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Abstract. Emerging networked systems become increasingly flexible,
reconfigurable, and “self-∗”. This introduces an opportunity to adjust
networked systems in a demand-aware manner, leveraging spatial and
temporal locality in the workload for online optimizations. However, it
also introduces a tradeoff: while more frequent adjustments can improve
performance, they also entail higher reconfiguration costs. This paper
initiates the formal study of list networks which self-adjust to the demand
in an online manner, striking a balance between the benefits and costs
of reconfigurations. We show that the underlying algorithmic problem
can be seen as a distributed generalization of the classic dynamic list
update problem known from self-adjusting datastructures: in a network,
requests can occur between node pairs. This distributed version turns
out to be significantly harder than the classical problem it generalizes.
Our main results are a Ω(logn) lower bound on the competitive ratio,
and a (distributed) online algorithm that is O(logn)-competitive if the
communication requests are issued according to a linear order.

Keywords: self-adjusting datastructures · competitive analysis · dis-
tributed algorithms · communication networks.

1 Introduction

Communication networks are becoming increasingly flexible, along three main
dimensions: routing (enabler: software-defined networking), embedding (enabler:
virtualization), and topology (enabler: reconfigurable optical technologies, for
example [17]). In particular, the possibility to quickly reconfigure communica-
tion networks, e.g., by migrating (virtualized) communication endpoints [9] or
by reconfiguring the (optical) topology [12], allows these networks to become
demand-aware: i.e., to adapt to the traffic pattern they serve, in an online and
“self-∗” manner. In particular, in a self-adjusting network, frequently communi-
cating node pairs can be moved topologically closer, saving communication costs
(e.g., bandwidth, energy) and improving performance (e.g., latency, through-
put).
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However, today, we still do not have a good understanding yet of the algorithmic
problems underlying self-adjusting networks. The design of such algorithms faces
several challenges. As the demand is often not known ahead of time, online
algorithms are required to react to changes in the workload in a clever way;
ideally, such online algorithms are “competitive” even when compared to an
optimal offline algorithm which knows the demand ahead of time. Furthermore,
online algorithms need to strike a balance between the benefits of adjustments
(i.e., improved performance and/or reduced costs) and their costs (i.e., frequent
adjustments can temporarily harm consistency and/or performance, or come at
energy costs).

The vision of self-adjusting networks is reminiscent of self-adjusting datastruc-
tures such as self-adjusting lists and splay trees, which optimize themselves to-
ward the workload. In particular, the dynamic list update problem, introduced
already in the 1980s by Sleator and Tarjan in their seminal work [23], asks for
an online algorithm to reconfigure an unordered linked list datastructure, such
that a sequence of lookup requests is served optimally and at minimal reconfigu-
ration costs (i.e., pointer rotations). It is well-known that a simple move-to-front
strategy, which immediately promotes each accessed element to the front of the
list, is dynamically optimal, that is, has a constant competitive ratio.

This paper initiates the study of a most basic self-adjusting linear network,
which can be seen as a distributed variant of the dynamic list update problem,
generalizing the datastructure problem to networks: while datastructures serve
requests originating from the front of the list (the “root”) to access data items,
networks serve communication requests between pairs of nodes. The objective
is to move nodes which currently communicate frequently, closer to each other,
while accounting for reconfiguration costs.

1.1 Related Work

One important area of related work arises in the context of the dynamic list up-
date problem. Since the groundbreaking work by Sleator and Tarjan on amor-
tized analysis and self-adjusting datastructures [23], researchers have also ex-
plored many interesting variants of self-adjusting datastructures, also using ran-
domized algorithms [21] or lookaheads [1,3], or offline algorithms [5,20]. The
deterministic Move-To-Front (MTF) algorithm is known to optimally solve the
standard formulation of the list update problem: it is 2-competitive [23], which
matches the lower bound [4]. To the best of our knowledge, the competitive ratio
in the randomized setting (against an oblivious adversary) is still an open prob-
lem: the best upper bound so far is 1.6 [3], and the best lower bound 1.5 [24]. The
randomized algorithm [3] makes an initial random choice between two known al-
gorithms that have different worst-case request sequences, relying on the BIT [21]
and TIMESTAMP [2] algorithms.
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We also note that the self-adjusting linear network design problem can be consid-
ered a special case of general online problems such as the online Metrical Task
System (MTS) problems. However, given the exponential number of possible
configurations, the competitive ratio of generic MTS algorithms will be high if
applied to our more specific problems (at least according to the existing bounds).
Furthermore, we note that in case of list request graphs, the problem can also
be seen as a learning problem and hence related to bandits theory [13].

In terms of reconfigurable networks, there exist several static [8,11] and dy-
namic [22,19,16] algorithms for bounded-degree networks, as well as hybrid vari-
ants [15] which combine static and reconfigurable links. However, these solutions
do not apply to the list and do not provide performance guarantees over time
(with the notable exception of [16] in a different model); the latter also applies
to recent work on node migration models on the grid [7].

The paper closest to ours is by Olver et al. [18] who introduced the Itinerant
List Update (ILU) problem: a relaxation of the classic dynamic list update prob-
lem in which the pointer no longer has to return to a home location after each
request. The authors show an Ω(log n) lower bound on the randomized competi-
tive ratio and also present an offline polynomial-time algorithm and prove that it
achieves an approximation ratio of O(log2 n). In contrast, we in our paper focus
on online algorithms and request graphs forming a list (or grid). In fact, we show
that the lower bound Ω(log n) even holds in this case, at least for deterministic
algorithms. We also present an online algorithm which matches this bound in
our model.

1.2 Formal Model

We initiate the study of pairwise communication problems in a dynamic network
reconfiguration model, using the following notation:

– Let dG(u, v) denote the (hop) distance between u and v in a graph G.

– A communication request is a pair of communicating nodes from a set V .

– A configuration of V in a graph N (the host network) is an injection of V
into the vertices of N ; CV ↪→N denotes the set of all such configurations.

– A configuration h ∈ CV ↪→N is said to serve a communication request (u, v) ∈
V × V at cost dN (h(u), h(v)).

– A finite communication sequence σ = (σ0, σ1, . . . , σm) is served by a sequence
of configurations h0, h1, . . . , hm ∈ CV ↪→N .

– The cost of serving σ is the sum of serving each σi in hi plus the reconfigu-
ration cost between subsequent configurations hi, hi+1.



4 Avin et al.

– The reconfiguration cost between hi, hi+1 is the number of migrations nec-
essary to change from hi to hi+1; a migration swaps the images of two nodes
u and v under h.

– Ei = {σ1, . . . , σi} denotes the first i requests of σ interpreted as a set of
edges on V , and R(σ) = (V,Em) denotes the request graph of σ.

In particular, we study the problem of designing a self-adjusting linear network :
a network whose topologoy forms a d-dimenstional grid. We are particularly
interested in the 1-dimensional grid in this paper, the line:

Definition 1 (Distributed List Update). Let V , h, and σ be as before, with

N = ({1, . . . , n}, {(1, 2), (2, 3), . . . , (n− 1, n)}

representing a list graph. The cost of serving a σi = (u, v) ∈ σ is given by
|h(u)−h(v)|, i.e. the distance between u and v on N . Migrations can only occur
between nodes configured on adjacent vertices in N .

Recall that the cost incurred by an algorithm A on σ is the sum of communication
and reconfiguration costs. In the realm of online algorithms and competitive
analysis, we compare an online algorithm ON to an offline algorithm OFF which
has complete knowledge of σ ahead of time. We want to devise online algorithms
ON which minimize the competitive ratio ρ:

ρ = max
σ

cost(ON(σ))

cost(OFF(σ))

As a first step, we in this paper consider the Distributed List Update prob-
lem for the case where the request graph R(σ) has constant graph bandwidth:
i.e. graphs for which there is a configuration in a line network such that any re-
quest can be served at constant cost. We refer to such a request graph as linear
demand.

1.3 Contributions

This paper initiates the study of a most basic self-adjusting network, a line,
which optimizes itself toward the dynamically changing linear demand, while
amortizing reconfiguration cost. The underlying algorithmic problem is natural
and motivated by emerging reconfigurable communication networks (e.g., based
on virtual machine migration or novel optical technologies [10,17]). The problem
can also be seen as a distributed version of the fundamental dynamic list up-
date problem. Our first result is a negative one: we show that unlike the classic
dynamic list update problem, which admits for constant-competitive online al-
gorithms, there is an Ω(log n) lower bound on the competitive ratio of any deter-
ministic online algorithm for the distributed problem variant. Our second main
contribution is a (distributed) online algorithm which is O(log n)-competitive
for long enough sequences, given that the communication patterns exhibit linear
demand.



Self-Adjusting Linear Networks 5

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we put the
problem and its challenges into perspective with respect to the list update prob-
lem. We then first derive the lower bound in Section 3 and present our algorithm
and upper bound in Section 4. We conclude in Section 5.

2 From List Update to Distributed List Update

To provide an intuition of the challenges involved in designing online algorithms
for distributed list update problems and to put the problem into perspective,
we first revisit the classic list update problem and then discuss why similar
techniques fail if applied to communicating node pairs, i.e., where requests not
only come from the front of the list.

The (dynamic) list update problem [23] introduced by Sleater and Tarjan over
30 years ago is one of the most fundamental and oldest online problems: Given
a set of n elements stored in a linked list, how to update the list over time
such that it optimally serves a request sequence τ = (τ1, τ2, . . .) where for each
i, τi ∈ V is an arbitrary element stored in the list? The cost incurred by an
algorithm is the sum of the access costs (i.e. scanning from the front of the list
to the accessed element) and the number of swaps (switching two neighboring
elements in the list). As accesses to the list elements start at the front of the
list, it makes sense to amortize high access costs by moving frequently accessed
elements closer to the front of the list. In fact, the well-known Move-To-Front
(MTF) algorithm even moves an accessed element to the front immediately, and
is known to be constant competitive: its cost is at most a factor 2 (or some other
constant, depending on the cost model) worse than that of an optimal offline
algorithm which knows the entire sequence τ ahead of time [23]. Throughout
the literature, slightly different cost models have been used for the list update
problem, though they only differ by a constant factor. Generally, a cursor is
located at the head of the list at each request. Then, the algorithm can perform
two operations, each operation incurring unit cost. i) Move the cursor to the
left, or to the right, one position; the element in the new position is referred to
as touched. ii) Swap the element at the cursor with the element one position to
the left or right; the cursor also moves.

In the Distributed List Update problem, upon a request σi = (si, ti), the
cursor is placed at si instead of the head of the list, and ti needs to be looked up.
To demonstrate the significance of this difference, we first present a paraphrased
version of the proof by Tarjan and Sleator showing the dynamic optimality of
mtf. After that, we showcase a simple access sequence differentiating the two
problems.
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2.1 An Expositional Proof for the Optimality of MTF

While the potential argument used to show dynamic optimality of the move-to-
front strategy for the list access problem yields a very elegant and succinct proof
[23], it lacks intuition which makes it difficult to generalise the argument. The
key idea in the potential argument is to compare the execution of mtf to the
execution of an arbitrary algorithm A. The algorithm is fixed for the analysis,
but any valid algorithm can be used, e.g. the optimal offline algorithm. The state
(represented by a list) of mtf and A are juxtaposed at every access, comparing
how the order of elements in both lists differ. In fact, it is sufficient to only
consider the relative order of two arbitrary but fixed elements, call them u and
v. Consider the order of u and v in the state of A before it performs the ith
access. If this order is the same as in mtf before it performs the ith acces, let
bi = 0 and otherwise bi = 1.
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Fig. 1: mtf (yellow) and A
(blue) on τ = 6, 3, 1, 3, 6

Similarly, if their relative order is the same in
mtf after its ith access, let ai = 0 and other-
wise ai = 1. This describes an inversion sequence
b1a1b2a2 . . . bmam. Figure 1 illustrates this for mtf
and an arbitrarily chosen algorithm A on a sequence
τ = 6, 3, 1, 3, 6, with the inversions of 1 and 6 de-
scribed by the sequence 01111011100.

Suppose that τi ∈ {u, v} and that mtf touches u
and v while accessing τi. The proof by Tarjan and
Sleator boils down to three observations.

Observation 1 MTF inverts u and v relative to A
by accessing τi, i.e. bi 6= ai.

Observation 2 If bi = 0, mtf and A agree on the
order of u and v before τi. Since mtf touches both,
A also touches both in order to access τi.

Observation 3 For bi = 1, let j < i be the largest
index such that bj = 0 or aj = 0 (note that j exists
because b1 = 0). When aj = 0, and thus bj+1 = 1,
A inverts u and v and therefore must have touched
both. When bj = 0, and thus aj = 1, mtf inverts u
and v and one of them is τj. By Observation 2, if
bj = 0 and mtf touches u and v to access τj, then
A does as well.

The last observation is essentially the amortised argument rephrased as a charg-
ing argument. We can now easily prove the dynamic optimality of mtf.

Theorem 1 (Tarjan & Sleator). mtf is 4-competitive.
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Proof. We prove that for all τi = v where mtf touches u, there is a move by
A touching u. mtf first moves the cursor to τi, and then swaps τi to the front.
Along the way it touches u twice, once with a move and once with a swap,
incurring a cost of 2.

For bi = 0 (resp. bi = 1), we use Observation 2 (resp. 3) to charge the cost to A
touching u while accessing τi (resp. τj). By Observation 1, bi 6= ai, and thus for
any τk ∈ {u, v} with i < k, the largest index j′ < k with bj′ = 0 or aj′ = 0 must
be at least i, and therefore j < i ≤ j′. This guarantees that mtf charges at most
a cost of 4 to one move of A. Since all the cost incurred by mtf is charged to
some move of A, the claim follows. ut

In the original work by Tarjan and Sleator, MTF is shown to be 2-competitive.
This is because their cost model allows accessed elements to be moved to the
front ‘for free’. If we allow this as well, the cursor touches u only once to access
v, resulting in a factor 2.

2.2 The Challenge of Distributed List Update

v1

v2
v3

v4

v5

v6v
n−1

c

Fig. 2: A star graph used
to construct a cyclic se-
quence of requests σc =
(c, v1), (c, v2), . . . , (c, vn−1), (c, v1), . . .

Generalizing dynamic list update to Dis-
tributed List Update introduces a num-
ber of challenges which render the problem
more difficult. First, the natural inversion ar-
gument no longer works: a reference point
such as the front of the list is missing in the
distributed setting. This makes it harder to
relate algorithms to each other and hence also
to define a potential. Second, for general re-
quest graphs R(σ), an online algorithm needs
to be able to essentially “recognize” certain
patterns over time.

Regarding the latter, consider the set of
nodes V = {v1, ..., vn} and let τc be a cyclic
sequence: for all τi, τi+1 ∈ τc with τi = vj and
τi+1 = vk it holds that j+1 = k( mod n−1).
From this we construct a similar sequence σc
for Distributed List Update on the set of
nodes V ∪{c}, with σi = (c, τi). This yields a
star graph R(σc) as denoted in Figure 2. An
offline algorithm can efficiently serve the cyclic order by first embedding the ele-
ments in the order v1, ...vk, and then moving the element c one position further
after every request. If the cost of embedding the initial order is dominated by
serving all requests, then the amortized cost is O(1) per request (per cycle there
are n − 1 moves of cost O(1) and once c is moved a distance n). However, in
the list update model, any sequence cycling through all elements is a worst-case
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sequence with Ω(n) per request. This demonstrates that a “dynamic cursor” can
mean a factor n difference in cost. What the sequence σc also demonstrates, is
that aggregating elements around a highly communicative node is suboptimal;
in the particular case of σc, it is this central node that needs to be moved.

Another pattern is a request sequence σ that forms a connected path in the
request graph R(σ). When restricted to only these patterns, Distributed List
Update corresponds to the Itinerant List Update Problem (ILU) studied in [18].
In this work it is shown that deriving non-trivial upper bounds on the compet-
itive ratio already seems notoriously hard (even offline approximation factors
are relatively high). Note that the star example can be expressed as a path, i.e.
σ′c = (c, v1), (v1, c), (c, v2), (v2, c), (c, v3), . . ., demonstrating the significance of
understanding simple request patterns for Distributed List Update. This is
partly why in this paper we focus on request graphs with a linear demand.

3 A Lower Bound

This section derives a lower bound on the competitive ratio of any algorithm for
Distributed List Update.

Theorem 2. The competitive ratio ρ = maxσ
cost(ON(σ))
cost(OFF(σ)) for Distributed

List Update, with |σ| = Ω(n2), is at least Ω(log n). This bound holds for
arbitrarily long sequences, but if |σ| = O(n2), it even holds if the request graph
is a list graph.

To prove this, we consider an arbitrary online algorithm ON for Distributed
List Update. The main idea is to have an adaptive online adversary construct a
sequence σON that depends on the algorithm ON. The adversary constructs σON

so that the resulting request graph R(σON) is a list graph. Because an offline
algorithm knows R(σON) in advance, it can immediately configure it and serve
all requests at optimal cost of 1; since |σ| = Ω(n2), the configuration cost of
O(n2) is negligable. We show that the online algorithm is forced to essentially
reconfigure its layout log n times, resulting in the desired ratio. To facilitate our
analysis, we use the same notion of the distortion of an embedding as is used in
the Minimum Linear Arrangement (MLA) [14] problem.

Definition 2. Given a request graph G = (V,E) with E ⊆ V × V , let E+ =
{(u, v) | dG(u, v) <∞} denote the transitive closure of E.
For h ∈ CV ↪→N , let dh(E) denote the distortion of E, which is defined as:

dh(E) =
∑

(u,v)∈E+

dh(u, v)

By summing over edges in E+ (instead of E), the cost of a badly embedded
edge e ∈ E is essentially multiplied by the number of paths in E that contain e.
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This means that the distortion of an embedding of a list is worse if the badly
embedded edges occur in the middle of the list, see Figure 3a. To build σON, the
adversary gradually commits to the edges of R(σON). Having already requested
σ1, . . . , σi, then depending on the distortion the adversary:

Option 1: picks σi+1 = arg max(u,v)∈Ei dh(u, v).

Option 2: reveals a new batch of edges M ⊂ V × V .

From these two options, the adversary’s strategy becomes clear; Option 1 forces
the highest possible cost to ON based on Ei and h, and Option 2 introduces new
communication edges to force an increase in distortion. What is left to show is
how the value of dh(Ei) comes into play, and which edges the adversary commits
to. The adversary reveals at most n − 1 edges (since the final request graph is
a list), and they will be revealed in batches of size n/2, n/4, n/8, etc., resulting
in log n batches. After each batch, for ON to remain optimal it must permute
its layout at cost Ω(n2), totaling a cost of Ω(n2 log n) for all batches combined.
To ensure that R(σON) is a list graph, the partial request graph Ei (i.e., the
set of revealed edges) always comprises a set of disjoint sublists. Therefore, the
adversary only reveals edges that concatenate two sublists in Ei. Initially Ei is
empty and the corresponding sublists are all singleton sets of u ∈ V .

h

Ei

N1 2 3 4 5 6 7 8

N1 2 3 4 5 6 7 8

h′

e1 e2

h(e1)

h(e2)

(a) Two embeddings h and h′ of a set of
edges. Even though both embeddings
embed only a single edge suboptimally,
the distortion of dh(E) is bigger than
dh′(E) because more paths in Ei cross
e1 than e2.

M

h

Ei

h((Ei ∪M)+)

N1 2 3 4 5 6 7 8

(b) A visualization of dh(Ei ∪M): the
list graph N, Ei (solid) and M (dashed)
are sets of edges, configured on N by
h (dotted). The sum of length of the
configured edges h((Ei ∪ M)+) is the
distortion dh(Ei ∪M).

Fig. 3: Illustrations of distortion.

To help decide which edges to reveal, we use the distortion to associate a cost to
batches of edges that the adversary can commit to. Let M ⊆ V × V \Ei be any
set of edges such that the graph (V,Ei ∪M) comprises a set of disjoint sublists.
For a configuration h of ON, the set M induces a distortion of dh(Ei ∪M), as
shown in Figure 3b. We show that for any embedding that ON chooses, the
adversary can find a set M so that the distortion is large.
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Lemma 1. Let N be a list graph, and E ⊆ V ×V a set of edges so that the graph
G = (V,E) induces k disjoint sublists. For every h ∈ CV ↪→N , there exists a set

M ⊆ V ×V of at most k/2 edges such that dh(E ∪M) = Ω(n
3

k ) and (V,E ∪M)
comprises a set of disjoint lists.

To prove this lemma, we use the following fact (with proof in the full paper[6]):

Theorem 3. Let x1, . . . , xk and y1, . . . , yk be sequences of k nonnegative num-
bers, and let x (resp. y) denote

∑k
i=1 xi. Let the weight of an involution4 over

the indices 1, . . . , k be defined as w(f) =
∑k
i=1 xiyf(i).

The average weight over all involutions is Ω(xyk ).

Proof (Lemma 1). Let L1, ..., Lk ⊆ E be the sublists in G. For all pairs (i, j),
let (Li, Lj) denote any edge so that Li ∪Lj ∪ {(Li, Lj)} = Li⊕Lj is connected.
For any involution f on the sublists we have:

2dh(E ∪ {(Li, Lf(i)) | i 6= f(i)}) ≥
k∑
i=1

dh(Li ⊕ Lf(i)). (1)

The factor 2 is necessary because for i such that i 6= f(i), the term dh(Li ⊕
Lf(i)) appears twice in the sum. Now partition N into three sublists: a left
part X = {1, . . . , dn/3e}, a right part Y = {b2n/3c, . . . , n}, and the centre part
C = N \ (X ∪ Y ). Let hX(Li) (resp. hY (Li)) denote the number of elements of
Li that h maps onto X (resp. Y ). Every two vertices u, v so that h(u) ∈ X and
h(v) ∈ Y are by construction at least |C| = Θ(n) apart on N , and therefore we
can lower bound dh(Li ⊕ Lj) by:

dh(Li ⊕ Lj) ≥ |C| · hX(Li)hY (Lj) (2)

For an involution f drawn uniformly at random, Theorem 3 gives us a bound
on the expected value of the following:

E

(
k∑
i=1

hX(Li)hY (Lf(i))

)
= Ω

(
dn/3e2

k

)
(3)

Therefore, there exists an involution f for which we have:

2dh(E ∪ {(Li, Lf(i)) | i 6= f(i)})
(1)

≥
k∑
i=1

dh(Li ⊕ Lf(i))

(2)

≥ |C| ·
k∑
i=1

hX(Li)hY (Lf(i))

(3)
= Θ(n) ·Ω(n2/k) = Ω

(
n3

k

)
4 A function f such that f(f(x)) = x for all x.



Self-Adjusting Linear Networks 11

Since this holds for any choice of (Li, Lj), we can pick them so that (V,E ∪
{(Li, Lf(i)) | i 6= f(i)}) comprises a set of disjoint lists. ut

This lemma (and the proof) reveals how the adversary commits to a new batch
of edges in Option 2 (essentially a random matching will do). Observe that the
number of edges is at most half the number of sublists in Ei. In the worst case we
have to assume it is exactly half, and thus that the number of sublists is halved
after every new batch of edges is selected. Next we show the precondition for
the adversary to opt for Option 1, including a lower bound on the corresponding
cost imposed on ON.

Lemma 2. Let N be a list graph, h ∈ CV ↪→N a configuration, and E ⊆ V × V
a set of edges so that the graph G = (V,E) has n/` disjoint sublists of size `.
If dh(E) = Ω(`n2), then there exists an edge (u, v) ∈ E such that dh(u, v) =
Ω(n/`).

Proof. There are at most n/` ·
(
`
2

)
= O(`n) distinct simple paths in G, meaning

that the average distortion of these paths is Ω(`n2)
O(`n) = Ω(n). The highest distor-

tion is at least the average, and every path in G has length at most `. On this
path, there must exist an edge with distortion Ω(n/`), since if all edges have a
distortion of o(n/`), the total would be o(n). ut

Combined, Lemma 1 and Lemma 2 imply that the adversary can either request
an edge at cost Ω(n/`), or increase the distortion to Ω(`n2) by revealing a new
batch of edges. The final ingredient is a lower bound on how much cost the
adversary can impose on ON in between these batches.

Lemma 3. Let N be a list graph, E ⊂ V × V a set of communication edges. If
h, h′ ∈ CV ↪→N are two embeddings that differ only in the order of two adjacent
elements u and v, then dh(E) ≤ dh′(E) + 2`, where ` is the size of the largest
sublist in E.

Proof. Consider all simple paths in E that end in u. At most ` paths ending in
u (or v) are reduced by 1, and therefore dh(E))− dh′(E) ≤ 2`.

Combining the previous lemmata, we can prove the main technical result.

Lemma 4. For every online algorithm A, there is a sequence σON of length
O(εn1+ε log n) such that cost(ON(σON)) = Ω(εn2 log n), for 0 < ε ≤ 1. Further-
more, the resulting request graph R(σON) is a list graph.

Proof. W.l.o.g. assume that n = 2p for some integer p. This implies that the
number of edges in every new batch is a power of 2; consequently, the sublists
in any set Ei of revealed edges have size 2k = ` for some integer k.
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Consider the situation right after a batch of edges is revealed, where all sublists
have size `. By Lemma 1 this implies that the distortion is Ω(`n2). Let σ =
σi, σi+1, ..., σi+`n be the requests obtained by repeatedly requesting the edge in
Ei with largest distortion. There are two situations:

– Throughout serving σ, the distortion is always at least Ω(`n2). Then by
Lemma 2 each σj , i ≤ j ≤ i + `n incurred a cost of Ω(n/`), at total cost
Ω(n2).

– By serving σ, ON halves the distortion, thus reducing it by at least Ω(`n2).
Then, since by Lemma 3 every swap reduces the distortion by at most 2`,
ON must have used at least Ω(n2) swaps.

This argument holds for each batch of edges revealed. The adversary stops when
the sublists have size 2ε logn, yielding a sequence σON with

|σON| =
∑

`∈{20,...,2ε logn}

`n = O(n1+ε)

and cost(σON) = Ω(εn2 log n). By Lemma 2, the adversary only requests edges
that are introduced using the matching from Lemma 1. Any edge introduced by
the latter Lemma concatenates two already existing sublists, hence R(σON) is a
list graph. ut

To wrap up the proof for Theorem 2, we conclude by showing that for any online
algorithm ON, the sequence σON can be solved in O(n2) by an optimal offline
algorithm.

Proof (Proof of Theorem 2). Let ON be any online algorithm solving Dis-
tributed List Update. Apply Lemma 4 with ε = 1/2, yielding cost(ON(σON)) =
Ω(n2 log n). Since σON is a list graph, an offline algorithm can embed this graph
at (worst case optimal) cost Θ(n2), and serve every request at optimal cost O(1).
This yields cost(OFF (σON)) = Θ(n2), and thus

ρ =
cost(ON(σ))

cost(OFF(σ))
= Ω(log n)

In order to make this bound hold for arbitrary long sequences, we slightly modify
the adversary. After every O(n2) requests it serves, it can reconfigure to a new
list at cost O(n2), and repeat the argument to force cost of Ω(n2 log n) to ON
for the subsequent O(n2) requests.

Remark. We can generalise the model for Distributed List Update to
include cases where both the request graph and the host graph G are a d-
dimensional grid, for constant d; we dub this problem Distributed Grid Up-
date. On a request (u, v), the cursor is placed at u and the request is served
when it touches v. The same operations are allowed: moving the cursor, or
swapping with on of its 2d neighbors (also moving the cursor).
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Lemma 5. For every online algorithm ON for Distributed Grid Update,
there is a sequence σON of length O(εn1+ε log n) such that cost(ON(σON)) =
Ω(εn1+1/d log n), for 0 < ε ≤ 1. The resulting request graph R(σON) is a d-
dimensional grid graph.

The proof of Lemma 5 is essentially identical to that of Lemma 4. An overview
of the necessary modifications are given in the full paper[6].

4 An Upper Bound

This section presents a O(log n)-competitive online algorithm for Distributed
List Update. Our main technical lemma shows that the total cost spent on
learning the optimal embedding never exceeds O(n2 log n). We propose a simple
greedy algorithm that identifies a locally optimal embedding, and always moves
towards this embedding. Observe that a set of k sublists can be embedded per-
fectly on a line graph in at most 2kk! ways (they are permuted in some order,
and every list has at most two orientations). Given a configuration h ∈ CV ↪→N
of the lists, we define the locally optimal embedding to be an optimal embed-
ding one that takes the fewest number of reconfigurations to reach, starting at
h. Formally, if opt(E) is the set of optimal embeddings of a set edges, then the
h-optimal embedding of E is

h[E] = arg min
h′∈opt(E)

∑
v∈V
|h(v)− h′(v)|

With such a configuration we associate the cost:

Φh[E] =
∑
v∈V
|h(v)− h[E](v)|

Let Gread be the algorithm (it GREedily ADjoins sublists), that upon seeing
a new edge σi, immediately moves to the embedding h[Ei ∪ {σi+1}].

For each Ei, let V(Ei) be the connected components of (V,Ei), so that Vσ =
∪1≤i≤mV(Ei) is the set of all sublists induced by σ. This naturally defines a
binary tree Tσ = (Vσ, Eσ): for every first occurence σi of (u,w) ∈ Em connecting
two sublists U,W in R(Ei), there are two corresponding edges (U,U ∪W ) and
(W,U ∪W ) in Eσ.For every σi ∈ Em, Gread incurs some cost for reconfiguring,
and the following lemma bounds this cost.

Lemma 6. Let h be an optimal embedding of Ei, and let σi+1 be an edge con-
necting two sublists U and W of Ei. It holds that

Φh[Ei ∪ {σi+1}] ≤ n ·min(|U |, |W |)
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Proof. Since Ei is optimally embedded by h, we simply need to move the smaller
of U and W into its correct location so that Ei ∪{σi+1} is optimally embedded.
This requires every element in the smaller list to be moved at most n locations,
therefore Φh[Ei ∪ {σi+1}] ≤ nmin(|U |, |W |).

For a node U ∈ Vσ, let left(U) and right(U) denote U ’s left and right child
respectively. Further, let w(U) denote the number of nodes in the subtree rooted
at U . Observe that for any binary tree with nodes N , it holds that∑

v∈N
min(w(left(v)), w(right(v))) ≤ |N | log |N |

Theorem 4. For any σ, with |σ| = m, such that |Em| = k and R(σ) is a list,

cost(Gread(σ)) = O(m+ nk log k)

Proof. Let hi denote the configuration after request σ1, and let h0 denote the
trivial optimal initial embedding. Then the total cost of Gread is the sum of
reconfiguring after every σi plus accessing every request at cost 1:

cost(Gread(σ))−m =

m∑
i=0

Φhi [Ei ∪ {σi+1}]

≤
∑
U∈Vσ

nmin(w(left(U)), w(right(U)))

≤ nk log k

As a corollary, it is not hard to show that Gread achieves optimal log n compet-
itiveness for the worst case sequence constructed in Section 3. Additionally, in
the full paper [6] we show a distributed implementation of this algorithm using
message passing.

5 Conclusion

We presented a first and asymptotically tight, i.e., Θ(log n)-competitive online
algorithm for self-adjusting reconfigurable linear networks with linear demand.
Both our lower and upper bounds are non-trivial, and we believe that our work
opens several interesting directions for future research. In particular, it would be
very interesting to shed light on the competitive ratio achievable in more general
network topologies, and to study randomized algorithms.
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