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Abstract

We consider the task of causal structure learning over a set ofmeasurement vari-

ables with no direct causal relaƟons andwhose dependencies are induced by un-

observed latent variables. We call this the measurement dependence inducing

latent (MeDIL) Causal Model, or MCM, framework. We show that this task can

be framed in terms of the graph theoreƟcal problem of finding edge clique cov-

ers, resulƟng in a simple algorithm for returning minimal MeDIL causal models

(minMCMs). This algorithm is non-parametric, requiring no assumpƟons about

linearity or Gaussianity. Furthermore, despite these rather weak and general

assumpƟons, we are able to show that minimality in minMCMs implies three

rather specific and interesƟng properƟes: first, minMCMs lower bound (i) the

number of latent causal variables and (ii) the number of funcƟonal causal rela-

Ɵons that are required to model a complex system at any level of granularity;

second, a minMCM contains no causal links between the latent variables; and

third, in contrast to factor analysis, a minMCM may require more latent than

measurement variables.

The Edge Clique Cover (ECC) Problem
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Figure 1: example undirected graph

The set of all maximal cliques for the above graph (i.e., the set consisƟng of

all four 3-graphs) is an edge clique cover (ECC). NoƟce, however, that the

clique formed by nodes A, B, and C can be removed and the three

remaining cliques sƟll cover all edeges. These three cliques together form a

minimal ECC. Finding a minimal ECC is more complicated and has higher

complexity than finding the set of all maximal cliques.

Furthermore, there are two diffirent kinds of minimality, clique-minimal and

assignment-minimal:
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Figure 2(a): example undirected graph D(M) over variables M = {M1, ... , M8}
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Figure 2(b): each Ci corresponds to a maximal clique in D(M) and each directed

edge represents assignment—dashed red edges/verƟces are redundant for clique-

minimality while blue doƩed edges/verƟces are redundant for assignment-minimality;
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Figure 2(c): 5 cliques Ci and 19 assignments for clique-minimal ECC over D(M)
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Figure 2(d): 6 cliques Ci and 18 assignments for assignment-minimal ECC over D(M)

MeDIL Causal Models
DefiniƟon 1 (Measurement Dependence Inducing Latent Causal Model

(MCM)). A graphical MCM is a DAG, given by the triple G = 〈L, M, E〉. L
and M are disjoint sets of verƟces, while E is a set of directed edges between

these verƟces, subject to the following constraints:

1. all verƟces in M have in-degree of at least 1 and out-degree of 0

2. all verƟces in L have out-degree of at least 1

3. E contains no cycles

To learn a minMCM for a given distribuƟon of measurement variables, we

represent the measurement variables M as an undirected dependency graph

upon which ECC finding algorithms can be applied. We denote this graph

D(M), and construct it by puƫng an undirected edge between two mea-

surement variables if and only if they are uncondiƟonally dependent. These

dependencies can be learned from a set of samples via permutaƟon-based

hypothesis tesƟng using non-linear measures of dependence, such as the

Hilbert-Schmidt Independence Criterion (HSIC) or the distance correlaƟon.

Algorithm 1: construcƟng a minimal MeDIL causal model (minMCM)

Input : D(M) over the measurement variables M
Output: vertex-minimal or assignment-minimal MCM G over M

1 iniƟalize edgeless graph with a vertex for each M ∈ M;

2 use find_cm or find_am to get an edge clique cover of D(M);
3 for each clique C in the cover do

4 add vertex L with edges directed to each M ∈ C ;

5 end

Some interesƟng properƟes include:

� minMCMs lower bound (i) the number of latent causal variables and (ii)

the number of funcƟonal causal relaƟons that are required to induce

the measurement variables

� minMCM has property that for all measurement variables, condiƟonal

independence relaƟons are implied by uncondiƟonal independence re-

laƟons (this is related to the Global Markov Property of a Markov Ran-

dom Field)

� a minMCM contains no causal links between the latent variables

� in contrast to factor analysis or independent component analysis, amin-

MCMmay require more latent than measurement variables.

Conclusion
� some (in)dependence structures cannot be represented by a DAG over

the corresponding variables but can be represented by an undirected

dependency graph

� these structures are common for measurement variables, which are

noisy copies or combinaƟons of unobserved latents, e.g., in fMRI, cal-

cium imaging, and psychiatric or econometric quesƟonnaire data

� we propose the MeDIL causal model framework for use on such data

and provide an algorithm for finding a minimal MCM for a given distri-

buƟon of measurement variables.


