
MPR — A Partitioning-Replication Framework for
Multi-Processing kNN Search on Road Networks

Siqiang Luo
University of Hong Kong

sqluo@cs.hku.hk

Ben Kao
University of Hong Kong

kao@cs.hku.hk

Xiaowei Wu
University of Vienna

wxw0711@gmail.com

Reynold Cheng
University of Hong Kong

ckcheng@cs.hku.hk

Abstract—We study the problem of executing road-network k-
nearest-neighbor (kNN) search on multi-core machines. State-of-
the-art kNN algorithms on road networks often involve elaborate
index structures and complex computational logic. Moreover,
most kNN algorithms are inherently sequential. These make the
traditional approach of parallel programming very costly, labori-
ous, and ineffective when they are applied to kNN algorithms. We
propose the MPR (Multi-layer Partitioning-Replication) mech-
anism that orchestrates CPU cores and schedules kNN query
and index update processes to run on the cores. The MPR
mechanism performs workload analysis to determine the best
arrangement of the cores with the objective of optimizing quality-
of-service (QoS) measures, such as system throughput and query
response time. We demonstrate the effectiveness of MPR by
applying it to a number of state-of-the-art kNN indexing methods
running on a multi-core machine. Our experiments show that
multi-processing using our MPR approach requires minimal
programming effort. It also leads to significant improvements
in query response time and system throughput compared with
other baseline parallelization methods.

Index Terms—kNN search; road network; adaptive approach;

I. INTRODUCTION

With the advances of GPS systems and mobile devices,

location-based services have found widespread applications.

Many of these applications have turned into billion-dollar

businesses, such as Uber (taxi-hailing service, valued at $68

billion in 2017), Mobike (bike-sharing service, valued at $2.7

billion in 2018), and Pokémon GO (location-based game, $1.8

billion revenue in 2 years since launch). For these systems,

the k-nearest-neighbor (kNN) search on road networks is an

indispensable function. For example, Uber finds cars in its

fleet that are the closest to a pick-up request; A Pokémon
GO game server searches the closest Pokémons for a player;

Mobike locates the nearest servicing bikes for a rider.

In these applications, a road network is typically modeled

as a graph such that a node models a road junction and an

edge models a road segment connecting two junctions. On the

network is a set M of objects (e.g., taxis, Pokémons). Given

a query location q, a kNN search for q locates the k objects

in M that are the closest to q in terms of network distance.

The kNN problem on road networks has been extensively

studied. In particular, researchers have invented sophisticated

index structures and algorithms for very efficient kNN query

processing. Some of these algorithms, e.g., V-tree, provide

sub-millisecond query processing time. Despite the advances,

there are significant limitations of existing works when they

are deployed in large-scale systems. In this paper we put

forward three adaptability requirements that kNN algorithms

should satisfy. We propose the MPR framework, which pro-

vides a simple transformation of a given kNN solution into

one that satisfies the three requirements.

Adaptability Requirements. A large-scale location-based-

service system typically has to serve large volumes of queries
and udpates. For instance, Didi taxi-hailing service receives

thousands of requests per second during peak hours [10]. As

another example, in the US, there were around 20 million

daily active Pokémon GO players in 2016. Players can activate

a “nearby tracking” function in the game, which helps them

locate the nearest Pokémons. Besides queries, object updates

contribute heavy loads to the systems. For example, each

Didi vehicle reports its location to the system every 3 to 5

seconds, and there are about 4 million active drivers in China

providing Didi services. To handle the heavy workloads under

a variety of applications and environments, a kNN solution

should satisfy three adaptability requirements, namely, system
adaptability, workload adaptability, and performance adapt-
ability.

System adaptability refers to how easy it is to implement

a kNN solution (data structures and algorithms) on systems

with different modern hardware configurations. As a location-

based service expands and scales, its system needs to be

upgraded to more powerful machines (e.g., one with many

CPU cores). Existing kNN solutions, however, are mostly

sequential algorithms, which are designed and evaluated under

a single-threading environment. A good kNN solution should

be able to exploit the full potential of high-performance

hardware with minimum engineering efforts.

Workload adaptability refers to how well a kNN solution

can be configured to handle a mixture of query and up-

date workloads. Different applications (e.g., taxi-hailing vs.

location-based game) under different environments (e.g., taxi-

hailing service in New York vs. that in Beijing) have very

different query/update loads. State-of-the-art kNN solutions

are mostly designed with the objective of minimizing query

processing time. In particular, elaborate index structures are

used to speed up queries, often at the expense of slower

updates. As we will show later, this may not lead to the

best system performance, especially when updates constitute

a non-trivial portion of the system load. A good kNN solution

1310

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00119

should be tunable for the system to strike the best balance

between query and update processing when it is applied to

a wide spectrum of applications and environments with very

different query/update loads.

Performance adaptability refers to how well a kNN solution

can be configured to meet a certain performance requirement.

As we have mentioned, the chief design objective of most

traditional kNN algorithms is to optimize query time. As

pointed out in [10], query time, which is the amount of time

taken to process an isolated query, is a micro measure of

system performance. In practice, macro measures, which are

holistic measures of a system, are of greater significance. For

example, from the perspective of a user, query response time,

which is the amount of time between the arrival of a query

to the reporting of a result, is the primary measure; from

the perspective of the business that operates a location-based

service, throughput, which is the number of queries served per

unit time, is a very important measure. A good kNN solution

should be tunable so that a given performance measure, such

as query response time or throughput, can be optimized.

Meeting all three adaptability requirements poses a big

challenge in the design of a kNN solution. For example,

most existing kNN algorithms are sequential. These algorithms

generally employ complex data structures and logic, which

makes it very difficult to rewrite the codes and execute them

as multithreaded processes on many-core machines. Although

there are tools, such as YUCCA and Intel Parallelization

Compiler (IPC), which automatically convert a single-threaded

program to a multi-threaded one, our investigation shows

that these tools are ineffective when they are applied to

convert kNN programs. To illustrate, we applied IPC to

convert implementations of three kNN algorithms, namely,

Dijkstra, V-tree, and TOAIN, and executed them on an 8-

core machine. The multithreaded version was less than 2%

faster than the single-threaded version. The reason of the

poor performance gain was that these kNN algorithms are

based on graph exploration, which is intrinsically sequential

and iterative — the next node to explore is chosen based

on the nodes that have already been explored. Indeed, our

experiments of applying IPC to the kNN programs showed

that only the part on data initializations (which accounted for

2% of the total computation) were successfully parallelized;

the main logic of the programs remained sequential.

Meeting the workload adaptability and the performance

adaptability requirements necessitates a highly tunable kNN

solution. As reported in [10], most existing kNN solutions fall

short in providing a wide gamut of query/update processing

times. For example, experiments reported in [10] show that

under a high update load, the more sophisticated V-tree

method gives a much lower throughput compared with the

basic Dijkstra algorithm. This is because a high update load

induces much update processing for V-tree, which employs a

complex index structure. On the contrary, by not maintaining

an elaborate index, Dijkstra weathers the storm of updates

gracefully with very efficient update processing. In [10], the

TOAIN algorithm is proposed, which employs a very flexible

index structure called SCOB to answer kNN queries. The

SCOB index is highly tunable to provide either very efficient

query processing or very efficient update processing.

Our MPR Approach. In this paper we propose the MPR

(Multi-layer Partitioning-Replication) mechanism that converts

a single-threaded kNN solution into one that meets the three

adaptability requirements. Here, we highlight two design prin-

ciples of MPR.

(1) We focus on multicore technology and multiprocessing

as a means to improve a system’s computation power. As the

rate of CPU clock speed improvement diminishes in recent

years, multicore technology has become a major approach to

improve CPU performance. For example, the Intel Xeon Phi

processor family offer up to 72 cores per CPU. Lower-end

models with 4-16 cores are also commonly used. The key idea

of MPR is to orchestrate the multiple cores to serve a given

mixture of query/update loads so that certain macro measures

are optimized.

(2) We integrate existing single-threaded kNN solutions

to our MPR framework through an extremely lightweight

wrapper that interfaces a solution to our system. In particular,

we do not design new kNN index structures or algorithms, and

there are no “invasive procedures” that significantly modify the

original code of a kNN solution. This is in sharp contrast to

parallelizing a kNN program by code rewriting, which requires

much engineering efforts.

Contributions. We summarize our contributions as follows.

• We put forward three adaptability requirements in the design

of kNN solutions for large-scale location-based services. We

point out the inadequacy of existing state-of-the-art solutions

in meeting these requirements.

• We propose MPR, a mechanism that provides straightfor-

ward porting of a single-threaded kNN solution to a multicore

server. MPR intelligently schedules the cores to serve a given

mixture of query and update loads to optimize for a given

macro measure.

• We provide mathematical models that estimate query re-

sponse time and system throughput. Our models express the

macro measures as functions of a few key systems elements,

which include (1) a given single-threaded kNN algorithm (ex-

pressed in terms of its query/update processing time), (2) the

number of CPU cores used, and (3) query/update loads. Based

on our mathematical models, MPR analytically determines

the optimal strategy of utilizing the cores to achieve the best

system performance in terms of a given macro measure.

• We conduct experiments to evaluate MPR’s effectiveness.

We compare MPR experimentally against other baseline meth-

ods for answering kNN queries on a multicore platform. Our

results show that MPR outperforms those baseline methods.

It is highly effective and is very robust in its ability to adapt

to a wide spectrum of environments with different number of

CPU cores, different query/update loads, and different system

performance objectives.

The rest of the paper is organized as follows. Section II

mentions some related works. Section III describes the idea of

data replication and partitioning, which are the basic building

1311

blocks of MPR. Section IV describes the MPR mechanism

and provides the mathematical analysis based on which MPR

optimizes system performance. Section V presents experimen-

tal results. Finally, Section VI concludes the paper.

II. RELATED WORKS

The problem of answering kNN queries on road networks

have been extensively studied [6], [14], [15], [8], [17], [16],

[9], [10], [3]. In this section we briefly mention a few

representative solutions. These include Dijkstra [6], IER [14],

DisBrw [15], ROAD [8], G-tree [17], V-tree [16], G-Grid [9],

and TOAIN [10].

Dijkstra’s algorithm [6] (Dijkstra) is a well-known algo-

rithm for determining the shortest paths from a source node

to other nodes in a graph. Starting from a source node s,

Dijkstra visits other nodes in the order of their distances from

s. To answer a kNN query from a query point q, we run

Dijkstra from q and explore the graph just enough to locate

the k closest objects to q. Dijkstra does not use an elaborate

index and therefore has very low object update costs.

ROAD [8] is based on Dijkstra. It speeds up kNN query

processing for cases where objects are sparsely located in a

network. Specifically, ROAD partitions a graph into many sub-

graphs (called Rnets). These Rnets are merged to form larger

Rnets in a hierarchical fashion. An indicator is associated with

each Rnet signaling whether the Rnet contains any objects.

During a Dijkstra expansion, if an Rnet with no objects is to

be explored, the search inside the Rnet is skipped. Compared

with Dijkstra, ROAD gives a faster query time at the expense

of an update cost; when an object is updated, the indicators

of some Rnets have to be updated accordingly.

G-tree [17] and V-tree [16] build a similar subgraph hier-

archy like ROAD, but instead of an indicator, each subgraph

is associated with other information. Specifically, G-tree uses

Occurrence-Lists (OLs) to record the objects that are located

in the sub-graphs, while V-tree identifies border nodes that

are at the boundaries of subgraphs. By maintaining the lists

of nearest objects to the border nodes, V-tree is able to answer

kNN queries very efficiently. It is shown that V-tree generally

outperforms G-tree and ROAD [16].

G-Grid [9] is a GPU-based method for accelerating object

updates. G-Grid makes use of the butterfly shuffle operation,

which allows low-cost swapping of data between GPU threads.

Since butterfly shuffling is not supported by multicore CPUs,

we do not further consider G-Grid in this paper.

TOAIN [10] is a recently proposed kNN algorithm. It

employs a SCOB index, which is highly configurable to

optimize for either query or update processing time. Given

a query/update load, TOAIN performs workload analysis to

configure the SCOB index such that throughput is optimized.

Our MPR framework shares similar philosophy with TOAIN

in optimizing for macro measures through workload analysis.

However, while TOAIN optimizes throughput by configuring
the SCOB index, MPR can optimize either throughput or

query response time by scheduling the CPU cores. In fact,

as we will show later, MPR can easily employ TOAIN as the

single-threaded kNN solution under its framework — TOAIN’s

configuring of the SCOB index and MPR’s scheduling of

the CPU cores (to execute TOAIN’s queries and updates

processes) can work hand-in-hand to achieve the best system

performance.

There are other existing kNN solutions, such as IER [14]

and DisBrw [15]. Since they are generally outperformed by

V-tree, we do not consider them in this paper. Instead, we

consider Dijkstra, V-tree, and TOAIN as the single-threaded

kNN solutions, and evaluate the MPR framework on its

efficiency in executing these solutions on a multicore platform.

We chose Dijkstra because it is the most basic solution without

using an elaborate index. Its update cost is thus low. We chose

V-tree because it is generally the most query-efficient solution.

Finally, we chose TOAIN because it is the most adaptable

solution to varying query/update loads.

There are also a number of works on parallel graph process-

ing [5], [13], [7], [12], [11]. These studies put forward gen-

eral computational models (e.g., MapReduce, Vertex-centric

computing) for graph algorithms. However, these models pro-

vide poor supports for application-specific optimizations. In

particular, it is very difficult to implement highly-optimized

sequential algorithms, such as V-tree and TOAIN, on these par-

allel graph processing frameworks. In contrast, our approach

(MPR) provides a simple and general method for executing

single-threaded programs on a multicore platform.

III. REPLICATION AND PARTITIONING

Load partition and data replication are two classic ap-

proaches to parallel computing [4]. In this section we outline

the idea of multiprocessing a single-threaded kNN solution

on a multi-core machine through data replication and parti-

tioning. We consider a system whose workload is presented

as a single stream of kNN queries and object updates with

stochastic arrivals. We focus on scheduling the CPU cores to

serve queries and updates to achieve multiprocessing. We are

interested in scenarios in which query/update loads are high. In

such scenarios, a query/update has to be queued when all cores

are occupied upon its arrival. We assume a FCFS queuing

discipline. Moreover, we require that the execution of queries

and updates be equivalent to a serial execution in the tasks’

arrival order.

Let us first consider two straightforward schemes, called

Full-Replication (F-Rep) and Full-Partitioning (F-Part), of

utilizing the multiple cores. We use C1, . . . , Cη to denote

the η cores in the system that we use to serve kNN queries

and updates. We call these cores worker cores, or w-cores
for short. Each worker core Ci exclusively accesses a data

structure (e.g., an index) that maintains a subset, Mi, of the

object set M. Also, each core is associated with a FCFS

queue (called a worker’s task queue, or w-queue for short) in

which queries/updates yet to be served by the core are lined

up. When a worker core is free, it retrieves the task at the

head of its w-queue and executes the task based on a single-

threaded kNN solution (e.g., V-tree). Figure 1(a) illustrates the

schemes by showing the contents of the w-queues in a system

1312

with 2 worker cores. We also show on the left of the figure

the content of the task queue if the tasks were to be executed

in a single-core machine. (For convenient, we call this queue

the g-queue, for global queue.)

Under the full replication (F-Rep) scheme, the object set

M is fully replicated at each w-core, i.e., Mi = M, ∀1 ≤
i ≤ η. If we employ a certain single-threaded kNN solution,

any data structures used by the kNN solution are replicated at

each w-core. Since each w-core maintains a full copy of the

data, a query can be processed by any core. Updates, however,

have to be installed in all the copies. Hence, an update has to

be replicated and be processed by all the w-cores. We use

a scheduler core (or s-core for short) to manage the stream

of query/update tasks that arrive at the system. In particular,

the s-core dispatches queries to the w-cores in a round robin

fashion for load balancing. It also replicates updates and put

them into the w-queues of all the w-cores. In Figure 1(a),

under F-Rep, we see that the eight queries (Q1-Q8) are evenly

distributed to the two worker cores. We observe that the w-

queues are shorter than the g-queue leading to shorter queuing

delay for the queries compared with a single-core system. For

example, if the service time of each query/update is 1 time

unit1, then Q8’s queuing delay is 9 units for a single-core

system (7 queries + 2 updates in front of it in the g-queue),

while that is 5 units for a 2-worker-core system under F-Rep

(3 queries + 2 updates in front of Q8 in Core 2’s w-queue).

This improves query response time.

Another basic approach to utilizing the multiple cores is

full partitioning (F-Part). Under this scheme, the object set

M is partitioned into η partitions, each being managed by a

core. That is,
⋃η

i=1 Mi = M and Mi ∩ Mj = ∅, ∀i �= j.

The partitioning can be done in a number of ways. For

example, objects in M can be distributed to the cores in a

round robin fashion. This balances the update loads across

the cores if objects generate updates at a similar rate (e.g.,

in a taxi-hailing application, vehicles report their locations at

the same periodicity). If objects are updated at different rates,

we can distribute the “updates” instead of the “objects” over

the w-cores to balance the update loads. Specifically, kNN

solutions generally handle an object’s location change by a

delete operation (on its index) followed by an insert operation.

To record a location change of an object o ∈ Mi, we execute

a delete update by Core Ci followed by an insert update

(to some partition Mj). To balance the load, insert updates

are distributed to the w-cores in a round robin fashion. For

applications where object deletes and inserts do not come in

pair (e.g., in Pokémon GO, a Pokémon appears (insert) at or

disappears (delete) from a location, but may not move from

one location to another), we apply a similar load balancing

strategy: while a delete has to be executed by the w-core Ci

whose partition Mi contains the to-be-deleted object, object

inserts are distributed “round-robin-ly” over the w-cores. In

1In practice, query time is usually much larger than update time with
existing kNN solution. We make this simplification just for illustration
purpose.

the following discussion, we assume that a suitable update

load balancing scheme is put in place.

Under F-Part, there is no data replication, hence, each

update (insert/delete) is handled by one w-core. Query pro-

cessing, however, has to involve all the cores. In particular, the

query results obtained from the w-cores have to be aggregated.

Specifically, given a query point q, each w-core returns (at

most) k nearest objects to q for a total of (at most) k·η objects.

We use an aggregator core (or a-core) to collect these objects,

compare their distances from q, and return the k closest ones

to q as the final query result. In Figure 1(a), we show the

w-queues under F-Part. In the illustration, the updates are

distributed over the w-cores while queries are replicated over

them. Query response time is improved (although mildly) com-

pared with the single-core system. For example, the queuing

delay for Q8 is 8 units under F-Part, which is one unit shorter

than that of the single-core system.

We remark that both F-Rep and F-Part can be easily imple-

mented for multiprocessing a single-threaded kNN solution on

a multicore machine. Essentially, one only needs to program

the simple logic of a scheduler core and (for F-Part) an

aggregator core. There is no sophisticated parallel indexing

or parallel query/update processing. It also works with most

existing kNN solutions and with (basically) any number of

cores. These schemes thus satisfy our system adaptability
requirement. However, F-Rep and F-Part are too “rigid” in

the way they utilize the w-cores. In essence, F-Rep replicates

updates and distributes queries, while F-Part replicates queries

and distributes updates. Hence, F-Rep is fully query-friendly

while F-Part is fully update-friendly. This inflexibility makes

them not good solutions in meeting the workload adaptability
and the performance adaptability requirements. For example,

in Figure 1(a), we see that F-Rep gives shorter queuing delay

(and thus better query response time) than F-Part. This is

because the workload is query-heavy. In Figure 1(b), we

illustrate a reversal of fortune of the two schemes with an

update-heavy workload.

To meet the workload and performance adaptability require-

ments, we need a more flexible scheme that can determine the

best arrangement (i.e., replication vs. partitioning) of the w-

cores. In particular, this arrangement should be (1) workload

cognizant and (2) optimizing for a given target macro measure.

In the next section, we introduce MPR, which generalizes F-

Rep and F-Part for meeting the above design objectives.

Finally, we remark that most kNN solutions decouple road

network index and object index. Under our schemes, we only

partition objects among the cores. Hence, each core maintains

an index of its own object partition; The index structure of the

road network, on the other hand, is shared by all cores.

IV. MPR

The basic idea of MPR is to organize the CPU cores

into z layers, each being a core formation that is a hybrid

of F-Rep and F-Part. Whether a layer formation leans more

towards F-Rep or more towards F-Part is controlled by a pair

of parameters x, y. We call the triple (x, y, z) an MPR

1313

Query Update

Update Heavy
(2 queries, 8 updates)

Query Heavy
(8 queries, 2 updates)

Full-Replication
(faster query processing)

Full-Partitioning
(faster update processing)

Full-Replication
(faster query processing)

Full-Partitioning
(faster update processing)

Q1

Q2

Q1

Q2

U1
U2
U3
U4

U5
U6

U7
U8

U1
U2
U3
U4
U5
U6

U7
U8

U1
U2
U3
U4

U5
U6

U7
U8

Q1 Q1

Q2 Q2

U1 U2
U3 U4

U5 U6
U7 U8

U1

U2

Q1

Q2
Q3
Q4

Q5
Q6

Q7
Q8

U1

U2

Q1
Q3

Q5
Q7

U1

U2

Q2

Q4

Q6
Q8

U1
Q1

Q2
Q3
Q4
Q5
Q6

Q7
Q8

U2

Q1

Q2
Q3
Q4

Q5
Q6

Q7
Q8

Core 1 Core 2 Core 1 Core 2Core 1 Core 2 Core 1 Core 2
Global QueueGlobal Queue

(a) (b)

Worker Queue Worker Queue Worker Queue Worker Queue

Fig. 1. Comparing queue contents under F-Rep and F-Part for (a) query-heavy scenario and (b) update-heavy scenario.

configuration. Given (1) a single-threaded kNN solution, (2)

a query/update workload, and (3) a macro measure, MPR

self-configures (i.e., automatically determines a configuration

triple) by analytically solving an optimization problem. For

presentation purposes, we first present a single layer formation,

called a core matrix (Section IV-A). Then, we present an ana-

lytical study and show how a single layer MPR configuration

is determined for optimizing either query response time or

throughput (Section IV-B). Next, we extend it to a multiple

layer MPR scheme (Section IV-C).

A. Core Matrix

A core matrix consists of x · y worker cores, one scheduler

core, and one aggregator core, for a total of x · y + 2 CPU

cores. Figure 2 shows an example with x = 4 and y = 3.

Figuratively, the x·y w-cores are arranged in an x-by-y matrix

with x columns and y rows. We use Col(i) and Row(j) to

represent the set of w-cores in the i-th column and those in the

j-th row, respectively. The object set M is replicated y times.

Each row of w-cores manage one data copy. Within each row,

the data copy is partitioned among the x w-cores of the row.

We use Ci,j to denote the core in Col(i) and Row(j); we

use Mi,j to denote the object set maintained by Core Ci,j .

In other words,
⋃

Ci,j∈Row(j) Mi,j = M ∀1 ≤ j ≤ y and

Mi1,j ∩ Mi2,j = ∅ ∀i1 �= i2. The core matrix arrangement

can be seen as a hybrid of F-Rep and F-Part — It is not

complete replication because no core maintains the complete

data set (unless x = 1); It is not complete partitioning either

because (as we will explain later) cores located in the same

column maintain the same set of objects. The configuration

parameters x, y control the degree of partitioning and replica-

tion, respectively. We next describe in greater detail how the

various cores handle queries and updates.

[Scheduler Core] The s-core receives a single stream of

queries and updates. When a query q arrives, the s-core selects

a row, say Row(j), in a round robin fashion to process the

query. The s-core then appends the query q into the w-queues

of all the w-cores in Row(j). The s-core then appends a record

(q,j) into the task queue of the aggregator core, informing the

a-core that an outstanding query q is to be served by the w-

cores in Row(j).

When an update arrives, the s-core considers two cases. If

the update is an insert of an object o, the s-core selects a

column, say Col(i), in a round robin fashion. It appends the

insert update into the w-queues of all the w-cores in Col(i)
and registers a record (o,i) in a hash table. The object o is

to be inserted into the data partitions held by all the w-cores

in Col(i). If the update is a delete of an object o, the s-core

looks up a record (o,i) from the hash table. It then appends a

delete update to the w-queues of all the w-cores in Col(i).

[Worker Core] A w-core executes the tasks given to it in

its w-queue by running a single-threaded kNN solution. We

assume that a kNN solution A provides three interfaces,

namely, A.Q(l, k) (query the k closest objects from location

l), A.I(o, l) (insert object o at location l), and A.D(o) (delete

object o). To process a query/insert/delete task, a w-core

executes the corresponding module of A. After processing a

query q and obtaining a result r, the w-core appends a record

(q,r) into a result queue of the a-core for further aggregation.

[Aggregator Core] When the a-core receives a query record

(q,j) from the s-core, it maintains a partial answer of q.

Upon receiving a result record (q,r) from a w-core, the a-core

updates the partial answer of q. When all w-cores in Row(j)
have submitted their results, the a-core returns the answer as

the final answer.

Algorithms 1-3 show the pseudo codes executed by the three

types of cores. We remark that our scheme ensures correct

query processing. Firstly, a query q is processed by all the

w-cores in a row of the core matrix. Since the w-cores of

a row collectively partition the complete object set M, the

kNN results aggregated by the a-core that are based on the

partial results reported by the row’s w-cores are derived from

the complete object set. Secondly, queries and updates are

processed in an order that is equivalent to a serial execution

1314

s-core
query q

update u

C1,1

C4,2

C1,3 C2,3 C3,3 C4,3

q
u
u

update unit
query unit

a-core

w-core

update unit
query unit

update unit
query unit

update unit
query unit

Final kNNs

Partial Query
Answers

Core Matrix

C2,1 C3,1 C4,1

C2,2C1,2 C3,2

w-queue

Result
Queue

Fig. 2. Core matrix.

of the tasks in their arrival order. To see this, let us consider

a query q and an update u of an object o such that u arrives

at the system before q. Suppose the s-core chooses Col(i) to

process the update and Row(j) to process the query. In this

case, the s-core will submit u to the w-queue of Core Ci,j

before it submits q to the same w-queue. Effectively, u and q
are “serialized” in the order of u followed by q at Core Ci,j .

This guarantees that any query q is effectively computed after

all updates that arrive before q are processed.

Algorithm 1: Scheduler-Core(C, A, T)
input : C: the core matrix; A: the give single threading algorithm; T : the

arrived task.
1 j ← 0; i ← 0
2 if T is a query then
3 for i = 1 to x do
4 append the query task T into the w-queue of the w-core Ci,j

5 j ← (j + 1)%y

6 if T is an insert then
7 o ← T.insert object
8 for j = 1 to y do
9 append the insert task T into the w-queue of the w-core Ci,j

10 hash[o] ← i
11 i ← (i + 1)%x

12 if T is a delete then
13 o ← T.delete object
14 i′ ← hash[o]
15 for j = 1 to y do
16 append the delete task T into the w-queue of the w-core Ci′,j

Algorithm 2: Worker-Core
1 while w-queue is not empty do
2 T ← the top task from w-queue
3 if T is a query then
4 r ← A.Q(T.query location, k)
5 send (T.query id, r) to a-core

6 if T is an insert then
7 A.I(T.insert object, T.insert location)

8 if T is a delete then
9 A.D(T.delete object)

With the core matrix arrangement, queries are distributed

across the y rows while updates are distributed across the

Algorithm 3: Aggregator-Core(q, r)
input : q: query id; r: partial answer for q.

1 Update the partial answer for query q using r
2 if all the partial answers for q have been processed by the a-core then
3 send out the partial query answer for q as its final query answer
4 remove the entry for q from the partial query answers

x columns. This allows our scheme to adapt to different

query/update loads by adjusting the configuration parameters

x, y. For an environment with a heavy query load, we should

increase y so that more queries can be executed in parallel. For

an update-heavy environment, we should increase x instead.

B. Optimization

Our objective is to determine the best configuration x, y
given a workload, a single-threaded kNN solution, and a target

macro measure such as query response time and throughput.

Our approach is to formulate a mathematical model to express

a macro measure in terms of a workload’s characteristics and a

kNN solution’s characteristics. We first illustrate our approach

with a query response time analysis, which is followed by a

throughput analysis.

1) Query response time: Given a single-threaded kNN

solution A (e.g., V-tree), let tq and Vq be the average and the

variance of the executing time of an isolated query at a worker

core. Also, let tu and Vu be those of an isolated update. The set

of values (tq , Vq , tu, Vu) characterize solution A. We assume

that these values can be obtained via a simple empirical study

for a given application (e.g., by executing isolated queries

and updates on a single core with a given set of objects M
and collecting execution times statistics). We characterize a

workload by (λq , λu), where λq and λu are the arrival rates

(in number of second) of queries and updates, respectively.

We assume query (update) arrivals form a Poisson process.

The response time of a query q consists of three compo-

nents:

(1) ts: the amount of time taken by the scheduler core to

process q. This includes selecting a row, say, Row(j), for

processing the query and appending q to the w-queues of all

x w-cores in Row(j).

1315

(2) tw : the amount of time q spends at a worker core. This

includes the queuing delay spent in the w-queue and the

processing time taken by a w-core on q2.

(3) ta: the amount of time taken by the aggregator core to

aggregate the partial kNN results computed by the x w-cores

in Row(j).
We note that ts is dominated by the time taken to write into

the x w-queues of the worker cores in a row and ta (results

merging) is proportional to x. We thus model ts + ta = τ · x,

where τ is a constant that can be determined empirically. The

average query response time, Rq , is given by:

Rq = tw + τ · x. (1)

The expected value of tw , denoted by tw , can be determined

using the following lemma.

Lemma 1. If a w-core is not overloaded (i.e., the task arrival
rate at the core does not exceed its servicing rate), then

tw =
λqt

2
q(1 + γq)/

⌊
η
x

⌋
+ λut

2
u(1 + γu)/x

2(1− λqtq/
⌊
η
x

⌋− λutu/x)
+ tq, (2)

where γq = Vq/t
2
q and γu = Vu/t

2
u are the squared coefficients

of variation of tq and tu, respectively; η = number of available
cores in the system that can be deployed as worker cores.

Proof. For a single FCFS queuing system that serves a mixture

of queries and updates such that query and update arrivals form

two independent Poisson processes with arrival rates λ∗
q and

λ∗
u, respectively, it is shown in [10] that the expected query

response time, Tq , for a single queue system is given by:

Tq =
λ∗
q(Vq + t2q) + λ∗

u(Vu + t2u)

2(1− λ∗
qtq − λ∗

utu)
+ tq. (3)

If we consider a worker core and its w-queue as such a single

queue system, and put Equation 3 in the context of this system,

we have the following mapping of the variables:

Tq → tw ; λ∗
q → λq/y; λ∗

u → λu/x. (4)

This is because the average amount of time a query spends at a

w-core (tw) is the average response time (Tq in Equation 3) a

query experiences at the worker core’s queuing system. Also,

since our scheme distributes queries across the y rows and

updates across the x columns, the query/update arrival rates

at each w-cores are λq/y and λu/x, respectively. Further-

more, the number of worker cores deployed (= x · y) should

not exceed the number of available worker cores η. Hence,

y = 	η/x
. Finally, by definition, Vq = γqt
2
q and Vu = γut

2
u.

Applying all these substitutions and those in (4) to Equation 3,

we obtain Equation 2.

2Technically speaking, q is processed by all x w-cores in Row(j). The
delay experienced by q at each of the x w-cores could be different. However,
our scheme schedules the same number of queries to all the w-cores in a row
and the updates are distributed to the w-cores in the row in a round robin
fashion. Each w-core in the same row is thus given almost the same loads.
From our experiments, the differences in the queuing delays experienced at
different w-cores of the same row is negligible. We thus model tw as the time
spent on one w-core to simplify the mathematical analysis.

Combining Equations 1 and 2, we have

Rq =
λqt

2
q(1 + γq)/

⌊
η
x

⌋
+ λut

2
u(1 + γu)/x

2(1− λqtq/
⌊
η
x

⌋− λutu/x)
+ tq + τ · x

(5)

= F (x).

Given a kNN solution’s characteristics (tq, Vq, tu, Vu), a sys-

tem’s characteristics (η, τ), and a workload’s characteristics

(λq, λu), the average query response time Rq can be expressed

as a function F (x) based on Equation 5. To optimize the

system for query response time, we determine the value of

x that minimizes F (x). This can be easily done by evaluating

F (x) for 1 ≤ x ≤ η. By selecting the optimal value of x,

our core matrix scheme can be adjusted to adapt to different

system, workload, and kNN solution environments to achieve

the best query response time.

2) Throughput: We can perform a similar analysis on

throughput. We define throughput as the number of queries

that can be processed by the system per unit time, which can

be expressed as the query arrival rate, λq . From the perspective

of a location-based service provider, a performance measure

of interest is the maximum throughput that the system can

sustain. We use λ̂q to represent this maximum throughput.

Two practical concerns limit λ̂q . First, as queries are admitted

to the system at higher rates, queues build up. For example,

with a simple M/M/1 queue, the expected amount of time that

a task spends in a queuing system (queuing delay + servicing

time) is 1/(μ−λ) where λ and μ are the task arrival rate and

servicing rate, respectively. As the task arrival rate increases

(and approaching μ), the amount of time a task spends in

the system approaches infinity. To guard against this runaway

scenario, we impose a query response time bound, denoted

by R∗
q as a quality-of-service requirement. Specifically, λ̂q

cannot be so large that the resulting query response time

exceeds R∗
q . Second, the total processing time of all queries

and updates submitted to a worker core should not exceed

the total capacity of the core. These two constraints can be

mathematically expressed by the following inequalities:

λ̂qt
2
q(1 + γq)/

⌊
η
x

⌋
+ λut

2
u(1 + γu)/x

2(1− λ̂qtq/
⌊
η
x

⌋− λutu/x)
+ tq + τ · x ≤ R∗

q (6a)

λ̂q

	η/x
 tq +
λu

x
tu < 1 (6b)

Solving these two inequalities gives

λ̂q ≤
⌊ η

x

⌋
tq

min
{ 2(x − λutu)(R

∗
q − tq − τx) − λut

2
u(1 + γu)

xtq(1 + γq) �η/x�2 + 2x(R∗
q − tq − τx)

,
x − λutu

x

}
(7)

=G(x).

From Equation 7, we see that the maximum throughput λ̂q

is bounded by the function G(x). To optimize throughput, we

find the value of x that maximizes G(x).

1316

Scheduler

A query

Dispatcher

Aggregator

An update

(a) (b)
Fig. 3. MPR with 25 cores.

C. Multiple Layers

Under the core matrix organization, the s-core manages

every query and update. In particular, it writes to x w-queues

(in a matrix row) on receive of a query and to y w-queues (in a

matrix column) on receive of an update. If it takes τ ′ seconds

to perform such a write, the scheduler will be overloaded if

(λq · x + λu · y)τ ′ > 1. For moderate workloads (λq , λu)

and moderate number of worker cores (x, y), the core matrix

scheme usually suffices. However, as we scale our solution to

larger systems and very heavy workloads, a single schedule

core could become a bottleneck.

Our MPR scheme addresses this issue by structuring the

cores in z core matrices. Figure 3 illustrates how the MPR

scheme handles (a) a query and (b) an update. In the figure,

each layer represents a core matrix, which stores a complete

replicate of the data objects and operates as we discussed in

the previous sections (see Figure 2). One core in the system

is designated as the dispatcher, called the d-core. It handles

every query and update and dispatches them to the s-cores

of the layers. Specifically, when a query q arrives, the d-core

distributes q to a layer in a round robin fashion. Within that

layer, q is processed by x w-cores in a matrix row. This is

illustrated by a stripe outlined in Figure 3(a). When an update

u arrives, the d-core dispatches u to every layer. The s-cores of

the layers schedule u to be processed by a column of worker

cores in their respective layers. This is illustrated by a slice

outlined in Figure 3(b).

Note that with z layers, the dispatcher communicates with

only z schedulers. Also, the number of w-cores in each layer

is η/z, where η is the total number of w-cores in the whole

system. Compared with the single-layered case, there are fewer

w-cores (a fraction of 1/z) whose w-queues an s-core has to

write into under the multi-layered structure. This solves the

scheduler bottleneck problem.

We remark that with MPR, queries are distributed among z
layers while updates are replicated and executed at all layers.

This, at first sight, might seem to favor query processing

than update processing. Interestingly, our optimization (via

Equations 5 and 7) is able to avoid this favoritism. This is

because the optimization procedure configures the number of

rows and columns in a core matrix (i.e., it determines an x and

hence a corresponding y) by taking a query/update workload

(λq , λu) as input. With z layers, the query load of a layer

(a core matrix) is reduced to λq/z while the update load of a

layer remains λu. With a smaller query load, the configuration

of a core matrix will adjust to have more columns (larger

y) and fewer rows (smaller x). To obtain the best MPR

configuration (x, y, z), we enumerate z and determine the

optimal configuration of the core matrix for each value of

z analytically (using Equations 5 and 7). The configuration

(x, y, z) that optimizes a target macro measure will be chosen.

Before we end this section, let us shed more light on the

optimality of our scheme, particularly on the core matrix

structure. In Section IV-A, we describe how η worker cores are

arranged into x columns and y rows, and how queries/updates

are processed by the w-cores. Note that with this “rectangular

structure”, each row consists of the same number (x) of

workers and that each row is given the same query load

(λq/y). An interesting question is whether a non-rectangular

arrangement of the w-cores could give even better performance

(e.g., in query response time) than the optimal rectangular

core matrix structure. If we consider the w-cores in a matrix

row as a group of workers, then the grouping based on the

core matrix is very regular — every group has the same

number of workers. A more generic grouping of the η w-cores

would allow groups (rows) with different numbers of workers.

Moreover, the query loads assigned to the groups could also be

different. We call this irregular arrangement a generic grouping
scheme. We can show that the optimal configuration of our

rectangular core matrix structure is optimal in query response

time under any generic grouping schemes. The proof of this

theorem is given in [1]. We remark that this result is only

of theoretical interest. Nonetheless, it provides a theoretical

guarantee on the performance of our system. Moreover, prac-

tically, a rectangular core matrix structure vastly simplifies the

scheduling logic of the s-core, which makes our MPR scheme

very easy to implement.

V. EXPERIMENT

We present experiment results for evaluating MPR’s per-

formance. We compare MPR against other baseline multi-

processing schemes with a focus on their adaptability to the

system/workload characteristics. In Section V-A, we describe

the experiment setup, which include datasets, a workload

generator, multiprocessing schemes, kNN solutions, and also

performance measurements. In Section V-B we use an illus-

trative case to demonstrate how MPR adapts to a given set of

system/workload characteristics much better than other base-

line schemes. Finally, we compare MPR against the baselines

over a wide range of application settings in Section V-C.

A. Setup

Data. We conduct our experiments on data of five real road

networks, namely, Beijing (BJ), North West America (NW),

New York City (NY), USA East (USA(E)), and USA West

(USA(W)). Table I shows the characteristics of these networks.

For BJ, we obtained trajectories of around 3, 000 taxis from

UCAR [2], which is a popular taxi hailing service in Beijing.

These trajectories are presented as a single stream of object

(taxi) location updates. There are 8.74 million updates in the

stream. For NW, we obtained a real dataset of points of

interests (POIs) in NW, such as restaurants, hospitals, and

schools. These POIs help us model location-based games or

bike-sharing services in which the occurrences of objects are

usually clustered at POIs. USA(E) and USA(W) are two large

datasets for testing the scalability.

1317

TABLE I
ROAD NETWORKS.

Symbol Network #Edges #Nodes Additional data
BJ Beijing 2,690,296 1,285,215 3,000 taxi trajectories

NW US North West 2,840,208 1,207,945 13,132 POIs

NY New York City 733,846 264,346

USA(E) USA East 8,778,114 3,598,623

USA(W) USA West 15,248,146 6,262,104

For each road network, we generate updates under two

modes: taxi hailing mode (TH) and random update mode (RU).

We use X-Y (e.g., BJ-TH) to denote a scenario of using

road network X with update mode Y . For each scenario, we

generate (1) a set M of objects and their initial locations,

and (2) a stream of queries and object updates. Given a size

m = |M|, we randomly select m nodes in the network at

each of which an object is created and placed. Queries are

generated as a Poisson process at an arrival rate of λq . For

RU, updates are generated as another Poisson process with

arrival rate λu. Each update is either an insert or a delete with

equal probability. For an insert, a new object o is created and

a node is randomly pick at which o is placed; For a delete, an

object is randomly picked and removed. For TH, we model an

object’s movement from a node u to a node v as a delete at

node u followed by an insert at a neighboring node v. Object

movements are generated as a Poisson process at an arrival

rate of λu/2. Since a movement generates two updates (insert

+ delete), the update arrive rate is λu.

Update generation for scenarios BJ-TH and NW-RU are

exceptions to the above rules because we have real data to

generate the updates. Specifically, for BJ-TH, updates are

given by the real UCAR trajectory data. For NW-RU, an insert
update will only place an object at one of the POIs.

Multiprocessing schemes and kNN solutions. We consider

four multiprocessing schemes, namely, F-Rep, F-Part MPR,

and a special case of MPR in which we employ only one

layer (i.e., z = 1). We denote the last scheme 1MPR (for 1-

layer-MPR). We also consider three single-threaded kNN so-

lutions, namely, Dijkstra, V-tree, and TOAIN. These solutions

are described in Section II. Dijkstra uses minimal indexing

and is thus more update-friendly; V-tree, on the other hand,

uses a more elaborate index structure and is more query-

friendly. TOAIN is a very flexible algorithm. It provides a

family of indexes (some are more query-friendly and others

are more update-friendly). Given a query/update load, TOAIN

automatically selects an index that optimizes throughput. In

our experiment study, we report the performance of TOAIN

with the best index structure it picks.

We evaluated all combinations of multiprocessing schemes

and kNN solutions. In the following, we use M(S) (e.g.,

MPR(TOAIN)) to denote the case of applying a multipro-

cessing scheme M with a single-threaded kNN solution S.

All algorithms are implemented in C++ using the native

multithreading library and codes are compiled with the O3

flag. Experiments are conducted on a server with two 10-core

Intel Xeon E5-2600 v3 (Haswell) processors and 96 GB of

physical memory. We use 19 cores in our experiments.

Measurements. We measure the expected query response

time (Rq) and the maximum throughput (λ̂q) as two target

performance metrics. We measure Rq by running the system

for 200 seconds with a query/update stream generated as

described previously. We compute the average response time

of all the queries that are completed by the end of the 200

seconds execution run, and report the average as Rq . For the

case in which a core is overloaded, (e.g., if λ′
qtq + λ′

utu > 1
where λ′

q and λ′
u are the query and update arrival rates at a w-

core, respectively), we report “Overload”. To measure λ̂q , we

repeat the above 200-second run while gradually increasing

the value of λq . We determine the largest λq that does not

cause a core to be overloaded or Rq to exceed a response

time bound R∗
q . The resulting λq is reported as λ̂q .

B. Case Study

We evaluated the 4 multiprocessing schemes under a large

number of scenarios including different road networks, kNN

solutions, query/update loads, and parameter settings. In this

section we give a detailed analysis on one illustrative scenario

comparing the four schemes. In particular, we show how MPR

searches for the best configuration to achieve the best system

performance. Since we are interested in high-load situations (in

which multiprocessing and thus a good scheme is needed), the

scenario chosen in this section has relatively high query/update

arrival rates. In Section V-C we summarize other illustrative

cases of the hundreds of scenarios we have studied.

We consider BJ-RU (Beijing road network, random update

mode). We set m = 10,000 objects, k = 10, λq =15,000, λu =

50,000, and use TOAIN as the single-threaded kNN solution.

Table II shows the query response time for TOAIN running

with one CPU core (top row) and those of the four schemes

running on 19 available cores (next 4 rows). For the schemes,

the configurations (x, y, z) are listed in the middle 3 columns;

the number of d-core, s-cores, a-cores, and the total number of

cores used are listed in the right 4 columns of the table. Note

that when the number of partitions (x) = 1, our schemes do

not apply any aggregator core (so # a-core = 0) because with

a single partition, the result given by a w-core on a query

is complete; no aggregation is needed. Similarly, when the

number of layer (z) = 1, no dispatcher core is used.

From Table II, we see that running TOAIN on a single core

leads to overload. This is due to the very heavy workloads. For

example, to serve 15,000 queries per second, query processing

time (tq) has to be below 1/15,000 = 66μs. In our experiment,

using TOAIN, we register a tq of about 170 μs. Hence, a

single core cannot handle the query load, let alone updates.

Interestingly, using more cores (19) does not help if we apply

the two baseline schemes F-Rep and F-Part; the system is

still overloaded under either scheme. This is because F-Rep

distributes queries across 18 cores, which helps handle the

high query load. However, updates are replicated across them.

This causes two issues: (1) Each worker core is overloaded by

the heavy update load and (2) The scheduler has to write into

all 18 w-queues for each update. With the very high update

load, the scheduler is overloaded. The opposite can be said for

F-Part, which is overloaded by the heavy query load.

1318

TABLE II
QUERY RESPONSE TIME Rq (CASE STUDY)

Scheme Rq (μs) #partitions (x) #replicas (y) #layers (z) #dispatcher #schedulers #aggregators #cores used

TOAIN Overload – – – – – – 1

F-Rep(TOAIN) Overload 1 18 1 0 1 0 19

F-Part(TOAIN) Overload 17 1 1 0 1 1 19

1MPR(TOAIN) 973 3 5 1 0 1 1 17

MPR(TOAIN) 385 1 3 4 1 4 0 17

TABLE III
MAXIMUM THROUGHPUT ̂λq (CASE STUDY)

Scheme λ̂q (queries/s) #partitions (x) #replicas (y) #layers (z) #dispatcher #schedulers #aggregators #cores used

TOAIN 8,791 – – – – – – 1

F-Rep(TOAIN) 0 1 18 1 0 1 0 19

F-Part(TOAIN) 157 17 1 1 0 1 1 19

1MPR(TOAIN) 35,131 2 8 1 0 1 1 18

MPR(TOAIN) 37,640 1 8 2 1 2 0 19

The 1MPR scheme configures itself into an x = 3 by

y = 5 core matrix based on the optimization that uses Equa-

tion 5. This arrangement strikes a balance between distributing

queries and updates across the cores, which results in an Rq

of slightly less than 1ms. MPR further reduces Rq by about

2.5 times to 385 μs. This is achieved by employing 4 layers

(z = 4). With 4 scheduler cores, MPR avoids the scheduler

bottleneck and gives a better performance.
An MPR configuration (x, y, z) uses xyz (w-cores) + 1

(d-core) + z (s-cores) + z (a-cores) cores. The exceptions are

when x = 1, no a-cores are used and when z = 1, no d-core

is used. With 19 available cores, there are 31 possible MPR

configurations, among which MPR looks for the best one

using Equation 5. We measure the query response times under

all 31 configurations. The results are plotted in Figure 4. The x
and z values of each configuration are shown (y is determined

for given x and z). Points for configurations that share the

same z are connected by a line for clarity. Out of these 31

configurations, the system is overloaded in 17 of them. These

overloaded cases are illustrated in Figure 4 by points that hit

the “ceiling” of the y-axis3. We can consider F-Rep, F-Part

and 1MPR as special cases of MPR. In particular, 1MPR

explores all the configurations with z = 1. The configurations

adopted by each of the 4 schemes are labeled in Figure 4.

From the plot, we see that choosing the right configuration is

very critical as the response times given by the configurations

differ widely. Also, MPR’s strategy of employing multiple

layers pays off as we see more non-overloaded configurations

when the system uses 2 or more layers (z ≥ 2). Finally, MPR

is successful in locating the best configuration (in terms of

response time) based on the analytical formula (Equation 5).

Table III compares the four schemes in throughput perfor-

mance. 1MPR and MPR configure themselves with throughput

optimization using Equation 7. In this experiment, we set the

response time bound R∗
q to 100ms. We start with a small λq

and gradually increase it until either the system is overloaded

or the response time bound is exceeded (i.e., Rq > R∗
q). The

largest λq registered is reported as the maximum throughput

(λ̂q). From the table, we see that F-Rep on 19 cores gives

0 throughput. This is because F-Rep replicates updates and

3Response time is undefined for overloaded cases. The (ceiling) points in
the plot are shown for illustration purpose only.

Fig. 4. MPR configurations (case study).

executes them on all the w-cores. Under the high update rate,

the scheduler core is overloaded in communicating with all

18 w-cores for each update. F-Part distributes updates over 17

w-cores. It thus manages the update load well. However, F-

Part does not distribute queries. Hence, it cannot cope with a

high query load. This results in a very low throughput (157).

1MPR and MPR are doing much better giving throughputs of

35,131 and 37,640, respectively. An interesting observation

is that 1MPR and MPR reconfigure themselves when the

target macro measure changes from query response time to

throughput; Comparing Tables II and III, we see that 1MPR

changes its configuration from (3, 5, 1) to (2, 8, 1), while

MPR changes its from (1, 3, 4) to (1, 8, 2). This shows that

both 1MPR and MPR provide performance adaptability.

C. Adaptability

We have evaluated the schemes on 150 scenarios that

cover a wide spectrum of kNN solutions, road networks,

update models, number of CPU cores, and workloads. Out

of these 150 cases, MPR gives the best query response time

or throughput (depending on the objective macro measure)

in 145 cases. This shows that MPR is highly adaptable

to different system/workload/performance characteristics and

requirements. In this section we further illustrate MPR’s

adaptability with a few selected sets of performance results.

Our first set of results show how the schemes adapt to dif-

ferent single-threaded kNN solutions employed. We compare

the schemes under 2 scenarios: (1) An update-heavy scenario

using the New York road network with random update mode

(NY-RU), m = 80K objects, query arrival rate λq = 1.25K,

and a heavy update arrival rate λu = 20K. (2) A query-heavy

scenario BJ-RU, m = 10K, λq = 20K, λu = 10K. Figures 5

1319

Fig. 5. Adaptability to different single-threaded kNN solutions.

Fig. 6. Adaptability to different networks.

Fig. 7. Adaptability to different number of CPU cores.

Fig. 8. Adaptability to different update loads.

(a) and (b) show the query response times of the four schemes

when different kNN solutions are used for scenarios NY-RU

and BJ-RU, respectively. Note that the response time axes

are in log scale. Moreover, when a system is overloaded,

the response time is illustrated by a tall bar that touches

an “overload’ceiling”3. Recall that F-Part partitions the data

and distributes updates over the w-cores, it is thus update-

friendly. F-Rep, on the other hand, distributes queries over

the cores and is thus query-friendly. For the update-heavy

scenario (Figure 5(a)), we need an update-friendly scheme,

and so F-Part outperforms F-Rep, giving smaller response

times. Moreover, Dijkstra uses simple index with low update

cost. Hence Dijkstra is also update-friendly. As a result, the

response times given by the schemes are generally smaller

when Dijkstra is used as the kNN solution. An interesting

observation is that since V-tree is query-friendly (it speeds up

query processing time by using an elaborate index) but not so

update-friendly (compared with Dijkstra), the response times

using V-tree in the update-heavy case (Figure 5(a)) are larger

than Dijkstra. The opposite is true under the query-heavy

Fig. 9. Adaptability to different query loads.

scenario (Figure 5(b)). In particular, F-Part cannot handle the

heavy query load resulting in system overloading. 1MPR and

MPR, as seen from the figures, work very well with all the

kNN solutions under both scenarios. Figures 5(c) and (d)

show the schemes’ performances under the two scenarios when

throughput is the target measure for optimization. We see

that MPR significantly outperforms the others. In particular,

for scenario NY-RU(Dijkstra), MPR is the only scheme that

can provide a significant throughput. This again shows the

adaptability of MPR.

Our next set of results show how the schemes adapt to

different combinations of road networks, update modes, and

workloads. Figure 6 shows the response times given by the

schemes under 6 scenarios. Comparing F-Rep and F-Part, we

see that each outperforms the other in some cases. The reason

is similar to that in our previous discussion. For example, the

NY-RU scenario (2nd group of bars in Figure 6) is an update-

heavy scenario (with λu = 20K). For this case, F-Part performs

better than F-Rep because F-Part is update-friendly. From the

figure, we see that MPR consistently performs much better

than the other 3 schemes over all the scenarios.

Figure 7 shows how MPR scales with the number of CPU

cores available in the system. We display the query response

times (top) and throughputs (bottom) in the two sub-figures.

Dijkstra and TOAIN are two kNN solutions employed. We

see that under the environment tested, a single core machine

cannot handle the loads and that results in system overload

when the simple Dijkstra algorithm is used. MPR is able to

1320

RU, (m,λq, λu) = (10K, 10K, 10K)

Fig. 10. Scalability with respect to network sizes.

take advantage of more CPU cores as query response time

decreases and throughput increases when the number of CPU

cores increases. In Figure 7(a), we break down response time

into its two components, namely, the queuing delay and the

query time. We see that MPR is able to significantly reduce

the queuing delay when given more cores. The improvements

in response time and throughput are even more pronounced

with Dijkstra.

Figures 8 and 9 show how the schemes adapt to different

update and query loads, respectively. We pick two scenarios

NY-RU and BJ-RU for illustration and vary either λu or λq

in the figures. We make the following observations. First, the

response times for the BJ network are generally higher than

their counterparts for the NY network. This is because the BJ

network is about 5 times larger than NY. Second, we see that

F-Part cannot handle the loads and it suffers from overloading

in all cases. Third, for the other 3 schemes, their response

times increase with the loads. In particular, in Figure 8, we

see that the response time under F-Rep increases significantly

as λu increases. This is because F-Rep is not update-friendly

and so it is very sensitive to the update load. In contrast,

the response time under 1MPR increases relatively mildly.

This is because 1MPR is able to adjust its configuration to

handle a larger update load. For example, for the NY network

(Figure 8(a)), 1MPR changes its (x, y) configuration from (1,

18) at λu = 2.5K to (5, 3) at λu = 40K. Moreover, we see

that the response time under MPR is even less sensitive to

λu. This is because MPR provides one more dimension (z)

in its configuration, which allows the scheme to be even more

adaptable to high load situations. In Figure 9, we see that the

response time under F-Rep increases less dramatically with

λq . This is because F-Rep is query-friendly. Again we see the

advantage of MPR over the other schemes. It gives the best

performance in response time for all the cases, outperforming

the baseline schemes by wide margins.

We conduct a scalability experiment on the schemes by

applying them on networks of various sizes. Figure 10 shows

the response times under 4 networks (see Table I), whose sizes

range from 0.7M edges to 15M edges. We see that MPR is

the most scalable method compared with other schemes. The

same conclusion can be drawn on throughput.

Finally, we conclude this section by a brief note on MPR’s

memory consumption. Among all of our experiment settings,

the largest memory consumption is 39GB (for the largest

network USA(W)). For a city-scale network, the largest con-

sumption is 15GB (BJ). These are well within the capacity of

a commodity multicore server.
VI. CONCLUSION

In this paper we conducted a comprehensive study on

the problem of multiprocessing kNN queries on a multicore

machine. We put forward the MPR framework, which offers

a partitioning and replication strategy to utilize the multiple

cores to serve queries and updates. MPR configures itself to

achieve the best performance under a target macro measure

by solving analytically an optimization problem. Through

extensive experiments, we show that MPR is a highly flexible

scheme and that it satisfies three adaptability requirements,

namely, system adaptability, workload adaptability, and per-

formance adaptability. It also works very well with existing

single-threaded kNN solutions and offers an easy way of

multiprocessing kNN computation.

ACKNOWLEDGEMENT

Ben Kao was supported by Hong Kong University Grant

Council grants 17253616 and 17254016. Reynold Cheng

was supported by the Research Grants Council of Hong

Kong (RGC Projects HKU 17229116, 106150091, and

17205115) the University of Hong Kong (Projects 104004572,

102009508, and 104004129), and the Innovation and Technol-

ogy Commission of Hong Kong (ITF project MRP/029/18).

REFERENCES

[1] https://sites.google.com/view/mpr-tech.
[2] https://www.10101111.com/.
[3] T. Abeywickrama, M. A. Cheema, and D. Taniar. k-nearest neighbors

on road networks: a journey in experimentation and in-memory imple-
mentation. PVLDB, 9(6):492–503, 2016.

[4] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems:
concepts and design. pearson education, 2005.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph processing in a distributed dataflow
framework. In OSDI, volume 14, pages 599–613, 2014.

[8] K. C. Lee, W.-C. Lee, B. Zheng, and Y. Tian. ROAD: A new spatial
object search framework for road networks. TKDE, 24(3):547–560,
2012.

[9] C. Li, Y. Gu, J. Qi, J. He, Q. Deng, and G. Yu. A gpu accelerated
update efficient index for knn queries in road networks.

[10] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng. TOAIN:
a throughput optimizing adaptive index for answering dynamic k nn
queries on road networks. PVLDB, 11(5):594–606, 2018.

[11] S. Luo, Y. Luo, S. Zhou, G. Cong, and J. Guan. Disks: a system for
distributed spatial group keyword search on road networks. Proceedings
of the VLDB Endowment, 5(12):1966–1969, 2012.

[12] S. Luo, Y. Luo, S. Zhou, G. Cong, J. Guan, and Z. Yong. Distributed
spatial keyword querying on road networks. In EDBT, pages 235–246,
2014.

[13] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD, pages 135–146, 2010.

[14] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. In PVLDB, pages 802–813, 2003.

[15] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD, pages 43–54, 2008.

[16] B. Shen, Y. Zhao, G. Li, Q. Y. Zheng, Weimin, B. Yuan, and Y. Rao.
V-tree: Efficient knn search on moving objects with road-network
constraints. In ICDE, pages 871–882, 2016.

[17] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong. G-tree: An
efficient and scalable index for spatial search on road networks. TKDE,
27(8):2175–2189, 2015.

1321

