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Abstract
Sky computing is a new computing paradigm leveraging resources of multiple Cloud
providers to create a large scale distributed infrastructure. N2Sky is a research initiative
promising a framework for the utilization ofNeuralNetworks as services acrossmanyClouds.
This involves a number of challenges ranging from the provision, discovery and utilization of
services to themanagement,monitoring,metering and accounting of the infrastructure. Cloud
Container technology offers fast deployment, good portability, and high resource efficiency
to run large-scale and distributed systems. In recent years, container-based virtualization for
applications has gained immense popularity. This paper presents the new N2SkyC system, a
framework for the utilization of Neural Networks as services, aiming for higher flexibility,
portability, dynamic orchestration, and performance by fostering microservices and Cloud
container technology.

Keywords Problem solving environment · Neural networks · Cloud computing ·
Containers ·Microservices

1 Introduction

The Cloud computing paradigm provides access to a set of computational power by aggregat-
ing heterogeneous resources and software and offering them as a single system composition.
It hides the details of implementation and management of software and hardware from the
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end user. Cloud computing has been evolved from technologies like Cluster computing and
Grid computing and has given rise to Sky computing [11].

Sky computing combines multiple Cloud-based infrastructures in such a way that the Sky
providers aggregate the services scattered across severalClouds thus becoming the consumers
of the Cloud providers. Sky computing in this way copes with the problem of vendor lock-
in and extends the flexibility, transparency, and elasticity of the integrated infrastructure as
compared to that of a single Cloud. Sky computing has taken another step forward towards
the realization of virtual collaborations, where resources are logical, and solutions are virtual.
The exchange of information and resources among researchers is one driving stimulus for
development. That is just as valid for the neural information processing community as for
any other research community. As described by the UK e-Science initiative [6] several goals
can be reached by the usage of new stimulating techniques, such as enabling more efficient
and seamless collaboration of dispersed communities, both scientific and commercial.

In the course of our researchwe designed and developedN2SkyC, amicro-service oriented
Cloud container enabled neural network simulation environment, which is based on N2Sky
[21], a virtual organization for the computational intelligence community. It provides access
to neural network resources and enables infrastructures fostering multi Cloud resources. On
the one hand, neural network resources can be generic neural network objects trained by a
specific learning paradigm and training data for given problems whereas on the other hand
these objects can also represent already trained neural networks, which can be used for given
application problems. The vision of N2SkyC is the provisioning of a neural network problem
solving virtual organization where any member of the community can access or contribute
neural network objects all over the Internet.

In this paper, we present the new N2SkyC. The original system was developed as a mono-
lithic application. That proved feasible for image-based virtualization mechanisms as in
classical Cloud infrastructures. However, by the actual advent of containers andmicroservice
architecture aiming for higher flexibility, portability, dynamic orchestration, and performance
there was a need for a redesign of N2SKy to foster this new technology. By interpreting
N2SkyC as a highly-distributed, service-based organizational body, a break-up of the mono-
lithic system into various, self-contained N2SkyC microservices was done.

The layout of this paper is as follows: The state of the art of neural network simulators,
the baseline research and a comparison of neural network simulation systems is given in
Sect. 2. The system architecture of N2SkyC is presented in Sect. 3 followed by a description
of the responsive user interface of the new N2SkyC platform in Sect. 4. The neural network
execution stack for deployment in a container environment is presented in Sect. 5. In the
following Sect. 6 we show the user experience by a sample workflow of a neural network
training. The paper is closed by a summary of the state and availability of the N2SkyC project
(Sect. 7) and a short lookout for current and future research issues.

2 RelatedWork and Baseline Research

The driving stimulus for development in the computational science domain is the exchange
of knowledge and resources between researchers. This principle is just as valid for any other
research community too.

The UK e-Science initiative [6] describes several goals to be reached by fostering new
stimulating techniques:

– Enabling more effective and seamless collaboration of dispersed communities, both sci-
entific and commercial.
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– enable large-scale applications comprising of thousands of computers, large-scale
pipelines etc.

– Transparent access to “high-end” resources from the desktop.
– Provide a uniform “look & feel” to a wide range of resources
– Location independence of computational resources as well as data.

However, these targets are not reached in the computational intelligence community until
now. As an example, we examine the situation of neural network simulation. Over the last
decades, a very large number of artificial neural network simulation environments has been
developed which aim to mimic the behaviour of biological neural networks [17]. It started
with systems which were developed for specific network families, as Aspirin/MIGRAINES
[14], SOM-PAK [13]. Some systems aimed for amore comprehensive environment, as SNNS
[24]. New technology shifts enabled new concepts, as distributed cooperative environments
over the Internet, as NeuroWeb [18]. With the advance of virtual resources by Grid and
Cloud computing new collaborative environments motivated the authors of this paper to aim
for an “everything about sharing” approach leading the way towards virtual collaborative
organisations, as N2Grid [22] and N2Cloud [9].

However, all these systems, reaching from programming language extensions over pro-
prietary stand alone systems to distributed platforms, share the same common problems:

– Complex tool, which mostly do not present an intuitive interface to the user.
– Proprietary system with missing interconnection and data exchange to other software

systems.
– Lacking provisioning of arbitrary computing resources, as CPUs, disks, network, on

demand.

These problems lead to the situation that quite a number of simulation systems exist, but
which are rarely used. Hence, scientists invent the wheel over and over again and develop
their own neural network systems for their specific needs. We believe that this situation is
one of the reasons for an obstructed open information and data exchange within the scientific
community.

A promising project, totally in line with our motivation, was the CIML (Computational
Intelligence and Machine Learning) community [25]. The goal of CIML was to create an
online virtual scientific community wherein anyone interested in computational intelligence
andmachine learning can share research, obtain resources, or simply learnmore. Sorry to say,
but CIML failed. One reason was that CIML targeted a too huge and dispersed community
and offered too many and different resources. Due to lack of automated guidance of the
system it was difficult for the user “to find his specific needle in the haystack”.

Having this situation inmindwe realizedN2Sky [21],with a clear focus onneural networks
aiming for intuitive user guidance and transparent resource access. N2Sky was designed as
an artificial neural network provisioning environment facilitating the users to create, train,
evaluate neural networks fostering different types of computing resources. The system is
cloud based in order to allow for a growing virtual user community. N2Sky supports experi-
enced users to easily run their simulations by accessing data related neural network objects.
Moreover, N2Sky provides a facility to end users to solve their problems by using predefined
objects and paradigms. For the purpose of thin clients a simple Web browser, which can
execute on a PC or a smart phone, can be used to access the front-end, the N2Sky (Mobile)
Web Portal. N2Sky aroused strong interest even beyond the computational intelligence com-
munity.1

1 http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/.
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Table 1 Feature comparison of artificial neural network simulation systems

Features versus systems SNNS DL4J Neural designer NeuroWeb N2Grid N2Cloud N2Sky N2SkyC

User interface type App Web App App App/Web Web Web Web

Responsive design × × × × × × × �
User management × × � × × × � �
Container support × × × × × × × �
System architecture Mono Mono Mono Mono Mono Mono Mono MS

Licence OS Comm OS OS OS OS OS OS

A general survey of existing neural network simulation environments and comparison of
features can be found in [17]. However, in the following we provide a specific comparison
of well known systems with the focus on the design principles guiding the development
of N2SkyC (see Table 1). We focus on the following systems, which are on the one hand
renowned and actual neural network simulation environments, and on the other hand are
influencing precursors to N2SkyC:

– SNNS [24] aka Stuttgart Neural Network Simulator is a renowned neural network simu-
lation environment for Unix workstations and PCs and is free of charge. It was developed
at the University of Stuttgart and is maintained by the University of Tübingen.

– DL4J [15] aka Deeplearning4j is an open-source, distributed deep-learning project and
was developed by Skymind in San Francisco 2014. The distributed project is an open-
source deep learning library for JVM and written in Java and Scala.

– Neural Designer [2] is a software tool for data analytic based on neural networks and
contains a graphical user interfacewhich simplifies data entry and interpretation of results.

– NeuroWeb [18] This project implements an Internet-based framework for the simulation
of neural networks and provisioning of processing resources.

– N2Grid [22] employs the novel infrastructure of the grid as a transparent environment
to allow users the exchange of information (neural network objects, neural network
paradigms) and the exploitation of available computing resources

– N2Cloud [9] is Cloud-based neural network simulation system, which enables the
exchange of knowledge, as neural network objects and paradigms, by a virtual orga-
nization environment and delivers ample resources by exploiting the Cloud computing
principle.

– N2Sky [21] provides a framework for neural network simulation by a virtual organization
environment. It follows the sky computing paradigm delivering ample resources by the
usage of federated Clouds.

– N2SkyC represents our novel microservice oriented and cloud container enabled neural
network simulation environment.

Specifically we evaluate the following properties, which defined the requirements for the
N2SkyC design:

– User Interface Type: Application (App) versus Web Interface (Web)
– Responsive Design: support of flexible layout and images scaling to the output device
– User Management: support of user administration allowing for security and business

models
– Container Support: embedded cloud container support within the system
– System Architecture: Monolithic (Mono) versus MicroServices (MS)
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– Licence: Open Source (OS) versus Commercial (Comm)

The pillar of our envisioned system is ViNNSL, the Vienna Neural Network Specification
Language [5]. It is key for easy sharing of resources between the paradigm provider and
the customers. ViNNSL is an XML-based domain specific language providing mechanisms
to specify neural network objects in a standardized way by attributing them with semantic
information. Originally it was developed as communication framework to support service-
oriented architecture based neural network environments. Even more, ViNNSL is capable
of describing the static structure, the training and execution phase of neural network objects
in a distributed infrastructure, as grids and clouds. Its last extension [19] supports semantic
information too, describing the usage scenario of network objects for a given problemdomain.

The following short example illustrates the use of ViNNSL. The listing 1.1 defines a 2-5-1
backpropagation network for the well-known XOR problem. Besides the description of the
structure of the network, also the application domain for using this network is specified. This
is the basis for smart searching of feasible neural networks for given problems.

<definition xmlns="http://www.pri.univie.ac.at/../vinnsl">
<identifier>7</identifier>
<problemdomain>
<backpropagation/>
<classifier/>
<XOR-net/>

</classifier>
</problemdomain>
<executionenvironment>
...
</executionenvironment>
<structure>
<input>
<id>Input1</id>
<dimension>2</dimension>
<size>1</size>

</input>
<hidden>
<id>Hidden1</id>
<dimension>5</dimension>
<size>1</size>

</hidden>
<output>
<id>Output1</id>
<dimension>1</dimension>
<size>1</size>

</output>
<connections>
...

</connections>
</structure>
<parameters>
<valueparameter>
<name>lrate</name>
<label>Learning Rate</label>
<value>0.3</value>

</valueparameter>
...

</parameters>
</definition>

Listing 1.1. ViNNSL: XOR-Backpropagation Neural Network Definition
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3 N2Sky Architecture

Service migration to the cloud in the recent years is a clear trend in the IT-industry, and it is
not surprising that some of the companies are trying to leverage existing cloud infrastructure
to bring deep and machine learning solutions to the market. IBM SPSS, Amazon AWS,
Google Cloud AI services are meant to provide software tools to the different stakeholders,
but they are primarily focusing on the business users, which primary goal is to use applied
statistics techniques to fulfill existing business needs. Services are split into components,
each of which hides internal implementation of the solution and provides an interface for a
specific task: speech recognition, text analysis, etc. Variety of pricing models, a necessity
to use other software products of the company, proprietary code and low level of scalability
and extensibility are making these products less attractive for the scientific and academic
community. Vendor lock-in and inability to control execution and development process are
making such software systems and services non-flexible and nontransparent, leading to the
scenario where each service provider tends to aggregate and try to sell as many proprietary
services as possible.

We consider these aspects as limiting factors for the development of the framework. We
believe that such properties as an ability to share knowledge and resources, re-usage of the
existing solutions and collaborativework are key features which should be put as a foundation
of distributed neural network execution platform.

Technically speaking, N2Sky is an artificial neural network simulator, which purpose is to
provide different stakeholders with access to robust and efficient computing resource [21]. It
was designed to provide natural support for Cloud deploymentwith distributed computational
resources. However, the current N2Sky implementation is based on the Java programming
language and deployed as a single monolithic application, which is not well aligned with the
chosen paradigm.Main bottlenecks of such architecture are the inability to split the infrastruc-
tureworkload according to the available computational resourceswithin the “shared-nothing”
infrastructure which leads to the inefficient usability of the system. That led us to a redesign
of the N2Sky platform using microservices approach and the new technology stack for the
Cloud infrastructure, which will allow us to utilize the benefits of Cloud computing to its full
extent. This approach was not only used on the backend services but also on the frontend
and its services. Microservices application architecture is a considerably new approach in
software architecture, and like any new idea, it is evaluated in the variety of projects. The
conclusions from practice are:

– It is simpler to develop and maintain small applications. However the complexity of
such an approach does not disappear, it just transfers on the more abstract level: to the
relationships between components.

– Microservices are easier to split between developers or other parties—as each part is
not strongly bound to others, it is possible to work on the same project without a huge
amount of collisions.

– Technological stack flexibility—each component can be implemented in a language that
suits better the concrete task.

– Horizontal scalability—as services are small, it is cheaper and faster to deploy them
horizontally. With a Cloud infrastructure, this feature becomes very important.

On the other hand, there are some drawbacks, which have to be considered:

– The complexity of the distributed system is higher than with a monolithic approach.
– Maintenance costs are also higher, due to the constant redeployment, monitoring, and

logging.
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There is no definitive answer about the feasibility of microservices architecture; it depends
on the domain. But in the case of a Virtual Organization for computational science, where
resources and scientists work together in parallel there is a necessity to have control over the
executing environment. Thus, new components integration and deployment costs are lower,
and researchers can allocate computational resources according to their demands without
additional difficulties.

From the general point of view, the environment system components are divided into four
main layers:

– Frontend UI: the graphical user interface supporting different user roles,
– Orchestration tool layer: the management layer coordinating communication and coop-

eration between microservices,
– Cloud platform layer: the resource provisioning infrastructure for service execution, and
– Neural Network Execution Stack: the neural network simulation layer implementing all

neural network specific tasks, as creation, training, and evaluation.

In such architecture all communication with the Cloud infrastructure level is handled
through the orchestration tool layer: spawning and stopping containers and virtual machines,
uploading new containers, and updating them. That approach allows to focus on the deploy-
ment and maintenance process. In cases, when there is a need to edit and access internal
components of the Cloud infrastructure directly, it can be done by the Cloud API. The Cloud
platform provides infrastructure and environment for container deployment only, and it is not
related to the current software application design. It provides great support for microservices
paradigm implementation but implies no boundaries on the software developers.

The originalN2Sky Java implementation iswell designed: Java is a powerful programming
language, which allows splitting the functionality between classes and maps them to the
corresponding services of the platform. Source code and interaction between components
are part of the same monolithic application. Even that the application is well designed it
creates the additional level of bindings between components of the software.

To redesigning the original architecture according to the microservices paradigm, it was
necessary to perform additional steps:

– Decomposition of the business logic into microservices,
– Design storage according to data, stored by services,
– Neural network data archive—database with data, which is used to train and test neural

networks, and
– Define endpoints and API for each service.

As a result, apart from technological and infrastructure improvements, the following
changes to the main components of the system were performed:

– Neural network training and Neural network evaluation components are now separate
microservices, which are run on demand. Resource allocation in such case can be per-
formed on the orchestration layer, according to the computational cost of the task,

– Neural network data archive is a separate service on top of the database. It is not associated
with a single database, as was in the previous implementation. It provides a specific API
to add any external data sources,

– N2Sky Database has its own database storage,
– Business model module is split into two different parts: one part is responsible for the

internal business logic of the application, and the second part is responsible for infrastruc-
ture management and handled by the orchestration component. Internal business logic
functionality is also encapsulated into microservices.

123



A. Adamenko et al.

Fig. 1 New N2Sky architecture

The current working version of the new architecture with the described changes is pre-
sented in Fig. 1.

By implementing architectural changes to both infrastructure and software levels of the
N2Sky platform, we achieve higher scalability andmake the platformmore suitable for usage
in a Cloud environment. The shift to new technologies, as container base execution environ-
ment and orchestration tools for load and deployment management, increase efficiency and
convenience of N2Sky neural network platform rigorously.

4 User-Centered Interface Based onModular Frontend

The basis of N2Sky is the user-centered design. Moving from the complex monolithic design
to amore comprehensible onewe fostered past user experiences. Thus, a fundamental require-
ment was to gain the functionality and increase the performance of the application.

4.1 User Role as an Independent User Interface

The N2Sky web interface, as well as the mobile portal, provide an intuitive user interface.
Since N2Sky supports different knowledge level users it was decided to differentiate between
various user roles. So, every user role has its own user interface, which deeply reflects the
specific user needs:
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– Arbitrary User. The Arbitrary User must not have deep knowledge of the neural network
field or programming language skills. Her main goal is to find a suitable neural network
to a given problem. Thus she uses already existing, trained neural networks and evaluates
them.

– Neural Network Engineer. The Neural Network Engineer is allowed to create new neural
network resources based on existing paradigms. She has access to her own dashboard and
publicly available resources on the main application module. She can perform semantic
search for available neural network paradigms and use them. This user can create own
neural network instances from existing neural network paradigms and can also train the
running neural network instances and evaluate the trained models. She can share her
trained neural networks by making them public.

– Contributor. The Contributor is an expert user, which has enough knowledge and expe-
rience to develop her own new neural network paradigm by using the ViNNSL template
schema [5] and publish them on N2Sky. This user can deploy neural networks on the
N2Sky environment as well as on her own environment by providing training and testing
endpoints. The goal of the contributor is to study how networks will behave with different
network structures, input parameters and training data that can also be provided by other
users.

– System Administrator. The System Administrator is a user who has full access to the
application including environment management, monitoring and alerting features. The
administrator can manage OpenStack and Cloudify instances. She also can shadow any
N2Sky user to observe the application from different perspectives. The administrator has
access to all dashboards in every module.

4.2 Modular Frontend Application Design

Maintaining a large application like N2Sky with the monolithic approach is unwieldy. Since
N2Sky supports microservices approach in the backend it was a design decision to apply the
same approach on the frontend too.

Microservices in the frontend are small independent web applications, which are consol-
idated into one application. The main benefits of this approach are:

– Maintainability. It is possible to divide application between different teams. Developers
do not even need to have some knowledge about other parts of the application.

– Diversity of technologies.Monolithic approach makes the whole application stick to one
framework. Microservices allow to use any technology without the need to rewriting the
application.

– Independent deployment. Every application has some releases periods, every release
is accompanied by redeployment procedure. There is no need to redeploy the whole
application, but just only the required components.

The microservices approach in frontend application is shown in “Fig. 2”. It breaks the
whole application into the following small micro applications [12]:

– Shell. Is a top-level component, which wraps Components picker and Container for the
component. It contains application specific configuration.

– Component picker. Is a router, which manages the micro applications.
– Container for Component. Container, where the component will be injected.
– Micro Application. Independent application, which can be written in any programming

language, but has to use one of the shards.
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Fig. 2 Microservices approach in frontend application

Fig. 3 N2Sky frontend application and its services

– Shards. Is a code base, which is shared between Micro Applications. Shards can have
multiple levels.

4.3 N2SkyModular Frontend

The central design concept of the application is to support the Software as a Service (SaaS)
and Platform as a Service (PaaS) service model [23]. N2Sky consists of twomodules: admin-
istration module and main application module as shown in Fig. 3.
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– N2Sky component picker. When the user accesses the N2Sky web portal, first she will
be dealing with a component picker. The component picker is a small service, which
redirects the user depending on URL path.

• /cloud redirects to “Administration module”
• /n2sky redirects to “Main application module”

– Administration module. The administration module allows the system administrator to
control the virtualized environment. The module supports OpenStack and Cloudify mon-
itoring. Managing is possible by the application dashboard. It also contains custom
monitoring and an alerting management system, which can be installed on any server
within the N2Sky user interface. The administration module implements PaaS. It is fully
configurable and wrapped into an open source project in order to make the module acces-
sible to the third-party applications.

– Main application module. The main application module is the central module of N2Sky.
Within this module, users can use, train and test existing neural networks. It is possible
to reuse existing or create own neural network objects or paradigms. N2Sky allows to
deploy own neural network objects or store data in the Cloud. Module services support
the SaaS model. Experts can use an application directly through the N2Sky API or they
can integrate N2Sky services into their own application.

5 Neural Network Execution Stack

For the execution of neural network objects basically two possibilities provided by the system:

– Handcrafting own neural network objects, and
– Ready-made neural network objects

5.1 Handcrafting Neural Network Objects

The user, specifically the neuralnetwork contributor, provides self-coded neural network com-
ponents in an arbitrary programming language. To be useable in the N2SkyC environment,
the following process has to be followed:

– Code your own neural network object in arbitrary programming language or use existing
implementations (e.g. Tensorflow)

– Each neural network object is a webservice,
– Each object provides train and test endpoints,
– Each object is packed into a Docker container with all the libraries and dependencies,
– Provide data format specification—description on which data formats are accepted by

their service
– Describe object by ViNNSL

Respective developed neural network objects can be integrated or imported into theN2Sky
repository and are available for further usage.

5.2 Ready-Made Neural Network Objects: N2Container

Due to the situation that many N2SkyC user have no experience in programming of neural
network objects, the system provides the possibility to use existing neural network frame-
works, which provide ready-made components. For integration of such components, N2SkyC
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implements an execution stack, called N2Container, which allows the easy embedment of
neural network objects and management of executable containers.

N2Container fosters the Kubernetes2 container orchestration and a Java based microser-
vice architecture, which is exposed to users and other systems via RESTful web services
and/or a web frontend. The whole workflow including creating, training, evaluating, and
importing a neural network model is purely service oriented. The presented stack runs on
popular Cloud platforms, likeGoogle Cloud Platform,3 Amazon AWS4 andMicrosoft Azure.5

Furthermore it is scalable and each component is extensible and interchangeable.
For the design and development of N2Container we chose a number of proven and widely

accepted paradigms and tools. Guiding principleswas acceptance and support by the software
developer community and open-source availability:

RESTful services Representational State Transfer (REST) is an architectural style for
the development of webservices. A REST client is an application program interface that
uses RESTful API HTTP requests to GET, PUT, POST and DELETE data.
Microservices The micoservice architecture pattern is a variant of a service-oriented
architecture (SOA). Monolithic applications bundle user interface, data access layer and
business logic together in a single unit. In the microservice architecture each task has
its own service. The user interface puts information together from multiple services.
This leads in our approach to separation of the specific services in own components, as
database, storage, worker, GUI services etc.
DockerContainersContainers enable software developers to deploy applications that are
portable and consistent across different environments and providers by running isolated
on top of the operating system’s kernel. As an organisation, Docker6 has seen an increase
of popularity very quickly, mainly because of its advantages, which are speed, portability,
scalability, rapid delivery, and density [4] compared to other solutions. Building a Docker
container is fast, because images do not include a guest operating system. The container
format itself is standardized, which means that developers only have to ensure that their
application runs inside the container, which is then bundled into a single unit. The unit
can be deployed on any Linux system as well as on various Cloud environments and
therefore easily be scaled. Not using a full operating system makes containers use less
resources than virtual machines, which ensures higher workloads with greater density
[10]. Docker containers build the execution framework for all our ViNNSL services.
Kubernetes Container Orchestration TechnologiesAs every single microservice runs
as a container, we need a tool to manage, organise and replace these containers. Services
should also be able to speak to each other and restarted if they fail. Services under heavy
load should be scaled for better performance. To deal with these challenges container
orchestration technologies come into place. According to a study from 2017 published
by Portworx, Kubernetes [3] is the most frequently used container orchestration tool in
organizations. Kubernetes realizes the orchestration of all Docker services.
Neural Network Execution As starting point we chose Deeplearning4J,7 which is a
Neural Network Execution Frameworks providing a deep learning programming library
written for Java and the Java virtualmachine (JVM)and a computing frameworkwithwide

2 https://kubernetes.io.
3 https://cloud.google.com/kubernetes-engine.
4 https://aws.amazon.com/eks.
5 https://azure.microsoft.com/services/container-service.
6 https://docker.com.
7 https://deeplearning4j.org/.
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Fig. 4 Architecture of N2Container

support for deep learning algorithms. Deeplearning4J implements the neural network
worker service. However, any other simulation framework can be easily integrated. For
example, as prototype also a Tensorflow8 binding is implemented.

Putting all these components together leads to the following architecture of our envisioned
system (see Fig. 4), which is part of the overall N2SkyC design.

The functionality of the whole neural network simulation framework is defined by eight
use cases realized by respectiveHTTP service calls. These service calls are typically executed
by N2SkyC operations, but can also be used by N2SkyC users directly. To cope with this
concept we refer to call executor as actor in the following.

1. Import Neural Network:An existing ViNNSLXML file with a neural network descrip-
tion is imported via the ViNNSL web service into the database.
Call: The actor sends aPOST request to the ViNNSLweb service including a XML body.

2. Train Neural Network: An imported neural network is trained by passing the configu-
ration over to the worker service.
Call: The actor sends a POST request to the working service including the identifier of
the neural network that should be trained.

8 https://www.tensorflow.org/.
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3. Monitor Training Status: The Data Scientist monitors the training status to evaluate
the trained network afterwards.
Call: The actor sends a GET request to the status endpoint of the ViNNSL service
including the identifier of the neural network that is in progress.

4. Evaluate Neural Network: The Data Scientist evaluates the accuracy of the network
after its training.
Call: The actor sends a GET request to the status endpoint of the ViNNSL service
including the identifier of the neural network that is finished.

5. Upload Files: The Data Scientist uploads files, that are usable as datasets (e.g. CSV files
or pictures) to the storage service.
Call: The actor sends a POST request to the storage service endpoint containing a mul-
tipart file.

6. List Neural Networks: Imported neural networks are listed.
Call: The actor sends a GET request to the ViNNSL web service optionally including a
neural network identifier.

7. Extend Service: An existing micro service can be extended by developers.
Call: The developer downloads the source code and extends functionality of a micro
service.

8. Replace Service: An existing micro service can be replaced by developers.
Call: The developer writes a new implementation of an existing service respecting the
API definition.

6 A SampleWorkflow

Workflows of solving problems as contributor, engineer, arbitrary user, and administrator
differ. For example, a user needs an easy step-by-step workflow, the engineer just wants to
perform procedures quickly without any complex distractions. There are only a few pre-
requirements, which will remain the same: authentication within N2Sky and the creation of
a first project from the N2Sky dashboard, which describes the problem field.

To support Software as a Service (SaaS) distribution every web service can work inde-
pendently. The different user roles can use N2SkyC both via the web portal and the
N2SkyC/N2Container API directly:

– Authorise users in the System.
– Create new neural network objects from existing paradigm.
– Deploy own neural network objects on N2SkyC environment.
– Perform training against own as well published neural network objects.
– Perform testing and evaluating trained models.

Sample workflow overviews for different user roles show the microservices architecture
in action, see Fig. 1:

1. Contributor

(a) The Contributor authorizes via the N2SkyC portal using a browser on desktop PC
or mobile device. She is redirected to her own dashboard according to permissions,
which will be received from User Management Web Service.

(b) The user described her own neural network paradigm using the ViNNSL template
and deploying it in the N2SkyC Cloud as it shown in Fig. 5.
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Fig. 5 The user uploads the neural network paradigm description in ViNNSL format

Fig. 6 The user specifies the neural network structure

(c) The Contributor performs training of her neural networks. Since she is an expert
she can perform this operation using Simulation Service via Model Repository Web
Service API.
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Fig. 7 Neural network training view

(d) The user publishes her paradigm via N2SkyC UI or available API.
(e) TheContributor awaits that otherN2SkyCuserswill use her neural network paradigm

in order to monitor the behavior of the neural network.
(f) The user modifies, redeploys and retrains her neural network after first results.

2. Neural Network Engineer

(a) The Neural Network Engineer authorizes via the N2SkyC portal using a browser on
a desktop PC or mobile device. She is redirected to her own dashboard according to
permissions, which will be received from User Management Web Service.

(b) From the dashboard, the user creates a neural network from existing paradigms using
Model Repository Web Service. The user specifies the neural network structure as
shown in Fig. 6.

(c) After creating a neural network, the user will be redirected to the training view which
is shown in Fig. 7. From here, she can run the neural network instance on N2Sky and
publish it to make this neural network available for the rest of the users.

(d) After training is completed, users can perform testing, see Fig. 8. The visual rep-
resentation of evaluation will be shown. The learning curve is constantly updated
during neural network training.

(e) If the user is satisfied with a trained model, she can perform data analysis using
N2SkyC.
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Fig. 8 The user performs neural network training

Fig. 9 The user performs semantic search in Neural Network Repository

(f) The neural network engineer user publish her neural network and trained model in
order to make it available to other N2SkyC users.

3. Arbitrary User

(a) The Arbitrary User authorizes via the N2SkyC portal using a browser on desktop
PC or mobile device. She will be redirected to her own dashboard according to
permissions, which will be received from User Management Web Service.

(b) She performs a semantic search in order to find possible neural networks, see Fig. 9,
as well as inspect available trained models if fulfilling her needs, see Fig. 10.
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Fig. 10 Trained Neural Network models repository

(c) The user copies existing neural networks and trained models into her project.
(d) The user performs training of copied neural networks with default input parameters

data.
(e) The user evaluates trained neural network models with default parameters.

4. System Administrator

(a) The System Administrator authorizes via the N2SkyC portal using her browser on a
desktop PC or mobile device. She will be redirected to the administration dashboard.

(b) The user observes the Cloud environment.
(c) She creates newmonitoring charts showing specific metrics and adds it to the admin-

istration dashboard.
(d) She creates alerts for newly created monitoring
(e) The user is notified by the Alert Management System, if some events occur.

7 State and Availability of N2SkyC Project

N2SkyC is an academic research project, which is used in University courses on neural
networks and information systems. However, until now no commercialization is planned and
the source code is available as open-source and open for the public community.

The development is ongoing. We are now focussing on the, for the user transparent,
integration of N2Container as execution engine into the N2SkyC framework.

The novel N2SkyC system and the N2Container execution stack, specifically their doc-
umentation, demos, virtual images and code, can be accessed and downloaded from the
respective sites.9,10

For update requests and/or error reports email links to the authors are provided via the
N2SkyC web site.

Examples and use cases going beyond this paper showing the capabilities of the N2SkyC
system can be found in several master theses created in the course of this project, as [1,7,16].

9 http://www.wst.univie.ac.at/projects/n2skyc.
10 http://www.wst.univie.ac.at/projects/n2container.
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8 Conclusion and FutureWork

We presented the novel microservice based N2SkyC architecture, which aims for increased
extensibility, portability, dynamic orchestration and performance fostering Cloud container
technology.

Tied to the presented new architectural design is also a shift of the application domain
of N2SkyC from neural networks to arbitrary machine learning operators. Hereby a new
specification of ViNNSL is under development, which aims for compatibility with PMML
(PredictiveModelMarkupLanguage) [8].A further newdevelopment ofN2SkyC isN2Query
[20], which allows the semantic discovery of N2SkyC services through a natural language
querying mechanism using ontology alignment mechanisms.
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