
Local Flow Partitioning for Faster Edge Connectivity

Monika Henzinger ∗ Satish Rao† Di Wang ‡

Abstract

We study the problem of computing a minimum cut
in a simple, undirected graph and give a determinis-
tic O(m log2 n log log2 n) time algorithm. This improves
both on the best previously known deterministic run-
ning time of O(m log12 n) (Kawarabayashi and Thorup
[12]) and the best previously known randomized run-
ning time of O(m log3 n) (Karger [11]) for this prob-
lem, though Karger’s algorithm can be further applied
to weighted graphs.

Our approach is using the Kawarabayashi and Tho-
rup graph compression technique, which repeatedly
finds low-conductance cuts. To find these cuts they use
a diffusion-based local algorithm. We use instead a flow-
based local algorithm and suitably adjust their frame-
work to work with our flow-based subroutine. Both flow
and diffusion based methods have a long history of be-
ing applied to finding low conductance cuts. Diffusion
algorithms have several variants that are naturally lo-
cal while it is more complicated to make flow methods
local. Some prior work has proven nice properties for
local flow based algorithms with respect to improving
or cleaning up low conductance cuts. Our flow subrou-
tine, however, is the first that is both local and produces
low conductance cuts. Thus, it may be of independent
interest.

1 Introduction

Given an unweighted (or simple) graph G = (V,E)
with n = |V | and m = |E|, the edge connectivity λ
of G is the size of the smallest edge set whose removal
disconnects the graph. Given an edge-weighted graph
Gw = (V,E,w) the minimum cut of Gw is the weight of

∗University of Vienna, monika.henzinger@univie.ac.at. The

research leading to these results has received funding from the
European Research Council under the European Union’s Seventh

Framework Programme (FP/2007-2013) / ERC Grant Agreement

no. 340506 and was done in part while Monika Henzinger was
visiting the Simons Institute of the Theory of Computing.
†UC Berkeley, satishr@cs.berkeley.edu. The author was sup-

ported by NSF Grant CCF-1528174 and CCF-1535989 during this
work.
‡UC Berkeley, wangd@eecs.berkeley.edu. The author was

supported by NSF Grant CCF-1528174 and CCF-1535989 during
this work.

the minimum weight edge set whose removal disconnects
the graph. In a breakthrough paper in 1996, Karger [11]
gave the first randomized algorithm that computes the
minimum cut in expected near-linear time and posed
as an open question to find a deterministic near-linear
time minimum cut algorithm. Almost 20 years later, in
a recent breakthrough, Kawarabayashi and Thorup [12]
partially answered his open question, by presenting the
first deterministic near-linear time algorithm for finding
edge connectivity in an unweighted simple graph. They
state their runtime as O(m log12 n) .

Their contribution is on two levels. They improved
the deterministic runtime for edge connectivity to near
linear time, and perhaps of more or equal interest they
developed a new deterministic algorithm that computes
from G a sparser multi-graph G that preserves all
non-trivial minimum cuts in G, i.e., a deterministic
sparsification of G. We note that G is produced by
a recursive procedure and we refer to either G or the
procedure as the K-T decomposition. Applying Gabow’s
edge connectivity algorithm [7] (which runs on multi-
graphs) to G yields the claimed results for computing
edge connectivity.

We believe the K-T decomposition is of indepen-
dent interest based on the long line of research on spar-
sification and clustering and the astounding impact in
algorithms sparsification and clustering have had. For
example, the near-linear time solvers for linear systems
[20, 5, 13] is one of the very important applications of
sparsification. This specific application as well as a large
part of the prior work on sparsification is based on ran-
domization. As the K-T decomposition is deterministic
and it introduces some quite interesting ideas and struc-
tures, we believe it might well prove useful in improving
the state of the art with respect to the co-evolution of
graph decompositions and algorithms, and specifically
the use of deterministic sparsification in various algo-
rithms.

A central tool used in [12] to compute the K-T de-
composition is a local probability mass diffusion method,
called a “page rank” method. We replace this diffusion
method by a flow-based method and modify the K-T
algorithm to accomodate the differences between these
methods. As a result we derive an algorithm that has a
deterministic runtime of O(m log2 n log log2 n) for com-

1919 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

puting a K-T decomposition and the edge connectivity
in G. Note that our deterministic algorithm is faster
than the best known randomized edge connectivity al-
gorithm, whose running time is O(m log3 n) [11].

Flows versus diffusion methods. From a tech-
nical point of view our result contributes to the line of
work on finding low conductance cuts using local meth-
ods; a local method being one whose runtime depends
only on the volume of the (smaller side of the) cut that
it outputs. Flow and probability mass diffusions (or
more generally, spectral methods) have a long history of
competing to provide good graph decompositions. But
diffusions have the upper hand in terms of local meth-
ods, as the fact that the diffusion process is a linear
operator allows for the detailed knowledge of its evolu-
tion, which then can be used to reason powerfully about
its behavior. For example, Spielman and Teng [20], in-
spired by classical analyses of random walks by Lovász
and Simonovitz [15], showed that most vertices in a low
conductance cut are good starting points for a diffusion
that finds a good cut. Past flow based methods, how-
ever, were subject to the black-box of a flow algorithm
that could adversarly send flow in an inopportune direc-
tion. We overcome this difficulty by suitably modifying
the flow computation and present the first primarily
flow-based local method for locating low conductance
cuts. We expect that our approach can used to speed
up further conductance-based graph algorithms.

Previously, the methods of [18, 14] combined the
properties of diffusions and flow algorithms to produce
low conductance cuts. The methods alternate between
diffusions which find barely non-trivial cuts in an em-
bedded graph, and flow embedding edges to cross these
cuts. The flow computation interacts with the original
graph without the quadratic (in conductance) loss that
is inherent in diffusion methods1. Those methods, how-
ever, fail terribly to give local methods for finding low
conductance cuts, and explictly treat the flow algorithm
more as an constrained adversary rather a useful tool.

Our flow algorithm attempts to combine (some of)
the power of diffusion with the speed and efficiency
of flow methods more tightly, without actually using
a diffusion method. Basically it consists of an excess
scaling method repeatedly calling a modified push-
relabel algorithm. The excess scaling portion enforces
locality on our algorithm and the details of our push-
relabel method allow us to get a handle on conductance.

In recent work, some local flow based methods have
been studied in a similar vein. However, diffusions are
still used when producing low conductance cuts. For

1Indeed, one could also see the best known approximation
algorithm for conductance in [3] as such a combination.

example, Orecchia and Zhu [19] use a detailed view of a
blocking flow based flow algorithm to obtain improved
results on finding low conductance cuts; in particular,
they show how to locally find a Õ(1

γ) approximation to
conductance given a seed set overlapping the cut by a γ
fraction. They apply their method to local partitioning
but use a result of Allen, Lattanzi and Mirrokni [22]
which in turn uses diffusion or page-rank from [1] (and
as does [12]).

In the context of [12], our flow method roughly
matches diffusion where it does well, and dominates
diffusion with respect to its quadratic loss. That is, the
decomposition developed in [12], repeatedly finds cuts of
low conductanceO(1

logc n), or certifies a certain property

related to connectivity. In [12], the local diffusions suffer
both a quadratic gap (as well as a logarithmic factor)
between what can be certified and the conductance of a
cut as well as quadratic (in the conductance) overhead
in runtime. Our modified push-relabel algorithm either
certifies the property or finds a low conductance cut
with only a logarithmic gap. However, its runtime
depends on the amount of “source supply” provided
to it. To make sure that this “source supply” is
only O(m log n) we use the excess scaling procedure,
which repeatedly calls the push-relabel algorithm with
suitably rescaled source supply. This leads to the
improvement in runtime for our method.

Other Previous Work. Work on edge connectiv-
ity and its generalization, the minimum cut problem,
has a long history perhaps beginning with Gomory and
Hu’s [9] use of the maximum flow problem to solve this
problem. Some relatively recent highlights include the
work of Nagamochi and Ibaraki [17] which bypasses the
use of the maximum flow problem, and simple beautiful
versions of these by Frank [6] and Stoer and Wagner [21]
which give O(nm+n2 log n) deterministic algorithms for
minimum cut.

For edge connectivity of simple graphs, Gabow had
the best previous deterministic algorithm which was
O(m + λ2n) time where λ was the connectivity. His
methods could handle parallel edges in O(m+λ2n log n)
time. Matula [16] has a linear time (2+ε) approximation
algorithm for this problem as well.

There is also substantial work in local graph parti-
tioning including the aforementioned work of Anderson,
Chung, and Lang [1] which gives a local diffusion pro-
cess that outputs a set of conductance (φ log n)−1/2 in
time O(φ−1 logc n) times the size of the output for a
good fraction of the starting vertices in a cut of conduc-
tance φ. The runtime overhead was improved to φ−1/2

using an evolving set diffusion by Anderson and Peres
[2]. The heat kernel diffusion was used to improve the
quality of the cut to φ−1/2 in [4], though the impact on

1920 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

runtime overhead is not clear in that work. We note
that the result of local diffusions have also had impact
empirically in, for example, the use of Personalized Page
Pank [10].

Organization of Abstract. As our algorithm is
quite involved and builds upon the K-T framework,
we only have space to present our main contribution,
namely the flow algorithm in some detail. For the other
parts of our algorithm we can, for space reasons, only
present the main idea and the intuition in the extended
abstract. Specifically, we present our flow procedure
along with its properties in Section 3, and include the
proofs in Appendix B. We describe the overall structure
of the K-T decomposition in Section 4, with some details
deferred to Appendix A. We then present our version
of the K-T inner procedure in Section 5, and a detailed
analysis in Appendix C. Finally, Section 6 contains the
runtime analysis.

2 Preliminaries and notations

We denote d(v) as the degree v, and vol(C) as the
volume of C ⊆ V . The internal edges of a set C ⊆ V
are the edges with both endpoints in C. We add H or
C as subscripts, i.e. dH(v),volC(A) etc., if we consider
only the internal edges of a subgraph H or a subset
C ⊆ V , while we omit the subscripts when the graph is
clear from context. We use m to denote the number of
(internal) edges of a graph, and again add subscript to
m when there are multiple graphs in the context.

A cut is a subset S ⊂ V , or (S, S̄) where S̄ =
V \ S. The cut-size ∂(S) of a cut S is the number
of edges between S and S̄. A cut S is non-trivial if

|S|, |S̄| > 1. The conductance of a cut S is Φ(S)
def
=

∂(S)

min(vol(S),vol(V \S))
. Unless otherwise noted, when

speaking of the conductance of a cut S, we assume S to
be the side of minimum volume. Given A ⊂ V and a cut
S we say that A contains the cut S if there exist nodes
u and v in A such that u ∈ S and v ∈ S̄. Otherwise, we
say that A does not contain the cut.

We will consider flow problems extensively. For-
mally, a flow problem is defined with a source function,
∆ : V → Z≥0, a sink function, T : V → Z≥0, and edge
capacities c(·). We say that v is a sink of capacity x if
T (v) = x. All flow problems we consider in this work
use the same sink function, ∀v : T (v) = d(v), so we
won’t explicitly write down T (·). To avoid confusion
with the way flow is used, we use supply to refer to the
substance being routed in flow problems.

For the sake of efficiency, we will not typically
obtain a full solution to a flow problem. We will
compute a pre-flow, which is a function f : V ×V → R,
where f(u, v) = −f(v, u). A pre-flow f is source-feasible

with respect to source function ∆ if ∀v :
∑
u f(v, u) ≤

∆(v). A pre-flow f is capacity-feasible with respect to
c(·) if |f(u, v)| ≤ c(e) for e = {u, v} ∈ E and f(u, v) = 0
otherwise. We say that f is a feasible pre-flow for flow
problem Π, or simply a pre-flow for Π, if f is both
source-feasible and capacity-feasible with respect to Π.

For a pre-flow f and a source function ∆(·), we

extend the notation to denote f(v)
def
= ∆(v)+

∑
u f(u, v)

as the amount of supply ending at v after f . Note that
f(v) is non-negative for all v if f is source-feasible.
When we use a pre-flow as a function on vertices, we
refer to the function f(·), and it will be clear from
the context what ∆(·) we are using. If in addition,
∀v : f(v) ≤ T (v), the pre-flow f will be a feasible flow
(solution) to the flow problem Π.

We denote ex(v)
def
= max(f(v)−T (v), 0) as the excess

supply at v, and we call the part of the supply below
T (v) as the supply routed to the sink at v, or absorbed
by v. We call the sum of all the supply absorbed by
vertices,

∑
v min(f(v), T (v)), the total supply routed to

sinks. Finally, given a source function ∆(·), we define

|∆(·)| def
=
∑
v ∆(v) as the total amount of supply in

the flow problem. Note the total amount of supply is
preserved by any pre-flow routing, so

∑
v f(v) = |∆(·)|

for any source-feasible pre-flow f .

3 Flow Algorithm

The main tool used in [12] is a local diffusion method
that finds low conductance cuts, we use a flow based
local method instead, which we describe in this section.
Its basic building block is a unit flow method, which is
used as a subroutine by an excess scaling flow algorithm.
It produces either a pre-flow routing most of the source
supply to sinks or a small conductance cut.

The unit flow method works on flow problems where
∀v : ∆(v) ≤ wd(v) for constant w ≥ 2. These flow
problems are incremental in the sense that the initial
excess supply on any v is not too large compared to its
sink capacity d(v), so intuitively it requires limited work
to spread the excess supply to sinks. Additionally, since
the primary concern is to find low conductance cuts,
instead of routing as much supply to sinks as possible,
we use a Push-Relabel algorithm [8], where we limit each
label of a node to be at most h = O(lnm ln lnm) and
we show that at termination either “enough” flow was
routed or a low conductance cut with “large enough”
volume can be found using a sweep cut method. These
two aspects make the unit flow method very efficient.

We use excess scaling to divide a flow problem with
a more general source supply function into multiple
incremental phases that it solves using the unit flow
method. The basic idea is as follows: We use a

1921 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

parameter µ, called unit, to scale down the source
supply function such that a supply of x turns into x/µ
units, each unit corresponding to a supply of µ. We
choose the initial value µ large enough, so that after
scaling down every ∆(v) by µ the source supply in unit
µ satisfies ∀v : ∆(v) ≤ 2d(v). Given the source supply
function in unit µ, the unit flow method either returns a
low conductance cut (A, Ā), where min(vol(A),vol(Ā))
is “large”, or it returns a flow that spreads out the
supply so that a constant fraction of the total source
supply is routed to vertices and each vertex v receives
at most d(v) units of supply. In the earlier case we
terminate, in the later case we discard all source supply
that we did not succeed in routing (and show that this
only discards a constant fraction of the initial source
supply in total) and then scale down µ by 2. Thus, in
the new unit value, each vertex v has at most 2d(v) units
of supply, which we use as source supply for the next
unit flow invocation. Note that when we work in unit µ,
the sink capacity of v is d(v) units, i.e. d(v)µ supply in
unit 1. Thus when µ is large, vertices have and transfer
large amount of supply, which limits the volume of the
subgraph that the unit flow procedure needs to explore
to either send flow to or to find a low conductance cut in.
As we decrease the value of µ geometrically, successive
invocations of the unit flow method explore larger and
larger subgraphs. This allows us to terminate early
when there is a low conductance cut of small volume,
and is the key to achieve local runtime.

3.1 Unit Flow The Unit-Flow subroutine (Algo-
rithm 3.1) takes as input an undirected graph G =
(V,E) (with parallel edges but no self-loops), source
function ∆ and integer w ≥ 2 such that ∀v : 0 ≤ ∆(v) ≤
wd(v), as well as an integer capacity U > 0 on all edges.
Each vertex v is a sink of capacity d(v). Furthermore,
the procedure takes as input an integer h ≥ ln(|E|) to
customize the push-relabel algorithm, which we describe
next.

In our push-relabel algorithm, each vertex v has
a non-negative integer label l(v) which is initially zero.
The label of a vertex only increases during the execution
of the algorithm and (in a modification of the standard
push-relabel technique) cannot become larger than h.
The bound of h on the labels makes the runtime of
Unit-Flow linear in h, but it may prevent our algorithm
from routing all units of supply to sinks even when
there exists a feasible routing for the flow problem.
However, when our algorithm cannot route a feasible
flow, allowing labels of value up to h is sufficient to
find a cut with low conductance (i.e., of value inversely
proportional to h), which is our primary concern.

The algorithm maintains a pre-flow and the stan-

dard residual network, where each undirected edge
{v, u} in G corresponds to two directed arcs (v, u) and
(u, v) in the residual network, with flow values such
that f(v, u) = −f(u, v), and |f(v, u)|, |f(u, v)| ≤ U .
The residual capacity of an arc (v, u) is rf (v, u) =
U−f(v, u). We also maintain f(v) = ∆(v)+

∑
u f(u, v),

which will be non-negative for all nodes v during the ex-
ecution. The algorithm will explicitly enforce f(v) ≤
wd(v) for all v through the execution (i.e., it does
not push flow to a vertex v if that would result in
f(v) > wd(v)).

Algorithm 3.1.
Unit-Flow(G,∆,U ,h,w)
. Initialization:
. . ∀{v, u} ∈ E, f(u, v) = f(v, u) = 0.
. . Q = {v|∆(v) > d(v)}.
. . ∀v, l(v) = 0, and current(v) is the first edge in

its list of incident edges.
. While Q is not empty
. . Let v be the first vertex in Q, i.e. the lowest

labelled active vertex.
. . Push/Relabel(v).
. . If Push/Relabel(v) pushes supply along (v, u)
. . . If u becomes active, Add(u,Q)
. . . If v becomes in-active, Remove(v,Q)
. . Else (i.e. Push/Relabel(v) increases l(v) by 1)
. . . If l(v) < h, Shift(v,Q), Else Remove(v,Q)
. . End If
. End While

Push/Relabel(v)
. Let {v, u} be current(v).
. If Push(v, u) is applicable, then Push(v, u).
. Else
. . If {v, u} is not the last edge in v’s list of edges.
. . . Set current(v) to be the next edge in v’s list of

edges.
. . Else (i.e. (v, u) is the last edge of v)
. . . Relabel(v), and set current(v) to be the first

edge of v’s list of edges.
. . End If
. End If

Push(v, u)
. Applicability: ex(v) > 0, rf (v, u) > 0,

l(v) = l(u) + 1.
. Assertion: f(u) < wd(u).
. ψ = min (ex(v), rf (v, u), wd(u)− f(u))
. Send ψ units of supply from v to u:

f(v, u)← f(v, u) + ψ, f(u, v)← f(u, v)− ψ.

Relabel(v)
. Applicability: v is active, and ∀u ∈ V ,

rf (v, u) > 0 =⇒ l(v) ≤ l(u).
. l(v)← l(v) + 1.

1922 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

As in the generic push-relabel framework, an eligible
arc (v, u) is a pair such that rf (v, u) > 0 and l(v) =
l(u) + 1. A vertex v is active if l(v) < h and ex(v) > 0.
The algorithm maintains the property that for any arc
(v, u) with positive residual capacity, l(v) ≤ l(u) + 1.
The algorithm repeatedly picks an active vertex v with
minimum label and either pushes along an eligible arc
incident to v if there is one, or it raises the label of v by
1 if v is active if there is no eligible arc out of v.

Upon termination of the algorithm, we will have a
pre-flow f , as well as labels l(·) on vertices. Unit-Flow
will either successfully route a large amount of supply to
sinks, or we can compute a low conductance cut using
the labels. The proof is in Appendix B.

Theorem 3.1. Given G,∆, h, U,w ≥ 2 such that
∆(v) ≤ wd(v) for all v, Unit-Flow terminates with a
pre-flow f , where we must have one of the following
three cases

(1) f is a feasible flow, i.e. ∀v : ex(v) = 0. All units of
supply are absorbed by sinks.

(2) f is not a feasible flow, but ∀v : f(v) ≥ d(v), i.e.,
at least 2m units of supply are absorbed by sinks.

(3) If f satisfies neither of the two cases above, we can
find a cut (A, Ā) such that wd(v) ≥ f(v) ≥ d(v)
for all v ∈ A, and f(v) ≤ d(v) for all v ∈ Ā.
Furthermore

(a) If h ≥ lnm, the conductance Φ(A) =
|E(A,V \A)|

min(vol(A),2m−vol(A))
≤ 20 ln 2m

h + w
U .

(b) If h = Ω(lnm′ ln lnm′) for m′ ≥ m, we have a
more fine-grained conductance guarantee: let
K be the smaller side of (A, Ā), then Φ(K) ≤
lnm+1−dln vol(K)e

50 lnm′ + w
U .

The motivation for maintaining f(v) ≤ wd(v)
throughout the algorithm is to establish lower bounds
on vol(A). Intuitively, if the total amount of excess
supply is large at the end, vol(A) must be large as
no single vertex can have too much excess. More
specifically, we have the following observations.

Observation 3.1. If the output fulfills case (3) of The-
orem 3.1, we have

∑
v∈V ex(v) ≤ (w − 1)vol(A)

Observation 3.2. When |∆(·)| ≥ tm for constant t >
2, we must have

∑
v∈V ex(v) ≥ (t − 2)m. If w is a

constant, and we get case (3), then every node v in A
absorbs d(v) units of supply, and vol(A) = Θ(m).

Unit-Flow returns a pre-flow f and a possibly empty
cut A. Additionally, we treat units of supply as distinct

tokens with marks bearing information, which must be
preserved by the pre-flow, leading to an extra O(1) work
per push of a single unit. This leads to the following
running time result, whose proof is in Appendix B.

Lemma 3.1. The running time for Unit-Flow is
O(w|∆(·)|h).

3.2 Excess Scaling Flow Algorithm The excess
scaling procedure (Algorithm 3.2) takes as input an
undirected graph G (with parallel edges) of volume 2m,
source function ∆ such that |∆(·)| = 2m, constant τ ∈
(0, 1), capacity parameter U , and an integer h ≥ lnm.
Recall that each vertex v is a sink of capacity d(v).
The algorithm will either in time O(mh) route at least
(1−τ)2m supply to sinks, or find a low conductance cut
(A, Ā) in time proportional to min(vol(A),vol(Ā)).

The procedure divides the flow problem into in-
cremental phases, and uses successive Unit-Flow in-
vocations on them. This is done via a parameter µ,
which is the value of one unit in Unit-Flow. Initially,

µ = maxv
∆(v)
2d(v) such that each v has initial source sup-

ply at most 2d(v) units. It then calls Unit-Flow with
scaled source function ∆/µ and w = 2. Every unit of
supply in Unit-Flow is supply of value µ in the original
problem. To avoid confusion, when we say x supply, we
mean a supply of value x, and when we say x units of
supply, we mean a supply of value xµ. Algorithm 3.2
calls Unit-Flow repeatedly with a geometrically decreas-
ing value of µ. The sink capacity of v is d(v) units in
Unit-Flow, but the pre-flow returned by Unit-Flow may
have excess supply on vertices. To use the supply on ver-
tices at the end of a Unit-Flow invocation as the source
supply of the next Unit-Flow call, we simply discard all
excess supply (as we show this will only discard a small
fraction of the total supply). Then there is at most d(v)
supply in unit µ at each vertex v. Thus we can halve
the value of µ so that each v has at most 2d(v) supply
in the new unit. If, however, every node v has at most
d(v) supply in unit 1, we terminate as each vertex can
absorb its supply.

From a flow point of view in the j-th call to Unit-
Flow for j = 0, 1, ... each node v has a source supply
∆j(v), where ∆0(v) = ∆(v) and for j > 0, ∆j(v) =
µ ·min(d(v), fj−1(v)) (the min captures the removal of
excess supply), where fj−1(v) is the amount of supply
ending at v after the j−1-st call to Unit-Flow. Assume
for the moment that fj−1(v) ≤ d(v). Then for j > 0,
∆j(v) = µ · fj−1(v), i.e., each node v has as source
supply in the j-th call to Unit-Flow exactly the supply
values that it received in the previous call. Thus, no
supply is absorbed at nodes between consecutive calls
of Unit-Flow, the supply is just “spread out” more and

1923 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

more. Once the supply ending at each node is at most its
degree, the procedure terminates. Due to the removal
of excess supply this happens for sure when µ = 1,
but it might already happen for a larger value of µ.
As the final flow f is the sum of all flows fj and each
call to Unit-Flow uses at most Uµ edge capacity with
µ geometrically decreasing, each edge carries at most
2UF flow. As the total source supply given to the j-th
call is |∆j(·)/µ| ≤ 2m/µ, its runtime is O(mh/µ) and
as µ decreases geometrically the total time for all calls
to Unit-Flow is O(mh/µf), where µf is the value of µ
at termination.

Algorithm 3.2 returns a pre-flow f , a possibly empty
cut A, and a function ∆′(·) on vertices such that ∆′(v)
is the amount of the ∆(v) source supply starting at v
that is routed to sinks at the end, i.e. never removed as
excess supply. Since we can mark the supply with the
original source vertex, and the invocations of Unit-Flow
maintain the marks, ∆′(·) will be easy to compute.

Algorithm 3.2. Excess scaling flow procedure

. Input: G = (V,E), ∆(·), τ , U , h.

. Initialization: Let F = maxv
∆(v)
2d(v) , µ = F , j = 0,

∆0 = ∆′ = ∆, f be zero pre-flow
. Repeat
. . Note: ∆j(v) ≤ 2d(v)µ

. . Run Unit-Flow(G,
∆j(v)
µ , U, h, w = 2).

Get back fj in unit µ, and Aj .
. . Add fj to our current preflow:

∀(v, u) f(v, u)← f(v, u) + fj(v, u)µ.
. . Remove excess supply on vertices:

∀v ∆j+1(v) = (fj(v)− exj(v))µ. Update ∆′.
. . If vol(Aj) ≥ τ2m

10µ ln 2µ ln lnm : Return f , ∆′, and

A
def
= smaller side of Aj , Āj . Terminate.

. . If maxv ∆j+1(v)/d(v) ≤ 1: Return f , ∆′, and

A
def
= ∅. Terminate. // Supply at most d(v)∀v

. . µ← µ/2, j ← j + 1, proceed to next iteration.

. End Repeat

Each Unit-Flow invocation returns a possibly empty
low conductance cut. If at any point the volume of
the returned cut is large compared to the total work
done so far, the algorithm can terminate with a low
conductance cut (A, Ā) in time Õ(hvol(A)), i.e., in “
local” time. If this never happens, since the volume
of the cut returned after each Unit-Flow upper-bounds
the amount of removed excess supply (Observation 3.1),
the algorithm must route at least (1 − τ)2m supply to
sinks at the end. Formally, we have the following result,
whose proof is in Appendix B.

Lemma 3.2. Given a graph G of volume 2m, a source
function ∆ such that |∆(·)| = 2m, a constant 0 < τ < 1,

and positive parameters U and h, the flow procedure will
return a preflow f , subject to edge capacity of 2UF on

every edge, where F = maxv
∆(v)
2d(v) . It will also return

∆′(·), the amount of source supply from each vertex that
is routed to sinks, where each v is a sink of capacity d(v).
In addition, we have either of the two cases below:

(1) At least a (1− τ) fraction of the total source supply
is routed to sinks

|∆′(·)| ≥ (1− τ)2m

The runtime is O(mh) in this case.

(2) It returns a cut (A, Ā), with vol(A) ≤ vol(Ā), and
vol(A) is Ω(m

F lnm ln lnm). The runtime is
O(vol(A)h ln m

vol(A)
ln lnm). Furthermore

(a) If h ≥ lnm, Φ(A) ≤ 20 ln 2m
h + 2

U .

(b) If h = Ω(lnm′ ln lnm′) with m′ ≥ m, Φ(A) ≤
(logm+1−dlog vol(A)e)

20 logm′ + 2
U

4 The Kawarabayashi-Thorup decomposition
framework

In the rest of the paper, we show how to modify
the algorithm in [12] (the K-T algorithm) to use the
efficient flow procedures in Section 3, and eventually
get a O(m ln2m ln ln2m) algorithm. We divide the K-
T algorithm (Algorithm A.1 in Appendix A) into two
layers: the inner procedure which we replace with our
own, and the K-T framework (i.e. everything outside
the inner procedure) which we do not change. We have
a clean interface between the two, which is formally
presented as Theorem 5.1. We will discuss the K-
T framework and the interface in this section. Since
this section is all about material in [12], we keep our
discussion at a very high level. For completeness, we
include the details in Appendix A

Given an undirected simple graph G = (V,E)
with minimum degree δ, the decomposition framework
computes a (multi-)graph withO(mG lnmG

δ) edges, while
preserving all non-trivial min cuts of G. Note that δ
upperbounds the value of the min cut, and when δ is
O(lnmG), G has O(mG lnmG

δ) edges already, so we only
work on the case of δ = Ω(lnmG).

The high-level approach is to start with G = G,
and recursively contract subsets of nodes into superver-
tices to reduce the size of G (the outer loop in Algo-
rithm A.1). Throughout the algorithm, a node (or ver-
tex) in G is either a regular vertex (i.e. a vertex in G)
or a supervertex (i.e. a subset of vertices of V). At
any point, the supervertices (as subsets of V) and the
regular vertices (as singleton sets) in G give a partition

1924 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

of V . All edges of G, except those collapsed into super-
vertices, are in G. In particular, any regular vertex in
G has degree at least δ.

In each iteration of the outer loop, the algorithm
computes (disjoint) subsets of nodes in G that can be
contracted. More specifically, we maintain H, with
H = G at the start of the iteration, edges and nodes
will be removed through the iteration, and at the end,
H will be a collection of connected components such
that each component must fall entirely on one side of
any minimum cut, and, thus, can be contracted.

At the start of the iteration, supervertices with
degree less than c1γδ (called passive supervertices) are
removed from H, where c1 is a suitably chosen constant,
and γ = Θ(lnm). Throughout the iteration, whenever
the algorithm removes edges and nodes from H, it
will also trim H, which is to recursively remove from
H any node that has lost more than 3

5 of its degree

(comparing to its degree in G). In particular, every
connected component C in H will be trimmed, i.e.
∀v ∈ C : dC(v) ≥ 2

5dG(v). To find components that
can be contracted, we first find clusters.

Definition 4.1. A trimmed subset C is a cluster if for
every cut of cut-size at most δ in G, one side contains
at most 2 regular vertices and no supervertex from C.

A cluster component is a component that almost en-
tirely falls in one side of any minimum cut. Given a
cluster component it is easy to get its core, which is the
part that can be contracted (See Appendix A). Thus
the major work is to find cluster components. We have
the following measure of how close C is to a cluster.

Definition 4.2. A connected component C of H is s-
strong if every cut (S, S̄) of G with cut-size at most δ
satisfy min(volC(S ∩ C),volC(S̄ ∩ C)) ≤ s. We call s
the strength of C.

Informally, the smaller the strength of C, the closer
C is to fall entirely in one side of any minimum cut.
Note a component C is by definition mC-strong, and
any subcomponent of a s-strong component is also s-
strong. The strategy of the algorithm is to drive down
the strengh of the components in H, and the following
is a sufficient condition to have a cluster.

Lemma 4.1. Let s0 = 1000γδ, any trimmed s0-strong
connected component C in H is a cluster.

To get components of smaller strength, the algo-
rithm relies on the inner procedure (See Theorem 5.1).
Each time the inner procedure is invoked, it is given a
trimmed component C in H that is already certified to
be s-strong for some s > s0. The inner procedure will

either certify that C is 0.6s-strong, or find a low con-
ductance cut in C. In the latter case, we can remove
the cut edges from H, and break C into smaller compo-
nents. This is useful since the volume of a component
is a trivial bound on its strength. The low conductance
is crucial, as we need to bound the total number of cut
edges removed during the entire process. Ultimately, a
constant fraction of the edges from G will remain in the
connected components in H, which are contracted at
the end, so the volume of G drops geometrically across
outer loop iterations (See Lemma A.5 and Lemma A.4
for details).

The runtime of each invocation of the inner proce-
dure is proportional to the progress made in that in-
vocation. That is, if it only finds a low conductance
cut (A, Ā), the runtime is local. If, however, the inner
procedure spends Õ(mC) runtime on a component C, it
certifies a smaller strength for C (or a subcomponent of
volume Θ(vol(C)) of C). See Section 6 for more details.

5 The inner procedure

In this section we give a high level descriptions of the
inner procedure (See Appendix C for details). We follow
a similar approach as [12], but use the flow methods
in Section 3 instead of diffusions as subroutines. As
discussed above, the K-T framework relies on the inner
procedure to achieve the following.

Theorem 5.1. Given an s-strong trimmed component
C with mC ≤ s ≤ s0 = 1000γδ, the inner procedure will
achieve one of the following:

1. Find a set A with vol(A) ≤ mC , and

Φ(A) ≤ (logmC + 1− dlog vol(A)e)
20 logmG

in time O(vol(A) ln mC

vol(A)
lnmG ln ln2mG).

2. Find a set A with

Φ(A) ≤
(logmC + 1−

⌈
min(log vol(A), log vol(Ā))

⌉
)

20 logmG

in time O(mC lnmG ln lnmG). Moreover, vol(A)
is Θ(mC), and A is certified to be 0.6s-strong.

3. Certify that C is 0.6s-strong in time
O(mC lnmG ln lnmG).

The intuition is as follows. If C is a connected compo-
nent of H that is not a cluster, there must exist cuts in
C of cut-size at most δ. Consider any such small cut
and denote by S the side with minimum volume. We
know volC(S) ≤ s, since C is s-strong. The cut-size
being at most δ gives a strong bottleneck to route into
or out of S, and we can exploit this bottleneck.

1925 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Use the cut as a bottleneck to route supply out
of S. The excess-scaling algorithm (Algorithm 3.2)
guarantees to find a low conductance cut in local
runtime if we give it a very infeasible flow problem,
i.e. one where it is impossible to route a large fraction
of the source supply to sinks (Lemma 3.2). A small cut
S naturally gives such very infeasible flow problems as
follows. As the total sink capacity in S is volC(S), the
condition volC(S) ≤ s bounds the total sink capacity in
S by at most s. As there are at most δ edges on the cut,
we can pick an appropriate edge capacity parameter to
get a good bound on the cut capacity of S. As long as
we choose a source function such that the source supply
in S is large, for example twice the sum of S’s sink and
cut capacity, we get a very infeasible flow problem. The
difficulty, however, is to construct such a source function
without knowing S. The strategy, very informally, is
as follows. We construct a large number (≤ 5000)
of flow problems with different source functions, and
run (in parallel, step by step) Algorithm 3.2 on them,
terminating them whenever one of them returns a low
conductance cut, or, if this does not happen, letting
them all run to termination. If any of these flow
problems had large enough source supply in S, we get
a low conductance cut in local runtime, i.e., case (1) in
Theorem 5.1.
Use the cut as a bottleneck to route supply into
S. If we do not get the above case, we end with case (1)
of Lemma 3.2 for all the flow problems we constructed,
and we have spent O(mC lnm) time for them. In this
case, we know that the source functions of these flow
problems all have little source supply starting in S as
they were able to route most of their flow to a sink.
Using the ∆(v)′ values returned by each execution of
Algorithm 3.2, we suitably combine the successfully
routed source supplies to a new, well spread-out source
function. More specifically, the new source function
fulfills the following properties: (a) Very little source
supply is in S, and the cut bounds the amount of supply
that can be pushed into S, so the total supply ending
in S must be small. (b) The amount of total supply
is large (more formally at least 4mC) and well spread
out (more formally ∀v : ∆(v) ≤ wd(v)). Thus we can
run a Unit-Flow computation directly on it (without
going through the excess scaling procedure). We use
h = Θ(lnmG ln lnmG) and w = 25 and have either of
the two outcomes below.

(A) All nodes in C have their sinks saturated (case
(2) of Theorem 3.1). Since the amount of supply ending
in S is small, the total sink capacity in S must also
be small, i.e. volC(S) must be small. Recall S is any
cut in C with cut-size at most δ. Thus we know all
such cuts have small volume, more specifically at most

0.6s, implying that C is 0.6s-strong, i.e. case (3) of
Theorem 5.1.

(B) We get a set A as specified in case (3b) of
Theorem 3.1. Since all nodes in A have their sinks
saturated, by a similar argument as above, we show
that volC(A ∩ S) is small. Again as this argument
works for any S of cut-size at most δ, we can argue A is
0.6s-strong. Additionally, case (3b) of Theorem 3.1 and
Observation 3.2 give the desired bound on Φ(A) and
show that vol(A) = Θ(mC), which shows that case (2)
of Theorem 5.1 holds.

Note that the outline of the flow problem construc-
tion is similar to the seeding of diffusions in [12], but the
details differ in part due to their ability to use the lin-
earity property of diffusions. We must explicitly spread
out our flows and warm start our procedures in some
cases as noted above.

6 Running time analysis

To compute the edge connectivity of an undirected
simple graph G with mG edges, we first construct G as
discussed earlier, and use Gabow’s min-cut algorithm [7]
on G. We start with the runtime to construct G.
Recall we use the K-T framework (Algorithm A.1)
with our flow based inner procedure (Algorithm C.1).
By Lemma A.5, mG decreases geometrically across
iterations of the outer loop. As the runtime of each
outer loop iteration will be Ω(mG), the first iteration
will dominate asymptotically, so we focus on the first
iteration, with mG = mG.

The operations outside of the middle loop in total
take O(mG) time (see details in Appendix A). To
analyze the middle loop, we look at each invocation of
the inner loop. Informally we will charge the runtime
to edges such that an edge is charged when it lies in the
smaller side of a cut, or the strength of its component
drops by a constant factor. More specifically, given an
s-strong component C in H, we have three cases by
Theorem 5.1.

(1) Find a cut (A,C \ A) with vol(A) ≤ mC in time
O(vol(A) ln(mC/vol(A)) lnmG ln ln2mG). We
can charge O(ln(vol(C)/vol(A)) lnmG ln ln2mG)
to each edge in A.

Consider the total charge to any edge by all invo-
cations of inner procedure of this case. The edge is
charged when it falls in the smaller side of a cut.

The ln vol(C)

vol(A)
part will telescope, so in total each

edge is charged O(ln2mG ln ln2mG).

(2) Find a subset A in C where vol(A) is Θ(mC),
and A is certified to be 0.6s-strong. The run-
time is O(mC lnmG ln lnmG). We can charge
O(lnmG ln lnmG) to each edge in A.

1926 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Over all invocations of inner procedure of this case,
any edge is charged at most O(lnmG) times, since
the strength of its component decreases geometri-
cally each time we charge the edge. In total each
edge is charged O(ln2mG ln lnmG).

(3) Certify the entire component C is 0.6s-strong. The
runtime is O(mC lnmG ln lnmG). We use the same
argument as in case (2) above.

In total, we can charge the runtime of the mid-
dle loop to the edges in G, and each edge
is charged O(ln2mG ln ln2mG), so the runtime is
O(mG ln2mG ln ln2mG).

At the end, we get a multi-graph G with
O(mG lnmG

δ) edges, preserving all non-trivial min cuts

of G. We use Gabow’s min-cut algorithm [7] on G.
Gabow’s algorithm works on multi-graphs, and takes
time O(λmG lnmG) on G, where λ is the size of the
min cut. With our bound on mG, as well as λ ≤ δ, the

runtime of Gabow’s algorithm is thus O(mG ln2mG).
Together with the runtime to construct G, we have the
following.

Theorem 6.1. The minimum cut in an undirected
simple graph with m edges can be computed in time
O(m ln2m ln ln2m).

References

[1] R. Andersen, F. R. K. Chung, and K. J. Lang,
Local graph partitioning using pagerank vectors, in 47th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, IEEE Computer Society,
2006, pp. 475–486.

[2] R. Andersen and Y. Peres, Finding sparse cuts
locally using evolving sets, in Proceedings of the forty-
first annual ACM symposium on Theory of computing,
ACM, 2009, pp. 235–244.

[3] S. Arora, S. Rao, and U. V. Vazirani, Expander
flows, geometric embeddings and graph partitioning, J.
ACM, 56 (2009).

[4] F. R. K. Chung, A local graph partitioning algorithm
using heat kernel pagerank, Internet Mathematics, 6
(2009), pp. 315–330.

[5] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pa-
chocki, R. Peng, A. Rao, and S. C. Xu, Solving

SDD linear systems in nearly mlog1/2n time, in Sym-
posium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, 2014, pp. 343–
352.

[6] A. Frank, On the edge-connectivity algorithm of nag-
amochi and ibaraki, Laboratoire Artemis, IMAG, Uni-
versité J. Fourier, Grenoble, (1994).

[7] H. N. Gabow, A matroid approach to finding edge
connectivity and packing arborescences, in Proceedings
of the 23rd Annual ACM Symposium on Theory of
Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, C. Koutsougeras and J. S. Vitter, eds., ACM,
1991, pp. 112–122.

[8] A. V. Goldberg and R. E. Tarjan, Efficient max-
imum flow algorithms, Commun. ACM, 57 (2014),
pp. 82–89.

[9] R. E. Gomory and T. C. Hu, Multi-terminal network
flows, Journal of the Society for Industrial and Applied
Mathematics, 9 (1961), pp. 551–570.

[10] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang,
and R. Zadeh, Wtf: The who to follow service at twit-
ter, in Proceedings of the 22Nd International Confer-
ence on World Wide Web, WWW ’13, New York, NY,
USA, 2013, ACM, pp. 505–514.

[11] D. R. Karger, Minimum cuts in near-linear time, J.
ACM, 47 (2000), pp. 46–76.

[12] K. Kawarabayashi and M. Thorup, Deterministic
global minimum cut of a simple graph in near-linear
time, in Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, R. A. Servedio
and R. Rubinfeld, eds., ACM, 2015, pp. 665–674.

[13] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A.
Zhu, A simple, combinatorial algorithm for solving
SDD systems in nearly-linear time, in Symposium
on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, 2013, pp. 911–920.

[14] R. Khandekar, S. Rao, and U. V. Vazirani, Graph
partitioning using single commodity flows, J. ACM, 56
(2009).

[15] L. Lovász and M. Simonovits, Random walks in
a convex body and an improved volume algorithm,
Random Struct. Algorithms, 4 (1993), pp. 359–412.

[16] D. W. Matula, A linear time 2+epsilon approxima-
tion algorithm for edge connectivity, in Proceedings of
the Fourth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, 25-27 January 1993, Austin,
Texas., V. Ramachandran, ed., ACM/SIAM, 1993,
pp. 500–504.

[17] H. Nagamochi and T. Ibaraki, Computing edge-
connectivity in multiple and capacitated graphs, in Al-
gorithms, International Symposium SIGAL ’90, Tokyo,
Japan, August 16-18, 1990, Proceedings, T. Asano,
T. Ibaraki, H. Imai, and T. Nishizeki, eds., vol. 450
of Lecture Notes in Computer Science, Springer, 1990,
pp. 12–20.

[18] L. Orecchia, L. J. Schulman, U. V. Vazirani,
and N. K. Vishnoi, On partitioning graphs via single
commodity flows, in Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, C. Dwork,
ed., ACM, 2008, pp. 461–470.

[19] L. Orecchia and Z. A. Zhu, Flow-based algo-
rithms for local graph clustering, in Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on

1927 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, C. Chekuri, ed., SIAM, 2014,
pp. 1267–1286.

[20] D. A. Spielman and S. Teng, Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems, in Proceedings of the 36th
Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, L. Babai, ed.,
ACM, 2004, pp. 81–90.

[21] M. Stoer and F. Wagner, A simple min-cut al-
gorithm, Journal of the ACM (JACM), 44 (1997),
pp. 585–591.

[22] Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni, A
local algorithm for finding well-connected clusters, in
Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-
21 June 2013, vol. 28 of JMLR Proceedings, JMLR.org,
2013, pp. 396–404.

A Details and analysis of Section 4

A.1 K-T framework In this section we discuss the
K-T framework (Algorithm A.1) with more details.
Since the definitions and lemmata in this part are
restated from [12], sometimes with slightly modified
parameters, we omit the proofs in our presentation, and
refer interested readers to [12].

Given an undirected simple graph G with minimum
degree δ, the decomposition framework produces a
graph, G, withO(mG lnmG

δ) edges, where any non-trivial

minimum cut in G corresponds to a minimum cut in G.
Note that when δ is O(lnmG), the algorithm will call
Gabow’s algorithm [7] directly without sparsifying G.

The high-level approach is to start with G =
G, and recursively contract subsets of nodes in G
into supervertices to reduce the size of the graph,
while preserving all non-trivial minimum cuts of G.
Throughout the algorithm we maintain the multi-graph
G = (V ,E), where a node (or interchangeably, a vertex)
in G is either a regular, non-contracted vertex or a
supervertex. We consider a supervertex to be both a
node of G and a set of vertices of V . The set of vertices
contained in different supervertices of G are disjoint,
and supervertices can be further contracted with other
vertices during the course of the algorithm. With the
formation of supervertices, we have parallel edges in
G. Since non-trivial minimum cuts in G have cut-size
at most δ, the algorithm periodically contracts vertices
with more than δ parallel edges between them.

The multi-graph G has all the edges of G, except
those whose both endpoints belong to the same super-
vertex. Thus a regular vertex in G will have the same
number of incident edges as in G, so its degree in G is
at least δ. The degree of a supervertex is the number
of edges incident to it in G, or equivalently the number

of edges in G incident to exactly one node in the set of
regular vertices contracted in the supervertex.

In each iteration of the outer loop, the algorithm
computes (disjoint) subsets of nodes in G that can be
contracted. More specifically, we maintain H, with
H = G at the start of the iteration, edges and nodes
will be removed through the iteration, and at the end,
H will be a collection of connected components such
that each component must fall entirely on one side of
any minimum cut, and, thus, can be contracted.

At the start of the iteration, supervertices with
degree less than c1γδ (called passive supervertices) are
removed from H, where c1 is a suitably chosen constant,
and γ = Θ(lnm). Throughout the iteration, whenever
the algorithm removes edges and nodes from H, it will
also trimH. The trimming operation of a subgraphH of
G is to recursively remove from H any (regular or super-
) vertex v that has dH(v) ≤ 2

5dG(v). Said differently,
when we trim a subgraph H, we recursively remove
every vertex v in H that has “lost” (in comparison to
G) at least 3

5d(v) of its edges Furthermore, a subset

C of nodes in G is trimmed if dC(v) ≥ 2
5dG(v) for all

v ∈ C (where dC(v) is counting edges in G, not in H),
i.e. at least a 2

5 -th fraction of v’s incident edges in G are
internal to C. Note that after trimming a subgraph H,
every connected components C in H is trimmed as for
the fact that C is a connected component in H it follows
that each vertex in v ∈ C must have dC(v) = dH(v).

Our goal is to detect subsets C of nodes that can be
contracted to supervertices. Thus for each such subset
C there cannot be a non-trivial minimum cut S of G
such that |S ∩ C| > 1 and |S̄ ∩ C| > 1. We call this
condition on a set of nodes Requirement R1. To
find components that can be contracted, the algorithm
first finds clusters (See Definition 4.1). A cluster is a
component that almost entirely falls in one side of any
minimum cut. Once we have a cluster, it will be easy
to get a core of the cluster, that can be contracted.

Construction of the core for a cluster: We
now distill from each cluster connected component C a
subset of nodes that fullfils R1. To do so we take every
vertex v in C that has degree at least 1

2dG(v) + 1 ≥
δ/2+1 in H. More formally, we say a node v in a cluster
C is loose if it is a regular vertex, and dC(v) ≤ dG(v)/2,
that is, at most dG(v)/2 of its edges in G go to neighbors
in C. By shaving we refer to the operation of removing
loose vertices of a cluster from H. Note that shaving
only depends on the degree of the nodes in G, not in H.
The problem created by shaving is, however, that the
remaining nodes of C might no longer be connected, in
which case C does not fulfill R1, but every connected
component A that is created by shaving C will actually

1928 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

fulfill R1, thus can be contracted. Although all such
shaved cluster components contain no minimum cut,
the algorithm will only contract A when it has a large
volume, as otherwise we will end up with too many
supervertices at the end. Formally, we introduce the
notation ivol(A,C) with A ⊆ C as the number of edges
with one endpoint in A and one endpoint in C \A plus
twice the number of edges with both endpoints in A. A
shaved cluster connected component A will be a core
of C if ivolG(A,C) ≥ volG(C)/4. By scraping we
mean the operation of removing the entire connected
component A from H if A is not a core of the cluster C.
The algorithm will contract all the nodes in A when A
is a core of a cluster C.

Algorithm A.1. Kawarabayashi-Thorup framework

G← G; G has min degree δ ≥ γ = Θ(lnmG)
Repeat (Outer loop)
. H ← G.
. Remove passive supervertices from H and trim H.
. While any connected component C in H is not a

certified cluster do (Middle loop)
. . Let s be the smallest integer such that C is

certified s-strong.
. . Inner procedure:

Achieve either (1), (2), or (3) (Theorem 5.1)
. . . (1) Find low conductance cut (A, Ā) of C in

time Õ(min(vol(A),vol(Ā)).
. . . (2) Find low conductance cut (A, Ā) of C in

time Õ(vol(C)) where A is 0.6s-strong in H
and vol(A) is Θ(vol(C)) .

. . . (3) Certify that C is 0.6s-strong in H in time
Õ(vol(C)).

. . End inner procedure

. . If a cut was found (case (1)(2)), remove the cut
edges from H and trim H.

. End while

. Take each cluster component of H, and contract its
core to a supervertex in G.

. Contract any two vertices that have more than δ
parallel edges between them.

Until ≥ 1
20 of the edges in G are incident to passive

supervertices.

To find the clusters, we use the strength (See
Definition 4.2) as the measure of how close a component
C is to a cluster. The strategy of the algorithm is to
drive down the strengh of the components in H.

Recall we maintain H that is a subgraph of G.
All passive supervertices are removed from H at the
beginning, and H is trimmed. As a consequence of these
specific operations on H, the following is a sufficient
condition to have a cluster in H.

Lemma 4.1. Let s0 = 1000γδ, any trimmed s0-strong

connected component C in H is a cluster.

The structure of the algorithm is as follows: It
consists of three nested loops, which we call (a) the outer
loop, (b) the middle loop, and (c) the inner procedure.
Both, the algorithm of [12] and our algorithm use this
structure, however, we differ in the implementation of
the inner procedure.

A.2 Analysis In this section we show the correctness
of the K-T framework (Algorithm A.1). To prove the
correctness we show (1) the termination of the middle
loop, (2) the termination of the outer loop, (3) that no
mincut of size at most δ is contained in a core, and
(4) that the resulting graph G contains O(mG lnmG/δ)
edges.

To guarantee the termination of the middle loop
we have to show that at some point all connected
components are clusters or individual nodes. Started
on an s-strong component C in H, each iteration of the
middle loop either reduces the size of C (and potentially
shows that one of the new connected components is 0.6s-
strong in H) or shows that C is 0.6s-strong in H, i.e.,
either reducing the size of C or its strength. Note that
removing edges of H does not increase the strength of
its components, i.e., any component that was s-strong
in the old H is also s-strong in the new H. Together
with Lemma 4.1, eventually every connected component
in H must either has size 1 or is a cluster, so the middle
loop will always terminate.

The proof of Lemma 4.1 crucially relies on the
removal of passive supervertices and the trimming of
H. The high level intuition is as follows. Consider
component C in H, and cut (S, S̄) of cut-size at most
δ. Let U be the smaller side of S ∩ C and S̄ ∩ C (in
terms of volC). If U contains any supervertex, then
volC(U) > s0, since every active supervertex has large
degree. If U contains only regular vertices, each regular
vertex has degree at least 2

5δ, as C is trimmed. When U
has at least 3 nodes, the total degree is at least 6

5δ, and
at most δ of these degree can go from U to C \U . Thus
U must has Ω(δ) nodes to accomodate these degree, as
there is no parallel edges between regular vertices. This
again gives volC(U) > s0.

The while loop (middle loop) terminates when all
connected components remaining in H are clusters, and
as discussed earlier, the algorithm contracts the cores
of the clusters into supervertices. The following lemma
shows every core has the desired property of containing
no non-trivial cut of size at most δ (see also Lemma 14
in [12]).

Lemma A.1. No core contracted by the algorithm con-
tains a non-trivial mincut cut of G.

1929 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The intuition is as follows. As C is a cluster we know
that for every cut S of cut-size at most δ in G, one side
contains at most 2 regular vertices and no supervertex
from C. Assume a cut S where there are exactly 2
regular vertices on one side of the cut. As each vertex
has at least δ/2+1 edges going to nodes in C, it follows
that at least 2(δ/2 + 1) − 1 > δ edges are crossing the
cut S, i.e., S cannot be a minimum cut. We will choose
c1 such that a similar argument shows that S is not a
non-trivial minimum cut if supervertices belong to both
sides of the cut S. Thus it follows that for each non-
trivial minimum cut either A∩S = ∅ or A∩ S̄ = ∅, i.e.,
A contains no non-trivial minimum cut.

The above argument shows no shaved cluster A
contains any non-trivial minimum cut. However, the
algorithm only contracts A when it is a core, since
otherwise we may end up with too many supervertices.
Recall A is a core when it has large internal volume,
and formally it can be shown that every supervertex
has Ω(δ2) volume contracted inside it. This will bound
the total number of supervertices by O(mδ2). Together
with the degree bound on passive supervertices, we have
the lemma below.

Lemma A.2. The total number of edges in Ḡ incident
to passive supervertices is at most 120γδm.

This lemma, together with the termination condition
that at least 1

20 fraction of the edges in G are incident to

passive supervertices, gives that G has O(mG lnmG/δ)
edges.

So far we have shown Part (1),(3),(4) of the correct-
ness proof, and what remains is the termination of the
outer loop.

For this purpose we will show that the number of
edges in G decreases geometrically in every iteration
of the while loop, while the number of edges in G
incident to passive supervertices does not decrease as
a supervertex, once it is passive, is always removed
from H and, thus, it is never contracted into a new
supervertex. Thus, the outer loop terminates after
O(log n) iterations.

To show the reduction on edges in G we first need
a new definition: The edges cut from H are those
edges that (a) either are incident to removed passive
supervertices or (b) that are returned by the inner loop
as edges on a low conductance cut and that then are
removed from H. Lemma A.4, which is Lemma 17
in [12], bounds the number of edges removed during
trimming, shaving, and scraping by the number of edges
that were cut. For this we need, however, the following
auxiliary lemma.

Lemma A.3. If a cluster C has k edges leaving it in G
and the core of C is scraped, then volG(C) ≤ 4k.

Lemma A.4. If the total number of edges cut during
an iteration of the outer loop is c, the total number of
edges lost from all clusters due to trimming, shaving and
scraping during this iteration is 6c.

We use this lemma together with the fact that each
cut found in the middle procedure has low conductance
to conclude that the number of edges in G is reduced
by a constant factor in each iteration of the outer loop.

Lemma A.5. In each except for the last iteration of the
outer loop, i.e. the repeat loop, the number of edges in
the graph G is decreased by a factor of at least 7/10.

The above lemma gives the termination of the outer
loop, and completes the analysis of the K-T framework.
We summarize the results of this subsection in the
following theorem.

Theorem A.1. Given a simple graph G = (V,E) with
minimum degree δ the presented mincut algorithm com-
putes a multi-graph Ḡ = (V̄ , Ē) with O(mG lnmG/δ)
edges such that all non-trivial mincuts of G are non-
trivial mincuts in Ḡ.

B Analysis of flow algorithm from Section 3

B.1 Analysis of Unit-Flow. Recall the Unit-Flow
procudure (Algorithm 3.1) is a fairly straightforward
implementation of the push-relabel framework, with
some notable design decisions as follows:

• We explicitly maintain upperbounds on the supply
remaining at a vertex, i.e. f(v) ≤ wd(v) when we
push to v. We assume this holds at the start, i.e.
the input ∆(v) ≤ wd(v) for all v.

• We cap the labels at h. If a vertex has label h− 1,
and we relabel it to h, the vertex never becomes
active from then on.

• The active vertices in Q are in non-decreasing order
with respect to their labels, and each time we need
to get an active vertex from Q, we get the first
vertex.

Note that the assertion in Push(v, u) is the reason we
always use the active vertex v with the smallest label. If
Push(v, u) can be applied, but f(u) ≥ wd(u), we know
l(v) = l(u) + 1, so l(u) < h, and u has positive excess as
w ≥ 2, then u is active, which contradicts v being the
active vertex with the smallest label. The applicability
conditions and the assertion guarantee that we can push
ψ ≥ 1 unit of supply from v to u.

Upon termination, we have a pre-flow f , and labels
l on vertices. We make the following observations.

1930 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Observation B.1. During the execution of Unit-Flow,
we have

(1) If v is active at any point, the final label of v cannot
be 0. The reason is that v will remain active until
either l(v) is increased to h, or its excess is pushed
out of v, which is applicable only when l(v) is larger
than 0 at the time of the push.

(2) Each vertex v is a sink that can absorb up to d(v)
units of supply, so we call the f(v) − ex(v) =
min(f(v), d(v)) units of supply remaining at v the
absorbed supply. The amount of absorbed supply at
v is between [0, d(v)], and is non-decreasing. Thus
any time after the point that v first becomes active,
the amount of absorbed supply is d(v). In particular
any time the algorithm relabels v, there have been
d(v) units of supply absorbed by v.

Upon termination of Unit-Flow procedure, we have

(3) For any edge {v, u} ∈ E, if the labels of the
two endpoints differ by more than 1, say l(v) −
l(u) > 1, then arc (v, u) is saturated. This follows
directly from a standard property of the push-relabel
framework, where rf (v, u) > 0 implies l(v) ≤ l(u)+
1.

Although Unit-Flow may terminate with ex(v) > 0 for
some v, we know all such vertices must have label h,
as the algorithm only stops trying to route v’s excess
supply to sinks when v reaches level h. Thus we have
the following lemma.

Lemma B.1. Upon termination of Unit-Flow with in-
put (G,∆, U, h, w), assuming ∆(v) ≤ wd(v) for all v,
the pre-flow and labels satisfy

(a) If l(v) = h, wd(v) ≥ f(v) ≥ d(v);

(b) If h− 1 ≥ l(v) ≥ 1, wd(v) ≥ f(v) = d(v);

(c) If l(v) = 0, f(v) ≤ d(v).

Proof. By Observation B.1.(2), any vertex with label
larger than 0 must have f(v) ≥ d(v). The algorithm
terminates when there is no active vertices, i.e. ex(v) >
0 =⇒ l(v) = h, so all vertices with label below
h must have f(v) ≤ d(v). Moreover, f(v) ≤ wd(v)
since at the beginning f(v) = ∆(v) ≤ wd(v), and the
push operations explicitly enforces f(v) ≤ wd(v) when
pushing supply to v.

Now we can prove the main result about Unit-Flow.
Proof of Theorem 3.1

Proof. We use the labels at the end of Unit-Flow to
divide the vertices into groups

Bi = {v|l(v) = i}

If Bh = ∅, no vertex has positive excess, so all |∆(·)|
units of supply are absorbed by sinks, and we end up
with case (1).

If Bh 6= ∅, but B0 = ∅, by Lemma B.1 every vertex
v has f(v) ≥ d(v), so we have

∑
v d(v) = 2m units of

supply absorbed by sinks, and we end up with case (2).
Case (3a): When both Bh and B0 are non-empty,

we compute the cut (A, V \ A) as follows: Let Si =
∪hj=iBj be the set of vertices with labels at least i. We
sweep from h to 1, and let A be the first i such that
Φ(Si) ≤ 20(ln 2m

h +w
U). The properties ∀v ∈ A : wd(v) ≥

f(v) ≥ d(v), and ∀v ∈ V \A : f(v) ≤ d(v) follow directly
from Sh ⊆ A ⊆ S1. We will show that there must exists
some Si satisfying the conductance bound.

For any i, an edge {v, u} across the cut Si, with
v ∈ Si, u ∈ V \ Si, must be one of the two types:

1. In the residual network, the arc (v, u) has positive
residual capacity rf (v, u) > 0, so l(v) ≤ l(u) + 1.
But we also know l(v) ≥ i > l(u) as v ∈ Si, u ∈
V \ Si, so we must have l(v) = i, l(u) = i− 1.

2. In the residual network, if rf (v, u) = 0, then (v, u)
is a saturated arc sending U units of supply from
Si to V \ Si.

Suppose there are z1(i) edges of the first type, and
z2(i) edges of the second type. By the following region
growing argument, we can show there exists some choice
of i = i∗, such that

(B.1) z1(i∗) ≤ 10 min(vol(Si∗), 2m− vol(Si∗)) lnm

h

If vol(Sbh/2c) ≤ m, we start the region growing argu-
ment from i = h down to bh/2c. By contradiction, sup-

pose z1(i) ≥ 10vol(Si) lnm
h for all h ≥ i ≥ bh/2c, which

implies vol(Si) ≥ vol(Si+1)(1 + 10 lnm
h) for all h > i ≥

bh/2c. Since vol(Sh) = vol(Bh) ≥ 1 and h ≥ lnm, we
will have vol(Sbh/2c) ≥ (1 + 10 lnm

h)h/2 � 2m, which
gives contradiction. The case where vol(Sbh/2c) > m
is symmetric, and we run the region growing argument
from i = 1 up to bh/2c instead.

For any i, we can bound z2(i) as follows. Since
the pre-flow pushes z2(i)U units of supply from Si to
V \ Si along the s2(i) saturated arcs, z2(i)U is at most∑
v∈Si

∆(v) + z1(i)U , i.e. the sum of the source supply
in Si and the supply pushed into Si along the z1(i)
eligible arcs. As ∆(v) ≤ wd(v) for all v, we know

z2(i) ≤ wvol(Si)

U
+ z1(i)

1931 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

On the other hand, z2(i)U is at most
∑
v∈V \Si

f(v) +

z1(i)U , as the z2(i)U units of supply pushed into V \Si
either remain at vertices in V \ Si, or back to Si along
the reverse arcs of the z1(i) eligible arcs. Since any
v ∈ V \ Si is not with label h, thus f(v) ≤ d(v), then
we get

z2(i) ≤ vol(V \ Si)
U

+ z1(i)

The two upperbounds of z2(i) together give

(B.2) z2(i) ≤ wmin(vol(Si), 2m− vol(Si))

U
+ z1(i)

We know there exists some i∗ such that z1(i∗) is
bounded by (B.1), together with (B.2), we have

z1(i∗)+z2(i∗) ≤ min(vol(Si∗), 2m−vol(Si∗))(
20 lnm

h
+
w

U
)

thus Φ(Si∗) ≤ 20 lnm
h + w

U , which completes the proof.
Case (3b): The proof is basically the same as

the above case, but with a more careful region growing
argument. In particular, we want to show there exists
some i∗, j∗ such that min(vol(Si∗), 2m−vol(Si∗)) ≤ 2j

∗

and

(B.3) z1(i∗) ≤ vol(Si∗)(logm+ 1− j∗)
100 logm′

Assume vol(Sbh/2c) ≤ m, and we run the region growing
argument from i = h down to i = bh/2c. In this case
vol(Si) ≤ m. The other case is similar, and we just do
the region growing argument from the other side.

Consider the groups Sh, . . . , Sbh/2c, if we put the
Θ(lnm′ ln lnm′) groups into levels j = 1, . . . , logm,
such that a group i is in level j if 2j−1 ≤ vol(Si) ≤
2j . There must be a level j that gets more than

200 logm′

logm+1−j groups, as long as h > c2 lnm′ ln lnm′ for
some large constant c2, since

logm∑
j=0

200 logm′

logm+ 1− j
= 200 logm′(1 +

1

2
+ · · ·+ 1

logm+ 1
)

≤ 500 lnm′ ln lnm′

Suppose this is level j∗, and let ia be the largest i
with Si in level j∗, and ib be the smallest i with Si
in level j∗. We know ia − ib ≥ 200 logm′

logm+1−j∗ , and

j∗ − 1 ≤ log vol(Sia) ≤ log vol(Sib) ≤ j∗, thus there
must be a i∗ ∈ [ia, ib] satisfying (B.3), since otherwise

vol(Sib) ≥ (1 + logm+1−j∗
logm′)200 log m′

log m+1−j∗ � 2vol(Sia).
Everything else follow the same arguments as in the
proof of case (3a) above.

We proceed to prove the runtime of Unit-Flow. Recall
we treat units of supply as distinct tokens, so a push

operation of ψ units takes O(ψ) work to maintain the
marks.
Proof of Lemma 3.1

Proof. With a compact representation of ∆, the initial-
ization of f(v)’s and Q takes time linear in |∆(·)|. For
the subsequent work, we will first charge the operations
in each iteration of Unit-Flow to either a push or a re-
label. Then we will in turn charge the work of pushes
and relabels to the absorbed supply, so that each unit
of absorbed supply gets charged O(wh) work. This will
prove the result, as there are at most |∆(·)| units of
(absorbed) supply in total.

In each iteration of Unit-Flow, we look at the first
element v of Q, which is an active vertex with the
smallest label. Suppose l(v) = i at that point. If the call
to Push/Relabel(v) ends with a push of ψ units of supply,
the iteration takes O(ψ) total work and we charge the
work of the iteration to that push operation. If the call
to Push/Relabel(v) doesn’t push, we charge the O(1)
work of the iteration to the relabel of l(v) to i + 1. If
there is no such relabel, i.e. i is the final value of l(v), we
know i 6= 0 by Observation B.1(1), then we charge the
work to the final relabel of v. Since a relabel of v must be
incurred when d(v) consecutive calls to Push/Relabel(v)
end with non-push, each relabel of v takes O(d(v)) work
by our charging scheme above.

So far we have charged all the work to pushes and
relabels, such that pushing ψ units of supply takesO(ψ),
and each relabel takes O(d(v)). We now charge the
work of pushes and relabels to the absorbed supply. We
consider the absorbed supply at v as the first up to d(v)
units of supply starting at or pushed into v, and these
units never leave v.

By Observation B.1(2), each time we relabel v,
there are d(v) units of absorbed supply at v, so we
charge the O(d(v)) work of the relabel to the absorbed
supply, and each unit gets charged O(1). A vertex v
is relabeled at most h times, so each unit of absorbed
supply is charged with O(h) in total by all the relabels.

For the pushes, we consider the potential function

Λ =
∑
v

ex(v)l(v)

Each push operation of ψ units of supply decrease Λ by
exactly ψ, since ψ units of excess supply is pushed from
a vertex with label i to a vertex with label i − 1. Λ
is always non-negative, and it only increases when we
relabel some vertex v with ex(v) > 0. When we relabel
v, Λ is increased by ex(v). Since ex(v) ≤ f(v) ≤ wd(v),
we can charge the increase of Λ to the absorbed supply
at v, and each unit gets charged with O(w). In total we
can charge all pushes (via Λ) to absorbed supply, and
each unit is charged with O(wh).

1932 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

If we need to compute the cut A as in case (3) of
Theorem 3.1, the runtime is O(vol(S1)). Recall S1 is
the set of vertices with label at least 1, thus all with d(v)
units of absorbed supply, so vol(S1) is at most |∆(·)|.

B.2 Analysis of excess scaling procedure. Now
we proceed to prove Lemma 3.2.

Proof. Consider the call to Unit-Flow in one iteration
of the flow procedure with the unit being µ. The edge
capacity used in Unit-Flow is U units, i.e. µU , and
the total source supply to Unit-Flow is at most 2m

µ

units, so the runtime of Unit-Flow is O(mhµ). As µ
decreases geometrically starting with F , the total edge
capacity used through the procedure is 2UF , and the
total runtime will be O(mhµ) for the µ at termination.

The procedure will terminate either when each
vertex v gets at most d(v) supply, which must happen
once µ drops to 1, or in some iteration j we have

(B.4) vol(Aj) ≥
τ2m

10µ ln 2µ ln lnm
.

(When Unit-Flow finishes with case (1) or (2) of Theo-
rem 3.1, Aj = ∅).

We need to argue (corrsponding to the two cases in
this Lemma respectively)

1. If we don’t terminate early due to Eqn. (B.4), then
at least (1 − τ) fraction of the total source supply
is routed to sinks.

2. If we terminate due to Eqn. (B.4), we must have
vol(A) being Ω(m

F lnm ln lnm), and the runtime in
this case is O(vol(A)h ln m

vol(A)
ln lnm), where A

is the side of (Aj , Āj) with smaller volume. The
conductance of the cut in this case follows from
Theorem 3.1 case (3a), (3b).

We first show case (1). By Theorem 3.1 with w = 2, the
Aj we get from Unit-Flow satisfies 2d(v) ≥ f(v) ≥ d(v)
for all v ∈ Aj , and f(v) ≥ d(v) for all v ∈ V \ Aj . So
we have exj(Aj) ≤ vol(Aj) ≤ 2m

µj
where we use µj to

denote the value of µ in the iteration of j. If we never
have Eqn. (B.4), we know for all j

exj(Aj)µj ≤ vol(Aj)µj ≤
τ2m

10 ln 2µj ln lnm

and if we add up the excess removed from all iterations,
we have

∑
j

exj(Aj)µj ≤
τm

5 ln lnm
(

lnF∑
j=0

1

j + 1
) ≤ τ2m

so the total supply remaining is at least (1− τ)2m, and
we have case (1). In this case when we terminate µ is
at least 1, so the runtime is O(mh).

For case (2), let j be the iteration when we get
Ean. (B.4), and we look at the cut Aj returned. Let A
be the smaller side of Aj and Āj . The conductance of
cut (Aj , V \ Aj) follows from Theorem 3.1 with w = 2.
We proceed to prove the runtime bound. We look at
the two cases:

• µj ≥ 2 at termination: Since vol(Aj) ≤ 2m
µj

, we

have µj ≤ 2m

vol(Aj)
, thus we can rewrite Eqn. (B.4)

as

vol(Aj) ≥
τ2m

10µ ln 4m

vol(Aj)
ln lnm

.

The rumtime is O(mµj
h), which is also

O(vol(A)h ln m

vol(A)
ln lnm) (notice Aj is the

smaller side of the cut when µj ≥ 2.)

• µj = 1 at termination: If vol(Aj) ≤ m, Aj is
still the smaller side, we have the same argument
as above. When vol(Aj) ≥ m, either we have
vol(Aj) ≥ (1− τ)2m, which means at least (1− τ)
fraction of total supply routed to sinks (i.e. case
(1) of this Lemma), or we have vol(Aj),vol(V \Aj)
both Θ(m), since τ is a constant. The runtime is
O(mh), which is O(vol(A)h).

In both cases, the running time is
O(vol(A)h ln m

vol(A)
ln lnm).

It remains to show vol(A) is Ω(m
F logm). From

the above discussion, we know that if we end with
case (2) of the lemma, then either vol(Aj) ≤ m, or
vol(Āj) ≥ τ

1−τ vol(Aj). Thus the termination condition
Eqn (B.4) implies vol(A) is Ω(m

F lnm ln lnm).

C Details and analysis of the inner procedure

In this section we will describe our inner procedure (Al-
gorithm C.1), which largely follows the same approach
as [12].

Recall when the inner procedure is invoked, we have
a connected component C of H such that C is certified
to be s-strong for some s ∈ [s0,mC]. Through the rest
of the section, we work completely inside C, and the
volume, degree, cut-size are all internal to C when we
omit the subscript.

Recall the K-T framework removes passive super-
vertices from H, and keeps H trimmed through the al-
gorithm. Thus in the connected component C, any reg-
ular vertex v has d(v) ≥ 2

5δ, and any supervertex has
degree at least 2

5c1δγ where δ = Θ(lnm) is the parame-
ter in the definition of a passive supervertex. Moreover,
no two vertices in C have more than δ parallel edges

1933 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

between them, since such pair of vertices will be con-
tracted.

As discussed in Section 4, we need to prove The-
orem 5.1, and we will follow the intuitions outlined in
Section 5.

As suggested earlier, we will construct various flow
problems aiming to exploit the existence of a cut S of
cut-size at most δ, and use the flow-based algorithms
from Section 3 on the constructed problems. The edge
capacity parameter is crucial if we want to use the
cut as a bottleneck to route supply out of or into S.
As specified in Lemma 3.2, when given parameter U ,
the actual edge capacities used by the algorithm is

UF where F = maxv
∆(v)
d(v) , thus it is important for us

to construct flow problems where the source function
∆ has small F . Formally, our strategy to construct
source function with small F is captured in the following
definitions.

Definition C.1. An edge-bundle is a set of edges
sharing a common endpoint. We denote an edge-bundle
by (v,X(v)), where v is the common endpoint that we
call the center of the edge-bundle, and X(v) is the
multiset (as there are parallel edges) containing the
other endpoints of the edges. A set of edge-bundles
are disjoint if their underlying sets of edges are edge
disjoint.

Note that in a set of disjoint edge-bundles, a vertex v can
still be the center of multiple edge-bundles, and we can
also have parallel edges, the definition simply prevents
the same edge from appearing in multiple edge-bundles.

Definition C.2. Given a set Y of edge-bundles in
C = (V,E), the expansion graph associated with Y is
the directed multigraph GY = (V,EY), such that EY
has a directed edge (v, u) for each u ∈ X(v) and each
(v,X(v)) ∈ Y . Namely, EY is the union of all edge-
bundles in Y , with edges oriented away from the centers
of the edge-bundles.

Definition C.3. A set of edge-bundles Y in C is
(α,Z)-sparse if

• The edge-bundles in Y are edge disjoint.

• Each edge-bundle (v,X(v)) ∈ Y has at least Z
edges.

• For each vertex v, its in-degree in the associated
expansion graph GY is at most 1

α of its degree in
C.

Note if Y is (α,Z)-sparse, then any subset of Y is also
(α,Z)-sparse.

Edge-bundles will be used to construct source func-
tions for flow problems, and the motivation of (α,Z)-
sparse set of edge-bundles is that if we put supply on
the centers of the edge-bundles in the set, and push
out uniformly using the edges in the edge-bundles, the
amount of supply received by any node will not be too
large comparing to its degree.

More precisely, we call an initial spread-out of σ
supply over the edge-bundle (v,X(v)) as the operation
of starting with σ supply on v, and pushing σ

|X(v)| supply

along each edge in the edge-bundle to vertices in X(v).
Formally, given edge-bundle (v,X(v)) and σ, we define

∆(v,X(v)),σ(u) =
σ ·#(u,X(v))

|X(v)|

where #(u,X(v)) is the number of times u appears in
X(v). That is, ∆(v,X(v)),σ(u) is the supply ending at u
if we start with σ supply at the center v of the edge-
bundle (v,X(v)), and then push out all the σ supply at
v evenly along the edges in the edge-bundle. We extend
the definition to a set Y of edge-bundles:

∆Y,σ(u) =
∑

(v,X(v))∈Y

∆(v,X(v)),σ(u)

i.e. ∆Y,σ(u) is the amount of supply ending at u, if
we carry out simultaneously a initial spread-out of σ
supply over each edge-bundle in Y . It is clear that the
total amount of supply is |∆Y,σ(·)| = |Y |σ, where |Y | is
the number of edge-bundles in Y .

We will use the supply on vertices arising from ini-
tial spread-outs as the source function, and we consider
flow problems defined below.

Definition C.4. Given ∆ : V → Z≥0 and β, we define
a flow problem, Flow-Problem(∆, β), as follows. The
source function is given by ∆(·), all edges have capacity
β, and each vertex v is a sink of capacity d(v).

Essentially we are taking a two-phase approach to
spread supply from edge-bundle centers to the entire
graph. The first phase being the initial spread-outs,
where we have full control of the behavior, and the
second phase being the flow routing, so we can still take
advantage of the better conductance property of flow
algorithms.

The flow algorithm we use in Section 3.1 and
Section 3.2 will also allow us to associate each unit
of supply with its source vertex as specified by ∆(·).
When the ∆(·) we use arises from initial spread-outs
over edge-bundles, we can further decompose the flow
to associate each unit of supply with the original edge-
bundle it started at, i.e. before the initial spread-out.
Thus in step 3, we assume we know how much of the

1934 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

supply originating from each edge-bundle is routed to
sinks.

Algorithm C.1. Inner Procedure
Input: Trimmed component C with mC edges, and
s ∈ [s0,mC] such that C is s-strong.
Steps:

1. Choose a set Y of 5000mC

s edge-bundles that is

(γ, δ10)-sparse, and split Y into sets Y1, . . . , Y5000,
each with mC

s edge-bundles.

2. In parallel (step by step) for all i = 1, . . . , 5000,
solve Flow-Problem(∆Yi,2s,

s
1000δ) using Algo-

rithm 3.2 in Section 3.2, with inputs graph C,
source function ∆Yi,2s, τ = 0.1, U = 100 lnmG,
and h = 1000 lnmG ln lnmG. Terminate all
problems if the Flow-Problem of any i terminates
with a cut A as in case (2) of Lemma 3.2, stop
the inner procedure with A.

3. Otherwise, the Flow-Problems for all i end with
case (1) of Lemma 3.2, i.e. with at least 1.8m
supply routed to sinks. For each Flow-Problem
i, use the returned preflow fi to find a subset
Xi ⊆ Yi such that each edge-bundle in Xi has at
least 1.6s of its 2s initial supply routed to sinks.

4. For each i, compute gi(·) from fi(·) as follows:
First remove from each fi(v) the excess supply
on vertices (i.e. max(fi(v) − d(v), 0) supply on
v), as well as the supply not originating from
edge-bundles in Xi. Then scale the remaining
supply at every vertex by 1

200 .

5. Let ∆X(·) def
=
∑
i gi(·). Run Unit-Flow in Sec-

tion 3.1 with inputs G = C, source function ∆X ,
U = s

20δ , h = 1000 lnmG ln lnmG, and w = 25.
If the returned preflow routes at least d(v) supply
to every vertex v, stop and output that C is 0.6s-
strong. Otherwise, stop with the set A returned
by Unit-Flow, and output that A is 0.6s-strong.

We use the following definition to formally specify
whether an edge-bundle is “inside” or “outside” a small
cut.

Definition C.5. An edge-bundle (v,X(v)) is s-
captured if there is a cut S such that ∂(S) ≤ δ,
s0 ≤ vol(S) ≤ s, and |X(v)∩S| ≥ 3

4 |X(v)|, i.e. at least
3
4 of the edges are between v and vertices in S. We say
the edge-bundle is s-captured by S. (Note that v might
or might not belong to S.) A s-free edge-bundle is one
that is not s-captured.

In Step 1 of the inner procedure, we pick a large

set Y of edge-bundles that is (γ, δ10)-sparse. This step
is valid as we have the folloing lemma.

Lemma C.1. For s0 ≥ 1000γδ, a trimmed component
C = (V,E) with m = |E|, and any m ≥ s ≥ s0, we can
construct a set of 5000m

s edge-bundles that is (γ, δ10)-

sparse. The construction takes O(mδγs).

Proof. Let Z = δ
10 , in our construction, we say a super-

vertex is live if it has at least γZ edges to live neighbors,
and a regular vertex is live if it has at least Z edges to
live neighbors. Vertices are dead if not live. We will
implicitly consider a graph C ′ on live vertices. As C
being a trimmed component, we know at the start all
regular vertices have degree at least 4Z, and all super-
vertices have degree at least 4γZ, so we can make all
vertices live at the start, and C ′ = C. As δ � γ in our

setting, for simplicity we assume integrality of dC′ (v)
γ for

any live vertex v, as dC′(v) ≥ Z = δ
10 .

Now we describe how we construct the set of edge-
bundles Y as follows:

1. Choose an arbitrary live super-vertex, if no live
super-vertex exists, choose a live regular vertex.
Call the chosen vertex v.

2. Construct an edge-bundle centered at v by picking
Z incident edges of v in C ′, subject to the con-
straint that for each live neighbor u of v, we pick at

most min(dC′(v, u), dC′ (u)
γ) parallel edges between

u and v, where dC′(v, u) is the number of edges be-
tween v and u in C ′. Add the edge-bundle to Y .

3. Remove edges from C ′ as follows

(a) For each edge {v, u} added to the edge-bundle
above, remove that edge and an additional γ−1
incident edges of u from C ′.

(b) Recursively remove from C ′ the dead vertices
and all their incident edges.

4. Repeat the process from Step 1 until we have 5000m
s

edge-bundles in Y .

First we show that Step 2 is always feasible, i.e. we can
obtain such an edge-bundle with a live vertex v. As all
vertices in C ′ are live, if v is a super-vertex, the number
of edges we can pick is∑
u

min(dC′(v, u),
dC′(u)

γ
) ≥

∑
u

dC′(v, u)

γ
≥ dC′(v)

γ
≥ Z

If v is a regular vertex, C ′ must have no super-vertex
at that point, so there are no parallel edges in C ′. In

1935 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

this case, we can add any incident edge (v, u) to the
edge-bundle of v, and v has at least Z incident edges in
C ′.

The condition we enforce in Step 2 guarantees that
we can always carry out Step 3(a), i.e. there will be
enough edges to remove. If we have added k edge-
bundles to Y , the total number of edges we removed
in Step 3(a) is kZγ. To bound the number of edges
removed in Step 3(b), assume that every removal in
Step 2 and Step 3(a) places one token on the other
endpoint of the removed edge. Thus, a total of kZγ
tokens are placed on nodes. We will show that we can
place one token on each edge removed during Step 3(b),
which bounds the number of edges removed in Step 3(b)
by kZγ. Whenever a dead vertex v is removed, it places
one token on each removed adjacent edge and it gives
one token to the other endpoints of this edge. It remains
to show that v has a sufficient number of tokens to do
so. We show this by showing by induction the more
general claim that at each point in time the number of
tokens placed on a vertex correponds to the number of
edges the vertex has already lost. This then guarantees
that each dead vertex that is removed has a sufficient
number of tokens to give to its removed edges and its
neighbors, as such a vertex has lost at least 3/4-th of
its adjacent edges. The claim certainly holds before and
when the first dead vertex is removed as it received a
token for all its previously removed edges. Next consider
the removal of the i-th dead vertex v and assume by
induction that right before the removal v has at least
3dC(v)/4 many tokens. As v has lost at least 3/4-th
of its edges, the removal of v removes at most dC(v)/4
many edges. We use dC(v)/4 many of v’s tokens and
give them to the removed edges and another dC(v)/4
many tokens and give them to the other endpoints of the
removed edges. Thus, the induction invariant also holds
after the removal of the i-th dead vertex. This bounds
the total number of edge removed in Step 3(b) by the
total number of edges removed in Step 2 and 3(a), and
thus after adding k edge-bundles to Y , we have removed
2kZγ edges from C ′.

As long as C ′ is not empty, it guarantees a live
vertex, and thus an edge-bundle to add. We showed
that the total number of edges removed from C ′ after
constructing k edge-bundles is 2kZγ, thus as long as
2kZγ ≤ m, we must have edges remaining in C ′. This
implies that we can have at least m

Zγ ≥
5m
δγ edge-bundles,

so as long as s ≥ s0 ≥ 1000δγ, we can have 5000m
s edge-

bundles.
The set of edge-bundles is clearly (γ, δ10)-sparse by

our construction as for each edge that we added to
an edge-bundle, and that will become an in-edge for
a vertex v we removed γ − 1 edges incident to v. As

to the runtime, since we implicitly keep C ′, the work
is linear in the total number of edges removed from C,
which is 2Zγ per edge-bundle, thus O(mδγs) in total.

First we show that if the procedure terminates at Step 2,
we get a cut as specified in case (1) of Theorem 5.1.

Lemma C.2. If the inner procedure stops at
Step 2, we have a set A with vol(A) ≤ m,

and Φ(A) ≤ (logm+1−dlog vol(A)e)
20 logmG

in time

O(vol(A) ln m

vol(A)
lnmG ln ln2mG).

Proof. If the first i that the excess scaling flow algorithm
terminates with case (2) of Lemma 3.2, let A be the
smaller side of the cut returned. We know A has the
desired conductance, as |∆Yi,2s(·)| = m

s · 2s = 2m,
h = 1000 lnmG ln lnmG and U = 100 lnmG. As to
the runtime, since we run all O(1) flow problems in
parallel, the time we spend before we terminate with
A is O(vol(A) ln m

vol(A)
lnmG ln ln2mG) by Lemma 3.2.

Furthermore, Lemma 3.2 guarantees that vol(A) is

Ω(m
F lnm ln lnm), where F = maxv

∆Yi,2s
(v)

2d(v) .

We now upper-bound the value of F in the Flow-
Problems associated with the Yi’s. Since each Yi is
(γ, δ10)-sparse, we know ∆Yi,2s(v) ≤ 2s

δ/10
d(v)
γ for all v

by Definition C.3 and the construction of ∆Yi,2s from
initial spread-outs. Thus F ≤ 10s

δγ , which implies

vol(A) is Ω(mδγ
s lnm ln lnm). To find Y in the first step

of the inner procedure, we spend time O(mδγs), which
is O(vol(A) lnm ln lnm). Thus the total runtime is
O(vol(A) ln m

vol(A)
lnmG ln ln2mG) if the inner proce-

dure ends in Step 2.

Now we formalize the intuition that if the source
function has large enough initial source supply trapped
inside the small cut, we get a very infeasible flow
problem.

Lemma C.3. Given an s-captured edge-bundle
(v,X(v)), we can send at most 1.6s supply to sinks in
Flow-Problem(∆(v,X(v)),2s,

s
1000δ).

Proof. The flow problem we consider is with source
function resulting from an initial spread-out of 2s supply
over an edge-bundle (v,X(v)), which is s-captured by
some set S. We know at least 3

4 of the edges go to
vertices in S, so after the initial spread-out, the total
source supply at vertices outside S is at most s

2 . As
vertices in S have total sink capacity vol(S), which is
at most s, the total amount of supply that can be routed
to sinks in S is at most s. Furthermore, at most s

1000δ δ
supply can be pushed out of S, since the cut has size
at most δ, and edges have capacity s

1000δ . Even if all

1936 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the s
2 + s

1000 ≤ 0.6s supply not in S is routed to sinks
eventually, we have at most 1.6s supply routed to sinks
in total.

Given the above lemma, if the Flow-Problems asso-
ciated with all Yi’s successfully route most of the supply
to sinks, we know many of the edge-bundles we start
with are not s-captured.

Lemma C.4. If γ > 107 lnmG, Step 3 of inner proce-
dure will have at least m

10s edge-bundles in each Xi, and
all the edge-bundles in Xi are s-free.

Proof. Lemma C.3 states that if an edge-bundle is s-
captured, after an initial spread-out of 2s supply over
the edge-bundle, at most 1.6s of the 2s supply can be
subsequently routed to sinks, as long as the flow respects
the edge capacity of s

1000δ on each edge. By Lemma 3.2,
we know the edge capacity used in the excess scaling
flow algorithm is 200F lnmG, where by our calculation
in Lemma C.2 we have F ≤ 10s

δγ . Thus the preflow fi

respects the edge capacity of 2000s lnmG

δγ , which is less

than s
1000δ when γ > 107 lnmG. By Lemma C.3, any s-

captured edge-bundle in Yi has at most 1.6s of its initial
supply routed to sinks, so we know all edge-bundles in
Xi are s-free.

To bound the size ofXi, note that we have 2s supply
starting with each of the m

s edge-bundles, thus if less
than m

10s of them have more than 1.6s rounted to sinks,
we can have at most m

10s2s+ 9m
10s1.6s < 1.8m total supply

routed to sinks. Since at least 1.8m supply is routed to
sinks, we must have at least m

10s edge-bundles in each
Xi.

If we get to Step 3 of the inner procedure, we have spent
O(mh) on all the flow problems in the earlier step, so
we need to make progress by certifying that a subset
of volume Ω(m) is 0.6s-strong. We now formalize the
strategy we outlined in the second half of Section 5.

Intuitively, we want to continue with the pre-flows
we have from Step 2, since we know from these pre-
flows that we can spread out the supply of all edge-
bundles in X. However, if we simply start from scratch
on edge-bundles in X, we may end up with some small
cut, because flow routing is not a linear operator. The
procedure we carry out in Step 4 is mainly to get around
the non-linearity of flow routing, so we can essentially
keep the work done in the earlier step on spreading out
the supply of edge-bundles in X.

In Step 4, we get preflow gi from the preflow fi
for each i, and the union

∑
i gi is also a preflow.

This preflow must be source-feasible with respect to a
implicit source function (i.e. if we reverse the preflow∑
i gi) which we call ∆0 and that we only use for the

analysis and do not need to compute. It is different from
the ∆X in Step 5: If we start with source function ∆0,
and route according to

∑
i gi, we would have ∆X(v)

supply ending at v. Note in the actual algorithm,
we only need to compute gi’s as the supply ending at
vertices, i.e. gi(v)’s, but not the actual routing, i.e.
gi(u, v)’s, as long as we know there is a valid routing
that ends with the gi(v)’s.

Lemma C.5. 50m ≥ |∆0(·)| = |∆X(·)| ≥ 4m.

Proof. By construction ∆0(·) is the source function of
a preflow, and ∆X(·) is the supply ending at vertices
after the preflow. Thus |∆0(·)| = |∆X(·)|.

In Step 4, the amount of supply that gi keeps from
fi is 1

200 fraction of the non-excess supply originating
from any edge-bundle in X = ∪5000

i=1 Xi. As any edge-
bundle in X has at least 1.6s supply routed to sinks,
and we have at least 5000m

10s edge-bundles in X by
Lemma C.4, in total we keep at least 1.6s

200
5000m

10s = 4m
supply. By construction, ∆X has all this supply, i.e.,
|∆X(·)| ≥ 4m.

The upperbound of 50m is because each gi has at
most 2m

200 total supply by scaling fi, and the 5000 groups
in total make it at most 50m total supply in ∆X(·).

Now we define a flow problem Π, where the source
function is ∆0, each vertex v is a sink of capacity d(v),
and edges have capacity U = s

10δ . We first analyse Π
and then use it to analyze Step 5 in the subsequent
lemma.

Lemma C.6. For any feasible preflow of Π, the set B
of vertices with their sink capacities saturated, is 0.6s-
strong.

Proof. Consider any cut S such that ∂(S) ≤ δ, s0 ≤
vol(S) ≤ s. We will bound the total amount of supply
that can end in S for any feasible preflow of Π.

We first look at the amount of supply that starts in
S. The preflow fi starts with source function ∆Yi,2s,
so if we examine our construction of gi from fi, we
can mimic the changes on ∆Yi,2s to obtain the source
function of gi. Thus, the source function ∆0 can be
obtained equivalently as follows: (i) We start with 2s

200
supply (corresponding to the scaling) at the center of
each edge-bundle in X (corresponding to only keeping
supply orginating from edge-bundles in X); (ii) carry
out the initial spread-outs; (iii) and then remove some
supply (corresponding to the removal of excess supply
in fi(·)). Then it is clear we can bound the amount of
supply that ∆0 has in S by the amount of supply that
would have been in S without the Step (iii).

Since all edge-bundles in X are s-free, if any edge-
bundle has its center v in S, at least 1

4 of its δ
10 edges

1937 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

cross (S, S̄). As the cut-size is δ, among all edge-bundles
in X, at most 40 of them have their centers in S, which
means at most 2s

200 · 40 = 0.4s supply can be in S before

all the initial spread-outs. Since X is a subset of (γ, δ10)-

sparse set Y , X is also (γ, δ10)-sparse. Thus the initial

spread-outs push at most 2s
200/(

δ
10) = s

10δ supply along
each edge. Thus, as the cut-size of S is δ, at most an
additional s

10δ · δ = s
10 supply can end in S after the

initial spread-outs. Thus in total, the source function
∆0 can have at most 0.4s+ 0.1s = 0.5s supply starting
in S.

Subsequently any valid preflow pushes at most
s

10δ supply along each edge due to the edge capacity
constraints in Π, so an additional s

10 supply can be
routed into S by the preflow. In total that means at
most 0.6s supply can end in any such set S.

Now consider B, the set of all v that receives at
least d(v) supply. We must have vol(B ∩ S) ≤ 0.6s for
any set S such that ∂(S) ≤ δ, s0 ≤ vol(S) ≤ s. This
is enough to certify that B is 0.6s-strong, since B is
already s-strong as a subcomponent of C.

This is equivalent to the definition of B being 0.6s-
strong, as we are working inside a connected component
C of H, so ivolH(B ∩ S,B) ≤ volC(B ∩ S).

We now finish the proof of Theorem 5.1 by showing
the following lemma.

Lemma C.7. Step 5 will in time O(m lnmG ln lnmG)
either certify that the entire component C is 0.6s-strong,
i.e. Case (3) of Theorem 5.1, or find a subset A with

Φ(A) ≤ (logm+ 1− dmin(log vol(A), log vol(V \A))e)
20 logmG

.

In the latter case A has volume Ω(m), and is certified
to be 0.6s-strong, i.e., Case (2) of Theorem 5.1.

Proof. In Step 5 of the inner procedure we run Unit-
Flow of Section 3.1 with inputs G = C, source function
∆X , U = s

20δ , h = 1000 lnmG ln lnmG, and w = 25.
Note that it fulfills the assumptions on inputs of Unit-
Flow in Theorem 3.1 as h � lnm, w ≥ 2 and, by the
construction of ∆X , which removes all excess supply

from all preflows fi, it holds that ∆X(v) ≤ d(v)
200 5000 =

25d(v) = wd(v) for all v. Let f be the pre-flow returned
by the Unit-Flow invocation.

Recall
∑
i gi is source-feasible with respect to the

source function ∆0(·), and by routing according to∑
i gi, the supply ending at each vertex v is ∆X(v).

Essentially f resumes the routing by having ∆X(·) as
source-function, so we can piece

∑
i gi and f together,

and obtain a preflow f∗ that is source-feasible with
respect to ∆0(·).

To show f∗ is a feasible preflow for the flow problem
Π, we need to further show f∗ respects the s

10δ edge
capacity of Π. From Step 2 of the inner procedure, we
have each preflow fi using at most s

1000δ edge capacity,
thus by construction

∑
i gi uses edge capacity of at most

s
1000δ

5000
200 = s

40δ . As in the Unit-Flow invocation we use
edge capacity U = s

20δ , the preflow f∗, as a union of∑
i gi and f , routes at most 3s

40δ supply on each edge,
and is thus a feasible preflow of Π.

As f∗ is a valid preflow of Π, we know from
Lemma C.6 the set B, containing all vertices v receiving
at least d(v) supply, is 0.6s-strong, and so is any subset
of B. Since f∗ appends f after

∑
i gi, the supply ending

at vertices is given by f(·), so B = {v|f(v) ≥ d(v)}.
In Lemma C.5 we showed that the total supply

|∆X(·)| for Step 5 is at least 4m. As all the vertices
can absorb only 2m supply in total, our invocation of
Unit-Flow won’t end with case (1) of Theorem 3.1. If f
returned by Unit-Flow fulfills Case (2) of Theorem 3.1,
i.e. all vertices get at least d(v) supply, we are guaran-
teed that C is 0.6s-strong.

On the other hand if Unit-Flow returns a set A
as in Case (4) of Theorem 3.1, we show (a) Φ(A) ≤
(logm+1−dmin(log vol(A),log vol(V \A))e)

20 logmG
, (b) A is certified

to be 0.6s-strong, and (c) vol(A) is Ω(m). This
implies that A satisfies the conditions of Case (2) of
Theorem 5.1.

(a) The property of conductance follows directly
from Case (4) of Theorem 3.1: As we use h =
1000 lnmG ln lnmG, w = 25, U = s

20δ ≥ s0
20δ ≥

γ ≥ 107 lnmG, Case (4) gives the desired conductance
bound. (b) We know any vertex v ∈ A receives at
least d(v) supply, so A ⊆ B is 0.6s-strong. (c) As
any vertex v /∈ A receives at most d(v) supply, any
vertex v ∈ A receives at most 50d(v) supply, and
since there is at least 4m total supply, we must have
50vol(A) + (2m − vol(A)) ≥ 4m, which implies that
vol(A) ≥ 2

49m = Ω(m). Thus A satisfies all the condi-
tions and the proof of the lemma is complete.

The runtime of case (2) and (3) of Theorem 5.1 is
O(m lnmG ln lnmG), as that’s the total runnning time
of the steps involved.

1938 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

11
/1

9/
19

 to
 1

31
.1

30
.1

17
.2

15
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

