpora are wide-spread in historical linguistics and become more attractive for
discourse analysis. With diachronic studies, it is possible to track the effect on the discourse of
social, cultural or political changes over time. In analysing diachronic corpora, it is necessary
to characterise the development of words over time, which raises the question of the trend
of the data. The easiest approach to this is to look at the rank-order correlation. Does the
sequential order of relative frequencies correlate with their ranking? A measure for correlation
are coefficients such as the Pearsons coefficient or Kendalls-τ [56]. Since the former is more
sensitive to outliers than the latter, Kendalls-τ would be more appropriate to indicate a trend
or more precisely whether the frequency of a word is increasing or decreasing over time.

Visualizations on the effect of Kendalls-τ for diachronic corpora have been already performed,
as well as two more powerful analysis methods for diachronic corpora (“Variability-based

2e.g. https://github.com/jprante/elasticsearch-analysis-baseform

12

https://github.com/jprante/elasticsearch-analysis-baseform

neighbor clustering” and “Iterative sequential interval estimation”) [49], but the last two go
far beyond this thesis.

rank keyword frequency Kendall’s τ
1 foo 25 1.00
2 bar 18 -0.33
3 foobar 12 0.00
4 fubar 4 0.82

(a) The frequency table displays the keyword and their
frequencies and their correlation coefficient.

2005 2006 2007

4

6

8

10

12

14

4

8

13

7

5

6fr
eq
eu

nc
ie
s

foo bar

(b) Diachronic view of the terms “foo” and “bar”.

document keyword frequency
article 4 foo 3
article 5 foo 1

(c) Frequencies of terms “foo” in year 2005.

Figure 3.2: Web-flow for the frequency analysis. The frequency table (a) gives a good overview
of the most frequent words. They could be further explored in the diachronic view (b) as well
as the word frequencies for each period (c).

In LeMATo, the frequency analysis reveals the frequency distributions of words (see Table
3.2a). LeMATo also shows trends in diachronic corpora for every use of a word with the use
of Kendalls-τ . Furthermore, the results are supplemented with a visualization (i.e. bar chart)
on relative frequencies of selected words in a diachronic manner (see Figure 3.2b). In a table,
we show every use of a selected term. The table provides a link to the term occurrence (i.e.
the document) and shows the term frequency (see Table 3.2c). LeMATo also highlights the
word of interest within the text.

13

3.3 Concordance analysis

The concordance analysis, sometimes also called KWIC analysis, reveals every use of a key-
word and its particular context. KWIC programs just search a text for every use of a particular
word or phrase and print out all of the hits within their contexts. This approach is helpful
in the preparation for the qualitative interpretation [33]. There, some example keywords are
used to query the corpus and examine categories, which serve as a starting point for grounded
theory, content analysis or analytic induction.

An article entitled “Deconstructing Development Theory: Feminism, the Public/Private Di-
chotomy and the Mexican Maquiladoras” by Joanne Wright (1997) [122] demonstrates an
example for the KWIC analysis. There, the meaning of the word “deconstruction” as used by
the author is examined. Wright found the word “deconstruction” and its relating meaning to
a tool, a process of analysis, the results of an analysis and a theory. The different meanings
enable the qualitative researcher to make a comparison of the term with its use by others. It
is also possible to ask others to sort the hits of the KWIC analysis into piles to verify whether
an interpretation is idiosyncratic or not.

There are some nice visualizations to KWIC analysis, e.g. the word tree [119] or the double
tree [21] an improved version of the word tree, but they lack the simplicity of integration in
other projects. Google Charts offers a double word tree3 that visualizes one direction and
can be easily integrated in other projects. The word tree visualizes the bodies of the text in
branches. A big font size within a branch indicates a frequent use of the highlighted term
(see Figure 3.3). At the time of writing we found a bug for nested phrases4, but due to the
rare occurrence of nested phrases, it will not affect design decisions. The visualization lacks
in showing terms which are characteristic of the environment of the keyword, but these terms
are revealed in the co-occurrence analysis (see Section 3.5).

dance

in the courtyard

to
forget

remember

how they

some

Figure 3.3: Word tree for the concordance analysis of the word “dance” in the following three
sentences: “how they dance in the courtyard”, “some dance to remember” and “some dance to
forget”. The words “some” and “to” have a larger font, because they appear two times in the
text.

LeMATo provides a KWIC analysis where every use of a queried word is listed with its specific
context. We use Google Charts’ double word tree for a supplementary visualization.

3.4 Analysis of characteristics in sub-corpora

The analysis of characteristics in sub-corpora tests whether lexical items are significant within
a sub-corpus in contrast to the rest of the corpus. Therefore, we consider those words which are

3https://developers.google.com/chart/interactive/docs/gallery/wordtree
4https://code.google.com/p/google-visualization-api-issues/issues/detail?id=1836

14

https://developers.google.com/chart/interactive/docs/gallery/wordtree
https://code.google.com/p/google-visualization-api-issues/issues/detail?id=1836

overrepresented in each sub-corpus. Currently, the existing programs use different diagnostics
to achieve this. All these diagnostics calculate on the ratio of the absolute frequencies in
different sub-corpora in contrast to the rest of the corpus. Lexico3 [67] uses the Characteristic
Element Diagnostic (CED) statistics (see Section 7.2.1 for details and references), which
calculates the specificity on hypergeometric assumptions. WordSmith [112] uses a statistic
test for the calculation of its keyness value by either chi-square test with Yates correction or
Ted Dunnings log likelihood (see Chapter 7 for details and references).

The social scientist is also interested in the frequencies of the significant words in the sub-
corpora. In considering visualization issues, we have a list of words with two features, the
frequency and the significance. In addition to that, such word lists are often grouped manually
into thematic clusters to provide a better clarity on the terms [78] [16] [109]. We can assist
this grouping with a computational approach. Therefore, we make use of the co-occurrence
to perform a clustering algorithm on the significant terms. Clustering as an unsupervised
learning algorithm uses the corpus itself for the source of its hypothesis and is, therefore, an
entirely corpus-driven approach. We describe our clustering approach, where we group the
words into thematic groups, in Chapter 5.

The studies mentioned above, often make use of a circular depiction to visualize the results
of such an analysis. As an example take Figure 4.3 on Page 25. The results contain term
frequencies significance and a grouping into thematic groups.

LeMATo uses a simpler visualization technique (i.e. scatter chart), where one axis indicates
the raw frequency counts and the other axis displays the significance of the terms. It is also
possible to zoom in a region of interest, to increase the legibility. We discuss the issue on
grouping and its visualization in Section 3.6.

3.5 Co-occurrence analysis

Previously in Section 10.4, we introduced the concordance analysis, which reveals every
queried word in its context. Unfortunately, the concordance analysis does not show sig-
nificant terms of the context to a queried word. The co-occurrence analysis addresses this
particular issue. In our reference study [78] each occurrence of a queried term and its words
within a word window (e.g. ten words to the left and ten words to the right of the queried
word) defines the context or environment of the word. Here, in LeMATo, we take the same
text unit of a queried word. We form a sub-corpus from the terms in the environment and
compare them to the rest of the corpus to calculate their significance. LeMATo uses text unit
frequencies (e.g. document or sentence frequencies) instead of term frequencies, we compare
these two approaches in Section 11.2.

The result of the co-occurrence analysis has the same features as the previous analysis, the
analysis of characteristics in sub-corpora, which are the frequencies of text units, their signifi-
cance and a grouping of these terms. Therefore, we are using the same visualization technique
here. In the literature, we also find a circular depiction for the presentation of such features
(see our reference study at Figure 5.1 on page 28).

15

3.6 Grouping support

This thesis is also an attempt to the approach of grouping terms into thematic clusters.
Grouping of words according to their topic is indeed a subjective approach, and there is no
accepted rule how to put such words into thematic clusters. Therefore, we do not perform a
tight grouping. Instead, our approach is focussed on the support of manually clustering of
words. We are doing this with a dendrogram, where the co-occurring words are neighbours.

We are building a dendrogram in six consecutive steps:

1. Define sub-corpus

2. Calculate significant terms

3. Take top N significant terms

4. Span a vector-space with these

5. Cluster the vector-space

6. Visualize the dendrogram

In LeMATo we have three different text entities: documents, paragraphs and sentences. We
have enriched the text units with the publish date gained from LexisNexis [3]. In addition
to that, the user defines his own tags to distinguish the text units in different sub-corpora.
Through that, we enable a sub-corpus definition on certain periods, manually defined labels
(i.e. tags) or text entities containing a queried word. The calculation of significant terms is
based on the comparison of word lists in the sub-corpus to the rest of the corpus. To prevent
an overloaded dendrogram, we filter for top N significant terms, where N is either 10, 20, 50
or 100. The vector-space is a multidimensional space, which is build by the co-occurrence of
the words (see Section 5.2). To observe closely related terms, we cluster (see Section 5.3) the
terms and build a dendrogram (see Section 5.3.2).

3.7 Micro analysis

The lexicometric approach (i.e. macro analysis) establishes the relationship, the regular use
of lexical items and their distribution in the text. This corse grained view gives an idea of the
meaning within the text, but the quality of the relationship among these lexical items is still
unclear or can only be revealed with an enormous effort of looking at every single relationship.
Therefore, lexicometric approaches (i.e. macro analysis) are often combined with methods of
qualitative research to do the statement analysis (micro analysis). The fundamental approach
for the macro analysis consists of the following four steps [33]: (1) frequency analysis, (2)
concordance analysis, (3) analysis of characteristics in sub-corpora and (4) the co-occurrence
analysis. With these four steps, it is possible to examine the occurrence, distribution or even
the co-occurrence of words.

The macro analysis does not examine the connection between the words in any way. For
example, if we know, that “elderly” and “internet” are very frequently co-occurring, then we
neither could say the elderly use the internet, nor they lack access to the internet, nor they
abuse the internet. The micro analysis addresses this problem and reveals the heterogeneity

16

of the discourse and has its origin in the French discourse analysis and enonciative linguistics
(from the French word énoncé, see Section 4.1.3 for details and references).

The micro analysis enables the researcher to establish a connection between single comments
and discursive contexts. The main focus here is the pattern of the statements within their
linguistic form, which guide the interpretation. Such enonciative markings help the social
scientist to connect the utterance in the text with a context to reveal its discursive structure.
One statement can be interpreted differently by each speaker and, therefore, the micro analysis
is not a method to extract the meaning. It is a method to describe the characteristics of an
utterance. There are three different enonciative markings, which analyse “the utterance” on a
different level. Deictic words mark the utterance in a temporal or spatial way. The reference
to different speaker positions is the target of the polyphony and the argumentative connections
of suppositions which form the understanding refers to the preconstruct [78, p. 130-] [48].

Deictic words are words which produce subjectivity in the text5. Examples of deictic words
are words like: “I”, “now” or “here”. These words refer to persons, locations or time in their
discursive context. In our reference study [78] the analysis of deixis enables the disambiguation
between “own” and “foreign” in analysing words like: “I”/ “you” and “we”/“you”. Furthermore,
there is a distinction between primary, secondary and tertiary deictics [78, p. 135-]:

• Primary deictics: “I”, “here”, “now”,

• secondary deictics: “we”, “you”, “us”, “he”, “she”, . . .

• tertiary deictics: proper nouns of persons or places.

Temporal adverbs like “yesterday”, “last year” or “soon”, or even spatial adverbs like “near”,
“far”, “close to”, “left” are also tertiary deictics, because they refer to a certain time or place.
Temporal discourse models could detect these temporal adverbs [73].

It is noteworthy that some of the words, like “I” or “we”, could occur in the text, without
affecting any discourse relation, especially in newspaper articles where they refer to a smaller
context without any speaker position. Therefore, it is not easy to detect such words within
an automated process and requires a discourse analyst in most of the cases.

Preconstruct is a concept described and developed by Pêucheux [92]. This concept refers to
social and institutional conditions in which a discourse emerges. In other words, an utterance
uses knowledge whose origin is elsewhere and this knowledge is called the preconstruct. As
an example, we have the sentence “The expansion of the airport in Frankfurt is necessary to
be internationally competitive.”. This utterance includes some normatives, which form the
understanding of the sentence. One is that there is a competition between airports and the
necessity for expansion.

A characteristic for the detection of a preconstruct is a certain ending like “-ism” (e.g. capi-
talism, liberalism) or relative clauses, however the preconstruct plays no central role anymore
in the practice of discourse analysis today [2, p. 51].

5Not to be confused with discourse deictics [120]. Discourse deictics refer to a previous or upcoming term
or text segment (e.g. anaphora or co-reference resolution).

17

Polyphones date back to the original work of Oswald Ducrot in 1972 [29], who is well
known in critical French discourse analysis. The general assumption is that texts convey
several perspectives from different sources. In other words, in the same text there are several
speakers and therefore, the text is polyphonous. These polyphones enable the discourse
analyst to detect contradictions or breaks within a discourse. There are some indicator words
for such breaks (e.g. “no”, “however”, “because”, “but”, “true”, “perhaps”, . . .). These indicator
words are also called sentence connectors in linguistics, but not all sentence connectors induce a
contradiction or break in a discourse. Part-of-Speech tagging might detect sentence indicators,
but there is no discussion break for sentence connectors like “in addition”, “furthermore” or
“moreover”. The sentence connectors put an utterance in an argumentative relation to another
utterance. Finally, there are also adjectives or verbs which include a negation: “indecendant”,
“unavoidable”, “undoubtedly” or “counter”. For more details on polyphones and their exact
definition we refer to [78].

Issues in detecting enonciative markings

There are some known standard solutions in Natural Language Processing (NLP), which might
help to address the problems which arise in micro analysis (see Section 3.7). Such standard
solutions typically serve a well-defined problem setting, a standard metric for evaluating the
task, or even standard corpora, on which the task can be assessed. In the following, we provide
a list of standard NLP candidate problems with a brief explanation and evaluate their use to
detect enonciative markings.

Discourse analysis identifies the discourse structure of a connected text by textual coher-
ence relational structures. These coherence relations, also known as discourse relations, specify
the relationship between sentences, as an example, in the two sentences: “The bartender hid
John keys.” and “He was drunk.”. The coherence relation between these two sentences is
an explanation. Examples of other coherence relations are elaboration, result, parallel and
occasion. By the text flow, it is desirable to build up a tree, which has the sentences as leaves,
and the branches are the coherence relations.

The relation structure in the tree does not necessarily depend on the coherence structure, and
it is also possible to describe the time dependent flow of events (by connector words) or even
a hierarchical coherence structure (cf. Rhetorical Structure Theory (RST) [74]).

Another possible task in discourse analysis is recognizing and classifying speech acts, within
a piece of text. Speech acts here, refer to content questions, statements or assertions within
a chunk of text, but these are not the same speech acts defined by Foucault.

There is definitely a potential to apply RST on the text, to highlight contradictory breaks or
polyphone structures within the raw text. A discourse tree is a nice visualization aid, but it
is not always practical to abstract the raw text into another view, because the reader needs
to be accustomed to it.

Named entity recognition (NER) determines which entities of the text map to proper
names and also gives inference about their types, whether it is a person, organisation, loca-
tion or temporal expression. The detection of temporal expressions could be also seen as a
separate task since there are corpora for the evaluation of Temporal Expression Recognition

18

and Normalisation (TERN). NER could be used to detect the proper names in the tertiary
deictic expressions (see Section 3.7).

Part-of-speech (POS) tagging annotates a sentence with part of speech tags (e.g. noun,
verb, adjective, adverb, modal verb, connector word or pronoun). There is some potential for
deictic expressions in detecting personal pronouns (“I”, “we”), or adverbs (“here”, “now”) but
there are a lot of terms within a POS-tag, which do not refer to any discoursive structure (“he”,
“it”, “soon”). There is also no POS-tag which marks any negation in the case of polyphonous
structures, whether to indicate negating connector words nor for detecting negating adjectives
or verbs.

Sentiment analysis (SA) extracts subjective information to determine polarity about
specific objects. It is especially useful for identifying trends of public opinion in social media
for the purpose of marketing. The polarity in a given text could be classified in emotional
categories (e.g. “happy”, “sad” or “angry”) or ratings (e.g. guessing the star rating for restau-
rants on the basis of a textual description). Another research direction in sentiment analysis
is the subjectivity/objectivity identification. This identification technique classifies a text
whether it is subjective or objective based on context and individual sentences (e.g. news
article quoting the opinion of people). There are some potentials for lexicometrics, but in an
out-of-the-box classification there is too little freedom for the researcher. For the fine-grained
analysis an annotation scheme is more desirable.

Final notes on enonciative markings Finally, there is no standard NLP-method to
detect enonciative markings, but there is some potential in coherence structures or even in
sentiment analysis, however it is far beyond this thesis to create a simple colour marking.

This thesis is more focussed on the lexicometric statistics rather than the enonciative mark-
ings, therefore we do not support enonciative markings in LeMATo. Nethertheless, enonciative
markings are necessary to perform a critical discourse analytic study.

19

20

Chapter 4

Discourse theory

The meaning of a word is its use
in the language

Wittgenstein, 1953

Discourse analysis is a general term to analyse written, vocal, or sign language. Discourse
analysis here refers to Critical Discourse Analysis (CDA). CDA is an interdisciplinary ap-
proach which views language as a form of social practice. Moreover, CDA connects text to
historical or social context. The focus of discourse analysis is to build up meaning in larger
communicative rather than grammatical units. Furthermore, discourse analysis aims to reveal
connections of text and speech to institutional structures [25].

4.1 Post-structuralism

4.1.1 Structuralism

Discourse analytical approaches from writings of Michel Foucault are known as social con-
structionism or post-structuralistic theories. These principles evolved among other things
from the linguistic turn, a significant development in Western philosophy during the early
20th century. The linguistic turn focused primarily on the relationship between the construc-
tion of knowledge and language [99]. Decisive for the linguistic turn in humanities were the
works of the structuralist Ferdinand de Saussure. He is regarded as the founder of modern
linguistics. His lectures about important principles of language description were collected and
published by his pupils posthumously in Course the linguistique générale in 1916 [108]. In
this work, he lays out the foundations for a particular view on language. He sees language as
a system of signs, where a sign is an inseparable dichotomy between a signifier and a signified
(Figure 4.1). The signifier (French significant) is the “shape” of the word represented by a
sequence of graphemes (letters) or phonemes (speech, sound). The signified (French signifié)
is the mental concept, ideation or object that appears in our minds when we hear or read the
signifier.

There is no natural or internal connection between signifier and signified, the relation between

21

Signified

Signifier

Figure 4.1: The Saussurian sign.

those two is purely arbitrary [108]. The arbitrariness is an important principle in structuralist
theory since it guarantees that no extralinguistic factor influences the constitution of signs.

« . . . la langue est un système dont tous les termes sont solidaires et où la valeur
de l’un ne résulte que de la présence simultanée des autres. . . »
‘. . . language is a system in which all terms are fixed, and in which the value of
one is only the result of the simultaneous presence of the others. . . ’ [108]

According to Saussure’s quote the meaning of a word is purely relational and defined through
differences to all other words. For this master thesis, this finding is important for two things:
Firstly it sets the basis for the understanding of language in discourse analysis (see Section
4.1.2). The relation between language (signifier) and reality (signified) is arbitrary, and it
implies that language as a system is not determined by the reality to which it refers. Secondly,
the Saussureian view on language has been further developed by Zellig Harris and is the
foundation in his distributional theory (see [47]).

4.1.2 Language as a representational system of society

The finding that the context defines the meaning of a word has important implications for
discourse analysis. Discourse analysis analyses signs and their relation to other signs, in other
words it analyses a representational system. The most important representational system is
language, but every other sign system could also form a representational system (e.g. archi-
tecture or pictograms). The rule of the arbitrariness of a sign states that the relation between
sign (signifier) and its meaning (signified) is neither natural nor a priori given. The relation
between these two, as well as the representational system, is fixed by a social convention.
In analysing the representational system, then discourse analysis is able to argue in society,
which has built the representational system [46, as cited in 32]. Michael Foucault calls the
structure of the text, where the order of society is evident, as “the order of discourse” [39, as
cited in 32]. This concept enables discourse analysis to reflect with text about social ideologies
and their relationships.

4.1.3 French discourse analysis

The French discourse analysis has its origin in post-structuralism, an intellectual movement in
1960 which has its roots in structuralism (see Section 4.1.1). Post-structuralism is character-
ized by the work of a relatively small number of writers. The writers were leading experts in
different disciplines: Jacques Derrida (philosopher), Michel Foucault (social theorist), Gilles
Deleuze (philosopher), Jacques Lacan (psychoanalyst and psychiatrist) and Jean Baudrillard
(sociologist and philosopher) to name the most formative ones of post-structuralism.

22

A central element for discourse analysis in post-structuralism is Foucault’s work “Archeology
of knowledge” [40]. In this work, he describes a concept to uncover the rules of formation
of discourses or discursive systems. He defines discourse as “an entity of sequences, of signs,
in that they are enouncements” (from the French word énoncés, meaning “the statement” or
“utterance” between and among objects). The terms “enonciative linguistics” or “enonciative
markings” are often used in this thesis. These terms refer to the term énoncés, which was
used by Focault and introduced by Pêcheux [92].

Hence, a discourse1 is composed of a sequence of semiotic signs, which describe the relation
between and among objects, subjects and statements [40]. In other words, discourse must no
longer be considered as signs referring to representations, but as social practices that shape
the objects which are mentioned in the discourse.

Foucault’s influence on discourse analysis is more indirect, the greater influence on French
discourse analysis comes from Michel Pêcheux. His most important contribution to discourse
analysis consisted of the development of tools for conducting empirical studies of discourses,
which he called automatic discourse analysis (AAD, “Analyse automatique du discours”) [92].
The true innovation in AAD was the theory of “interdiscourse” (see [92] for details), which
makes him an important contributor to discourse theory and discourse analysis. In summary
his work is an attempt to provide a scientific instrument for discourse analysis, that serves
as means for the researcher to get rid of the subjective readings of texts. Therefore, Pêcheux
can be considered as a cornerstone in modern lexicometrics [48].

4.2 Discourse methodology with lexicometrics

Discourse analysis with lexicometrics has been performed in several studies2 until now. To
sketch the methodology of a lexicometric analysis applied in a human geographic study, we
outline the approach of “Die neoliberale Stadt” [78]. In this study lexicometrics explores the
great structures of language in society to infer about urban development and city marketing.
In a first step, the hegemonic pattern of speech for each city is captured using a lexicometric
analysis based on national print media. In other words, the most common terms and themes
which are associated with each city are examined. Therefore, they used the database Lexis-
Nexis3 to extract all articles of four newspapers4 in the years of 1999 to 2005, where the word
“Stadt” 5 and one of three German city names6 co-occur within a window of ten words. This
results in a corpus size of 2.3 million words. The corpus contains three sub-corpora, one for
each city. The split into sub-corpora makes it possible to examine which terms and themes
tend to co-occur significantly more often than in other cities.

23

Extraction of the
newspaper arti-
cles (1999-2005)

Calculation of the
text statistics for
the subcorpora

Summarise to
thematic groups

fine-grained con-
cordance analysis

Micro analysis of
polyphones structures

Figure 4.2: Workflow performed in “Die neoliberale Stadt” [78].

4.2.1 Lexicometrics as macro analysis

They used Lexico3 [67] to calculate co-occurrences, which uses the the ced-value (explained
in Section 7.2.1). The ced-value is used to determine all terms which have a significantly
higher frequency in contrast to the other two corpora. The terms got filtered by the ced-value
between 5 and 20 in the sub-corpus, to reduce the bias of single results. These lists are saved
as Excel sheets and each sheet contains between 461 terms (“Köln”) and 486 terms (“Leipzig”).
Some non-relevant occurrences (proper nouns, single events, etc.) were deleted.

The rest of the words are summarised to thematic groups according to “heuristic cooccurrence
fields” (in German: “heuristische Kookkurrenzfelder”) [10]. A famous quotation of John R.
Firth is put here in a slightly different context.

“You should know a word by the company it keeps” [10].

In this approach [78] looks for shared characteristics of all occurrences. The formation of
the groups depends on presumptions of the analysis (e.g. analysis interest, linguistic model,
application context, etc.) [10]. Mattissek emphasises that no predefined categories are used
and all the groups evolve from the empirical material, namely the text itself, and that is why
it does not violate the structuralism or post-structuralistic paradigm [78].

1Unlike semantics, where a discourse is defined as a conceptual generalization of conversation.
2[121], [78], [32] and [109]
3Online database LexisNexis http://e-solution.lexisnexis.de/KSH/de/index.html
4“Süddeutsche Zeitung”, “die taz”, “Der Spiegel” and “Der Stern”
5“Stadt” is the German word for city
6The analysis is done for three cities: Frankfurt, Köln and Leipzig

24

http://e-solution.lexisnexis.de/KSH/de/index.html

This lexicometric approach reveals which terms are in rare and which terms are in abundant
use, but it lacks providing insights to the relationship of terms used in a corpus. Even if one
would know that these terms are used in the same context with one of the cities, it is not
possible to say how they are connected. This connection should be revealed in the following
micro analysis, which is also cross reading for the heuristic cooccurrence fields. In this step,
the most important heuristic cooccurrence fields and their terms are retraced in the text using
the concordance analysis (see Section 10.4). The text passages are written down to exemplify
their use and for further examination of the polyphonic structures of the text. Polyphonic
structures reveal breaks in discourses (see Section 3.7).

It should be pointed out, that it is not the intention of the study to examine the authors and
their opinion on the different city, it is more about finding patterns of language when talking
about one of the cities. For the analysis of the newspaper articles, the micro analysis is used.
This enables to describe heterogeneities and contradictions of text passages and their use in
a discoursive context.

Lexicometric results

Figure 4.3: Selected collocations with “Köln”. The closer a word is placed in the centre, the
higher the ced-value. The font-size corresponds to the word frequency. Figure taken from
[78]. Mattissek permits us to distribute the figure through this master thesis.

There are two fundamental questions in this reference study we are looking at. First, which

25

themes and terms are used in the context of each city and second, which keywords and
reference structures form the neo-liberal discourse in which the city marketing discourse is
embedded [78]. The approach to the first question is outlined in the preceding Section 4.2
and depicted for the city “Köln” in Figure 4.3. To answer the second question, it is inevitable
to use a much larger corpus, in this case the DeReKo is used [64]. The DeReKo is with two
billion words7 a representative sample of the German language. The goal is to extract typical
collocations and usages of the words in the neo-liberal discourse. These collocations are a
good indicator for discursive connections [78, p. 126]. The main way to access the DeReKo is
to use COSMAS II, the COrpus Search Management and Analysis System. Collocations of the
heuristic co-occurrence fields are performed using COSMAS II. The collocations in COSMAS
II calculate a log-likelihood ratio (LLR), which makes the collocations comparable. Figure
4.4 shows collocations of words, estimated with the LLR.

Figure 4.4: Collocations of keywords referring to the city image marketing. The thicker the
arrows, the more often terms co-occur. This figure is made by hand. Figure taken from [78].
Mattissek permits us to distribute the figure through this master thesis.

7The study is performed with two billion words, but the corpus size of DeReKo grows rapidly. In 2014,
the DeReKo contains over 24 billion words [65]

26

Chapter 5

Finding themes

You shall know a word by the
company it keeps

John R. Firth, 1957

There are four different analyses implemented in LexicoMetric Analysis TOol (LeMATo). Two
of these methods, namely the analysis of characteristics in sub-corpora and the co-occurrence
analysis contain a grouping of words into thematic groups. Until now, this grouping was done
manually for both analyses in two different studies. “Die neoliberale Stadt” [78] performs a
co-occurrence analysis for three different sub-corpora, one for each German city. The manual
grouping is performed in the following way: the context of each term is examined with the
concordance analysis and then grouped intuitively according to the thematics by the social
science researcher (see Figure 5.1) and “Die diskursive Konstitution von Großwohnsiedlun-
gen in Frankreich, Deutschland und Polen” [16] analyses characteristics of a sub-corpus and
categorises each significant term manually into thematic groups (see [16]).

In this thesis, we provide a visualisation aid to support the manual grouping of significant
words. It is not our goal to force a tight grouping into categories, since this form of grouping
is a purely objective task which is performed in different ways by different persons. With our
visualisation it is possible to provide a bird perspective of the significant words within the
articles of interest and how these significant terms co-occur.

5.1 What is a theme?

Social scientists use some different names to put words into categories. Grounded theorists
use terms like “categories”, “codes”, “labels”, “expressions” or “thematic units”. We call them
“themes”, because these groups arise from the context of the words used and form a kind
of thematic category. Sometimes we use the word “clusters” interchangeably because these
themes are outcomes of a clustering algorithm.

In qualitative data analysis, there are several approaches and methods to find topics. We want
to emphasise here, that it is not our goal to replace any method in qualitative data analysis,
which is focussed on finding themes. This approach is intended to support different methods of

27

Figure 5.1: The aim of this grouping is to increase the legibility for the reader. There are
media related terms on the left and social themes to the right. Terms are the more significant
(CED value, see Section 7.2.1), the more they are placed to the center. Figure taken from
[78]. Mattissek permits us to distribute the figure through this master thesis.

qualitative data analysis. In a first step, we take the top N significant terms as our candidate
words. Our theme finding approach uses the vector space model [106], which is built with a
co-occurrence matrix of the candidate words. The vector space model allows us to search the
context of each candidate word for other candidate words and form a multidimensional space
(see Figure 5.2).

The candidate words for the theme finding are derived by one of two possible analysis steps,
the analysis of characteristics in sub-corpora or the co-occurrence analysis. These two analyses
differ in their approach. Where the former examines the overrepresented words of the sub-
corpus, the latter examines the particular environment of a queried word (e.g. words within
the same sentence or paragraph). Both approaches use different statistics, which are state of
the art for their purpose. For more details on these two methods, we refer here to Section 3.4
analysis of characteristics in sub-corpora and Section 3.5 co-occurrence analysis.

28

1. Selection of a sub-corpus by tag (analysis of characteristics in sub-corpora),
or querying (co-occurrence analysis) the sub-corpus.

2. Calculate significance in contrast to the rest of the corpus.
3. Take the top n words.
4. Build a vector space.
5. Perform a clustering algorithm (i.e. hierarchical agglomerative clustering).
6. Display a dendrogram.

Figure 5.2: Enumeration describing the theme finding process.

5.2 The word space model

The word space model or Vector Space Model (VSM)1 is an algebraic model for representing
text objects as vectors which form a spatial representation of meaning in a high dimensional
vector space [101, p. 17-]. In particular, we filter the corpus for our n words of our interest
and transform their distribution to an n-dimensional space, namely the word space. The word
space mirrors the spatial proximity of the terms hence it reflects the context to all other n-
words. Then we perform a clustering algorithm to group the words according to their context
(see Figure 5.3).

firefighters
rescue
emergency

internet
broadcast

television

m
ul
ti
di
m
en

si
on

al
w
or
d
sp
ac
e

Figure 5.3: A simplified representation of theme finding. Six words are applied to the word
vector space according to their spatial proximity within the corpus. A clustering algorithm
finds two groups (a fire fighting group marked in green and a media related group marked in
red).

5.2.1 Related vector spaces

VSM [106] was developed for the SMART (System for the Mechanical Analysis and Retrieval of
Text [103]) information retrieval system and since then it has been applied to text processing
in a number of applications. The applications can be divided into three broad classes of

1also known as the computational model of meaning [111]

29

VSMs, according to their matrix form based on term-document, word-context and pair-pattern
matrices [117]. Term-document matrices allow querying a large collection of documents within
a term-document space. Each document is represented by the totality of words and their
frequencies (according to the bag-of-words hypothesis [47]), and a document, or even a query,
is a dot in a term frequency space. The documents which are closest to the query are the
most relevant ones.

The theme finding in LeMATo uses word-context matrices. In word-context matrices, the
context is given by words, phrases, paragraphs, chapters, documents or other text segments.
Word-context matrices are often used in applications where the semantic similarity of words is
of interest. There are a lot of different approaches. One is to measure the semantic similarity
between two words by the cosine of the angle between their row-vectors [23]. The roots of word-
context matrices go back to Zellig Harris. Harris’ idea in his distributional hypothesis was
that linguistic items with similar distributions can be grouped according to their distributional
behaviour, and, therefore, words that occur in similar contexts tend to have similar meanings
[47]. One could also see the distributional hypothesis as a justification for the VSM. The
context in word-context matrices is occurrences of words within various contexts, such as
word-windows [72] or grammatical dependencies [71] [82]. There are different applications
for the VSM, most notably the detection of word similarity [23] by comparing row vectors of
documents. Other applications are word clustering, word classification, automatic thesaurus
generation, word sense disambiguation, context-sensitive spelling correction, semantic role
labelling, query expansion, textual advertising, or Named Entity Recognition (NER). For a
detailed overview see [117].

The row vectors in pair-pattern matrices correspond to pairs of words (e.g. mason: stone,
carpenter: wood) and column vectors correspond to patterns in which the pairs co-occur, such
as “X cuts Y” and “X works with Y”. The purpose is to identify the semantic similarity of the
patterns, i.e. the similarity of the column vectors.

5.2.2 Hyperspace analogue to language

In this section we demonstrate how to build a vector space according to the representational
model of semantic memory, the Hyperspace Analogue to Language (HAL) [72]. In this ap-
proach, the authors read the corpus word by word and record each other word of n-words
to the left and n-words to the right as co-occurring. For each co-occurrence, they increment
the corresponding cell in the matrix. The matrix is direction sensitive, that means that the
co-occurrences to the left are registered in the rows and the co-occurrences to the right are
recorded in the columns (see an example in Table 5.1). Finally, they end up with a matrix of
roughly 70 000 words.

70 000 words lead to a very high dimensionality (described in HAL as 2n high dimensional
space for pre-occurrence and post-occurrence to the focus word) for the word-space. The VSM
as a statistical methodology relies on statistical evidence, and therefore, the accuracy of the
word space is directly proportional to the size of the data that is used. At the same time,
the co-occurrence matrix gets enormous for any reasonably amount of data, which makes it
difficult to design an algorithm which is scalable and efficient.

Another characteristic of the VSM-matrix is that the majority of the cells is zero, because
only a fraction of the terms co-occur and the majority of words occur in a small number of

30

- binoculars I man saw the with

binoculars 0 0 3 1 7 4
I 0 0 0 0 0 0
man 0 3 0 4 5 0
saw 0 5 0 0 0 0
the 0 5 4 7 3 5
with 0 2 5 3 4 0

Table 5.1: Example matrix (HAL) for the sentence “I saw the man with the binoculars” and
a window width of five words. Words are weighted inversely proportional to the distance of
the focus word.

contexts, regardless of the size of the data.

The problem of the very high dimensionality is usually solved by representing the high dimen-
sional data in a low dimensional space. This technique is called dimensionality reduction (see
Section 6.3) and reduces both, the sparseness of the data and the dimensionality. The sim-
plest form of it is simply to filter out words and documents by linguistic (e.g. part-of-speech
filtering) or statistical criteria.

Once the matrix in HAL is constructed, similarity measures of the Minkowski family (Eu-
clidean and city-block) are applied to the normalized vectors. HAL detects the similarity of
word meanings to patterns of vector elements. The correlation between vector similarity and
the cognitive effects relies on the 100 to 200 most various vector elements [72]. The matrix
used in HAL is also applied to a classification task, where three categories (i.e. animals, body
parts and geographical locations) are identified. Their classification is based on inter-vector
distances and was able to separate all the words into their distinct classes.

5.3 Clustering

Clustering or cluster analysis is the general task of grouping a set of objects according to their
similarity. Each group of similar data objects is called a cluster. Objects within the same
cluster are more similar to each other than to objects in other clusters. It is a common tech-
nique in statistical data analysis and has been applied in various fields, including information
retrieval, image analysis, pattern recognition or bioinformatics.

Clustering is the most common algorithm in unsupervised learning and has the purpose of
finding hidden structures in unlabelled data. Whereas in supervised learning, (e.g. classifica-
tion tasks) a form of human supervision is needed to impose on the data, clustering algorithms
as a form of unsupervised learning come without such human guidance.

One of the most critical inputs in clustering algorithms is the distance measure. There are sev-
eral different distance measures for word-context matrices (see Chapter 6). Various distance
measures result in a different similarity and, therefore, generate different clusters.

Clustering algorithms could be distinguished according to two properties. The first property
is the assignment of a data point to its cluster. Hard clustering assigns every data point
to exactly one group, whereas soft clustering algorithms assign a fractional membership to

31

each cluster. This assignment is represented by a probability distribution for each data point
to every cluster. The second property is how the cluster relates to each other cluster. Flat
clustering generates a flat set of clusters without any relation to other clusters. Hierarchical
clustering creates a hierarchy of data points which form each cluster.

5.3.1 Related clustering of word-context matrices

The following algorithms detect the sense of polysemous words2 by generating different clusters
for each sense of the word. The application of these algorithms refers to word sense induction.
These algorithms use the same matrix form (i.e. word-context matrix) as LeMATo does, but
they perform their algorithms in a much higher dimensional space.

• The first approach uses soft hierarchical clustering to row-vectors in word-context ma-
trices, where noun-verb and verb-noun matrices [89] are used. Furthermore, relative
entropy (see Section 6.4.2) is used for measuring the similarity of verb-noun and noun-
verb row-vectors [89].

• The seminal work of the word sense discrimination model [110] used word hard-flat
clustering to row-vectors, where the context was given by a ±25 word window to the
centered word.

• Another approach uses soft flat clustering to word-context clustering, where the context
was given by parsed text [83].

• Clustering by Committee (CBC) is a general purpose clustering algorithm. The au-
thors present the algorithm specifically for the automatic clustering of documents and
automatic induction for concepts and word senses [84].

5.3.2 Hierarchical agglomerative clustering

In Chapter 6 we define several different ways to measure the similarities (or dissimilarities)
between the rows or columns of a data matrix. We want to emphasise again that different
similarities build different matrices, which in fact result in different cluster affiliations of
the data objects. Similarities of word-context matrices could be visualised in several different
ways. The graphical representation of a matrix of distances, which is the easiest to understand,
is the dendrogram. A dendrogram is a tree, where the objects are joined in a hierarchical
fashion according to their similarities. Here, we describe the algorithm of hierarchical cluster
analysis on the step by step guidance of building a dendrogram.

We use the HAL-matrix (see Table 5.1) as a baseline for the hierarchical agglomerative cluster-
ing. In reality, it does not make sense to perform clustering on a single sentence. Clustering is
usually performed on a massive dataset, but here it is an illustrative example. In a first step,
the clustering algorithm compares each row with each other row by the city block distance
because it is quick to set up and therefore it is easy to retrace. For this, we need to calculate
the sum of the differences for each row and end up with a similarity matrix (see Table 5.2).
This city block distance is a symmetric metric, and therefore, the matrix is also symmetric,
and we need to look at entries below or above the main diagonal.

2A polysemous word has multiple meanings (e.g. a “crane”, could be a bird or a construction equipment).

32

- binoculars I man saw the with

binoculars 0 15 15 20 17 12
I 15 0 12 5 24 14
man 15 12 0 11 16 8
saw 20 5 11 0 19 15
the 17 24 16 19 0 14
with 12 14 8 15 14 0

Table 5.2: Similarities based on the city-block metric between all rows of the HAL-matrix
(see Table 5.1 on page 31).

- binoculars I/saw man/with the

binoculars 0 20 15 17
I/saw 20 0 15 24
man/with 15 15 0 16
the 17 24 16 0

Table 5.3: Similarities are joined with the maximum linkage criterion.

To build up the dendrogram, we need to look for the pair of samples that are the most similar.
In our case, these are the entries with the closest similarity, which are the words “saw” and “I”
with a value of 5, followed by the word “with” and “man” with a value of 8. These two pairs
are joined according to the linkage criteria (see Section 6.5). We are using the maximum, or
complete linkage method to compute the next level of similarities. In this method two pairs
are joined according to the maximum similarity, this is the highest value of the similarity
matrix of the corresponding cells.

Since there are new pairs “saw”/“I” and “man”/“with” we need to sum their similarity up,
calculate the new matrix (see Table 5.3) and find the most similar ones again.

Each agglomeration to a cluster, up the hierarchy level, has a greater distance between the
clusters than the previous one in the hierarchy level. A stopping criterion for the clustering is
either when the clusters are too far apart to be merged (distance criterion), which automat-
ically finds k (i.e. the number of clusters), or when there are a sufficient number of clusters
(number criterion), where k must be given.

Here we continue clustering until all words are clustered. For the complete dendrogram see
Figure 5.4.

33

saw I man with binoculars the

di
st
an

ce

Figure 5.4: Dendrogram for the sentence in the HAL-matrix (see Table 5.1).

34

Chapter 6

Calculations in the vector space

After the text in LexicoMetric Analysis TOol (LeMATo) has been tokenized, stored in an
inverted index database and filtered for the most significant terms, we need to build up the
vector space. The general mathematical processing for the vector space contains four steps
[117]. The first step is to generate a matrix filled with raw frequencies or any other co-
occurrence measure (see Section 6.1). The measures within the matrix are adjusted (see 6.2)
because common words might have high frequencies. Hence they are less informative than
rare words. Third, the matrix gets smoothed by reducing the random noise in the matrix
through filling zero elements in a sparse matrix (see Section 6.3). Finally, in the fourth step,
there are many different ways to measure the similarity (or dissimilarity) between two vectors
(see Section 6.4).

In addition to that, the vector space in LeMATo gets clustered. The hierarchical agglomerative
clustering uses a linkage criteria to aggregate two clusters to one. At the end of this chapter
we show the most common linkage criteria (see Section 6.5), which determines the distance
between sets of observations as a function of pairwise distances.

6.1 Co-occurrence measures

Co-occurrences are often used as a way to represent the global contexts of words. There are
several measures to observe the co-occurrence of words. These measures are often used as a
baseline for further post processing (e.g. collocation extraction in LeMATo). To calculate the
measures we need to observe the co-occurrence frequencies nAB of two words A and B, as
well as the individual frequencies nA, nB and the corpus size n.

Raw frequency counts: One possibility is to view each word as a distinct entity within
sentences or other easily observable linguistic units, applying the raw co-occurrence frequency
counts nAB in a simple vector space model, where each word defines a new dimension. Several
variations of this kind of vector space model were proposed. The most famous one is the Latent
Semantic Indexing (LSI). It is a well-known technique for document categorization based on
the raw co-occurrence frequency counts of words [30]. Dimensionality reduction (e.g. part of
speech filtering, Singular Value Decomposition) leads to a performance gain in computational
efficiency.

35

The Dice coefficient compares two different samples [26, as cited in [15]] (see Equation
6.1). It is commonly used in information retrieval [95, as cited in [15]]. The coefficient is
defined as twice the shared information (e.g. co-occurrences nAB) over the sum of cardinalities
(nA + nB):

sdice =
2nAB

nA + nB
(6.1)

The Mutual Information measure [19, as cited in [15]] has been applied to lexicography
with a slight modification to its original formula [59, as cited in [15]]. Regarding the preference
of low frequent words the Lexicographers Mutual Information sLMI added a factor for co-
occurrence words nAB (see Equation 6.2).

sLMI = nAB log2

(
n · nAB

nA · nB

)
(6.2)

The log-likelihood test [31, as cited in [15]] compares two binomial distributions with
each other using the generalized log likelihood ratio λ, where λ in our case is defined as:

λ =

n log(n)− nA log(nA)− nB log(nB) + nAB log(nAB)

+ (n− nA − nB + nAB) log(n− nA − nB + nAB)

+ (nA − nAB) log(nA − nAB) + (nB − nAB) log(nB − nAB)

− (n− nA) log(n− nA)− (n− nB) log(n− nB)

 (6.3)

The significance is then computed as:

sLL = −2 log λ (6.4)

The log-likelihood test is only one-sided, this means that it does not distinguish between sig-
nificant co-occurrence and non-significant co-occurrence. To correct this, a second significance
can be defined:

sLL2 =

{
−2 log λ if nAB <

nA · nB
n

2 log λ else
(6.5)

Notes on co-occurrence measures: This is not an exhaustive list of all co-occurrence
measures. There are also other measures, e.g. the Poisson significance measure [50, as
cited in [15]], which is favorable in cases where the frequency of the words is much smaller than
the corpus size. The z-score and the t-score (t-test) are also two commonly used measures
[38, as cited in [15]].

In LeMATo, currently, the only measure which is implemented is the Dice coefficient because
its value is better directly comparable (see Section 6.2). LeMATo is designed to add easily
other measures.

36

6.2 Adjusting the weights

Unfortunately, all co-occurrence measures except the Dice coefficient, are not directly compa-
rable to each other. A higher log-likelihood ratio does not necessarily mean a more significant
co-occurrence. If the frequency of two words is very high, they are also likely to co-occur, but
they are less important than the co-occurrence of two words which are less frequent.

For example, in measuring the similarity between words like “Leipzig” and “Frankfurt”, the
contexts “financial” or “football” are more discriminative than the contexts “have” or “like”.

Currently, LeMATo does not support an adjustment of the weights, but the point-wise mutual
information transformation is also implemented in the s-space package. This means LeMATo
could be easily extended for an adjustment of the weights.

6.2.1 Tf-idf

The most popular way to adjust the frequencies is to use the Term Frequency-Inverse Docu-
ment Frequency (tf-idf) [52]. It is a commonly used weighting scheme for ranking and scoring
documents. It increases proportionally to the word frequency within a document, but drops
off proportionally to the overall word frequency and, therefore, it has certain advantages over
raw frequencies [105]. It has been applied to stop words filtering in various applications like
text summarization or text classification. Usually tf-idf is used with document normalisation
(see [114]), because the raw tf-idf favours long documents.

The tf-idf is the product of two statistics, the term frequency tf and the inverse document
frequency idf . There are various ways to determine the exact values for both statistics. For
example, the tf value could be raw frequencies of a document, a binary value or even a log-
normalised value. The idf value is usually defined as log(Nni

) where N is the total number
of documents and ni is the number of documents containing the term i, but there are also
several variations.

6.2.2 Point-wise mutual information

We are not focused on document weighting, therefore tf-idf is not appropriate. A better fit
for the solution to our problem, of adjusting the frequencies for word context matrices, is
the Pointwise Mutual Information (PMI) [19, as cited in [117]]. For the context matrix F,
with the entries fi,j , the row total sum

∑nr
i=1 fi,j (nr number of rows), the column total sum∑nc

j=1 fi,j (nc number of columns) and the matrix total sum
∑nr

i=1

∑nc
j=1 fi,j the PMI pmii,j

is defined as follows:

pi,: =

∑nc
j=1 fi,j∑nr

i=1

∑nc
j=1 fi,j

(6.6)

pi,j =
fi,j∑nr

i=1

∑nc
j=1 fi,j

(6.7)

37

p:,j =

∑nr
i=1 fi,j∑nr

i=1

∑nc
j=1 fi,j

(6.8)

pmii,j = log

(
pi,j

pi,: · p:,j

)
= log

(
fi,j ·

∑nc
i=1

∑nc
j=1 fi,j∑nc

j=1 fi,j ·
∑nr

i=1 fi,j

) (6.9)

Here, we have the estimated probability of a word that occurs in a context pi,j , the estimated
probability pi,: of the word wi and the estimated probability p:,j of the context cj .

There are some variations to the PMI. One is the Positive Pointwise Mutual Information
(PPMI) [81], where all entries less than zero are replaced with zero. The PPMI performs
better than a variety of other weighting approaches [18].

Other variations address the problem that PMI is biased towards infrequent events, particu-
larly in cases where the word wi and the context cj are statistically dependent (i.e. the word
always co-occurs with its context) (see [117] for details).

6.3 Smoothing the matrix

In statistics, to smooth a data set is to create an approximation that captures the essential
attributes and patterns in the data, while leaving out the noise and other fine-scale phenomena.
When the Vector Space Model (VSM) is applied to a large corpus, this inevitably leads to a
large amount of features1 and also to a large word-context matrix of the same size.

The simplest way to reduce this high dimensional space is to filter the components with no or
little information and to keep only the most frequent words. Common words like “the” or “is”
carry little discriminative power. Statistical filtering based on the significance gained from
the comparison to a reference corpus or any other homogeneous corpus also reduce the large
dimension of the feature space (see Chapter 7).

Computing the similarity between all pairs of vectors in the VSM is a computationally inten-
sive task. Only those vectors which share non-zero candidates are compared, otherwise they
are dissimilar to each other. Filtering based on the PMI decreases the number of comparisons
greatly, while losing little precision for the most 200 similar words [71].

There are also other, very elegant, dimensionality reduction techniques like Singular Value
Decomposition (SVD) or Random Indexing (RI). SVD has been performed in Latent Semantic
Analysis (LSA) [23]. SVD is a matrix factorization technique that decomposes the matrix into
three smaller matrices, which contain the linearly independent factors of the original matrix.

Instead of building the co-occurrence matrix and then extracting vectors from it, RI incremen-
tally accumulates context vectors in a two-step approach. First, each context (e.g. document)
in the text, is assigned to a randomly generated representation called the index vector. Sec-
ond, context vectors are produced by scanning through the text and every time a word appears
in a context, the corresponding index vector is added to the context vector. Each word is

170 000 features for Hyperspace Analogue to Language (HAL), see Section 5.2.2

38

represented by a context vector, which is a combination of all index vectors of the documents
in which the word appears. For more information on RI we refer to [100].

The vector space in LeMATo is relatively small (≤ 100 terms), and these terms also have dis-
criminative power, because the words originate from the significance filtering step. Therefore
we go completely without smoothing in LeMATo.

6.4 Similarities and dissimilarities

An accurate measure of distance obeys three properties: symmetry, the identity of indis-
cernibles and the triangle inequality. Symmetry is given when the distance d between two
objects a and b is the same as the distance between b and a (see Equation 6.10). The identity
of indiscernibles says that the distance d of two objects a and b is always positive, with the
only exception, that is, iff the two objects are equal, then the distance d is zero (see Equation
6.11). The third axiom is called the triangle inequality that states that the distance d(a, b) is
shorter or equal than the distance d(a, c) + d(c, b) in the triangle of three objects a, b and c.
Equal only, iff object c is on the “route” from a to b (see Equation 6.12).

d(a, b) = d(b, a) (6.10)

d(a, b) ≥ 0 (6.11)

d(a, b) ≤ d(a, c) + d(c, b) (6.12)

There are some measures, which do not satisfy all the axioms for metrics, especially the
triangle inequality is often not satisfied (e.g. Bray-Curtis dissimilarity). These measures are
called dissimilarity measures or dissimilarities.

6.4.1 Similarities

L1 distance (city-block)

The name city-block distance2, considered by Hermann Minkowski, allude to the grid layout
of most streets of Manhattan. The taxicab in Manhattan needs to take an angular path to
reach the destination on the shortest path. The city-block distance d1 between two vectors
p and q is the sum of the differences in the coordinates (see Equation 6.13). For example,
in a two-dimensional space, the city-block distance between the point p(p1, p2) and point
q(q1, q2) is |p1 − q1|+ |p2 − q2| (see Figure 6.1).

d1(p,q) = ‖p− q‖1 =
n∑

i=1

|pi − qi| (6.13)

2also called Manhattan distance, taxicab distance, rectilinear distance, L1 distance or `1 norm

39

p

q

|p2 − q2|

|p1 − q1|

Figure 6.1: L1 metric (red dashed line) and L2 metric (green dashed line) in a two dimensional
plot.

L2 distance (Euclidean)

The Euclidean distance, also known as Pythagorean metric, is the shortest distance between
two points in the Euclidean space. In an n-dimensional space, the Euclidean distance d2
between two vectors p and q is given by the Pythagorean formula (see Equation 6.14).

d2(p,q) =
√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2

=

√√√√ n∑
i=1

(qi − pi)2
(6.14)

In a two-dimensional space, the Euclidean distance between two points p(p1, p2) and q(q1, q2)
is given by d(p,q) =

√
(q1 − p1)2 + (q2 − p2)2 (see Figure 6.1).

6.4.2 Dissimilarities

Relative entropy

The relative entropy3 is a non-symmetric measure to compare two probability distributions
P and Q [63]. The relative entropy of Q from P , denoted as DKL(P‖Q), is a measure of the
information loss, when Q is approximated by P (see Equation 6.15). DKL(P‖Q) is zero, if P
and Q are equal and it is inverse proportional to the probability of a random sample drawn
according to P .

DKL(P‖Q) =
∑
x

p(x) log
p(x)

q(x)
(6.15)

3also information divergence, information gain, Kullback-Leibler divergence, KLIC or KL divergence

40

Jaccard index

The Jaccard index, also known as the Jaccard similarity coefficient, is used to compare simi-
larity between finite sample sets, and is defined as the size of the intersection |A∩B| divided
by the union |A ∪B| between two sets (see Equation 6.16).

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(6.16)

6.4.3 Implementation notes

The default value for the similarity of two vectors in LeMATo is the L2 distance (Euclidean),
but each other value, which is implemented within the s-space package4 could also be used.
The similarity measure could be changed by modifying the entry in the application.yml file.

6.5 Linkage criteria

In the initial phase of hierachical agglomerative clustering (see Section 5.3.2), each observation
forms its cluster. Pairs of clusters are merged according to their similarity. Given a distance
matrix, linkages between clusters are computed through a criterion, that is the linkage crite-
rion, to compute the distance between groups. In the following, we describe commonly used
linkage criteria between two clusters A and B. The distance D(A,B) is the distance between
two clusters A and B and the distance d(a, b) is the distance between two elements a ∈ A
and b ∈ B.

These linkage criteria discussed here are not an exhaustive list of all linkage criteria. We only
explain the linkage criteria, which are implemented in the S-Space package. For a complete
list of linkage criteria for hierarchical agglomerative clustering see [107].

6.5.1 Maximum or complete-linkage clustering

In complete-linkage clustering, also known as the method of farthest neighbour clustering,
the link between two clusters is defined through those two elements in the clusters which are
farthest away from each other (see Equation 6.17).

D(A,B) = max
a∈A,b∈B

d(a, b) (6.17)

6.5.2 Minimum or single linkage clustering

In minimum or single linkage clustering, also known as nearest neighbour clustering, two
clusters are combined according to the nearest elements in different clusters (see Equation
6.18).

4see enum edu.ucla.sspace.common.Similarity.SimType in Javadoc http://fozziethebeat.github.io/S-
Space/apidocs/

41

http://fozziethebeat.github.io/S-Space/apidocs/
http://fozziethebeat.github.io/S-Space/apidocs/

D(A,B) = min
a∈A,b∈B

d(a, b) (6.18)

A drawback of single linkage clustering is the chaining phenomenon. Two clusters via min-
imum linkage clustering may be forced together due to two single elements being close to
each other, even if many of the elements in the cluster are far apart. In contrast to that, the
complete linkage tends to find compact clusters of approximate equal diameters [37, p. 62-64].

6.5.3 UPGMA

Unweighted Pair Group Method with Arithmetic Mean (UPGMA), also known as mean link-
age clustering, is the most popular method in ecology for hierarchical clustering, which takes
the average of the pairwise similarities in relevant descriptor variables. The distance between
two clusters A and B is taken to be the average of all distances between all possible pairs of
objects between a ∈ A and b ∈ B, that is the mean distance between the elements of each
cluster (see Equation 6.19).

D(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b) (6.19)

6.5.4 WPGMC

In Weighted Pair-Group Method using Centroids (WPGMC), also known as median linkage
or centroid linkage clustering, two clusters A and B are merged according to their centroids
cA and cB (see Equation 6.20). The centroid is the positional arithmetic mean (i.e. average)
of all objects. It is used only for Euclidean distance. For instance, if the cluster A contains
the two objects p and q, the centroid is defined as cA = 1

2(p+ q).

D(A,B) = ‖cA − cB‖ (6.20)

6.5.5 Implementation notes

All four linkage criteria which are listed here are implemented within LeMATo. The default
linkage criterion in LeMATo is the mean linkage clustering (UPGMA), because it is the most
popular method for hierarchical agglomerative clustering.

42

Chapter 7

Significant words

A frequency list is a good starting point for studying a text corpus. Frequency-ordered
listings give an overview of the most commonly-occurring words in the text. Computers
process frequency lists in nearly real time, but the information provided is not easy to read.
Therefore, we need a filtering mechanism to reveal significant items, those items which are
either over- or under-represented in the text corpus. There are at least two different approaches
to this filtering mechanisms: the frequency adjustment uses a formula to adjust the frequencies
for the distribution of words, and the statistical test applies a statistical procedure to find
the significant words. One thing which both approaches have in common is the contingency
table1. This table summarizes the multivariate frequencies of the variables.

wikipedia corpus (en) British National Corpus (BNC) total
foo 4500 40 4540
not foo 1.9 ∗ 109 − 4500 108 − 40 2.9 ∗ 109 − 4540
total 1.9 ∗ 109 108 2.9 ∗ 109

Table 7.1: An example of a contingency table. The frequencies of the word “foo” are queried
in two different corpora. In the wikipedia corpus (en) the word “foo” occurs 4500 times and
in the BNC the word “foo” occurs 40 times. The size of the wiki corpus is 1.9 billion words
and the size of the BNC is 100 million words. The label “not foo” refers to all other words.

As an example for a contingency table, we queried Wikipedia (en)2 and the BNC3 for the word
“foo” (see Table 7.1). The wiki corpus is roughly 19 times larger than the BNC. Therefore,
we need to adapt the frequencies and apply the cross-multiplication to calculate the expected
frequencies (see Table 7.2). This adaptation to the contingency table forms the basis for
further calculations (e.g. chi-square test or log-likelihood test).

1also known as cross tabulation or cross tab
2http://corpus.byu.edu/wiki/ -2014
3http://corpus.byu.edu/bnc/

43

http://corpus.byu.edu/wiki/
http://corpus.byu.edu/bnc/

wiki corpus BNC total

foo observed 4500 (a) 40 (b)
4540expected 4313 227

not foo observed 1.9 ∗ 109 − 4500 108 − 40
2.9 ∗ 109 − 4540expected 1.9 ∗ 109 − 4313 108 − 227

total 1.9 ∗ 109 (c) 108 (d) 2.9 ∗ 109 (N)

Table 7.2: Contingency table with observed and expected values calculated with frequencies
of Table 7.1. The expected frequencies are calculated with a simple cross-multiplication. The
expected frequency for “foo” in the wiki corpus is calculated as follows: c ∗ a+b

c+d . We assume
an equal distribution of the words for both corpora.

7.1 Comparing words using reference corpora with test statis-
tics

7.1.1 Chi-square test

The chi-square test, also referred to χ2 test is used to determine whether there is a significant
difference between observed and expected frequencies in one or more categories. There are
some variants of the chi-square test, but if there is no other precluding context, the Pearson’s
chi-square test [85] (see Equation 7.1) is often meant. The letter “O” stands for observed and
“E” for expected values. In our case we have to sum up each of the values using Pearson’s
equation:

χ2 =
N∑
i=1

(Oi − Ei)
2

Ei
(7.1)

χ2 =
(4500− 4313)2

4313
+

(40− 227)2

227
+

(1.9 ∗ 109 − 4500− 1.9 ∗ 109 − 4313)2

1.9 ∗ 109 + 4313
+

(108 − 40− 108 − 227)2

108 + 227
= 162.16

The χ2 test statistic can be used to calculate the p-value by comparing the value to a chi-
squared distribution. We have 1 degree of freedom, because we have 2 columns and 2 rows,
(2−1)∗ (2−1) = 1. Our value is 162.16. After looking up our value with 1 degree of freedom
in a chi-square distribution table, we conclude that the observed and expected frequencies are
not equal with a certainty of 99.999%.

The test statistic tends to indicate significance even for low frequencies and is therefore not
always reliable. For such cases Yates correction for continuity [123] is applicable, where
the differences of observed and expected values are reduced by 0.5 before squaring:

44

χ2
Yates =

N∑
i=1

(|Oi − Ei| − 0.5)2

Ei
(7.2)

7.1.2 Log-likelihood ratio test

Another approach to calculate the significance is the log-likelihood ratio test. There are some
issues with the chi-squared test. In a comparison between the LOB Corpus4 and the Brown
Corpus5, there are many common words marked as having significant chi-squared values,
because words are not selected at random in language, so we will always see a large number
of differences between two corpora with the chi squared statistics [57].

Another issue is, that chi squared values become unreliable for extreme values. They tend to
indicate significance for low values and overestimate high frequency words, when comparing
a small corpus to a much larger one. The assumption of a normal distribution causes this
effect, and text is not normally distributed. The parametric analysis based on the binomial or
multinomial distribution is more suitable for text analysis. An often suggested alternative to
the Pearson’s chi-squared test is the log-likelihood ratio test proposed by Ted Dunning [31],
but it also remains unreliable for rare bi-grams [88].

The log-likelihood statistic gives an accurate measure of how “surprising” an event is [31]:

G2
dunning = −2 ln(λ) = 2(H(matrix)−H(rowSums)−H(colSums) +H(N)) (7.3)

where H is the Shannon entropy of a finite sample and could be written as:

H(X) = −
∑
i

P (xi) lnP (xi) (7.4)

For our contingency table (Table 7.1), we could compute the G2 statistics as follows:

G2
dunning = 2(a ln(a) + b ln(b) + (c− a) ln(c− a) + (d− b) ln(d− b)

− (a+ b) ln(a+ b)− ((c− a) + (d− b)) ln((c− a) + (d− b))− (c) ln(c)− (d) ln(d)

+ (a+ b+ (c− a) + (d− b)) ln(a+ b+ (c− a) + (d− b)))
= 243.11

Many programs rely on an even simpler log-likelihood ratio to indicate the over- or under-use
of words. Starting point for the calculation is the contingency table. We can then apply the
log-likelihood according to the following formula proposed by Paul Rayson and Roger Garside
[93]:

4Lancaster-OsloBergen Corpus (often abbreviated as LOB Corpus) is a million-word collection of British
English texts

5Brown University Standard Corpus of Present-Day American English

45

− 2 ln(λ) = 2
∑
i

Oi ln

(
Oi

Ei

)
(7.5)

In our case N1

According to our frequencies for the word “foo” and we replace the observed frequencies Oi

with our frequencies a and b (see Table 7.2) we can calculate the log-likelihood (LL) as follows:

G2
rayson&garside = 2((a ln(a/E1)) + (b ln(b/E2))) =

2((4500 ln(4500/4313)) + (40 ln(40/227))) =

2(190.99− 69.44) =

243.11

There is also a log-likelihood calculator on the web. This calculator requires the frequencies
for one word and the corpus sizes: http://ucrel.lancs.ac.uk/llwizard.html.

7.2 Comparing words using reference corpora with frequency
adjustment

7.2.1 Characteristic Element Diagnostic - ced

The ced parameter used to filter the relevant terms from non-relevant terms is called the
characteristic element diagnostic (ced) and identifies characteristic elements or characteristic
textual units [69]. This measure gives information whether a word is over- or under-represented
in a sub-corpus in comparison to the rest of the corpus. For the calculation of this diagnostic
value, it is assumed that the words are distributed in a hyper-geometric manner. This is not
true, because the words typed by a human being are far more complexly distributed. There-
fore, the calculated values are no probabilities, but they serve as a powerful and descriptive
property.

The ced-value is computed based on four quantities, expressed as simple word counts:

• the corpus size N ,

• the size of the sub-corpus n,

• the word frequency in the whole corpus M and

• the observed word frequency k in the sub-corpus.

According to the urn problem without replacement, the entire population N has some marked
objects M and we draw a sample which has exactly n objects. Figure 7.1 shows an example
of a hyper-geometric distribution for a model corpus. In this example we are looking for a
fictitious word “foobar”, which has a total word frequency in the overall corpus of 36. The
distribution in Figure 7.1 is our discrete probability density function. It can be seen, that
the probability of drawing zero marked objects is approximately 1.4%. The mode of the
distribution is the most probable value and has a probability of approximately 20.7%.

46

http://ucrel.lancs.ac.uk/llwizard.html

0 5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

Hypergeometric distribution

h=Absolute frequency

P
ro
ba

bi
lit
y

mode

observed frequency

Figure 7.1: Calculation of the ced-value: Hyper-geometric distribution (corpus size (N):
160000, size of sub-corpus (n): 20000, word frequency in the whole corpus (M): 36).

Now we place our observed frequency of the sub-corpus in relation to the mode of the distri-
bution. If “foobar” is observed much more often as the mode, then “foobar” is overrepresented
in the corpus. To express this in a value, we could calculate the “probability” of having a
number of marked objects greater than or equal to k:

Pinf(k) =

n∑
i=k

(
M

i

)(
N −M
n− i

)
(
N

n

) (7.6)

The same holds for under-represented objects, e.g. if “foobar” is observed much less often
than the mode. So we calculate the “probability” of having a number of marked objects less
than or equal to k:

47

Psup(k) =

k∑
i=0

(
M

i

)(
N −M
n− i

)
(
N

n

) (7.7)

The text analyst decides whether an object is over- or under-represented, so he sets up a
threshold and if Pinf is smaller than the threshold, then the word is poorly represented in the
sub-corpus and we have a negative characteristic noted as CED−.

If Psup is smaller than the threshold, we conclude that the word is abundant in the sub-corpus
and we have a positive characteristic noted as CED+. It could also happen, that neither Pinf

nor Psup is below this threshold, so the word is banal to the corpus.

7.3 Notes on corpus comparison

The question of “Which words are characteristic of a text?” is the dogma of Information
Retrieval (IR), and the Term Frequency-Inverse Document Frequency (tf-idf) is a numerical
statistics in IR that is intended to reflect how important a word is to a document collection or a
corpus. The tf-idf (see Section 6.2.1 and [104] for detailed information and references) adresses
the general IR-problem to retrieve and rank relevant documents to a user query from a large
document collection or database, but it lacks in providing information to corpus comparison
for the following two reasons [58]. First, tf-idf does not normalize for the document length,
this is why IR-applications usually normalise for document length (see [114]). But after all,
this normalisation is not satisfactory, because a single use of a word within a hundred words
corpus is far less noteworthy than ten uses within a thousand word corpus. Secondly, in the
case where words are present in all documents, the idf value collapses to zero (see Equation
7.8, where N is the total number of documents in the corpus and ni are the documents
containing the term i). Idf was originally introduced as “term specificity” [52].

idfi = log
N

ni
(7.8)

IR applications use stop word lists, which remove common words, and ignore this issue. After
all, these two issues show the incompatibility of the tf-idf value for corpus comparison.

Another approach to corpus comparison is the Mutual Information (MI) statistic [?].

MIω,X = log2

(
a

c
· N

a+ b

)
(7.9)

This measure states how much information word ω provides about corpus X (see Equation
7.9 and contingency Table 7.2). MI is not suitable for corpus comparison, because it is known
to overemphasize common terms [58].

In comparing corpora, an important question is: “How large has to be the reference corpus

48

to have meaningful results?”. A study ([11]) on the basis of WordSmith Tools KeyWords6

procedure compares a study corpus with reference corpora of various sizes. The sizes of the
reference corpora vary from two to 100 times larger in contrast to the study corpus. The
study yields that the reference corpus needs be at least five times larger than the corpus [11]
in order to have meaningful statistics.

6the Keyness value in WordSmith tools is calculated on basis of a contingency table with Ted Dunning’s
Log Likelihood Test (see G2 in Section 7.1.2)

49

50

Part III

Implementation

51

Chapter 8

Requirements on LeMATo

In Chapter 3 we have described what lexicometrics is and how it differs from traditional
corpus linguistics. We also introduced the theoretical background of lexicometrics and how it
has evolved in the French discourse analysis (see Chapter 4). Here in this chapter, we recap
the basic concepts which are published in [33] to formulate requirements for a tool, which
supports discourse analysis of text corpora in social sciences.

Corpus compilation: There are a few studies (see references in Chapter 3) which have
already applied lexicometrics to text. Most of these studies analyse newspaper articles for
significant terms, co-occurrences and frequencies. In our reference study [78] the acquisition of
such newspaper articles has been done with the LexisNexis [13] interface. LexisNexis provides
the possibility to obtain newspaper articles with certain keywords within a period. It would
be the best option to use a REST interface on LexisNexis to query the newspaper articles of
our interest within LexicoMetric Analysis TOol (LeMATo). Unfortunately, the University of
Vienna does not have access to the REST-API, so we decided to parse plain text files, which
are downloaded from the LexisNexis web front-end.

The linguistic preprocessing (outlined in Section 3.1.3) for texts contains tokenisation,
stop-word filtering and either lemmatization or stemming. Lemmatization is highly preferable
over stemming, but it comes with computational costs, and it is also not easy to incorporate
lemmatization within our search-engine (i.e. Elasticsearch), especially for the German lan-
guage. There are some attempts1, but at the time of writing, they are not compatible with
current Elasticsearch implementations. After all, we decided to continue with stemming in-
stead of lemmatization.

The frequency analysis (see Section 10.3) focuses on particular issues such as N-grams,
diachronic corpora and Kendall’s τ . N-grams are implemented in various programs (e.g.
AntConc [3]), and since LeMATo is a prototype, we decided to leave out N-grams in the
initial version. However, a diachronic view on text corpora is not very common in text
analysis programs, and it might be very useful to see how the terms evolve in a particular
period. We provide an annual view on the development of the frequencies. We also include

1see https://github.com/larsmans/lucene-stanford-lemmatizer

53

https://github.com/larsmans/lucene-stanford-lemmatizer

Kendall’s τ , to have a view on the development of a term over the years. It would be beneficial
if we could query certain parts of the corpus.

The Concordance analysis (see Section 10.4) performs a Key-Word In Context (KWIC)
analysis, which enables the social scientist to query the context of certain keywords, which is
something quite important for exploring a corpus and its keywords. Therefore, we include it
in our tool.

Significance analysis: Here, in this paragraph, we sum up both kinds of analysis, namely
the analysis of characteristics in sub-corpora (see Section 3.4) and the co-occurrence analysis
(see Section 3.5) to a significance analysis, since both analyses are very similar in the
presentation of their results and their significance calculation. As we have already mentioned,
there are some restrictions in the initial version of LeMATo. Here we decided to make a
limitation on the calculation of the significance of the terms. Since our reference study [78]
is split into three distinct parts, we calculate the significant terms of each part in contrast to
the rest of the corpus. The approved methodology here would be to calculate the significant
terms in contrast to a much bigger corpus (e.g. a reference corpus, see also Chapter 7).

Furthermore, in the calculation of significance, we are not only interested in document fre-
quencies. Sometimes a much smaller text unit (e.g. paragraph or sentence) is more interesting.
Therefore, we decided to split each newspaper article into paragraphs and sentences. This
enables us to make a significance calculation on sentences, which is important if we are look-
ing at co-occurrences. Sometimes it is not enough, to look only at the sentences, because the
sentence context provides not enough meaning, therefore we include also the calculation of
significance on paragraphs into LeMATo.

Since we cluster the most significant terms to groups, we need to visualise the grouping in a
dendrogram (see also Section 5.3).

The analysis of characteristics in sub-corpora needs the possibility to distinguish between
different parts of the corpus, so we provide the opportunity to annotate various parts of the
corpus with tags.

Visualisation: There are several visualisation techniques for frequency diagrams, concor-
dance plots, dendrograms and tables. Google Charts2 offers an excellent collection of visual-
isation techniques, including all kinds of charts, and more important for us, a double word
tree (see Section 10.4). The visualisation of the dendrogram, which is the outcome of our
clustering, could be performed with d3js3. Finally, we conclude, that the visualisation of the
results in LeMATo could be best achieved with web techniques; therefore, we have a necessity
to build a web application.

Summary Finally, we are summarising the requirements on LeMATo and, additionally, we
want to emphasize here, that we are creating an application, which is modular and easily
extensible.

2seehttps://developers.google.com/chart/
3see http://bl.ocks.org/mbostock/4063570

54

see https://developers.google.com/chart/
http://bl.ocks.org/mbostock/4063570

• Parsing LexisNexis text files into document, paragraph and sentence entities.

• Linguistic preprocessing includes stemming instead of lemmatization.

• Diachronic view on the corpus including raw frequencies, relative frequencies and
Kendall’s τ on the most frequent terms.

• KWIC visualisation with a double word tree.

• Calculation of significant terms for all levels of text units (sentence, paragraph and
document).

• Providing a dendrogram for the clustering results.

• Annotation of tags for different sub-corpora.

• The necessity to build a Web application to provide best possible visualisation tech-
niques.

“Nice-to-have” features: Finally, we end up with some features which are not necessary,
but they offer a quite handy feature for discourse analysts. If we are facing raw frequencies it
is sometimes not very clear, how a term is used within the context. Therefore, we provide a
possibility to look at the utilization of the word within its document, paragraph or sentence.

Since we have annotated our text with tags, publish date of each newspaper article, and the
text itself, it would be great to have a query system, which allows us to query individual texts
within a period or with certain tags or even with a containing term. Such a query system is
already provided within Apache Lucene [4].

• Allowing to zoom into the document, where the term was used.

• Applying Apache Lucene queries

Use Case: Finally we conclude this chapter with a use case diagram (see Figure 8.1). A
LeMATo user could perform four different kinds of analyses, but each analysis requires a
corpus, which needs to be defined in advance.

55

LeMATo
LeMATo

«include»
«include»

«include»
«include»

User

Corpus definition

Frequency analysis

Concordance analysis

Characteristics analysis

Cooccurrence analysis

Figure 8.1: Use case diagram for LeMATo. Each analysis requires a corpus definition.

56

Chapter 9

Software Stack

9.1 Groovy and Grails

LexicoMetric Analysis TOol (LeMATo) is built with the open source web application frame-
work Grails [96]. It is based on the Convention-over-Configuration design paradigm [80],
which means a developer only specifies unconventional aspects of the application to reduce
the complexity of configuration files. For example, the name of the class corresponds to the
name of the table in the database. It behaves as expected without additional configuration
files, but could get adapted depending on the needs.

Grails as a dynamic framework embraces the Don’t Repeat Yourself (DRY) principle. Grails
reduces the complexity of building web applications for the Java platform. In contrast to
other dynamic frameworks like Rails or Django it is built on top of already established Java
web technologies like Spring [90] and Hibernate [94].

Grails
Java EE Spring Boot Hibernate Gradle

G
roovy

Java Programming Language Java Dev. Kit

Java Virtual Machine

Figure 9.1: Depicting Grails architecture.

57

Grails is a full stack framework, this means that it supports the full development stack from
the user interface till the data store. Grails core technology and its associated plug-ins serve
some comfortable “out of the box” features like:

• An easy to use Object Relational Mapping (ORM) layer built on top of Hibernate [94]

• An expressive html view technology called Groovy Server Pages (GSP) (similar like JSP
or ASP but far more flexible and intuitive)

• A controller layer built on Spring MVC [90]

• Iterative command line environment and build system based on Gradle [28]

• embedded Tomcat [5] container for on the fly reloading

• Dependency injection with the inbuilt Spring [90] container

• Support for internationalization (i18n) built on Spring’s [90] core MessageSource concept

• Transactional service layer built on Spring’s [90] transaction abstraction

Grails is intended to be a high-productivity framework, which means that there is no Ex-
tensible Markup Language (XML) configuration, a ready to use development environment,
and functionality is available through mix-ins1. Instead of XML, all of the features listed
above, are easy to use through the power of the Groovy language [66] and the extensible use
of Domain Specific Language (DSL) [97]. For a detailed introduction into Grails see reference
documentation [97].

9.2 Elasticsearch

Elasticsearch [36] is made to query text and to perform statistical analysis on a corpus of text.
More specifically, Elasticsearch is a standalone database server, written in Java. Due to its
multi-tenant architecture, Elasticsearch provides a distributed and scalable environment [44].

The core of the intelligent search engine in Elasticsearch is Apache Lucene [4]. Lucene im-
plements everything that pertains to the algorithms of matching text and storing optimized
indexes of searchable terms. However, Lucene is not easy to use directly in a Java applica-
tion, so Elasticsearch hides the complexity of Lucene behind a simple and coherent RESTful
interface.

Elasticsearch as a full-text search engine has a RESTful web interface with schema-free JSON
documents. This means that Elasticsearch is accessible from any programming language over
port 9200 with any web client. It is even available from the command line using the curl
command.

LeMATo uses the “node client” from the Groovy API [34] to access the Elasticsearch server.
The Groovy API is a wrapper on top of the Elasticsearch Java API. The Java API comes
with two different built-in clients, the “node client” and the “transport client”:

1A mix-in is a method that is added to a class dynamically, as if the functionality had been compiled into
the program.

58

The node client joins a local cluster without holding any data by itself, but it knows what
data lives on which node in the cluster and can forward the request directly to the correct
node.

The transport client does not join the cluster itself, but forwards requests to a node in
the cluster.

Using Elasticsearch from a client has certain advantages over the RESTful API. All operations
are completely asynchronous, and operations on a client may be accumulated and executed
as a bulk, which takes advantage of streams and multi-threaded environments [44]. For more
details on joining Elasticsearch with a node client see Section 10.2.2.

Elasticsearch is distributed by nature and it is designed to hide the complexity that arises
with being distributed, this includes operations like:

• Partitioning documents across multiple nodes

• Balancing the data load in the cluster

• Managing redundancy to prevent data loss in case of hardware failure

• Routing requests to the data of interest

• Integration of new nodes and redistributing in the event of data loss

All these operations are happening automatically under the hood and are abstracted by Elas-
ticsearch itself. LeMATo is built on top of Elasticsearch, and this means that LeMATo scales
horizontally as well as Elasticsearch does, but LeMATo has not been tested on a distributed
system until now.

The essential unit, where the search actually happens is a Lucene index. This index is made up
of one or more immutable index segments. Any CRUD-operation here, adds a segment to the
index. Some segments are merged to reduce the runtime complexity (for detailed information
why and how segments are merged we refer to the documentation2).

An index in Elasticsearch is a collection of shards. Each shard is a Lucene index. When
Elasticsearch searches an index, it sends the query out to a copy of every shard to see if they
have any matching documents. The results from multiple shards must be combined into a
single sorted list before the hits are returned. This two-phase process is called “query then
fetch” to perform any search queries in Elasticsearch.

2https://www.elastic.co/guide/en/elasticsearch/guide/current/merge-process.html [44]

59

https://www.elastic.co/guide/en/elasticsearch/guide/current/merge-process.html

9.3 The S-Space Package

The S-Space Package is an open source framework for developing and evaluating word space
algorithms. The package comes with well-known word-space algorithms in various application
domains:

Document-Based Models
Latent Semantic Analysis (LSA) [68]
Explicit Semantic Analysis (ESA) [42]
Vector Space Model (VSM) [106]

Co-occurrence Models
Hyperspace Analogue to Language (HAL) [72]
Correlated Occurrence Analogue to Lexical Semantic (COALS) [98]

Approximation Models
Random Indexing (RI) [102]
Reflective Random Indexing [20]
Temporal Random Indexing (TRI) [54]
Bound Encoding of the Aggregate Language Environmet (BEAGLE) [53]
Incremenatal Semantic Analysis (ISA) [9]

Word Sense Induction Models
Purandare and Pedersen [91]
HERMIT [55]

The implementations listed here, come with some tuning mechanisms for different screws.
As an example, the implementation of HAL3 offers two distinct options for dimensionality
reduction based on the entropy measure. One allows to filter on an entropy threshold, and
the other retains n columns with the maximum entropy. Applying the calculation of principal
components may further reduce the high dimensionality, but comes only with the expensive
cost of computational complexity [72].

The S-Space Package is not only a software stack for the word-space algorithm, it also provides
a lot of utilities to develop a customized semantic word space algorithm. We are using a
clustering algorithm (i.e. hierarchical agglomerative clustering) from the S-Space Package to
develop an algorithm, which allows clustering the words into thematic groups according to
the co-occurrence of these words. Instead of providing a tight solution for the clustering of
words into thematic clusters, we provide a visualisation aid, which is a dendrogram of the
words which co-occur frequently. In the following, we give an overview of the hierarchical
agglomerative clustering algorithm, which is implemented in the S-Space Package and used
in LeMATo.

Hierarchical Agglomerative Clustering (see Section 5.3.2 for a more detailed explanation) is
a clustering algorithm, which builds a hierarchy of clusters in a “bottom up” approach: each
observation is its own cluster in the beginning and pairs or merges with the neighbour cluster
under certain similarity conditions. In most hierarchical clustering algorithms the similarity
is achieved by choosing an appropriate distance metric (see Section 6.4.1) whereas a linkage
criterion (see Section 6.5) specifies the dissimilarity between two clusters.

3https://github.com/fozziethebeat/S-Space/wiki/HyperspaceAnalogueToLanguage

60

https://github.com/fozziethebeat/S-Space/wiki/HyperspaceAnalogueToLanguage

The current implementation in the S-Space Package runs in O(n3) time. The method of
O(n2 log n) is not implemented in the S-Space, due to the fact that it requires a priority
queue of all similarity comparisons, which results in a much higher run time cost for large
matrices. For some special cases, optimal efficient (O(n2)) algorithms are known (e.g. SLINK
[113] for single linkage, CLINK [24] for complete linkage), but these are not implemented in
the S-Space Package. The implementation offers four different linkage criteria: a) complete
linkage, b) mean linkage, c) median linkage and d) single linkage (see Section 6.5).

License information

• Purpose: Performing Hierarchical Agglomerative Clustering.

• Author: David Jurgens and Keith Stevens

• Url: https://github.com/fozziethebeat/S-Space/.

• License: GNU General Public License 2.

9.4 Other software dependencies

In the previous sections we have introduced Grails, Elasticsearch and the S-Space Package.
These three frameworks comprise the core of LeMATo, but there are various other dependen-
cies used within LeMATo. Here, we list all the software dependencies with their license and
use in LeMATo.

9.4.1 Querying and using Elasticsearch

This API is built on top of the Elasticsearch Java API [35]. We use the Groovy Client
API [34] for almost all operations with Elasticsearch. Sometimes we had the problem that
the documentation is not sufficient, especially for initializing index templates and indexed
scripts. The problem in that case was solved by using the REST interface of Elasticsearch
with Httpbuilder [45].

Elasticsearch Groovy Client

• Purpose: Querying and indexing Elasticsearch.

• Author: Elastic.

• Url: https://github.com/elastic/elasticsearch-groovy.

• License: Apache License 2.0.

61

https://github.com/fozziethebeat/S-Space/
https://github.com/elastic/elasticsearch-groovy

Httpbuilder Groovy

• Purpose: Initialization of index templates and indexed scripts.

• Author: Jason Gritman.

• Url: https://github.com/jgritman/httpbuilder.

• License: Apache License 2.0.

Calculations

• Purpose: Calculation of Kendall’s τ .

• Author: Apache Software Foundation.

• Url: https://commons.apache.org/proper/commons-math/.

• License: Apache License 2.0.

9.4.2 Layout and appearance

Here we give an overview of the software and we have used for designing the layout and the
appearance of LeMATo.

Twitter Bootstrap

• Purpose: Basic layout.

• Author: Twitter Inc.

• Url: http://getbootstrap.com/.

• License: MIT license 2015.

Bootstrap-table

• Purpose: Table layout.

• Author: https://github.com/wenzhixin.

• Url: http://bootstrap-table.wenzhixin.net.cn/.

• License: MIT license 2015.

Bootstrap-tagsinput

• Purpose: Tags input.

• Author: Tim Schlechter.

• Url: https://github.com/bootstrap-tagsinput/bootstrap-tagsinput.

• License: MIT license 2015.

62

https://github.com/jgritman/httpbuilder
https://commons.apache.org/proper/commons-math/
http://getbootstrap.com/
https://github.com/wenzhixin
http://bootstrap-table.wenzhixin.net.cn/
https://github.com/bootstrap-tagsinput/bootstrap-tagsinput

Typeahead.js

• Purpose: Tags input.

• Author: Twitter Inc.

• Url: https://github.com/twitter/typeahead.js/.

• License: MIT license 2015.

D3js.org

• Purpose: Visualisation of the dendrogram.

• Author: Unknown author.

• Url: http://bl.ocks.org/mbostock/4339083.

• License: BSD 3.

63

https://github.com/twitter/typeahead.js/
http://bl.ocks.org/mbostock/4339083

64

Chapter 10

Design of LeMATo

10.1 Grails MVC(S)

LexicoMetric Analysis TOol (LeMATo) is built with the web application framework Grails
[96]. Grails architecture enforces like any other web development framework the Model-View-
Controller (MVC) pattern [61, 70] to have a clean modularisation of each layer.

Moreover, grails discourages the embedding of core application logic inside controllers as it
does not promote reuse and a clean Separation-Of-Concerns (SoC) [27]. Therefore, Grails
recommends using service classes to put the majority of the logic in the application, leaving
controllers responsible for handling request flow and redirects. This separation of the business
logic into service classes is also known as Model-View-Controller-Service (MVCS) paradigm
[12] (see Figure 10.1).

Controller

User

View

Service Model

Elasticsearch

Figure 10.1: Grails MVCS paradigm as it is used in LeMATo

The sequence diagram in Figure 10.2 represents a generalisation of the data flow in the MVCS
paradigm used in LeMATo. Each analysis in LeMATo is built very similar to this illustration
in Figure 10.2. The user performs an action in the view and triggers with a Representational
State Transfer (REST) call the action on the controller. We have simplified this in the

65

diagram with the “action” call to increase the legibility. Depending on the kind of action a
service method is called and looks up relational data in the model if necessary. The service
class also performs Elasticsearch queries, which return Elasticsearch objects (“ES object”).
The controller delivers the data to the view. The view renders the data into a HyperText
Markup Language (HTML) page, which gets displayed to the user.

calls
relational data

queries
ES object

calls

lemato object

deliver
html rendering

action

html

User: Controller: Model: Service: Elasticsearch: View:

Figure 10.2: Sequence diagram of MVCS archtecture.

For each analysis we perform in LeMATo, we have created a separate controller, view, model
and service class. The frequency analysis contains three different views on the Elasticsearch
data. Therefore, we use three different objects1 to display the results. To increase the perfor-
mance and reduce the response time, we do not persist the results. The result of each query
performed on a corpus in LeMATo gets lost and needs a re-run.

10.2 Elasticsearch

Elasticsearch is different from and not comparable to SQL databases. In contrast to SQL
databases, there are a lot of benefits in performance, scale, real-time search and analytic
functions across massive amounts of data. On the other hand, handling relationships is
not that obvious as it is in relational databases and, therefore, the golden rule of thumb
to normalise the data does not apply to Elasticsearch. In this section we discuss the three
different kinds of relations in Elasticsearch and why they don’t apply to our case. Finally, we
present our choice of the model which takes advantage of relational databases and the benefits
of Elasticsearch.

10.2.1 Relational Elasticsearch

Elasticsearch, like most NoSQL databases, models the world as a flat structure. An index is a
flat collection of independent documents, which contains information that decides whether it
gets matched to a search request or not. The independence allows a multi-tenant architecture
which spreads massive amounts of data across multiple nodes. While changing a single doc-
ument is ACID, transactions involving multiple documents are not. The lack of the roll-back
enables other performance advantages like fast and lock-free indexing and searching.

1see https://github.com/perdacherMartin/LeMATo/tree/master/grails-app/domain/lemato/
nopersistence

66

https://github.com/perdacherMartin/LeMATo/tree/master/grails-app/domain/lemato/nopersistence
https://github.com/perdacherMartin/LeMATo/tree/master/grails-app/domain/lemato/nopersistence

Four common techniques manage relations in Elasticsearch:

• Application-side-joins

• Data de-normalisation

• Nested objects

• Parent-child relationships

Most of the time the final solution includes a mixture of a few techniques [44]. Application-
side-joins make sense in cases of a one-to-many relationship, where “one” has a small number
of “many” with seldom change. In our case we have many paragraphs and even more sentences.
The second possibility is data de-normalisation: you append the “one” into your “many” entity.
This applies in cases, where speed really matters, but unfortunately this makes the calculation
of significance on paragraph and sentence level difficult or even impossible. This statement
also holds for nested objects and parent-child relationships, which add a hierarchy layer to
the index structure of our data structure and makes querying very complex. With LeMATo
we want to provide the full power of Elasticsearch to the user, therefore, we try to simplify
our queries and keep a simplified data structure.

To fulfil the requirement of an easy-to-use query system and to query on three different levels,
we need to break up the normal form and store the text in three Elasticsearch fields (i.e.
document, paragraph and sentence). A field in Elasticsearch is comparable to a separate
table in a relational database, so we are storing three-fold redundancy (see also the class
diagram in Figure 10.3). The advantage of this approach is to easily calculate significance
and apply filtering on the corpus with Apache Lucene queries2.

Text fields are very expensive for relational databases, so we have left them out in the Hi-
bernate layer by marking them as transient objects. The Hibernate layer keeps track of the
relational data, that is the compositions between documents, paragraphs and sentences (see
Figure 10.3).

10.2.2 Obtaining an Elasticsearch client

Before we obtain an Elasticsearch client, it is important to set up some prerequisites on
the Elasticsearch environment to have a clean index structure with index templates and
a stable scripting environment with indexed scripts to calculate term frequencies. Both
settings are done with a HyperText Transfer Protocol (HTTP) query over the REST interface
of Elasticsearch.

Indexed templates: In Elasticsearch there is usually no need for creating an index, ev-
erything happens with dynamic mappings. This feature is great for testing, but in practice,
there is the need to define settings and mappings on the internal structure of the index. In
our approach, we set index templates for our index structure. There are two main properties
of the index: the settings and the mappings. In the settings section, we have defined filters
and analysers, which depend highly on language settings3. A static closure contains these

2see https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
3Currently we only provide the use of the German language, because our reference study [78] uses also a

German corpus.

67

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

ElasticObject

+ publishDate : Date
+ textBody : String
+ tags : String
+ settings : Closure

+ getCorpus() : Corpus
+ beforeDelete()
+ afterInsert()

Document

+ properties : Closure

Paragraph

+ properties : Closure

Sentence

+ properties : Closure

LFile

+ name : String
+ tags : String

Corpus

+ name : String
+ description : String

Elasticsearch layer
Hibernate layer

Figure 10.3: Class diagram.

settings4 in the ElasticObject (see Figure 10.3). The mappings5 for each Elasticsearch field
(document, paragraph or sentence) are stored in separate entities as a static closure. The
two abstract methods beforeDelete() and afterInsert() are used to trigger Elasticsearch
on the Hibernate events “before delete” and “after insert”. This methods allows us to delete
Elasticsearch objects, whenever an Hibernate object gets deleted. This approach enables cas-
cading deletes even for Elasticsearch objects. The same applies for inserts. We are loading
the data into Elasticsearch after it has been inserted into the relational database.

Indexed scripts: Elasticsearch is focussed on documents and, therefore, most of the cal-
culation of significant terms or even only counting objects is mostly related to document
counts. To observe term frequencies, it is necessary to use the scripting environment6 of Elas-
ticsearch. There are three different approaches to the scripting environment: a) dynamic
scripting, b) file scripting and c) indexed scripts. The dynamic scripting environment of Elas-
ticsearch could be used in every Elasticsearch environment, which has the dynamic scripting

4see https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/
ElasticObject.groovy

5see https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/
DocumentRdb.groovy

6see https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-advanced-
scripting.html

68

https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/ElasticObject.groovy
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/ElasticObject.groovy
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/DocumentRdb.groovy
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/DocumentRdb.groovy
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-advanced-scripting.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-advanced-scripting.html

flag enabled. Dynamic scripting is turned off by default from version 1.4.3 to prevent scripts
from being accepted as a part of a request to decrease security issues. File scripting allows
the execution of scripts which are stored in the /config/scripts directory. Unfortunately,
scripts cannot be uploaded in cloud environments (i.e. Elastic found7), which are free of
charge. Premium accounts are permitted to upload their scripts within custom bundles. Af-
ter all, we applied indexed scripts in LeMATo to observe our term frequencies. Elasticsearch
stores the scripts in an internal index .scripts and references it by the file name which is
also an id for the script.

Factory method: The creation of the Elasticsearch client object requires checking the
prerequisites of index templates and indexed scripts. There is also additional information,
which is required to connect to the Elasticsearch environment. This information includes
cluster information, like the name of the cluster, the Uniform Resource Locator (URL) and
the port. In LeMATo this information is set through a configuration file8 in Grails conf
directory (i.e. grails-app/conf).

Obtaining an Elasticsearch client is, therefore, a complex process, which could be managed
best by a factory method [43] pattern, which is a “creational pattern”. Since Grails is based
on Spring [90], we are using the Spring implementation here to create our factory method
(see Figure 10.4). The afterPropertiesSet() method initializes the client based on the
configuration and calls createIndexTemplate() and createIndexScript() to set up the
index template and the indexed script, which are prerequisites in LeMATo.

«interface»
SpringFactoryBean

+ getObject() : T
+ getObjectType() : Class<T>
+ isSingleton() : boolean

T

«interface»
SpringInitializingBean

+ afterPropertiesSet()

ElasticsearchClientFactoryBean

- esClientService : Client
- node : Node
- grailsApplication

+ getObject() : Client
+ getObjectType() : Class<Client>
+ isSingleton() : boolean
+ afterPropertiesSet()
- getNodeClient() : Client
- getTransportClient() : Client
- createIndexTemplate()
- createIndexScript()

Figure 10.4: Obtaining an Elasticsearch client using Spring factory.

7see https://www.elastic.co/found
8see https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/conf/application.yml

69

https://www.elastic.co/found
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/conf/application.yml

10.3 Frequency analysis

The frequency analysis starts with a parameter selection (see “Corpus selection” in Figure
10.5), where the user selects the corpus and could define an additional query (i.e. Lucene
query) to filter the corpus on particular parts (e.g. time period, tag or documents with a
particular term in it). Furthermore, the user needs to specify a limit of the terms (10, 20, 50,
100, 500). Unfortunately, we cannot display all terms, because the calculation of Kendall’s τ
needs an additional query for each term we have selected.

In the frequency analysis (see “Show frequencies” in Figure 10.5), we provide diachronic term-,
document-, paragraph- and sentence frequency distributions (see Figure B.6) for the currently
filtered part of the corpus. In a table, we give an initial overview of the most frequent words
with some statistics like document frequencies, absolute and relative term frequencies, and
Kendall’s τ , which gives an idea of the development of the term frequencies over the years
(see Figure B.5 in the user’s guide). The user could select interesting words in the table and
reveal its diachronic frequencies by clicking on the “Show detail for selected” (see Figure B.6
in user’s guide). Furthermore, it is possible to show the documents of a certain year for a
specified term by clicking on the bar (e.g. on document frequency distribution for a term) in
the detailed view. The web flow of the frequency analysis is visualised in Figure 10.5. It is
even possible to look into the documents, where the specified keyword is highlighted.

Corpus selection

Show frequencies

Show detail fre-
quencies for term

Show document list
filter for term and year

View
document

View
paragraph

View
sentenceView file

Figure 10.5: Web flow for the frequency analysis.

70

10.4 Concordance analysis

The concordance analysis starts with the selection of the corpus, a centered word and an
optional query to filter the corpus on a particular part (see Figure B.8 in the user’s guide).
For the visualisation, we are using the double word tree (see Figure B.9 in the user’s guide).
The concordance analysis is straight forward, and we are showing the context of our centered
word with the tag and the publish date (see Figure B.10 in the user’s guide).

10.5 Significance analysis

There are two kinds of analyses which measure significant terms in parts of the corpus: the
“Analysis of characteristics in sub-corpora” and the “Co-occurrence analysis”. In the first
analysis, we investigate on text units which are labelled with tags, and LeMATo finds the
most significant words for the entered tags. The background set here is the superset of text
units in the corpus, which has a different tag than the current tag.

In the second analysis, we investigate on text units which contain a keyword. Here, LeMATo
looks for the most significant words, where the background is again the superset of text units
in the corpus which do not have this word in their text.

In both analyses, we have the same features to display: a list of words, with their significance
measure and their frequency counts. On top of that, we are trying to find some common-
alities of words to form a common group. We have decided to merge both analyses in one
parametrized analysis. We call this analysis “Significance analysis”. From the user interface,
it still looks like, as if these two analyses are two different kinds of tools.

10.5.1 Significance measure

To calculate significant terms we are using the chi-square test [75]. This statistic is imple-
mented in the “score” of significant terms. The calculation of the score is based on the count
of text units, not on raw term frequency counts. For LeMATo, this means that the selection
of “document” counts every document in the subset which fulfils our criteria (e.g. contains the
word or labelled with tag), and compares it using the chi-square measure against the same
criteria in the superset (see Figure 10.6).

The measurement of close proximity from words to other words, based on this kind of signif-
icance measure is in comparison to other approaches (e.g. sliding windows [72]) much faster,
but slightly inaccurate, because there is no normalisation for the sentence length.

10.5.2 Grouping words according to their similarity

We have summarised the four steps of our theme finding process in Figure 10.7. After filtering
for the most significant terms, we use the co-occurrence of the terms to built a co-occurrence
matrix. There are several measures which describe co-occurrence, we have decided to use the
Dice coefficient (see Section 6.1).

71

subset

corpus:

superset

Figure 10.6: For the calculation of significant terms in the subset, we are using the superset
of the corpus as a background reference.

We are using the Dice coefficient because other co-occurrence measures are not directly com-
parable to each other. For example, a higher log-likelihood ratio does not necessarily mean a
more significant co-occurrence. If the single occurrence frequency of two words is high, then
they also tend to co-occur, but they are less important than the co-occurrence of two words
which are less frequent.

Get top significant words

Build co-occurrence matrix

Build vector space

Infer dendrogram
from vector space

Figure 10.7: Steps to perform the significance analysis.

To measure the co-occurrence of N significant terms, we need to build an N ×N matrix and
calculate the co-occurrence for each entry of the matrix. Each co-occurrence of two terms is
indeed a query in Elasticsearch. To reduce the complexity, we are using a symmetric matrix.
The single occurrences NA and NB of all terms are queried with one Elasticsearch query, but
the co-occurrence NAB is an additional query. Therefore, if we calculate the co-occurrence
matrix for N significant terms, we are using (N2)/2−N queries.

We are using the co-occurrence matrix to build the vector space with the S-Space Package.
We perform a hierarchical agglomerative clustering in the vector space. To decide which clus-
ters should be combined, a measure of dissimilarity between sets of observations is required.
This is achieved by the use of a Euclidean metric, and as a linkage criterion which specifies

72

Operating System OS X Yosemite (Version 10.10.5)
MacBook Pro 13-inch Early 2011
Processor 2.7 GHz Intel Dual Core i7 (Sandy Bridge)
Memory 8 GB 1333 MHz DDR3
Graphics card Intel HD Graphics 3000 512 MB

Table 10.1: Hardware used for testing the latency.

the dissimilarity of sets we are using the mean linkage criterion, which is the most com-
mon linkage criterion. The metric and the measure of dissimilarity could be changed in the
configuration file (grails-app/conf/application.yml9).

For the visualisation of the results in the significance analysis, we are using a table, a scatter
chart and a dendrogram. The table lists all significant words with a score (i.e. χ2-score) with
counts of the subset and superset (see Figure B.11 in the user’s guide). The scatter chart
plots the document frequencies against the χ2-score (see Figure B.12 in user’s guide). The
dendrogram supports the researcher in the manual grouping of words (see Figure B.13 in the
user’s guide).

10.6 Latency

In this section, we give some insights to the response time of our web application. We
are focussed on a clean application design with minimal response. We are using “minified”
stylesheets and “minified” JavaScripts, but the real bottleneck in LeMATo is querying text with
Elasticsearch. Elasticsearch is a “near-real-time” search engine for search. Other operations
like create, update, delete or get are performed in real-time [44]. The term “real time”, could
be understood as the response in the order of milliseconds and sometimes microseconds, this
includes receiving the data, processing it, returning and visualize the results at that given time
[77]. In this section we are using the term “instantaneously” for some operations in LeMATo,
by that we mean reacting in the order of at most 0.5 seconds with no special calculation
required, except to display the result.

There are only three calculations in LeMATo, where the user needs to wait more than 20
seconds. The frequency analysis, the “analysis of characteristics for the sub-corpora” and the
“co-occurrence analysis”.

For the frequency analysis we need to calculate Kendall’s τ on the diachronic frequencies, this
means we are querying a date histogram for each term in the frequency analysis. In other
words, if we are using the size 500, we get the terms with the top 500 document frequencies,
and LeMATo applies 500 date histogram queries to calculate the Kendall’s τ on each date
histogram (see Figure 10.9).

Internally the “analysis of characteristics for the sub-corpora” and the “co-occurrence analysis”
perform very similarly. Here, again, the bottle-neck is the Elasticsearch query. Building the
co-occurrence matrix, which is necessary for a “co-occurrence analysis” or a single tag in “the
analysis of characteristics for the sub-corpora” leads to (N2)/2−N queries for Elasticsearch.

9see https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/conf/application.yml

73

https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/conf/application.yml

10 20 50 100 200 500

0

10

20

30

1.15 1.42 2.44
3.96

8.8

26.96

N

re
sp
on

se
ti
m
e
[s
ec
]

Figure 10.8: Latency for the frequency analysis. See Table 10.1 for details to our testing
environment.

10 20 50 100

0

20

40

60

0.73 2.23

13.38

54.45

N

re
sp
on

se
ti
m
e
[s
ec
]

Figure 10.9: Latency for the significance pipeline. See Table 10.1 for details to our testing
environment.

74

Part IV

Evaluation and conclusion

75

Chapter 11

Evaluation of results in LeMATo

In this chapter, we take a close look at the results we obtain from LexicoMetric Analysis TOol
(LeMATo). In LeMATo we are performing four different kinds of analyses: a) frequency
analysis, b) concordance analysis, c) analysis of characteristics in sub-corpora and d) the co-
occurrence analysis. Since we have merged the last two analyses into one, namely into the
significance analysis, we have organized this chapter into three main sections. Each section
compares the results with AntConc [3] and discusses the comparison.

We are using the corpus of our reference study [78] (see also Section 4.2).

11.1 Frequency analysis

Before we compare the results obtained from the frequency analysis in LeMATo with the
frequency results in AntConc, we have to mention their differences in preprocessing of terms.
AntConc uses lemmatization (see also 3.1.3) to summarise different word forms into one
term. LeMATo uses the stemming and stop-word filtering of Elasticsearch [36] instead of
lemmatization. Because of that, we observe different frequencies for the same term. To make
these frequencies comparable, we had to apply our own preprocessing on the text (see Figure
11.1).

We recall on the preprocessing in LeMATo (see also Section 3.1.3). LeMATo parses the text
files which we have obtained from the LexisNexis [13] web interface. These text files contain
several annotations, which get removed during the parsing process. To have the same piece of
text in both programs, we query our corpus from the Elasticsearch database with a Groovy [66]
script (see first step in Figure 11.1). With this corpus, we build a word list in AntConc with
all words in its base form. We are analysing (i.e. preprocessing) each word in Elasticsearch to
reduce the words to its stemmed form and write each word with its stemmed form in a text
file. The analysed file from Elasticsearch with all stemmed words is used as a lemmatization
file for AntConc, this means we are applying Elasticsearch stemming in AntConc. Next we
are querying the top 500 terms from our Elasticsearch database in the same way as LeMATo
does it. Finally, we compare the frequencies in Table 11.3.

At a first glance at Table 11.3, it seems that the frequency count in Elasticsearch, and therefore
also the frequency count in LeMATo, is slightly reduced in comparison to the frequencies

77

query Elasticsearch database
(elasticQuery.groovy)

build word list in AntConc

build lemma file for AntConc
(lemmaToStemming.groovy)

build word list in
AntConc with lemma file

query top 500 frequen-
cies in Elasticsearch

and compare to AntConc
results (compareLematoFre-

quencies.groovy)

corpus (text file)

words (text file)

“stemmed lemmas” (text file)

stemmed frequencies (text file)

Figure 11.1: Comparing frequencies observed in LeMATo (built with stemming and stop-
words) with frequencies observed in AntConc (built with lemmatisation).

in AntConc. Unfortunately, we don’t have an explanation for that. Our guess is that it
has something to do with the term aggregation1 in Elasticsearch. The term aggregation in
Elasticsearch is not always accurate. This missing accuracy is because each shard has its
own view on the document structure and the term frequencies. We provided an example in
Table 11.1. Here we have three shards, where each shard contains the word “foo” five times.
A query on the top three terms and its frequencies commands each shard to perform a top
three filtering on the terms on the shard. Therefore, on shard C we take only “fubar”, “bar”
and “foobar” without the term “foo”. This means, that a request for the top three terms on
this shard structure yields a total term frequency of 10 for the term “foo”, which is obviously
wrong. The term “foo” on Shard C will not get aggregated. However, this cannot be the
source of the error because our shard structure contains only of one shard. We have set the
number of shards to 12.

There is an apparent difference in the term frequencies of stop-words (see Table 11.3 for the

1see https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-
bucket-terms-aggregation.html in [44]

2see https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/
ElasticObject.groovy#L30

78

https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-bucket-terms-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-bucket-terms-aggregation.html
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/ElasticObject.groovy#L30
https://github.com/perdacherMartin/LeMATo/blob/master/grails-app/domain/lemato/es/ElasticObject.groovy#L30

Shard A Shard B Shard C
foo 5 foo 5 fubar 10
fubar 4 bar 4 bar 8
fu 3 fooboo 4 foobar 6

foobar 2 fu 2 foo 5

Table 11.1: Querying the top three terms in Elasticsearch yields a wrong term frequency of
10 for the term “foo”. This is due to top aggregation on each shard.

frequencies in AntConc and LeMATo and Table 11.2 for a list of stop-words. Relevant stop-
words are marked in red in both tables). The reason for this is that, due to the stop-words
filtering process in Elasticsearch most of the stop-words get removed. Unfortunately, not all
stop-words, because there are some word forms which become potential stop-words after the
stemming process. An example is the stemmed word “muss”, which appears 1 482 times in
Elasticsearch and 3 037 times in AntConc. AntConc also lists the frequency of all other word
forms (e.g. “muesse” 53, “muessen 126”, . . .). The word form “muss” which appears 1 555
times in the text is the exact difference between both observed frequencies for the stemmed
version of the word. We also provide an overview of the Elasticsearch German stop-words in
Table 11.2.

denn, daß, muss, allem, allen, dem, den, aller, alles, der, des, über, ihnen, andere,
meinem, durch, manchem, manchen, anderm, andern, meines, am, an, anderr, anders,
doch, welches, jene, denselben, wollen, meinen, wirst, keine, dasselbe, ein, hatte, sollte,
seine, unter, mancher, mir, mit, so, während, anderem, anderen, meiner, dieselben, an-
deres, einen, einer, dazu, musste, jenem, jenen, da, derer, manches, jener, jenes, weil,
desselben, wird, die, bei, hab, ist, sind, dir, deinem, deinen, du, zum, deiner, deines, zur,
um, viel, hat, könnte, welche, unse, derselbe, er, es, das, gewesen, aber, auf, ich, habe,
damit, mein, eines, aus, einigen, wieder, ander, indem, zwar, einiges, einmal, sie, diese,
dann, vom, von, wo, vor, soll, sehr, eure, alle, werde, weiter, keinem, keinen, was, und,
keiner, keines, würde, jedem, jeden, oder, jeder, sein, uns, jede, demselben, mich, haben,
manche, bin, dessen, bis, wenn, sondern, solche, nicht, euch, jedes, ihrem, ihren, ihrer,
ihres, unsem, unsen, im, in, unser, unses, ihm, ihn, wollte, ihr, wir, anderer, sich, dort,
würden, derselben, welcher, meine, warst, ohne, für, nach, weg, man, eine, euer, solchen,
machen, solches, dein, hier, wie, sonst, hinter, zwischen, nun, nur, hin, einem, einigem,
waren, ihre, jetzt, einiger, kann, auch, war, dieselbe, werden, einig, hatten, dieser, als,
selbst, dich, einige, können, gegen, seinem, deine, solchem, also, solcher, zu, will, ob,
welchem, welchen, etwas, diesem, diesen, nichts, seinen, dieses, seiner, seines, noch, eu-
rem, euren, ins, eurer, eures, dies, bist, kein

Table 11.2: Stop-words in Lucene 4.10.4. These stop-words are obtained through the following
code snippet: GermanAnalyzer.getDefaultStopSet(). The stop-words marked in red have
a apparent difference in their frequency (see Table 11.3).

Numbers are considered as terms in Elasticsearch, but not in AntConc. This is why we always
observe a frequency count of zero for any number in Table 11.3.

For completeness, we also provide a table of the top 500 terms in the appendix section (see
Table C.1). In this table, we have marked each difference in the frequency count. If the

79

Keyword LeMATo AntConc

stadt 6843 6849
tageszeitung 2174 2174
taz 2967 2969
koln 8007 8028
dass 6179 6179
jahr 4889 4890
mehr 3535 3535
wurd 3295 3295
neu 3301 3301
erst 2779 2779
schon 3144 3144
sei 2709 2713
seit 2432 2435
sagt 2848 2848
gross 2135 2135
gibt 1886 1925
deutsch 2781 2781
imm 2007 2007
ganz 1803 1803
lang 1772 1772
zwei 1511 1513
viel 1724 2897
wenig 1465 1465
muss 1482 3037
gut 1599 1600
berlin 2362 2366
weit 1134 1134
heut 1421 1421
soll 1187 2895
beim 1162 1162
euro 2017 2019
rund 1226 1226
frankfurt 1946 1948
bereit 1088 1088
ab 1130 1130
mal 1493 1495
konnt 1154 1154
zeit 1210 1210
geht 1170 1195
dabei 1084 1084

Table 11.3: Top fourty term frequencies of our reference corpus with the frequencies observed
in LeMATo and AntConc. Stop-words are marked in red.

80

frequencies in LeMATo are higher than the frequencies in AntConc, we have marked them
blue. We marked them red, if the frequencies of Antconc are higher than the frequencies of
LeMATo. Beyond that, there are a few terms (e.g. “ford”, “buch”, “sech”, “aug”) which occur
more often in LeMATo than in AntConc. The reason for this is, that some of the word forms
got lost through the stemming to lemmatization transformation.

11.2 Significance analysis

Here in this section, we want to verify the significance results in LeMATo. Therefore, we com-
pare the results achieved from LeMATo with the results obtained from the corpus comparison
in AntConc. For the calculation of the significance, we are using the same corpus in both
programs, which is also used in [78]. We compare each sub-corpus to the rest of the corpus.
Each of our three sub-corpora is labelled with a tag, which refers to a city name. The names
of the corpora and their sizes in term frequencies are depicted in a pie chart in Figure 11.2.

Frankfurt(427 445)

28.53%

Köln(721 056)

48.13%

Leipzig(349 541)

23.33%

Figure 11.2: Term frequencies of the sub-corpora.

Each program has a different preprocessing on terms, which gives us different term frequencies.
LeMATo uses stemming, and AntConc counts every distinct word form or summarises terms
with lemmatization. To make the terms and their frequencies comparable we apply the same
transformation here as previously outlined in Section 11.1 and Figure 11.1.

The significance calculations in both programs use the chi-square metric (see 7.1.1 for details
and references), but they differ in their counting approach of terms. AntConc uses term
frequencies, and LeMATo counts distinct text unit elements (documents, paragraphs or sen-
tences) where a term occurs. This results in different significance even for the same measure.
Observing significant terms by text unit counts is not very common in traditional lexicomet-
rics. We decided to compare our results against raw term frequencies to get an idea how
different our results are, but before we go into details of the results, we explain how text unit
frequencies (e.g. document frequencies) are commonly used in Information Retrieval (IR).

Document frequencies are used to capture the generality and scope of the problem space to
which a query belongs to and could be summarized in the general notion of a classification,

81

problem in IR. In classification we have a set of classes, and we seek to determine which
objects belongs to which class.

LeMATo uses the “significant terms aggregation”3 of Elasticsearch to extract the significant
terms. The Elasticsearch site lists the following example use cases. These use cases are also
based on document counts.

• Suggesting “H5N1” when users search for “bird flu” in text

• Identifying the merchant that is the “common point of compromise” from the
transaction history of credit card owners reporting loss

• Suggesting keywords relating to stock symbol $ATI for an automated news
classifier

• Spotting the fraudulent doctor who is diagnosing more than his fair share of
whiplash injuries

• Spotting the tire manufacturer who has a disproportionate number of blow-
outs

In LeMATo we are trying to find those terms which form the overall topic of the corpus we
are analysing. Therefore, we used Elasticsearch significant terms aggregation, instead of the
comparison of raw frequency counts. Nevertheless, we are still interested in how different our
computation is in contrast to the significant terms on raw frequencies.

LeMATo calculates significant terms on three different kinds of text units: documents, para-
graphs and sentences. The best approximation to the term frequencies in AntConc are the
sentence counts. We take the 500 top significant terms from LeMATo and filter AntConc’s
results for these. We end up with approximately 495 data points, where about two-thirds
of the sentence frequencies are equal to the raw frequencies and only some differ greatly in
absolute counts (see top left plot in Figure 11.3, 11.4 and 11.5).

The results of these two programs are not comparable, because we compare on different
counts. Even if some sentence counts are quite similar to the raw frequency counts, what
really matters is the total count for the calculation of the chi-square measure. The term
frequency count is for a factor of 14.85 larger than the sentence count. The difference in
both counting approaches reflects also in the comparison of the ranks, which reveal a weak
correlation result (see the top right plot in Figure 11.3, 11.5 and 11.4).

Finally, we have to emphasize here, that reliable results with meaningful statistics can only
acchieved with at least a five time larger reference corpus [11]. Our smallest sub-corpus
labelled with the tag “Leipzig” uses a 3.29 larger reference corpus.

11.3 Themes

Here in this section, we are taking a look at the themes which we have found in our corpus
and our sub-corpora. We give a quick recap on the theme finding process. In LeMATo we
define a query on our corpus, which is the same corpus as in our reference study [78]. The

3see https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-
bucket-significantterms-aggregation.html

82

https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-bucket-significantterms-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/1.7/search-aggregations-bucket-significantterms-aggregation.html

query is used to retrieve the most significant terms on the matching documents. On the top
N terms we build a co-occurrence matrix to build our vector space. We provide a dendrogram
as a final visualisation and as an aid to find groups within the top significant terms. For more
details on the implementation, we refer to Section 10.5.2.

In a first attempt we are looking at the dendrogram for the significant terms in our sub-
corpus labelled with the tag “frankfurt” and we measure the co-occurrence on document
level. The interesting thing is, that some local celebrities share a common sub-branch within
our dendrogram. The names “Habermas”, “Ignatz”, “Bubis”, “Suhrkamp” and “Forsyth” are
together with a very frequent term “Strich”. It turns out that there is a newspaper column in
the newspaper “TAZ” which is called “Unterm Strich”.

In an other branch we observe city names like “Stuttgart”, “Bremen”, “Potsdam”, “Branden-
burg”, “Hannover”. Within this branch there are also terms like “Gemeinde”, “Präsident”,
“Institut” and “Bank”, which seem to be closer related to “Stuttgart”, because they share a
common extra branch.

Another branch includes terms like “Bewegung”, “ausländisch”, “global”, “globalisierung”,
“Veränderung” and “Debatte”. There are several examples for branches which show the terms
of a common topic. The most exciting example is that our dendrogram also reflects the
discourse of the expansion of the airport in Frankfurt (see Figure 11.6).

At the bottom left of Figure 11.6 there are the terms “petra”, “roth” and “oberburgermeisterin”.
Petra Roth was the first female mayor (i.e. “Oberbürgermeisterin”) of Frankfurt am Main from
1995 to 2012.

The dendrogram offers not always the best legibility. Sometimes there are also stemmed forms
of terms, where the reader does not immediatly knows what is meant. The best practice in
such cases is to query (for example in a separate tab in the browser) those terms on LeMATo
to get to know the terms context. The dendrogram is not a strict out-of-the-box grouping of
terms. The dendrogram is a grouping aid, which gives a lot of freedom to the user, who has
to decide on his own, whether to put this term into the group or not.

83

Figure 11.3: Comparison of the significance calculation in AntConc and in LeMATo for the
sub-corpus labelled with the tag “Frankfurt”.

84

Figure 11.4: Comparison of the significance calculation in AntConc and in LeMATo for the
sub-corpus labelled with the tag “Leipzig”.

85

Figure 11.5: Comparison of the significance calculation in AntConc and in LeMATo for the
sub-corpus labelled with the tag “Köln”.

86

F
ig
ur
e
11

.6
:
D
en

dr
og

ra
m

on
th
e
di
sc
ou

rs
e
of

th
e
ex
pa

ns
io
n
of

th
e
ai
rp
or
t
in

Fr
an

kf
ur
t.

87

88

Chapter 12

Concluding remarks

In this thesis, we have created LexicoMetric Analysis TOol (LeMATo), a tool with four lexi-
cometric analysis methods to explore a tag annotated corpus. LeMATo is built with Elastic-
search, a powerful text search engine, which enables powerful preprocessing and querying of
text. The linguistic preprocessing in LeMATo uses tokenization, filtering by stop words and
stemming. Unfortunately, stemming does not support all kinds of theoretical assumptions
(see Section 3.1.3), but it serves as a good basis for most of the cases. Currently, LeMATo
offers only the processing of German text, but it is extensible to add other languages.

After the formulation of the hypothesis in discourse analysis, the corpus needs to be compiled
regarding a particular research question. In this thesis, we have introduced our reference
study [78] (see Section 4.2), which acquired newspaper articles from the LexisNexis interface.
LeMATo parses the text files obtained from LexisNexis [13], creates a corpus and annotates
the corpus with a publish date of each newspaper article and user defined tags. The human
scientist is able to filter the corpus on articles within a period, with individual tags or with
specific keywords. In the user guide (see Section B.2) we describe querying parts of the corpus
with the powerful Lucene Query Domain Specific Language (DSL).

The frequency analysis (see 10.3) offers a good basis to explore the whole or even parts of the
corpus. In a first overview page, LeMATo shows the top 500 terms with the highest document
frequencies. It also provides additional information with term frequencies and Kendall’s τ ,
which gives an idea whether a term increases or decreases in document frequencies over time.
The user can select terms and see their term frequency distribution in a diachronic manner in
a detail view. Furthermore, the user could even track the use or context of the terms of the
newspaper articles, by clicking on the bar-chart in the detail view.

The concordance analysis (see 10.4) in LeMATo offers a robust context query system, which
reveals the context of a queried term or word. We provide an additional view of the context
with a double word tree.

The analysis of characteristics in sub-corpora and the co-occurrence analysis complete our
lexicometric querying tool. In both analyses, we give an overview of the top hundred significant
terms and an additional plot of text unit frequencies versus chi-square scores. On top of that,
we provide a visualisation aid (i.e. dendrogram) for the user to put the terms into groups.
Currently, we compare parts of the corpus to the rest of the corpus. There is a certain
advantage in comparing the corpus to a language corpus. A reference corpus is larger and

89

gives, therefore, more accuracy in calculating significant terms. Unfortunately, we do not
provide a comparison to reference corpora.

12.1 Lessons learned

It takes a lot of time to find out which set of frameworks is the right one depending on the
needs. In the beginning, we looked at different search engines and how they could be applied
in a web framework. For Grails [96] there are some plug-ins which work quite well for specific
tasks, but if some customization is required, then the plug-in and the interaction with other
frameworks could get very complex. One of the most important lessons, we have learned
is, that the promise of saving a lot of time and effort through a plug-in or an additional
abstraction is not always the truth.

As an example we have looked at the exciting “searchable plugin” of Grails. First of all it
is not compatible with the current Grails 3.0.x version. Using the searchable plug-in comes
with the cost of downgrading to Grails 2.4. There is some customisation necessary to work
with Grails 2.4 and the Hibernate 4.x [94] library. Unfortunately, the searchable plug-in is
not compatible to Hibernate 4. This means that it requires an update to work with current
Hibernate implementations. This particular issue on the searchable plug-in requires a bug-fix
on Compass. Compass is the interface to Lucene for the searchable plug-in. Unfortunately,
Compass is not maintained any more, because the last release is more than five years ago.

There are also other options. For example, Hibernate and its own product Hibernate Search,
but this also has not been updated since 2012, or the Solr Grails plug-in, which has not been
updated since 2010.

Finally, in our opinion we took the best solution with Elasticsearch, which is not that handy
like the “searchable plugin”, but it offers a lot of different ways to query the text. Beyond all
it is scalable, but within the development of LeMATo we did not focus on scalability.

After all, it is also not so easy to work with Elasticsearch and its Groovy or Java API, because
it does not provide a Javadoc. Sometimes it is necessary to query particular fields or methods,
which are not documented in the online documentation on the Elasticsearch Java API. For
our purpose, we used an outdated version of an unofficial Javadoc.

We have learned a lot in this thesis about frameworks, their interactions and the lack of
support for outdated programs. With this experience we have gained during the work on this
thesis, we are able to familiarize ourselves with frameworks and concepts in a much better
and faster way than before.

12.2 Outlook

There are some missing features which are currently not implemented in LeMATo. A job
processing system would enable the processing of much bigger requests on the corpus. A job
processing would also save results. This is currently not the case. Intermediate results are
not saved in LeMATo.

90

The preprocessing in LeMATo needs customisation on different languages, and it is necessary
to perform lemmatization instead of stemming.

There is also a REST interface to LexisNexis, but unfortunately, the University of Vienna does
not have access to that. With the use of the REST interface of LexisNexis within LeMATo,
it would be possible to add additional metadata to the corpus, and we would enable a much
cleaner parsing of the text files. Currently, if the format of the text files changes, it will not
be possible to import any LexisNexis text files into LeMATo.

Additional work has to be done for obtaining and calculating co-occurrence matrices. At the
moment this step is much too slow. It might be possible to write an Elasticsearch plug-in to
obtain the co-occurrence matrix directly from Elasticsearch and reduce the latency for the
significance analysis.

At the time of writing it is not planned to continue the work on LeMATo. We provide an
online repository1 where it is possible to download the code. We also give instructions to run
LeMATo on different operating systems.

With LeMATo we provide a good basis for a human scientists to perform a lexicometric
analysis on text, but currently LeMATo is only a prototype. This means there is still room
for improvements left.

1see https://github.com/perdacherMartin/LeMATo

91

https://github.com/perdacherMartin/LeMATo

92

Appendices

93

Appendix A

Abstract

A.1 English abstract

Discourse analysis aims to reveal connections between text or speech to institutional struc-
tures, furthermore, discourse analysis connects text to historical or social context. Several
disciplines analyse a text in different ways. In social sciences and humanities, content analysis
has become the standard approach. Content analysis starts with a research question and the
formulation of appropriate hypotheses. These presumptions before analysing text are incom-
patible with discourse analysis. In lexicometrics, the process of interpretation is shifted to the
end of the analysis and is, therefore, suitable for discourse analysis. Here we present Lexico-
Metric Analysis TOol (LeMATo), a web application which analyses the text in a lexicometric
way. LeMATo is built upon the ideas published in [33] and contains their four approaches to
analyse text. LeMATo enables the analysis of frequencies and a concordance analysis on a
corpus or particular parts of it. In the analysis of sub-corpora and the co-occurrence analysis
LeMATo examines significant terms of text units in contrast to individual parts of the corpus.
We provide a download of LeMATo from https://github.com/perdacherMartin/LeMATo.

95

https://github.com/perdacherMartin/LeMATo

A.2 Deutsche Zusammenfassung

Diskursanalyse versucht Verbindungen zwischen Text oder Sprache und institutionellen Struk-
turen herzustellen. Darüber hinaus verbindet die Diskursanalyse Text mit historischem und
sozialem Kontext. Text wird in verschiedenen Disziplinen auf verschiedene Weise analysiert.
In den Sozial- und Geisteswissenschaften ist die Inhaltsanalyse die Standardmethode, um
Text zu analysieren. Die Inhaltsanalyse beginnt mit der Formulierung einer Forschungsfra-
ge und den dazugehörigen Hypothesen. Die Annahmen die man vor der Textanalyse trifft,
sind jedoch unvereinbar mit der Diskursanalyse. In der Lexikometrie wird die Interpreta-
tion an das Ende des Forschungsprozesses verlagert und ist daher für die Diskursanalyse
geeignet. Hier präsentieren wir das LexikoMetrische Analyse TOol (LeMATo), eine Weban-
wendung, welche den Text in lexiko- metrischer Weise analysiert. LeMATo basiert auf den
in [33] veröffentlichten Vorstellungen und enthält vier Ansätze, um Text zu analysieren. Le-
MATo ermöglicht die Analyse von Häufigkeiten und die Konkordanzanalyse für einen Text-
korpus oder bestimmten Teilen davon. Darüber hinaus untersucht LeMATo in der Analyse
von Subkorpora und in der Kookkurrenzanalyse signifikante Terme in Texteinheiten im Ver-
gleich zu bestimmten Bereichen des Korpus. Wir bieten einen Download von LeMATo unter:
https://github.com/perdacherMartin/LeMATo an.

96

https://github.com/perdacherMartin/LeMATo

Appendix B

User Guide

B.1 Corpus definition

The first step is to assemble the corpus regarding a particular research question. LeMATo in
its current version supports text files in the LexisNexis text format. LexisNexis [3] pioneered in
1970 the electronic accessibility of journalistic documents. It is the largest electronic database
for legal and public-records related information. For students, LexisNexis is only accessible on
the university network (http://e-solution.lexisnexis.de/KSH/de/index.html). In the
following we are trying to reconstruct the corpus of our reference study [78]. In a first step,
we query the LexisNexis database with the queries provided in Listing B.1 in the German-
speaking press between the years 1999 and 2005.

Our reference study limits its corpus to four distinct newspapers (“Süddeutsche Zeitung”, “die
taz”, “Der Spiegel” and “Stern”). Unfortunately, the newspaper articles from “Süddeutsche
Zeitung” are not available anymore in the LexisNexis environment, so instead of having 2.3
million words we have 1.5 million words.

Each file, obtained from LexisNexis, is now ready for import into LeMATo, but, first of all,
we need to add a new corpus to LeMATo. Therefore, we select “Manage corpora” and “New
Corpus” from the side menu. Enter a “name” and a “description” of the corpus you want to
add. In our case, we call it “Mattisek 2008” and we enter “Die neoliberale Stadt von Annika
Mattisek (2008)” as a description of our corpus (see Figure B.1).

To import the file into LeMATo, we select “Extend Corpora” from the side menu and “New
File” from the navigation bar. In the current panel (see Figure B.2), we choose our corpus
from the drop-down menu, select the file from the dialogue and specify some tags. Tags are
used to separate between the different sub-corpora. In our case, we use the tags “Frankfurt”,

Listing B.1: LexisNexis queries
Frankfurt W/10 Stadt
Le ipz i g W/10 Stadt
Koeln W/10 Stadt

97

http://e-solution.lexisnexis.de/KSH/de/index.html

Figure B.1: Creating a new corpus with name and description.

because the file originates from the “Frankfurt” query in Listing B.1 and “DerSpiegel”, because
the articles in this file are from the newspaper “DerSpiegel”.

We import each file obtained from LexisNexis into LexicoMetric Analysis TOol (LeMATo).
In our case we have nineteen files and 12.5 MB and the import took nine minutes. The files
have an average length of 660 kB, and for that it took 24 seconds per file on average.

B.2 Querying in LeMATo

Elasticsearch is a powerful tool for querying text. To deliver the full power of Elasticsearch to
the end user, we enhanced LeMATo with an excellent query parser syntax: “Apache Lucene
Query Parser Syntax”1. We have designed LeMATo to have a tool, which is easy to use. For
an advanced use of LeMATo, there is the possibility to query a particular part of the corpus in
more detail. For example, to perform the four fundamental analyses introduced in [33], there
is no need to know the Lucene querying syntax. The “Lucene Query Parser Syntax” enables
filtering on particular parts of the corpus (e.g. time periods, tags) for a better understanding
of particular parts of the corpus.

Each text file from LexisNexis contains a lot of articles. These articles are equal to documents
in LeMATo. Furthermore it is also possible to query paragraphs or sentences. This is impor-
tant for querying the close proximity of terms. Sometimes the outcome of significant terms
for the sentences is poor, because there are not enough sentences for the word of interest.
Therefore LeMATo provides the possibility to expand the queries on paragraphs.

Each one of the three text units, sentence, paragraph or document is organized the same way.
It can be queried on three different fields:

• tags (tags entered in corpus definition)

• publishDate (extracted from the text files)

• textBody (the text itself, default field)
1https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

98

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

Figure B.2: Importing a LexisNexis file and adding it to the corpus.

Listing B.2: LexisNexis queries
tags : " Frankfurt "

Filtering the corpus on tags: Lucene supports fielded data. When performing a search,
there is a need to specify a field. Searching on fields is done by typing the field name followed
by a colon “:” and the term. As an example to query the corpus on the tag “Frankfurt”, the
query is formulated as shown in Listing B.2.

There are some cases where it is necessary to filter on two tags. The best way to perform
a query on two tags (e.g. “Frankfurt” and “DerSpiegel”) is to use the AND operator, which
is depicted in Listing B.3. For filtering on every article containing either “Frankfurt” or
“DerSpiegel”, change the “AND” in Listing B.3 to an “OR”.

Filtering on the dates or periods: The date fields, like “publishDate” in LeMATo is
used slightly different to the “tags” field. Here we have the possibility to filter the corpus
on periods. The date format in LeMATo is organized with a format string of “yyyy-mm-dd”.
The first four digits represent the year, followed by the month in a two-digit format and a
two-digit day. There is a “-” separator between the year and month as well as between the
month and the day specifier. The most intuitive use case for dates is query-ranges.

A range query allows one to match documents between a lower and an upper bound. As an ex-
ample, see Listing B.4 to query all documents for the year 2002. This query will match all doc-

Listing B.3: Filter on sub-corpora
tags : " Frankfurt " AND tags : "DerSp iege l "

99

Listing B.4: Filter on periods
publ ishDate : [2002−01−01 TO 2002−12−31]

Listing B.5: Filter on text
Steuer

uments, whose “publishDate” is between the values 2002-01-01 (inclusive) and 2002-12-31
(inclusive).

Filtering on the text: A query is broken up into terms and operators. In the previous
paragraphs operators like “AND” and “OR” were introduced. Terms could be single terms like
“Fußball” or phrases like “günstige Steuern”, two or more words within double quotes. The
text field “textBody” is the default field in LeMATo. The query in Listing B.5 is equal to the
query: textBody: “Steuer”.

B.3 Frequency analysis

The first analysis in LeMATo which reveals the insides of a corpus, is the frequency analysis.
Choosing “Frequency analysis” from the side menu, will start this analysis. The frequency
analysis requires some parameters to get started (see Figure B.3):

Figure B.3: Parameter selection for frequency analysis.

• The corpus itself.

• A Lucene query (optional) to filter the corpus in more detail. Leave this field empty if
you want to analyse the corpus as a whole.

• the size stands for how many words you want to look at. Unfortunately, LeMATo does
not offer to query all terms.

100

The higher the size here, the longer it will take to query the corpus (approximately 4 seconds
for a size of 100). For more details on latency see Section 10.6.

There are two results of this analysis. The first result contains four bar charts, which give
information of the overall frequency distributions of the corpus (see Figure B.4).

Figure B.4: Frequency distributions for the overall corpus. From left to right: term frequen-
cies, document frequencies, paragraph frequencies and sentence frequencies.

Calculating term frequencies is not for free in Elasticsearch and often requires an additional
query. At a first glance, we are approximating term frequencies with sentence or paragraph
frequencies and give additional information with document frequencies, after clicking on a
term, we also provide term frequencies.

The second result is a table with six columns, which displays the top-size-frequent words in
the corpus (see Figure B.5). The left most column enables the researcher to select terms from
the table, which are displayed in a diachronic view by simply clicking on the “Show detail for
selected” button.

The diachronic view gives insides to all frequencies of the terms and their diachronic distri-
bution (see Figure B.6).

Sometimes it is important to view the occurrences of a word in more detail. Therefore, it
is possible in the diachronic view to click on a bar of the charts to get a list of documents,
paragraphs or sentences with the occurrence of the term, filtered for the corresponding year
(see Figure B.7).

Furthermore, it is possible to view the document itself. To see the term of interest at the first
glance, we provide a highlighting of the term.

101

Figure B.5: Table of words with top frequencies within the corpus. The columns from left to
right: rank (order of highest document frequency, keyword (term), document frequency, term
frequency and kendall’s τ).

B.4 Concordance analysis

The concordance analysis reveals every use of a keyword in its specific context. The parameters
for this analysis are the corpus itself, the keyword of interest (centered word) and an optional
Lucene query to filter on particular parts of the corpus (see Section B.2).

In our case, we are using the word “Berlin” and filter for the tag “Köln” (see Figure B.8).
The result of the concordance analysis is presented with two different features. First, we are
showing a “double word tree”2 (see Figure B.9) and, second, we are listing all occurrences of
“Köln” in a table (see Figure B.10).

Sometimes the meaning of a stemmed term is not clear. In this case the concordance analysis
can help to look up a stemmed term and how it is used in the documents.

B.5 Characteristics analysis of sub-corpora

For the characteristics analysis of sub-corpora, choose “Sub-corpora analysis” from the sidebar
menu. The parameters for this analysis are the corpus itself, the tags of the sub-corpora of
interest, the size (count of words for the result) and the unit of text, where you want to
measure the significance (document, paragraph or sentence).

We are querying the corpus for the tags “Frankfurt”, “Köln” and “Leipzig” to see their differ-
ences. For each tag we provide a table with the calculated score and the counts for each word
in the subset and in the superset (see Figure B.11).

Furthermore we provide a zoom able scatter chart, which shows the score and the document
frequency relation (see Figure B.12).

2 https://developers.google.com/chart/interactive/docs/gallery/wordtree

102

https://developers.google.com/chart/interactive/docs/gallery/wordtree

Figure B.6: Diachronic view for selected terms. From left to right: term frequencies, document
frequencies, paragraph frequencies and sentence frequencies.

On top of that we are trying to visualize the relation of the words in a dendrogram. At
the moment, the dendrogram is organized as a binary tree. The dissimilarity of the groups
is not included in the tree until now. The leaves in the dendrogram tree are labelled with
the significant words. The nodes in the tree are labelled with the most frequent word in
the sub-branch. The composition of the dendrogram is completely calculated by the s-space
package.

A part of the dendrogram is depicted in Figure B.13. The rule of thumb to read a dendrogram
of this format is: If there are a lot of deep hierarchies, this means the dendrogram grows in
width, then the group tends to be homogeneous. If the dendrogram grows in height, then
there are more heterogeneous groups. The elements of each branch can be visualized by right-
clicking on a node, then every significant term in the sub-branch is displayed in a new browser
window (see Figure B.14).

103

Figure B.7: List of documents with the occurrence of the term “berlin” in the year 2001. The
columns of the table from left to right: tags, date, starts with (the first 100 characters of the
document), keyword frequency (how often does the term occur in the document)

Figure B.8: Parameter selection for the concordance analysis.

Figure B.9: Double word tree for all occurrences of the term “Berlin”.

104

Figure B.10: Concordance analysis table for all occurrences of the term “Berlin”. The columns
from left to right: date, tags and the text fragment, where the word occurs.

Figure B.11: Table for the characteristics analysis of subcorpora for the tag: “Frankfurt”

105

Figure B.12: Scatterchart of document frequencies against the score (Chi-square significance).

106

F
ig
ur
e
B
.1
3:

P
ar
t
of

de
nd

ro
gr
am

fo
r
th
e
ta
g
“F
ra
nk

fu
rt
”
(s
iz
e:

50
te
rm

s)
.

107

Figure B.14: All significant terms of a subbranch. Obtained through a right-click on a node
in the dendrogram.

108

Appendix C

Supplementary material

Keyword LeMATo AntConc

Table C.1: Top 500 frequencies of our reference corpus with the term frequencies observed
in LexicoMetric Analysis TOol (LeMATo) and AntConc (ordered by Elasticsearch document
frequencies). Higher term frequency scores are marked for LeMATo in blue and AntConc in
red.

stadt 6843 6849
tageszeitung 2174 2174
taz 2967 2969
koln 8007 8028
dass 6179 6179
jahr 4889 4890
mehr 3535 3535
wurd 3295 3295
neu 3301 3301
erst 2779 2779
schon 3144 3144
sei 2709 2713
seit 2432 2435
sagt 2848 2848
gross 2135 2135
gibt 1886 1925
deutsch 2781 2781
imm 2007 2007
ganz 1803 1803
lang 1772 1772
zwei 1511 1513
viel 1724 2897
wenig 1465 1465
muss 1482 3037
gut 1599 1600
berlin 2362 2366
weit 1134 1134

109

Table C.1 – continued from previous page
heut 1421 1421
soll 1187 2895
beim 1162 1162
euro 2017 2019
rund 1226 1226
frankfurt 1946 1948
bereit 1088 1088
ab 1130 1130
mal 1493 1495
konnt 1154 1154
zeit 1210 1210
geht 1170 1195
dabei 1084 1084
etwa 1112 1112
deutschland 1745 1745
mensch 1513 1514
drei 1084 1084
macht 1088 1091
hatt 1049 1049
land 1336 1336
million 1563 1563
alt 1297 1297
letzt 938 938
arbeit 1139 1139
end 993 993
klein 1103 1103
allerding 794 794
dafur 853 853
grun 1376 1376
komm 869 869
tag 1184 1184
geld 1020 1020
geb 749 749
eig 946 946
war 880 4493
weg 833 1411
prozent 1399 1399
fall 874 874
steht 816 816
kurz 757 757
halt 774 774
word 822 822
lass 786 786
cdu 1270 1270
jung 1086 1086
kommt 778 779
leb 1097 1097

110

Table C.1 – continued from previous page
woch 835 835
spd 1140 1140
gerad 756 757
frag 837 837
fast 755 755
ja 1138 1138
geh 716 717
heisst 715 715
hoh 771 771
wer 839 842
steh 655 655
haus 1009 1009
gar 675 675
teil 697 702
beid 777 777
kam 775 775
erklart 603 603
recht 780 780
deshalb 684 684
sogar 640 640
kaum 673 673
den 664 17856
moglich 596 596
politik 820 821
beispiel 635 635
leipzig 1705 1708
wichtig 632 632
grund 577 577
offentlich 689 689
seh 624 625
spat 795 795
uns 746 1764
zahl 733 733
stell 600 600
musst 648 648
gab 678 684
sieht 555 555
meist 644 644
nach 583 6010
gleich 621 621
konn 604 604
weiss 718 718
hamburg 1052 1056
bess 558 558
vier 640 640
schliesslich 551 551
vergang 618 618

111

Table C.1 – continued from previous page
davon 554 554
allein 593 593
statt 518 518
zweit 584 584
einfach 555 555
20 666 0
gest 508 508
neb 510 510
wohl 514 514
liegt 544 544
mann 928 928
anfang 493 493
strass 787 788
fruh 626 626
frau 1004 1004
welt 777 777
politisch 673 673
funf 602 602
projekt 690 692
monat 546 546
eigentlich 522 522
zeigt 527 527
gemacht 483 483
platz 638 638
bekomm 505 506
kind 1114 1114
zehn 536 536
zusamm 457 457
dageg 451 451
frei 533 533
genau 501 501
jedoch 475 475
zuruck 507 507
naturlich 499 503
sprech 454 454
stark 485 485
spiel 902 904
lasst 546 546
laut 437 437
vielleicht 544 544
inzwisch 523 523
leut 610 610
gehort 460 460
bleibt 420 420
lag 490 490
ausserd 404 404
darauf 446 446

112

Table C.1 – continued from previous page
schnell 514 514
erhalt 475 475
klar 463 463
der 485 50269
fordert 414 414
schw 510 510
stellt 427 427
gemeinsam 455 455
bleib 445 445
ging 477 481
richtig 459 459
bild 655 656
hoch 466 466
find 438 438
ehemalig 494 494
genannt 415 415
bislang 436 436
eben 448 448
burg 596 596
eher 427 427
warum 506 507
oft 461 462
grosst 510 510
bericht 390 390
bekannt 440 440
geplant 418 418
nie 576 576
tun 427 427
1 616 0
30 470 0
stadtisch 492 492
sowi 400 400
besonders 416 416
einzig 400 400
sag 536 536
sich 410 11839
stand 462 462
fest 415 415
ort 483 483
lieb 550 551
nah 429 429
damal 501 501
bau 577 577
bish 403 403
international 484 484
gilt 411 411
munch 502 504

113

Table C.1 – continued from previous page
tatsachlich 375 375
thema 396 396
darf 397 397
fur 1622 1623
off 431 431
schlecht 394 394
typ 308 308
wiss 429 429
darub 374 374
entscheidung 397 397
zukunft 436 436
kost 468 468
original 312 312
rat 431 431
trotz 373 373
knapp 369 369
15 454 0
jahrig 444 477
uhr 893 894
chef 502 502
gern 414 414
raum 414 414
schwarz 520 520
geschicht 671 671
stund 490 490
mark 814 815
derzeit 335 335
nehm 359 359
gegenub 360 360
mitglied 427 427
uberhaupt 382 382
pro 483 485
probl 369 369
rot 451 451
dusseldorf 558 562
durf 364 364
findet 364 364
pet 390 392
geword 369 369
mitt 362 362
liess 394 394
paar 457 457
50 374 0
folg 348 348
hand 391 391
languag 274 274
sech 390 35

114

Table C.1 – continued from previous page
unternehm 546 546
meint 325 325
wirklich 360 360
sollt 355 355
nrw 469 476
ost 752 753
schul 723 723
spiegel 689 689
sozial 502 502
plan 380 381
best 374 374
wahl 528 528
deutlich 326 326
bring 325 325
chanc 357 357
oberburgermeist 359 359
mocht 338 338
mitarbeit 438 438
fuhr 326 326
ide 366 366
insgesamt 324 324
daran 314 314
kunftig 346 346
partei 595 595
ziel 338 338
erfolg 319 319
red 385 385
lieg 313 313
versuch 348 348
obwohl 318 318
grupp 384 384
sach 313 313
setzt 331 331
wort 379 379
zud 306 306
besuch 392 392
bald 333 333
nam 385 385
versucht 302 302
fuhrt 302 302
18 402 0
40 360 0
acht 298 298
durft 307 307
zunach 289 289
art 364 366
niemand 341 341

115

Table C.1 – continued from previous page
main 315 315
problem 306 306
kritik 299 299
100 305 0
angebot 344 344
europaisch 422 422
leid 299 299
kommun 419 419
mai 409 409
privat 370 370
blick 321 322
ein 327 11309
famili 441 441
vorsitzend 284 284
sitz 292 292
trotzd 276 276
verwaltung 375 375
wolfgang 353 353
uber 657 657
genug 274 274
krieg 522 523
auss 279 279
kultur 375 378
michal 320 321
halb 267 267
scheint 288 288
voll 298 298
han 322 322
buch 502 495
septemb 329 329
zeig 265 265
25 345 0
preis 363 363
sprach 351 351
immerhin 258 258
abend 313 313
roll 314 314
ubrig 273 273
vollig 279 279
west 475 475
2003 288 0
europa 451 451
nachd 260 260
fritz 242 242
glaub 317 317
kampf 350 350
je 312 312

116

Table C.1 – continued from previous page
verlor 276 276
2004 418 0
berichtet 243 243
direkt 267 267
setz 247 247
ford 277 135
gegeb 252 252
offenbar 242 242
gesprach 246 246
braucht 272 272
ebenfall 247 247
morg 300 300
trag 242 242
bund 322 322
ebenso 278 278
dennoch 250 250
herr 328 328
reich 350 350
zieh 249 249
14 329 0
2005 544 0
ahnlich 267 267
jugendlich 404 404
jurg 315 315
16 310 0
bonn 408 408
fehl 231 231
finanziell 243 243
stimm 301 301
vertret 245 245
zumind 241 241
fand 252 252
zahlt 252 252
gesellschaft 281 281
hilf 283 283
nordrhein 285 285
zusatzlich 243 243
beginn 246 246
entsprechend 223 223
konzept 284 284
wollt 261 261
60 249 0
zuvor 258 258
10 376 0
erfolgreich 268 268
freund 355 355
nacht 352 353

117

Table C.1 – continued from previous page
rhein 338 338
geschaft 313 313
leer 250 251
2 344 0
2000 264 0
amt 324 324
endlich 254 254
spielt 237 237
kopf 282 282
staat 368 368
wohnung 375 375
beteiligt 236 236
brauch 236 236
gekomm 233 233
such 245 245
danach 233 233
erzahlt 316 317
interess 232 232
jahrlich 250 250
gewinn 260 260
lebt 274 275
2002 272 0
gestellt 214 214
schaff 229 229
lauf 220 220
verschied 240 240
kun 425 427
arbeitet 255 255
bereich 226 226
fehlt 221 221
leicht 220 220
treff 252 252
blieb 231 231
leit 220 220
aufgab 224 224
sieb 241 241
bestimmt 239 239
erstmal 211 211
gehor 214 214
januar 264 264
programm 259 259
veranstaltung 228 228
12 315 0
einzeln 236 236
forderung 258 258
sinn 219 219
ang 275 275

118

Table C.1 – continued from previous page
denk 258 258
milliard 455 455
ess 319 320
hart 237 237
rathaus 230 230
reicht 206 206
sorg 219 219
spricht 221 221
wert 231 231
entwicklung 219 219
falsch 240 240
geschaftsfuhr 239 239
moglichkeit 213 213
beschloss 205 205
erreicht 218 218
historisch 260 260
kenn 229 229
aug 217 62
dah 205 205
dritt 212 212
juli 252 252
met 291 291
wirtschaft 239 239
betroff 224 224
musik 358 358
nutz 201 201
personlich 209 209
plotzlich 258 258
schramma 329 329
besond 208 208
ern 259 276
mindest 206 206
verfugung 197 197
aktion 266 266
aktull 213 213
darin 190 190
zentral 214 214
betrieb 233 233
gefordert 210 210
jedenfall 203 203
kraft 240 240
verkauf 262 262
entschied 203 203
hall 333 335
hauptstadt 245 245
job 323 323
17 281 0

119

Table C.1 – continued from previous page
kommend 191 191
marz 265 265
polizei 401 402

120

Bibliography

[1] British National Corpus, version 3 (BNC XML Edition) Distributed by Oxford Uni-
versity Computing Services on behalf of the BNC Consortium. URL: http: // www.
natcorp. ox. ac. uk/ . University of Oxford, Research Technologies Service, 2007.

[2] Angermuller, J. Poststructuralist Discourse Analysis: Subjectivity in Enunciative
Pragmatics. Postdisciplinary Studies in Discourse. Palgrave Macmillan, 2014.

[3] Anthony, L. AntConc (Version 3.4.3) [Computer Software]. Tokyo, Japan: Waseda
University. Available from: http://www.laurenceanthony.net/, 2014.

[4] Apache Software Foundation. Apache Lucene (Version 4.10.4) [information re-
trieval software library]. License: Apache License 2.0. Available from: http://lucene.
apache.org, 2015.

[5] Apache Software Foundation. Tomcat (Version 8.0.23) [servlet container HTTP
web server]. License: Apache License 2.0. Available from: http://tomcat.apache.org/,
2015.

[6] Atlas.ti. ATLAS.ti - version 7.0 [Computer Software] ATLAS.ti Scientific Software
Development GmbH. http://atlasti.com/, 2012.

[7] Baker, P. Using Corpora in Discourse Analysis. Bloomsbury Discourse. Bloomsbury
Academic, 2006.

[8] Banerjee, S., and Pedersen, T. The design, implementation, and use of the
ngram statistics package. In Proceedings of the 4th International Conference on Com-
putational Linguistics and Intelligent Text Processing (Berlin, Heidelberg, 2003), CI-
CLing’03, Springer-Verlag, pp. 370–381.

[9] Baroni, M., Lenci, A., and Onnis, L. Isa meets lara: An incremental word space
model for cognitively plausible simulations of semantic learning. In Proceedings of the
Workshop on Cognitive Aspects of Computational Language Acquisition (Stroudsburg,
PA, USA, 2007), CACLA ’07, Association for Computational Linguistics, pp. 49–56.

[10] Belica, C., and Steyer, K. Korpusanalytische Zugänge zu sprachlichem Usus. AUC
(Acta Universitatis Carolinae), GERMANISTICA PRAGENSIA XX. Praha (2006).

[11] Berber-Sardinha, T. Comparing corpora with wordsmith tools: How large must the
reference corpus be? In Proceedings of the Workshop on Comparing Corpora - Volume
9 (Stroudsburg, PA, USA, 2000), WCC ’00, Association for Computational Linguistics,
pp. 7–13.

121

http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/
http://www.laurenceanthony.net/
http://lucene.apache.org
http://lucene.apache.org
http://tomcat.apache.org/

[12] Berkovitz, J. An architectural blueprint for Flex applications.
http://joeberkovitz.com/blog/reviewtube/, Dec. 2006. The original article
(http://www.adobe.com/devnet/flex/articles/blueprint.html) got deleted
by Adobe. Presentation at Max 2006 Conference: http://joeberkovitz.com/
max2006/RI304W_FlexBestPractices_JoeBerkovitz.ppt.

[13] Biemann, C. TinyCC 2.0 User’s Manual (Version 2.1.1.) [Computer
Software]. University of Leipzig. Available from: http://wortschatz.uni-
leipzig.de/cbiemann/software/TinyCC2.html, 2007.

[14] Bonnafous, S. Analyse de contenu. In Dictionnaire d’analyse du discours, P. Cha-
raudeu and D. Maingueneau, Eds. Paris: E‘d. du Seuil, 2002, pp. 39–41.

[15] Bordag, S. A comparison of co-occurrence and similarity measures as simulations of
context. In Proceedings of the 9th International Conference on Computational Linguis-
tics and Intelligent Text Processing (Berlin, Heidelberg, 2008), CICLing’08, Springer-
Verlag, pp. 52–63.

[16] Brailich, A., Germes, M., Glasze, G., Pütz, R., and Schirmel, H. Die diskur-
sive Konstitution von Großwohnsiedlungen in Frankreich, Deutschland und Polen. Eu-
ropa Regional 17 (2009).

[17] Brunet, E., and Luong, X. Computer processing and quantitative text analysis:
Hyperbase, an interactive software for large corpora. In Proceedings of the Conference
on Data Analysis, Learning Symbolic and Numeric Knowledge (Commack, NY, USA,
1989), Nova Science Publishers, Inc., pp. 207–214.

[18] Bullinaria, J. A., and Levy, J. P. Extracting semantic representations from word
co-occurrence statistics: A computational study. Behavior Research Methods (2007),
510–526.

[19] Church, K. W., and Hanks, P. Word association norms, mutual information, and
lexicography. Comput. Linguist. 16, 1 (Mar. 1990), 22–29.

[20] Cohen, T., Schvaneveldt, R., and Widdows, D. Reflective random indexing
and indirect inference: A scalable method for discovery of implicit connections. J. of
Biomedical Informatics 43, 2 (Apr. 2010), 240–256.

[21] Culy, C., and Lyding, V. Double tree: An advanced kwic visualization for expert
users. In Information Visualisation (IV), 2010 14th International Conference (July
2010), pp. 98–103.

[22] Cyril, B. Kookkurrenzdatenbank CCDB. Eine korpuslinguistische Denk- und Exper-
imentierplattform für die Erforschung und theoretische Begründung von systemisch-
strukturellen Eigenschaften von Kohäsionsrelationen zwischen den Konstituenten des
Sprachgebrauchs [Online web application] Institut für Deutsche Sprache, Mannheim
c©2001 ff. Available from: http://corpora.ids-mannheim.de/ccdb/, 2001.

[23] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harsh-
man, R. Indexing by latent semantic analysis. Journal of the American Society for
Information Science 41, 6 (1990), 391–407.

[24] Defays, D. An efficient algorithm for a complete link method. Comput. J. 20, 4 (1977),
364–366.

122

http://www.adobe.com/devnet/flex/articles/blueprint.html
http://joeberkovitz.com/max2006/RI304W_FlexBestPractices_JoeBerkovitz.ppt
http://joeberkovitz.com/max2006/RI304W_FlexBestPractices_JoeBerkovitz.ppt
http://corpora.ids-mannheim.de/ccdb/

[25] Diaz-Bone, R., Bührmann, A. D., Rodriguez, E. G., Schneider, W., Kendall,
G., and Tirado, F. The field of foucaultian discourse analysis : structures, develop-
ments and perspectives. Historical Social Research 33, 1 (2008), 7–28.

[26] Dice, L. R. Measures of the Amount of Ecologic Association Between Species. Ecology
26, 3 (July 1945), 297–302.

[27] Dijkstra, E. W. On the role of scientific thought. In Selected Writings on Computing:
A Personal Perspective. Springer-Verlag, 1982, pp. 60–66.

[28] Dockter, H., Murdoch, A., Faber, S., Niederwieser, P., Daley, L.,
Gröschke, R., DeBoer, D., and Appling, S. Gradle (Version 2.3) [build tool
and command line environment]. License: Apache License 2.0. Available from: http:
//gradle.org/, 2015.

[29] Ducrot, O. Dire et ne pas dire: principes de sémantique linguistique. Collection
Savoir. Hermann, 1972.

[30] Dumais, S. T., and Nielsen, J. Automating the assignment of submitted manuscripts
to reviewers. In Proceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (New York, NY, USA, 1992),
SIGIR ’92, ACM, pp. 233–244.

[31] Dunning, T. Accurate methods for the statistics of surprise and coincidence. Comput.
Linguist. 19, 1 (Mar. 1993), 61–74.

[32] Dzudzek, I. Hegemonie kultureller Vielfalt - Eine Genealogie kultur-räumlicher
Repräsentationen der UNESCO. Forum Politische Geographie. Lit Verlag, 2013.

[33] Dzudzek, I., Glasze, G., Mattissek, A., and Schirmel, H. Verfahren der
lexikometrischen Analyse von Textkorpora. In Handbuch Diskurs und Raum. Theorien
und Methoden für die Humangeographie sowie die sozial- und kulturwissenschaftliche
Raumforschung., vol. 1. Bielefeld: Transcript-Verlag., 2009, pp. 233–260.

[34] Elastic. Elasticsearch groovy api (version 1.7.3) [elasticsearch api]. license: Apache
license 2.0. Available from: https://github.com/elastic/elasticsearch-groovy,
2015.

[35] Elastic. Elasticsearch Java API (Version 1.7.x) [Elasticsearch API]. License: Apache
License 2.0. Available from: https://www.elastic.co/guide/en/elasticsearch/
client/java-api/1.7/java-api.html, 2015.

[36] Elastic. Elasticsearch (version 1.7.3) [text search engine]. license: Apache license 2.0.
Available from: https://www.elastic.co/products/elasticsearch, 2015.

[37] Everitt, B., Landau, S., and Leese, M. Cluster Analysis. A Hodder Arnold
Publication. Wiley, 2001.

[38] Evert, S. The Statistics of Word Co-Occurrences: Word Pairs and Collocations. PhD
thesis, Stuttgart, Germany, 2005.

[39] Foucault, M. Ordem do discurso (A). Edições Loyola, 1970.

[40] Foucault, M. The archaeology of knowledge / Michel Foucault ;translated from the
French by A.M. Sheridan Smith. Tavistock Publications London, 1972.

123

http://gradle.org/
http://gradle.org/
https://github.com/elastic/elasticsearch-groovy
https://www.elastic.co/guide/en/elasticsearch/client/java-api/1.7/java-api.html
https://www.elastic.co/guide/en/elasticsearch/client/java-api/1.7/java-api.html
https://www.elastic.co/products/elasticsearch

[41] Francis, W. N., and Kucera, H. Brown corpus manual. Tech. rep., Department of
Linguistics, Brown University, Providence, Rhode Island, US, 1979.

[42] Gabrilovich, E., and Markovitch, S. Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence (San Francisco, CA, USA, 2007), IJCAI’07,
Morgan Kaufmann Publishers Inc., pp. 1606–1611.

[43] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-Oriented Software (Adobe Reader). Pearson Education, 1994.

[44] Gormley, C., and Tong, Z. Elasticsearch: The Definitive Guide. O’Reilly Media,
Incorporated, 2015.

[45] Gritman, Jason. Httpbuilder (version 0.7.1) [easy http client for groovy]. license:
Apache license 2.0. Available from: https://github.com/jgritman/httpbuilder,
2015.

[46] Hall, S. Representation: Cultural Representations and Signifying Practices.
COMM1107:. SAGE Publications, 1997.

[47] Harris, Z. Distributional structure. Word 10, 23 (1954), 146–162.

[48] Helsloot, N., and Hak, T. Pecheux’s contribution to discourse analysis. Historical
Social Research 33, 1 (2008), 162–184.

[49] Hilpert, M., and Gries, S. T. Assessing frequency changes in multistage diachronic
corpora: Applications for historical corpus linguistics and the study of language acqui-
sition. Lit Linguist Computing 24, 4 (Dec. 2009), 385–401.

[50] Holtsberg, A., and Willners, C. Statistics for sentential co-occurrence, 2001.

[51] IDS. COSMAS I/II (Corpus Search, Management and Analysis System) [Online web
application] Institut für Deutsche Sprache, Mannheim c©1991-2010. Available from:
https://cosmas2.ids-mannheim.de/cosmas2-web/, 2010.

[52] Jones, K. S. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28 (1972), 11–21.

[53] Jones, M. N., Kintsch, W., and Mewhort, D. J. High-dimensional semantic space
accounts of priming. Journal of Memory and Language 55, 4 (2006), 534 – 552. Special
Issue on Memory Models.

[54] Jurgens, D., and Stevens, K. Event detection in blogs using temporal random in-
dexing. In Proceedings of the Workshop on Events in Emerging Text Types (Stroudsburg,
PA, USA, 2009), eETTs ’09, Association for Computational Linguistics, pp. 9–16.

[55] Jurgens, D., and Stevens, K. Hermit: Flexible clustering for the semeval-2 wsi task.
In Proceedings of the 5th International Workshop on Semantic Evaluation (Stroudsburg,
PA, USA, 2010), SemEval ’10, Association for Computational Linguistics, pp. 359–362.

[56] Kendall, M. G. A new measure of rank correlation. Biometrika 30, 1/2 (1938), 81–93.

[57] Kilgarriff, A. Why chi-square does not work and an improved LOB-Brown compar-
ison . In ALLC-ACH Conference (1996).

124

https://github.com/jgritman/httpbuilder
https://cosmas2.ids-mannheim.de/cosmas2-web/

[58] Kilgarriff, A. Comparing corpora. International journal of corpus linguistics 6, 1
(2001), 97–133.

[59] Kilgarriff, A., Rychly, P., Smrz, P., and Tugwell, D. The sketch engine. In
Proceedings of EURALEX (2004).

[60] Klein, W., and Geyken, A. Das Digitale Wörterbuch der Deutschen Sprache
(DWDS). 79–96.

[61] Krasner, G. E., and Pope, S. T. A cookbook for using the model-view controller
user interface paradigm in smalltalk-80. J. Object Oriented Program. 1, 3 (Aug. 1988),
26–49.

[62] Krippendorff, K. Content Analysis: An Introduction to Its Methodology. SAGE
Publications, 2012.

[63] Kullback, S., and Leibler, R. A. On information and sufficiency. Ann. Math.
Statist. 22, 1 (1951), 79–86.

[64] Kupietz, M., Belica, C., Keibel, H., and Witt, A. The German Reference
Corpus DeReKo: A Primordial Sample for Linguistic Research. In Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LREC’10)
(Valletta, Malta, may 2010), N. C. C. Chair), K. Choukri, B. Maegaard, J. Mariani,
J. Odijk, S. Piperidis, M. Rosner, and D. Tapias, Eds., European Language Resources
Association (ELRA).

[65] Kupietz, M., and Lüngen, H. Recent developments in dereko. In Proceedings of
the Ninth conference on International Language Resources and Evaluation (LREC 14)
(2014), p. 2385.

[66] Laforge, G., Theodorou, J., King, P., and Champeau, C. Groovy (Version
2.4.3) [object oriented, imperative programming language]. License: License: Apache
License 2.0. Available from: http://groovy-lang.org/, 2015.

[67] Lamalle, C., Martinez, W., Fleury, S., and Salem, A. Lexico3 - outils de sta-
tique textuelle [computer software]. université de la sorbonne nouvelle paris 3. Available
from: http://www.tal.univ-paris3.fr/lexico/lexico3.htm, 2001.

[68] Landauer, T. K., and Dutnais, S. T. A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
PSYCHOLOGICAL REVIEW 104, 2 (1997), 211–240.

[69] Lebart, L., Salem, A., and Berry, L. Exploring Textual Data (Text, Speech and
Language Technology). Springer, Dec. 1997.

[70] Leff, A., and Rayfield, J. T. Web-Application Development Using the Mod-
el/View/Controller Design Pattern. In Proceedings of the 5th IEEE International Con-
ference on Enterprise Distributed Object Computing (Washington, DC, USA, 2001),
EDOC ’01, IEEE Computer Society, pp. 118–127.

[71] Lin, D. Automatic retrieval and clustering of similar words. In Proceedings of the 17th
International Conference on Computational Linguistics - Volume 2 (Stroudsburg, PA,
USA, 1998), COLING ’98, Association for Computational Linguistics, pp. 768–774.

125

http://groovy-lang.org/
http://www.tal.univ-paris3.fr/lexico/lexico3.htm

[72] Lund, K., and Burgess, C. Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments, & Computers 28, 2 (1996),
203–208.

[73] Mani, I., and Pustejovsky, J. Temporal discourse models for narrative structure.
In Proceedings of the 2004 ACL Workshop on Discourse Annotation (Stroudsburg, PA,
USA, 2004), DiscAnnotation ’04, Association for Computational Linguistics, pp. 57–64.

[74] Mann, W. C., and Thompson, S. A. Rhetorical Structure Theory: a theory of text
organization. Tech. Rep. RS-87-190, USC/Information Sciences Institute, 1987. Reprint
series.

[75] Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[76] Martin, E. FRANTEXT, autour d’une base de données textuelles: témoignages
d’utilisateurs et voies nouvelles. Dictionnairique et lexicographie. Didier érudition, 1992.

[77] Martin, J. Programming real-time computer systems. Prentice-Hall series in automatic
computation. Prentice-Hall, 1965.

[78] Mattissek, A. Die neoliberale Stadt - diskursive Repräsentationen im Stadtmarketing
deutscher Großstädte. Urban studies. Bielefeld : transcript-Verl., 2008.

[79] McEnery, T., and Hardie, A. Corpus Linguistics: Method, Theory and Practice.
Cambridge Textbooks in Linguistics. Cambridge University Press, 2011.

[80] Miller, J. Patterns in practice - convention over configuration. Microsoft MSDN
magazine 24, 02 (2009). http://https://msdn.microsoft.com/en-us/magazine/
dd419655.aspx.

[81] Niwa, Y., and Nitta, Y. Co-occurrence vectors from corpora vs. distance vectors
from dictionaries. In Proceedings of the 15th Conference on Computational Linguistics -
Volume 1 (Stroudsburg, PA, USA, 1994), COLING ’94, Association for Computational
Linguistics, pp. 304–309.

[82] Padó, S., and Lapata, M. Dependency-based construction of semantic space models.
Comput. Linguist. 33, 2 (June 2007), 161–199.

[83] Pantel, P., and Lin, D. Discovering word senses from text. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2002), KDD ’02, ACM, pp. 613–619.

[84] Pantel, P., and Lin, D. Document clustering with committees. In Proceedings of
the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (New York, NY, USA, 2002), SIGIR ’02, ACM, pp. 199–206.

[85] Pearson, K. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that can be reasonably supposed to
have arisen from random sampling. Philosophical Magazine 50 (1900), 157–175.

[86] Pedersen, T. Ngram Statistics Package version v1.27 [Computer Software]. University
of Minnesota, Duluth. Available from: http://sourceforge.net/projects/ngram/,
2013.

126

http://https://msdn.microsoft.com/en-us/magazine/dd419655.aspx
http://https://msdn.microsoft.com/en-us/magazine/dd419655.aspx
http://sourceforge.net/projects/ngram/

[87] Pedersen, T. SenseClusters version v1.03 [Computer Software]. University of Min-
nesota, Duluth. Available from: http://senseclusters.sourceforge.net/, 2013.

[88] Pedersen, T., Kayaalp, M., and Bruce, R. Significant lexical relationships. In
Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96 (1996),
pp. 455–460.

[89] Pereira, F., Tishby, N., and Lee, L. Distributional clustering of english words. In
Proceedings of the 31st Annual Meeting on Association for Computational Linguistics
(Stroudsburg, PA, USA, 1993), ACL ’93, Association for Computational Linguistics,
pp. 183–190.

[90] Pivotal Software. Spring (Version 4.1.7) [application framework]. License: Apache
License 2.0. Available from: http://spring.io/, 2015.

[91] Purandare, A., and Pedersen, T. Word Sense Discrimination by Clustering Con-
texts in Vector and Similarity Spaces, 2004.

[92] Pêcheux, M. Analyse automatique du discours. Sciences du comportement. Dunod,
Paris, 1969.

[93] Rayson, P., and Garside, R. Comparing corpora using frequency profiling. In
Proceedings of the Workshop on Comparing Corpora - Volume 9 (Stroudsburg, PA,
USA, 2000), WCC ’00, Association for Computational Linguistics, pp. 1–6.

[94] Red Hat. Hibernate (Version 4.3.10) [object relational mapping]. License: GNU Lesser
General Public License. Available from: https://http://hibernate.org/, 2015.

[95] Rijsbergen, C. J. V. Information Retrieval, 2nd ed. Butterworth-Heinemann, New-
ton, MA, USA, 1979.

[96] Rocher, G. Grails (Version 3.0.3) [web application framework]. License: Apache Li-
cense 2.0. Available from: https://grails.org/, 2015.

[97] Rocher, G., Ledbrook, P., Palmer, M., Brown, Jeff, D. L., Beckwith, B.,
and Hotari, L. The Grails Framework - Reference Documentation (Version 3.0.3)
License: License: Apache License 2.0. Available from: http://grails.github.io/
grails-doc/3.0.3/guide/, 2015.

[98] Rohde, D. L. T., Gonnerman, L. M., and Plaut, D. C. An improved model
of semantic similarity based on lexical co-occurence. Communications of the ACM 8
(2006), 627–633.

[99] Rorty, R. Wittgenstein, Heidegger, and the reification of language. In Essays on
Heidegger and others, vol. 2. Cambridge University Press, 1991, pp. 50–65. Cambridge
Books Online.

[100] Sahlgren, M. An introduction to random indexing. In In Methods and Applications of
Semantic Indexing Workshop at the 7th International Conference on Terminology and
Knowledge Engineering, TKE 2005 (2005).

[101] Sahlgren, M. The Word-Space Model: using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces.
PhD thesis, Stockholm University, 2006.

127

http://senseclusters.sourceforge.net/
http://spring.io/
https://http://hibernate.org/
https://grails.org/
http://grails.github.io/grails-doc/3.0.3/guide/
http://grails.github.io/grails-doc/3.0.3/guide/

[102] Sahlgren, M., Holst, A., and Kanerva, P. Permutations as a means to encode
order in word space. In Proceedings of the 30th Annual Conference of the Cognitive
Science Society, V. Sloutsky, B. Love, and K. Mcrae, Eds. Cognitive Science Society,
Austin, TX, 2008, pp. 1300–1305.

[103] Salton, G. The SMART Retrieval System—Experiments in Automatic Docu-
ment Processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1971.

[104] Salton, G. Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Computer Science Series. Addison-Wesley, 1989.

[105] Salton, G., and Buckley, C. Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24, 5 (1988), 513 – 523.

[106] Salton, G., Wong, A., and Yang, C. S. A vector space model for automatic
indexing. Commun. ACM 18, 11 (Nov. 1975), 613–620.

[107] Sasirekha, K., and Baby, P. Agglomerative hierarchical clustering algorithm - a
review. International Journal of Scientific and Research Publications (IJSRP) 3, 301
(2013), 1–3.

[108] Saussure, F. D., Bally, C., Sechehaye, A., and Riedlinger, A. Cours de
linguistique générale. Lausanne ; Paris : Payot, 1916.

[109] Schirmel, H. Sedimentierte Unsicherheitsdiskurse: die diskursive Konstitution von
Berliner Großwohnsiedlungen als unsichere Orte und Ziel von Sicherheitspolitiken : mit
2 Tabellen und 23 Kontextkästen. Erlanger geographische Arbeiten / Sonderband. Selb-
stverl. der Fränkischen Geograph. Ges., 2011.

[110] Schütze, H. Automatic word sense discrimination. Comput. Linguist. 24, 1 (Mar.
1998), 97–123.

[111] Schütze, H., and Pedersen, J. A vector model for syntagmatic and paradigmatic
relatedness. In Making sense of words. Oxford, England: Ninth Annual Conference of
the UW Centre for the New OED and Text Research, 1993, pp. 104–113.

[112] Scott, M. Wordsmith tools version 6 [computer software]. liverpool: Lexical analysis
software. Available from: http://www.lexically.net/wordsmith/, 2012.

[113] Sibson, R. SLINK: An optimally efficient algorithm for the single-link cluster method.
The Computer Journal 16, 1 (Jan. 1973), 30–34.

[114] Singhal, A., Salton, G., Mitra, M., and Buckley, C. Document length normal-
ization. Inf. Process. Manage. 32, 5 (Sept. 1996), 619–633.

[115] Surhone, L., Tennoe, M., and Henssonow, S. Russian National Corpus. Be-
tascript Publishing, 2010.

[116] Tognini-Bonelli, E. Corpus Linguistics at Work. Studies in corpus linguistics. J.
Benjamins, 2001.

[117] Turney, P. D., and Pantel, P. From frequency to meaning: Vector space models
of semantics. CoRR abs/1003.1141 (2010).

[118] VERBI. MAXQDA - The Art of Textanalysis version 11 [Computer Software] Marburg,
Germany: VERBI Software. http://www.maxqda.com/, 2012.

128

http://www.lexically.net/wordsmith/

[119] Wattenberg, M., and Viégas, A. B. The word tree, an interactive visual concor-
dance. IEEE Transactions on Visualization and Computer Graphics (2008), 1221–1228.

[120] Webber, B. L. Discourse deixis: Reference to discourse segments. In ACL (1988),
ACL, pp. 113–122.

[121] Wieser, C. Lexikometrische Diskursanalyse als Methode der Kritischen Geopolitik
am Beispiel des Arabischen Frühlings. Global Studies Working Papers, Institute of
Geography, Universität Tübingen (2012).

[122] Wright, J. Deconstructing development theory: Feminism, the public/private di-
chotomy and the mexican maquiladoras*. Canadian Review of Sociology/Revue cana-
dienne de sociologie 34, 1 (1997), 71–91.

[123] Yates, F. Contingency tables involving small numbers and the χ2 test. Journal of the
Royal Statistical Society B1 (1934), 217–235.

[124] Étienne Brunet. HyperBase version 10 [Computer Software]. l’Université Nice Sophia
Antipolis. Available from: http://ancilla.unice.fr/?redirected_from=ancilla.
unice.fr/~brunet/pub/hyperbase.html, 2015.

129

http://ancilla.unice.fr/?redirected_from=ancilla.unice.fr/~brunet/pub/hyperbase.html
http://ancilla.unice.fr/?redirected_from=ancilla.unice.fr/~brunet/pub/hyperbase.html

	I Introduction and preliminaries
	Introduction
	Comparison of tools applied in lexicometrics

	II Theory
	Lexicometrics, support for discourse analysis
	Notes on lexicometrics
	Corpus compilation
	Corpus-based vs corpus-driven
	Linguistic preprocessing

	Frequency analysis
	Concordance analysis
	Analysis of characteristics in sub-corpora
	Co-occurrence analysis
	Grouping support
	Micro analysis

	Discourse theory
	Post-structuralism
	Structuralism
	Language as a representational system of society
	French discourse analysis

	Discourse methodology with lexicometrics
	Lexicometrics as macro analysis

	Finding themes
	What is a theme?
	The word space model
	Related vector spaces
	Hyperspace analogue to language

	Clustering
	Related clustering of word-context matrices
	Hierarchical agglomerative clustering

	Calculations in the vector space
	Co-occurrence measures
	Adjusting the weights
	Tf-idf
	Point-wise mutual information

	Smoothing the matrix
	Similarities and dissimilarities
	Similarities
	Dissimilarities
	Implementation notes

	Linkage criteria
	Maximum or complete-linkage clustering
	Minimum or single linkage clustering
	UPGMA
	WPGMC
	Implementation notes

	Significant words
	Comparing words using reference corpora with test statistics
	Chi-square test
	Log-likelihood ratio test

	Comparing words using reference corpora with frequency adjustment
	Characteristic Element Diagnostic - ced

	Notes on corpus comparison

	III Implementation
	Requirements on LeMATo
	Software Stack
	Groovy and Grails
	Elasticsearch
	The S-Space Package
	Other software dependencies
	Querying and using Elasticsearch
	Layout and appearance

	Design of LeMATo
	Grails MVC(S)
	Elasticsearch
	Relational Elasticsearch
	Obtaining an Elasticsearch client

	Frequency analysis
	Concordance analysis
	Significance analysis
	Significance measure
	Grouping words according to their similarity

	Latency

	IV Evaluation and conclusion
	Evaluation of results in LeMATo
	Frequency analysis
	Significance analysis
	Themes

	Concluding remarks
	Lessons learned
	Outlook

	Appendices
	Abstract
	English abstract
	Deutsche Zusammenfassung

	User Guide
	Corpus definition
	Querying in LeMATo
	Frequency analysis
	Concordance analysis
	Characteristics analysis of sub-corpora

	Supplementary material

