
Introduction to Microservice API Patterns (MAP)
Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch1

Mirko Stocker
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
mirko.stocker@hsr.ch2

Daniel Lübke
iQuest GmbH, Hanover, Germany
ich@daniel-luebke.de3

Cesare Pautasso
Software Institute, Faculty of Informatics, USI Lugano, Switzerland
c.pautasso@ieee.org4

Uwe Zdun
University of Vienna, Faculty of Computer Science, Software Architecture Research Group, Vienna,
Austria
uwe.zdun@univie.ac.at5

Abstract
The Microservice API Patterns (MAP) language and supporting website premiered under this name
at Microservices 2019. MAP distills proven, platform- and technology-independent solutions to
recurring (micro-)service design and interface specification problems such as finding well-fitting
service granularities, rightsizing message representations, and managing the evolution of APIs and
their implementations. In this paper, we motivate the need for such a pattern language, outline
the language organization and present two exemplary patterns describing alternative options for
representing nested data. We also identify future research and development directions.

2012 ACM Subject Classification Software and its engineering → Patterns; Software and its engin-
eering → Designing software

Keywords and phrases application programming interfaces, distributed systems, enterprise applica-
tion integration, service-oriented computing, software architecture

Digital Object Identifier 10.4230/OASIcs.Microservices.2017/2019.46

Category Keynote

1 Motivation

It is hard to escape the term microservices these days. Much has been said about this rather
advanced approach to system decomposition since its inception a few years ago [10]. The
basic elements of a microservice-based message exchange are introduced in Figure 1.

Early adopters’ experiences suggest that service design requires particular attention if
microservices are supposed to deliver on their promises [16]:

1 mailto:ozimmerm@hsr.ch
2 mailto:mirko.stocker@hsr.ch
3 mailto:ich@daniel-luebke.de
4 mailto:c.pautasso@ieee.org
5 mailto:uwe.zdun@univie.ac.at
6 https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4

7 © The authors, 2019;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics8

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany9

mailto:ozimmerm@hsr.ch
mailto:mirko.stocker@hsr.ch
mailto:ich@daniel-luebke.de
mailto:c.pautasso@ieee.org
mailto:uwe.zdun@univie.ac.at
https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4
mailto:ozimmerm@hsr.ch
mailto:mirko.stocker@hsr.ch
mailto:ich@daniel-luebke.de
mailto:c.pautasso@ieee.org
mailto:uwe.zdun@univie.ac.at
https://doi.org/10.4230/OASIcs.Microservices.2017/2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Microservice API Patterns

Figure 1 Microservices, represented as hexagons, exchange request and response message repres-
entations via platform-independent ports and technology-specific adapters. The inner structure of
the services is sketched in onion form: each ring represents a local logical layer (e.g., logic, data).

How many (micro-)service operations should be exposed in Application Programming
Interfaces (APIs)?
Which service cuts let services and their clients deliver user value jointly, but couple them
loosely?
How often do services and their clients interact to exchange data? How much and which
data should be exchanged?
What are suitable message representation structures and nesting levels, and how do these
change throughout service life cycles?
How can the meaning of message representations be agreed upon – and how to stick to
these contracts in the long run?

To address these and related design issues and choose working combinations out of the
many possible design options, application context and requirements must be analyzed. Our
Microservice API Patterns (MAP) cover and organize this design space. Before we describe
MAP and present two example patterns in the following sections, let us first recapitulate
what microservices actually are (and where they came from).

1.1 A Consolidated Definition of Microservices
Microservices architectures have evolved from previous incarnations of Service-Oriented
Architectures (SOAs) [5]. They consist of independently deployable, scalable and changeable
services, each having a single responsibility. These responsibilities model business capabilities.
Microservices often are deployed in lightweight virtualization containers, encapsulate their
own state, and communicate via message-based remote APIs in a loosely coupled fashion.
Microservices solutions leverage polyglot programming, polyglot persistence, as well as
DevOps practices including decentralized continuous delivery and end-to-end monitoring
[22], [13], [10].

When it comes to protocol selection, message-based APIs such as RESTful HTTP or
queue-based event sourcing and streaming, have come to dominate over remote procedure
calls, including their object-oriented variants [15]. JSON is a particularly popular data
serialization and message exchange format in many developer communities today.



O. Zimmermann et al. 4:3

1.2 Service Design Challenges
Microservices architectures include many remote APIs. The data representations exposed by
these APIs must not only meet the information and processing needs of clients and other
services, but also be designed and documented in an understandable and maintainable way.

While microservice API design and implementation might seem to be simple and straight-
forward from the distance, a closer look unveils that a lot of interesting problems are awaiting
API teams:

Requirements diversity: The wants and needs of API clients differ from one another, and
keep on changing. API providers have to decide whether they want to offer good-enough
compromises in a single unified API or try to satisfy all client requirements individually.
Design mismatches: What backend systems can do (in terms of functional scope and
quality), and how they are structured (in terms of endpoint and data definitions), might
be different from what clients expect. These differences have to be overcome.
Open vs. closed systems: API clients and providers often have conflicting goals. For
instance, the desire to innovate and market dynamics such as competing API providers
trying to catch up on each other may cause more change and possibly incompatible
evolution strategies than clients are able or willing to accept. Publishing an API means
opening up a system and giving up some control, thus limiting the freedom to change it.
Clients might use data that is exposed by an API in unexpected ways.
Stability vs. flexibility: Microservices help to enable frequent releases, e.g., in the context of
DevOps practices such as continuous delivery. Changes are released at an ever increasing
pace. In contrast, APIs should stay as stable as possible to avoid breaking client code.
This constant conflict needs to be resolved by microservice API designers.

These conflicting requirements and stakeholder concerns must be balanced; many design
trade-offs can be observed:

Few operations that carry lots of data back and forth vs. many chatty, fine-grained
interactions. Which choice is better in terms of performance, scalability, bandwidth
consumption and evolvability?
Stable, standardized, elaborate interfaces vs. fast changing, specialized, focused ones. How
to find a balance between breadth and depth? How to keep the interfaces compatible
without sacrificing their extensibility?
Data consistency vs. reliability and fast response times. Should state changes be reported
via coordinated API calls or via reactive event sourcing and streaming? Should commands
and queries be separated architecturally? To which extent can and should consistency,
availability, and recoverability (backup) requirements be satisfied? [14]

1.3 Existing Design Heuristics
One can find many excellent books providing deep advice about using RESTful HTTP, e.g.,
which HTTP verb or method to pick to implement a particular operation, or how to apply
asynchronous messaging including routing, transformation, and guaranteed delivery [1], [7].
Strategic Domain-Driven Design [3], [19] can assist with service identification. SOA, cloud
and microservice infrastructure patterns have already been proposed, and structuring data
storages also is understood well. Our previous publications [17] and [23] cover such related
works; the MAP website10 also gives reading recommendations.

10 https://microservice-api-patterns.org/relatedPatternLanguages

MS 2017/2019

https://microservice-api-patterns.org/relatedPatternLanguages
https://microservice-api-patterns.org/relatedPatternLanguages


4:4 Microservice API Patterns

Structuring data exchanges without breaking information hiding remains hard; no single
solution exists. According to Helland [4], “data on the outside” differs from “data on the
inside” significantly. Data access/usage profiles drive many data modeling decisions, both
for data on the inside and for data in the outside. However, inside and outside data have
diverging mutability, lifetime, accuracy, consistency and protection needs.

2 Microservice API Patterns (MAP) Scope and Organization

Microservice API Patterns (MAP) takes a broad view on microservice API design and
evolution, from the perspective of data on the outside, i.e., the message representations
and payloads exchanged when APIs are called (as shown in Figure 1). These messages are
structured as representation elements which differ in their meaning and structure as API
endpoints and their operations have different architectural roles and responsibilities. Critical
design choices about the message structure and semantics strongly influence the design time
and runtime qualities of an API and its underlying microservices implementations. Many
options exist, with very different characteristics. The API designs evolve over time.

2.1 Patterns as Knowledge Sharing Vehicles
Software patterns are proven knowledge sharing vehicles with a 25-year track record [6].
We decided for the pattern format to share API design advice because:

Pattern names aim at forming a domain vocabulary, a ubiquitous language [3]. For
instance, Hohpe’s and Woolf’s Enterprise Integration Patterns [7] have become the lingua
franca of queue-based messaging; they are implemented in a number of frameworks and
tools. Such ubiquitous language for API design is missing to date.
The forces and consequences sections of patterns support informed decision making,
for instance about desired and achievable quality characteristics (but also downsides of
certain designs). The design challenges and trade-offs identified in Section 1 frame and
support such design discussions.
Patterns are soft around their edges: they only sketch solutions and do not provide
blueprints to be followed blindly.
Patterns are not invented, but mined from practical experience and then curated and
hardened via peer feedback.

2.2 Knowledge Categories
MAP addresses the following questions, which also define pattern categories:

The structure of messages and the message elements that play critical roles in the design
of APIs. What is an adequate number of representation elements for request and response
messages? How are these elements structured? How can they be grouped and annotated
with supplemental usage information (metadata)? [23]
The impact of message content on the quality of the API. How can an API provider achieve
a certain level of quality of the offered API, while at the same time using its available
resources in a cost-effective way? How can the quality trade-offs be communicated and
accounted for? [17]
The roles and responsibilities [20] of API operations. Which is the architectural role played
by each API endpoint and its operations? How do these roles and their responsibilities
impact microservice size and granularity?



O. Zimmermann et al. 4:5

API descriptions as a means for API governance and evolution over time. How to deal with
life cycle management concerns such as support periods and versioning? How to promote
backward compatibility and extensibility? How to communicate breaking changes? [11]

Two more categories complete the language scope, foundation and identification (not
covered here due to space constraints). See Figure 2 for an overview.

3 Pattern Examples: In-/Excluding Nested Data Representations

In this section, we introduce two patterns from the quality category not featured in peer-
reviewed publications yet, Embedded Entity and Linked Information Holder. They provide
two alternatives for representing related data elements: inclusion (nesting) and linkage
(referencing).

We use the following template to document all our patterns: The context establishes
preconditions for pattern eligibility/applicability. The problem specifies a design issue to be
resolved, typically in question form. The forces explain why the problem is hard to solve:
architectural design issues and conflicting quality attributes are often referenced here. The
solution answers the design question introduced by the problem statement, describes how the
solution works and which variants (if any) exist. It also gives an example and shares pattern
application and implementation hints. The consequences section discusses to which extent
the solution resolves the pattern forces as well as additional pros and cons; it may also call
out new problems or identify alternative solutions. The known uses report real-world pattern
applications. Finally, the relations to other patterns are explained and additional pointers
and references are given under more information.

References to other patterns are formatted like this in this paper: Pattern Name.

3.1 Pattern: Embedded Entity
a.k.a. Inlined Entity Data; Embedded Document (Nesting)

3.1.1 Context
The information required by a communication participant contains structured data. This
data includes multiple elements that relate to each other in certain ways. For instance,
a master data element such as a customer profile may contain other elements providing
contact information including addresses and phone numbers, or a periodic business report
may aggregate source information such as monthly sales figures summarizing individual
business transactions. API clients work with several of the related information elements
when processing response messages or producing request messages.11

3.1.2 Problem
How can you avoid exchanging multiple messages when receivers require insights from multiple
related information elements?

11 Note that this is (almost) the same context as in the sibling pattern Linked Information Holder.

MS 2017/2019



4:6 Microservice API Patterns

Figure 2 The MAP language is organized into categories, three of which have subcategories.
Patterns set in bold/black are already available online at the time of writing; the grayed out ones
are currently being mined. The identification category is not available yet. Visit www.microservice-
api-patterns.org for an interactive, up-to-date version of this pattern index.

https://www.microservice-api-patterns.org
https://www.microservice-api-patterns.org


O. Zimmermann et al. 4:7

3.1.3 Forces
When deciding for or against this pattern, you have to consider its impact on:

Performance and scalability
Flexibility and modifiability
Data quality
Data freshness and consistency

Traversing all relationships between information elements to include all possibly interesting
data may require complex message representations and lead to large message sizes. It is
unlikely and/or difficult to ensure that all recipients will require the same message content.

3.1.3.1 Non-solution

One could simply define one API endpoint per information element. This endpoint is accessed
whenever API clients process data from that information element, e.g., when it is referenced
from another one. But if API clients use such data in many situations, this solution leads to
many subsequent requests to follow the references. This could possibly make it necessary to
coordinate request execution and introduce conversation state, which harms scalability and
availability; distributed data also is more difficult to keep consistent than local data.

3.1.4 Solution
For any relationship that the client has to follow, embed an Entity Element12 in the message
that contains the data of the target entity (instead of linking to the target entity). For
instance, if a purchase order has a relation to product master data, let the purchase order
message hold a copy of all relevant information stored in the product master data. Figure 3
shows a solution sketch of Embedded Entity.

3.1.4.1 How it works

Define a Parameter Tree13 or an Atomic Parameter List that includes an Entity Element
for the referenced relationship. Provide an additional Metadata Element to denote the
relationship type if needed.

Analyze outgoing relationships in the Entity Element and consider embedding them in
the message as well, but only if this additional data is also used by the API client in enough
cases. Repeat this analysis up to reaching the “transitive closure” where all reachable entities
have either been included or excluded.

Review each source-target relationship carefully: is the target entity really needed on
the API client side in enough cases? A “yes” answer warrants transmitting relationship
information as Embedded Entities; otherwise transmitting references to Linked Information
Holders might be sufficient.

Document the existence and the meaning of the embedded entity relationships in the
API Description.

12All patterns that are already published, but not contained in this paper can be found online: https:
//microservice-api-patterns.org/.

13 See https://microservice-api-patterns.org/.

MS 2017/2019

https://microservice-api-patterns.org/
https://microservice-api-patterns.org/
https://microservice-api-patterns.org/


4:8 Microservice API Patterns

API

Client

Response Message

Resource
Related
Resource

Proxy

Resource Representation

Embedded Entity (Related
Resource Representation)

Request Message

references

contains

(2)

(1)

Figure 3 Sketch of Embedded Entity pattern (entities are represented as HTTP resources)

3.1.4.2 Example

Lakeside Mutual14, a microservices sample application, contains a service called Customer
Core that aggregates several information items (here: entities and value objects from Domain-
Driven Design) in its operation signatures. An API client can access this data via an HTTP
resource API. This API contains several instances of the pattern. Applying the Embedded
Entity pattern, a response message might look as follows:

GET http://localhost:8080/customers/a51a-433f-979b-24e8f0

{
"customer": {

"id": "a51a-433f-979b-24e8f0"
},
"customerProfile": {

"firstname": "Robbie",
"lastname": "Davenhall",
"birthday": "1961-08-11T23:00:00.000+0000",
"currentAddress": {

"streetAddress": "1 Dunning Trail",
"postalCode": "9511",
"city": "Banga"

},
"email": "rdavenhall0@example.com",

14 https://github.com/Microservice-API-Patterns/LakesideMutual

https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual


O. Zimmermann et al. 4:9

"phoneNumber": "491 103 8336",
"moveHistory": [{

"streetAddress": "15 Briar Crest Center",
"postalCode": "",
"city": "Aeteke"

}]
},
"customerInteractionLog": {

"contactHistory": [],
"classification": "??"

}
}

The referenced information items are all fully contained in the response message (e.g.,
customerProfile, customerInteractionLog); no URIs (links) to other resources appear.
Note that customerProfile actually embeds nested data (currentAddress, moveHistory),
while the customerInteractionLog is empty in this exemplary data set.

3.1.4.3 Implementation hints

When embedding entity relationships in message representations, keep in mind to:

Document data characteristics such as owner, provenance, lifetime, and last update in
the API Description; consider to introduce corresponding Metadata Elements if the data
is used by a sufficient amount of clients requiring additional explanations.
Distinguish transactional data from master data and other reference data when embedding
it (to account for their different life cycles, evolution roadmaps and validity timeframes).
Secure the message so that the content part with the highest protection need is covered
adequately; this might (or might not) be the Embedded Entity. If the security requirements
of link source and target differ substantially, consider switching to the sibling pattern
Linked Information Holder.
Be careful with consumer-side caching and replicating parts or all of the embedded data
as this may introduce consistency, concurrency, and/or data ownership issues, especially
when mixing transactional data with master data in one message.
Test the use of Embedded Entities with all valid and invalid cardinalities. More specifically,
empty, one, few, or many referenced data items should appear in different test cases.
Monitor message sizes at runtime to prepare for interface refactoring such as switching to
Linked Information Holder (see discussion below) or introducing Pagination.
Define compatibility rules and service evolution policies [11] when introducing Embedded
Entites. The more related entities a message includes and the more complex its payload is,
the more likely it is to change as a whole and in parts. As a client, behave as a Tolerant
Reader [2]: Clients should not assume that all related entities will always be included
and might have to be ready to follow a link in case the information is not embedded.

3.1.5 Consequences
The pattern meets the “all in one” requirement articulated by the problem statement, but
this may lead to large messages that are expensive to transfer. If some clients do not have to
receive all the data, then parts of the payload could have been omitted.

MS 2017/2019



4:10 Microservice API Patterns

3.1.5.1 Resolution of forces

+ An Embedded Entity reduces the number of calls required: If the required information is
included, the client does not have to create a request to obtain it.

+ Embedding entities can lead to a reduction in the number of endpoints, because no
dedicated endpoint to retrieve some information is required.

− Embedding entities leads to larger response messages which take longer to transfer.
− It can be difficult to anticipate what information different clients require to perform their

tasks. As a result, there is a tendency to include more data than needed by (most) clients
in an Embedded Entity, which leads to yet larger message sizes. Such design can be found
in many Public APIs serving large and possibly unknown clients.

− Large messages that contain unused data consume more bandwidth than necessary.
However, if most or all of the data is actually used, sending many small messages might
actually require more bandwidth than sending one large message (e.g., for header and
metadata sent with the smaller messages multiple times).

− If the embedded entities change with different speed (e.g., a fast-changing transactional
entity refers to immutable master data), retransmitting all entities causes unnecessary
overhead as messages with partially changed content cannot be cached. Consider switching
to a Linked Information Holder (and maybe additionally apply the Conditional Request
pattern for the linked entity).

− Once included and exposed in an API Description, it is hard to remove an Embedded
Entity in a backward-compatible manner (as clients may have begun to rely on it).

3.1.5.2 Alternatives

If reducing message size is your main design goal, you can also define a Wish List or, even
more expressive, a Wish Template to minimize the data to be transferred by letting consumers
dynamically describe which subset of the data they need.

If both client and provider are developed by the same organization, e.g., when implement-
ing Backends for Frontends15, embedding entities can be a good strategy to minimize the
number of requests and to simplify development by introducing a uniform regular structure
across each layer (assuming that the negative consequences of the pattern are acceptable).

API Gateways16 can also help when dealing with different information needs. They can
either provide two alternative APIs that use the same backend interface, and/or collect and
aggregate information from different endpoints and operations (which makes them stateful).

3.1.6 Known Uses
Many public APIs with complex response messages use the Embedded Entity pattern:

• When retrieving an issue with the GitHub v3 API17, the response also contains the full
information about the milestone the issue is assigned to.

• A tweet in the Twitter REST API18 contains the entire user information, including for
example the number of followers the user has.

15 https://samnewman.io/patterns/architectural/bff/
16 https://microservices.io/patterns/apigateway.html
17 https://developer.github.com/v3/issues/#get-a-single-issue
18 https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/

get-statuses-show-id

https://samnewman.io/patterns/architectural/bff/
https://microservices.io/patterns/apigateway.html
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id
https://samnewman.io/patterns/architectural/bff/
https://microservices.io/patterns/apigateway.html
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id


O. Zimmermann et al. 4:11

• Many operations in the Microsoft Graph API apply this pattern. For instance, the user
resource representations19 contain structured attributes that represent (sub-)entities (but
also link to other resources via Linked Information Holders). For instance, the response
body of List events contains an array of attendees that are identified by their email
addresses, but also have a type and a status.

Plenty of APIs offered by custom enterprise information systems and master data man-
agement products also realize the pattern.

3.1.7 More Information

3.1.7.1 Related Patterns

Linked Information Holder describes a complementary solution for the reference management
problem and can also be seen as an alternative (as explained above).

Wish List or Wish Template can help to fine-tune the content in an Embedded Entity, as
explained above.

3.1.7.2 Other Sources

See Section 7.5 in [18] for additional advice and examples (“Embedded Document (Nesting)”).

3.2 Pattern: Linked Information Holder

a.k.a. Linked Entity, Data Reference; Compound Document (Sideloading)

3.2.1 Context

An API exposes structured data to meet the information needs of the communication
participants. This data contains elements that relate to each other (e.g., a master information
element may contain other elements providing detailed information or a performance report
for a period of time may aggregate raw data such as individual measurements). API clients
want to work with several of the related information elements when processing response
messages or producing request messages.20

3.2.2 Problem

When exposing structured, possibly deeply nested information elements in an API, how can
you avoid sending large messages containing lots of data that is not always useful for the
message receiver in its entirety?

19 https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
20 This context is (almost) the same as that of the sibling pattern Embedded Entity.

MS 2017/2019

https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user


4:12 Microservice API Patterns

Client

API

Response Message

Request Message Proxy

Resource
Related
Resource

Resource Representation

Link Element (Address of Related Resource)

(3) follow link

(1)

references

contains(2)

links to

Figure 4 Sketch of Linked Information Holder pattern

3.2.3 Forces
A general rule of thumb in distributed systems is that request and response messages should
not be too large so that the network and the endpoint processing resources are not over-
utilized. That said, message recipients possibly would like to follow many or all of the
relationships to access information elements related to the elements requested. If the related
elements are not included, information about their location and their content is required,
as well as access information. This information set has to be designed, implemented and
evolved; the resulting dependency has to be managed.

The sibling pattern Embedded Entity list additional forces that apply to both patterns.

3.2.3.1 Non-solution

One option is to always (transitively) include all the related information elements of each
transmitted element in request and response messages throughout the API (as described in
the Embedded Entity pattern). However, this approach can harm performance of individual
calls and lead to large, wasteful messages containing data not required by some clients.

3.2.4 Solution
Add a Link Element21 to the message that references an API endpoint. Introduce an API
endpoint that represents the linked entity, for instance, an Information Holder Resource.
This endpoint represents the referenced information element, for instance an entity from the
domain model22 that is exposed by the API. Figure 4 outlines this soluton.

3.2.4.1 How it works

Include the location information (i.e., host and port), expressed in the logical naming and/or
addressing scheme of the API, when referencing the endpoint via Link Elements in request and
response messages. This typically requires a Parameter Tree to be used in the representation
structure; in simple cases, an Atomic Parameter List might suffice.

21 See https://microservice-api-patterns.org/.
22 https://en.wikipedia.org/wiki/Domain_model

https://en.wikipedia.org/wiki/Domain_model
https://microservice-api-patterns.org/
https://en.wikipedia.org/wiki/Domain_model


O. Zimmermann et al. 4:13

Identify the Link Element with a name. If more information about the relation should be
sent to clients, annotate this Link Element with details about the corresponding relationship,
for instance, a Metadata Element specifying the type and characteristics of the relationship.
Clients and providers must agree on the semantics (i.e., meaning) of the link relationships,
and be aware of coupling and side effects introduced.

Document the existence and the meaning of the Linked Information Holder in the API
Description. Specify the cardinalities on both ends of the relation. One-to-many relationships
can be modeled as collections, for instance by transmitting multiple elements as Atomic
Parameter Lists. Many-to-many relationships can be modeled as two such one-to-many
relationships, one linking the source entities to the targets, and one linking the target entities
to the sources. Such design may require the introduction of an additional API endpoint
representing the relation rather than its source and target.

3.2.4.2 Example

A sample application for Customer Management could work with a Customer Core service
API that aggregates several information elements from the domain model of the application,
in the form of entities and value objects from Domain-Driven Design (DDD). Its API client
could access this data through a Customer Information Holder, implemented as a REST
controller in Spring Boot.

If the Customer Information Holder implements the Linked Information Holder pattern
for the customerProfile, a response message looks as this:

GET http://localhost:8080/customers/a51a-433f-979b-24e8f0

{
"customer": {

"id": "a51a-433f-979b-24e8f0"
},
"links": [{

"rel": "customerProfile",
"href": "http://localhost:8080/customers/a51a-433f-979b-24e8f0/profile"

}, {
"rel": "moveHistory",
"href": "http://localhost:8080/customers/a51a-433f-979b-24e8f0/moveHistory"

}],
"email": "rdavenhall0@example.com",
"phoneNumber": "491 103 8336",
"customerInteractionLog": {

"contactHistory": [],
"classification": "??"

}
}

The customerProfile can then be retrieved by a subsequent GET request to the provided
URI link. The moveHistory has been factored out as well, so the pattern is applied twice in
this example.

MS 2017/2019



4:14 Microservice API Patterns

3.2.4.3 Implementation hints

When adding links to message representations to turn relationship targets into API endpoints,
it is good practice to:

• Keep the naming scheme and structure of the Link Elements consistent and be reluctant
to change it. For instance, keep the URI naming scheme consistent in HTTP resource
APIs.

• Define compliance controls if the link relations are subject to system and process assurance
audits as discussed in [8].23

• Run regression tests on the source of a link when the link destination changes its interface
or implementation.

• Monitor performance continuously to preserve and challenge the rationale for pattern
usage. If most or all client calls follow the given link, consider embedding the target
element in the original representation to reduce traffic (see Embedded Entity pattern).

• Adhere to REST constraints and related recommended practices when using RESTful
HTTP (see [1]): Linked reference data is a cornerstone of the Hypertext as the Engine of
Application State (HATEOAS) tenet that is required to reach REST maturity level 324.

3.2.5 Consequences
This pattern is often applied when referencing rich information holders serving multiple
usage scenarios: not all message recipients require the full set of referenced data, for instance,
when Master Data Holders such as customer profiles or a product records are referenced.
Following the link, message recipients can obtain the required subsets on demand.

When introducing link elements into message representations, an implicit promise is made
to the recipient that these links can be followed successfully; the provider might not be willing
to keep such promise infinitely. Even if a long lifetime of the linked endpoint is guaranteed,
links still may break; for instance, when the data organization or location changes. Clients
should expect this and be able to follow redirects or referrals to the updated links. To
minimize breaking links on the provider side, the provider should invest in maintaining link
consistency. For instance, a Lookup Resource can be used to solve this problem.

3.2.5.1 Resolution of forces

+ Linking instead of embedding entities results in smaller messages and uses less resources
in the communications infrastructure when exchanging individual messages. This needs
to be contrasted to the possible higher resource use due to transfer of multiple messages
as links get followed.

+ If some linked data changes often, only that data needs to be requested again.

− Additional requests are required to dereference the linked information.

23An example of such a control is a pre- and postcondition check at the API endpoint boundary that
enforces the correct cardinality of a link from a purchase order to customer (e.g., there has to be one
and only one customer per order). Such design-by-contract approaches can be implemented as a foreign
key relationship if both order and customer are stored in the same relational database. In a distributed
services architecture, both sides of the relationship can modify the data independently of each other,
which might introduce inconsistencies.

24 https://martinfowler.com/articles/richardsonMaturityModel.html

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html


O. Zimmermann et al. 4:15

− Linking instead of embedding entities might result in the use of more resources in the
communications infrastructure as multiple messages are required to follow the links.

− Additional Information Holder Resource endpoints have to be provided for the linked
entities, causing development and operations effort and cost.

3.2.5.2 Alternatives

The patterns in the Quality Patterns category that help reduce the amount of data exchanged
can be used alternatively. For instance, Conditional Request, Wish List, and Wish Template
are eligible; the structure pattern Pagination is an option too.

3.2.6 Known Uses
Many public Web APIs apply this pattern, for instance the JIRA Cloud REST API25 when
reporting the links between issues in the Get issue link26 call.

Certain calls in the Microsoft Graph API also apply this pattern: for instance, user
resource representations27 contain scalar and complex attributes as “Properties”, but also
link to other resources such as Calendar (under “Relationships”).

RESTful HTTP APIs on maturity level 3 apply this pattern if the links representing
application state deal with both master data and transactional data resources and their
representations. An example is Spring Restbucks28.

3.2.7 More Information
3.2.7.1 Related Patterns

The sibling pattern Embedded Entity provides an alternative to Linked Information Holder,
transmitting data rather than referencing it.

Linked Information Holders typically reference Information Holder Resources. The
referenced Information Holder Resources can be combined with Lookup Resource to cope
with potentially broken links, as outlined previously.

Linked Service29 is a similar pattern in [2], but less focused on data. “Web Service
Patterns” [12] has a Partial DTO Population pattern which solves a similar problem.

3.2.7.2 Other Sources

See Section 7.4 in [18] for additional advice and examples, to be found under “Compound
Document (Sideloading)”.

The Backup, Availability, Consistency (BAC) theorem investigates data management
issues further [14].

4 Conclusion

This paper introduced Microservice API Patterns (MAP), a volunteer project compiling
a pattern language for the design and evolution of Microservice APIs. The language is

25 https://docs.atlassian.com/jira/REST/cloud/
26 https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get
27 https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
28 https://github.com/odrotbohm/spring-restbucks
29 http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService

MS 2017/2019

https://docs.atlassian.com/jira/REST/cloud/
https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://github.com/odrotbohm/spring-restbucks
http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService
https://docs.atlassian.com/jira/REST/cloud/
https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://github.com/odrotbohm/spring-restbucks
http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService


4:16 Microservice API Patterns

organized into six pattern categories at present; the MAP website30 provides additional
navigation aids such as a cheat sheet and pattern filtering by scope, phase, role, and quality
attributes. The patterns, their known uses and the examples have been mined from public
Web APIs as well as application development and software integration projects the authors
and their industry partners have been involved in [21]. We previously published 18 patterns
at pattern conferences; this paper introduced two more.

In our future work, we plan to fill gaps throughout our six pattern categories. The next
patterns will describe additional structural representations as well as the architectural roles
and responsibilities of endpoints and operations within an API. Patterns capturing API
endpoint and service identification strategies and tactics as well as corresponding artifacts yet
have to be mined: Context Maps, Bounded Contexts and Aggregates from Domain-Driven
Design (DDD) [3] seem to be particularly promising starting points for microservice API
design, and tools for strategic DDD are beginning to emerge [9]. We have also begun to work
on a technology-independent service contract language that incorporates our patterns as
first-class language elements, as well as tools to create API specifications from DDD context
maps, existing code, and as other specification languages such as Open API Specification.
Other future tools may search for pattern instances and provide metrics.

References
1 Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.
2 Robert Daigneau. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL

and RESTful Web Services. Addison-Wesley Professional, 2011. URL: http://www.
servicedesignpatterns.com/.

3 Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-
Wesley, 2003.

4 Pat Helland. Data on the outside versus data on the inside. In CIDR 2005, Second Biennial
Conf. on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2005, Online
Proceedings, pages 144–153, 2005. URL: http://cidrdb.org/cidr2005/papers/P12.pdf.

5 Gregor Hohpe. SOA patterns: New insights or recycled knowledge? https://www.
enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf, 2007. URL: https:
//www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf.

6 Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann. Twenty years
of patterns’ impact. IEEE Software, 30(6):88, 2013. URL: https://doi.org/10.1109/MS.
2013.135, doi:10.1109/MS.2013.13531.

7 Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, 2003.

8 Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. Compliance
by design–bridging the chasm between auditors and IT architects. Computers & Security,
30(6):410–426, 2011.

9 Stefan Kapferer. A domain-specific language for service decomposition. Term project, University
of Applied Sciences of Eastern Switzerland (HSR FHO), 2018. https://eprints.hsr.ch/722.

10 James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. https://martinfowler.com/articles/microservices.html/, 2014. URL: https:
//martinfowler.com/articles/microservices.html/.

11 Daniel Lübke, Olaf Zimmermann, Mirko Stocker, Cesare Pautasso, and Uwe Zdun. Interface
evolution patterns - balancing compatibility and extensibility across service life cycles. In Proc.
of the 24th European Conference on Pattern Languages of Programs, EuroPLoP ’19, 2019.

30 https://microservice-api-patterns.org/
31 http://dx.doi.org/10.1109/MS.2013.135

https://microservice-api-patterns.org/
http://www.servicedesignpatterns.com/
http://www.servicedesignpatterns.com/
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://doi.org/10.1109/MS.2013.135
https://doi.org/10.1109/MS.2013.135
http://dx.doi.org/10.1109/MS.2013.135
https://eprints.hsr.ch/722
https://martinfowler.com/articles/microservices.html/
https://martinfowler.com/articles/microservices.html/
https://martinfowler.com/articles/microservices.html/
https://microservice-api-patterns.org/
http://dx.doi.org/10.1109/MS.2013.135


O. Zimmermann et al. 4:17

12 Paul B. Monday. Web Services Patterns: Java Edition. Apress, Berkely, CA, USA, 2003.
13 Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.
14 Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. Consistent disaster recovery for

microservices: the bac theorem. IEEE Cloud Computing, 5(1):49–59, 12 2018. doi:10.1109/
MCC.2018.01179171432.

15 Cesare Pautasso and Olaf Zimmermann. The Web as a software connector: Integration resting
on linked resources. IEEE Software, 35:93–98, January/February 2018. doi:10.1109/MS.2017.
454104933.

16 Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai M. Josuttis.
Microservices in practice, part 1: Reality check and service design. IEEE Software, 34(1):91–98,
2017. URL: https://doi.org/10.1109/MS.2017.24, doi:10.1109/MS.2017.2434.

17 Mirko Stocker, Olaf Zimmermann, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Interface
quality patterns - communicating and improving the quality of microservices APIs. In Proc.
of the 23nd European Conference on Pattern Languages of Programs, EuroPLoP ’18, 2018.

18 Phil Sturgeon. Build APIs you won’t hate. LeanPub, https://leanpub.com/build-apis-you-
wont-hate, 2016.

19 Vaughn Vernon. Implementing Domain-Driven Design. Addison-Wesley Professional, 2013.
20 Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Responsibilities, and Collabor-

ations. Pearson Education, 2002.
21 Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. Guiding

architectural decision making on quality aspects in microservice APIs. In 16th International
Conference on Service-Oriented Computing ICSOC 2018, pages 78–89, November 2018. URL:
http://eprints.cs.univie.ac.at/5956/.

22 Olaf Zimmermann. Microservices tenets. Comput. Sci., 32(3-4):301–310, July 2017. URL:
https://doi.org/10.1007/s00450-016-0337-0, doi:10.1007/s00450-016-0337-035.

23 Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. Interface representation
patterns: Crafting and consuming message-based remote APIs. In Proc. of the 22nd European
Conference on Pattern Languages of Programs, EuroPLoP ’17, pages 27:1–27:36. ACM, 2017.
URL: http://doi.acm.org/10.1145/3147704.3147734, doi:10.1145/3147704.314773436.

32 http://dx.doi.org/10.1109/MCC.2018.011791714
33 http://dx.doi.org/10.1109/MS.2017.4541049
34 http://dx.doi.org/10.1109/MS.2017.24
35 http://dx.doi.org/10.1007/s00450-016-0337-0
36 http://dx.doi.org/10.1145/3147704.3147734

MS 2017/2019

http://dx.doi.org/10.1109/MCC.2018.011791714
http://dx.doi.org/10.1109/MCC.2018.011791714
http://dx.doi.org/10.1109/MS.2017.4541049
http://dx.doi.org/10.1109/MS.2017.4541049
https://doi.org/10.1109/MS.2017.24
http://dx.doi.org/10.1109/MS.2017.24
http://eprints.cs.univie.ac.at/5956/
https://doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1007/s00450-016-0337-0
http://doi.acm.org/10.1145/3147704.3147734
http://dx.doi.org/10.1145/3147704.3147734
http://dx.doi.org/10.1109/MCC.2018.011791714
http://dx.doi.org/10.1109/MS.2017.4541049
http://dx.doi.org/10.1109/MS.2017.24
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1145/3147704.3147734

	Motivation
	A Consolidated Definition of Microservices
	Service Design Challenges
	Existing Design Heuristics

	Microservice API Patterns (MAP) Scope and Organization
	Patterns as Knowledge Sharing Vehicles
	Knowledge Categories

	Pattern Examples: In-/Excluding Nested Data Representations
	Pattern: Embedded Entity 
	Context
	Problem
	Forces
	Solution
	Consequences
	Known Uses
	More Information

	Pattern: Linked Information Holder 
	Context
	Problem
	Forces
	Solution
	Consequences
	Known Uses
	More Information


	Conclusion

