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Abstract

The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coor-
dination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with
the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a
centralized system design. However, the PoA relies on strong assumptions about agents’ rational-
ity (e.g., resources and information) and interactions, whereas in many distributed systems agents
interact locally with bounded resources. They do so repeatedly over time (in contrast to “one-shot
games”), and their strategies may evolve.

Using a more realistic evolutionary game model, this paper introduces a realized evolutionary
Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic dis-
tributed systems with multiple equilibria, based on local interactions of simple memoryless agents.

Considering a fundamental game related to virus propagation on networks, we present analytical
bounds on the ePoA in basic network topologies and for different strategy update dynamics. In
particular, deriving stationary distributions of the stochastic evolutionary process, we find that the
Nash equilibria are not always the most abundant states, and that different processes can feature
significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA
studied traditionally in the literature.

1 Introduction

The performance and efficiency of large distributed systems, such as open peer-to-peer networks which
any user can join, often critically depend on cooperation and can suffer if users behave selfishly, e.g.:
consume but not contribute resources [29], choose routes [40] and neighbors [9] to optimize their per-
sonal benefits, etc. Non-cooperative behavior can also affect security. For example, if security mecha-
nisms such as the installation of anti-virus software are employed just for self-protection, a virus may
spread further than in cooperative environments [10], while at the same time increasing global security
investment costs [2].
The Price of Anarchy (PoA) [27]] is a game-theoretic concept which allows to assess to which extent a
distributed system is affected negatively by non-cooperative behavior. Essentially, the PoA compares the
optimal social welfare resp. cost to the welfare resp. cost in the worst Nash equilibrium: an equilibrium in
which no selfish agent, henceforth called player, has an incentive to change its behavior. If a distributed
system has a large PoA, this means that the performance resp. cost can be far from optimal: the system
may require a redesign or at least strong incentive mechanisms.
However, Nash equilibria are often not a good model for real-world distributed systems, for several
reasons. In particular:
1. Dynamic character: Distributed systems typically are not based on “one-shot games” but rely on
dynamic interactions over time: e.g., peers (i.e., players) in peer-to-peer systems such as BitTor-
rent interact repeatedly, for example using tit-for-tat strategies, leading to repeated games [49].

2. Local information: Players in distributed systems often only have local information about the
network, based on interactions (e.g., with neighboring players). Obtaining global information is
typically infeasible, especially in large-scale distributed systems.



3. Bounded resources: Players typically also have only limited resources, e.g., in terms of memory

or in terms of the complexity of the kind of algorithms they can execute.

This paper is motivated by the desire to extend the concept of price of anarchy to account for these
important characteristics of distributed systems. In particular, we aim to port the PoA to evolutionary
games and local information scenarios: games with simple, memoryless players which interact repeat-
edly and locally, and can update their strategies over time. This is timely, and the research community is
currently discussing alternatives to Nash equilibria such as Bayes-Nash equilibria [41] for games with
incomplete information; at the same time, it is believed that such extensions are complex due to having
to take into account players’ belief systems, amongst other issues, and thus introduce major research
challenges [39].

In fact, analyzing equilibrium selection in stochastic processes as described by evolutionary games
is already challenging in 2-player games in a population with m pure strategies [13, [12]. Games on
graphs, while also highly useful in verification and synthesis of (possibly distributed [38]) reactive
systems [6,32]], are often particularly difficult, also when considering evolutionary games [1], due to the
additional dependencies on the possible interactions.

1.1 Our contributions

This paper extends the notion of price of anarchy to evolutionary games, introducing the evolutionary
Price of Anarchy (ePoA). In particular, we are interested in the equilibrium behavior of simple memo-
ryless players, which repeatedly and locally interact on a graph. The ePoA is essentially a framework
and can be used to study different evolutionary dynamics (the parameters to our framework) and ways
in which players evolve their strategies.

To shed light on how the evolutionary perspective can affect the conclusion on the possible impact of
selfish behavior in distributed systems, we consider a concrete case study: the well-known virus propa-
gation game introduced by Aspnes et al. [2]]. We present an analysis of the evolutionary dynamics of this
game for the three fundamental dynamic models (related to genetic evolution and imitation dynamics)
and different basic network topologies (cliques, stars, and beyond). Interestingly, while the analysis of
such evolutionary games is challenging in general, we are able to provide an exact characterization of
the long-run frequencies of configurations for these scenarios.

We make several interesting observations. We find that the evolutionary dynamics of this game give
rise to a rich variety of behaviors. In particular, the ePoA can be significantly worse than the classic
PoA, for reasonable (i.e. not too high) mutation rates. We also find that Nash equilibria are not always
the most frequent, i.e., abundant, states, and different processes can feature significant off-equilibrium
behavior.

Our analytical results are complemented with simulations, also of more complicated topologies.

1.2 Organization

The remainder of this paper is organized as follows. Section [2]introduces preliminaries. We present the
concept of evolutionary price of anarchy in Section |3 and study its application in the virus inoculation
game in Section[d] Section [5|reports on simulation results on more complex topologies. After reviewing
related work in Section [6 we conclude our work in Section [7] To improve readability, some techni-
cal details only appear in the Appendix. More detailed numerical results and our implementation are
available upon request.

2 Preliminaries

Before launching into a full description and analysis of our model, we first revisit the virus inocula-
tion game which will serve us as a case study in this paper. We will also give a short introduction to
evolutionary dynamics, evolutionary games and evolutionary graph theory.



2.1 The virus inoculation game

In the classic one-shot virus inoculation game [2], nodes must choose between installing anti-virus
software (inoculating themselves) at a cost, or risk infection by a virus that spreads from a random
location and can reach a node if there is a path of not inoculated nodes in between. The network is
modeled by an undirected graph G = (V, E)) with N nodes. Nodes correspond to players in the game.
Every node is equipped with a strategy a; that denotes its propensity to inoculate itself. If a; is 0 or 1,
the strategy is called pure. Every node takes an action according to its strategy; the overall configuration
of nodes is reflected in the strategy profile @ € [0, 1]". Inoculation costs V. After everyone has made
their choice, the adversary picks a random node as the starting point of infection. The virus propagates
through the network, infecting all non-inoculated nodes that have a direct path to an infected node. That
is, propagation happens on an “attack graph” (Gz, where inoculated nodes have been removed, and only
insecure nodes remain. Being infected then comes with a cost I > V. Inoculation prevents infection as
well as further virus transmission by the inoculated node.
The cost of a mixed strategy for a node ¢ in this model is therefore

cost;(@) = a;V + (1 — a;)I - pi(a), (1)

where p;(@) is the probability of node i being infected given the strategy profile @ and the condition
that ¢ did not inoculate. The goal of each player is to minimize its own cost, while it does not take the
resulting social cost to the system in total into account. This social cost is simply

N—-1
cost(@) = Z cost;(a). (2)
=0

Aspnes et al. then showed the following characterization of pure equilibria (for the proof and the
extension to mixed equilibria, cf. [2]):

Corollary 1 (Characterization of pure equilibria). Fix V and I, and let the threshold bet = VN/I. A
strategy profile @ is a pure Nash equilibrium if and only if:

(a) Every component in the attack graph Gz has at most size t.

(b) Inserting any secure node j and its edges into Gz yields a component of size at least t.

2.2 Evolutionary dynamics and games

Game theory considers individuals that consciously aim to reach the best outcome for them in a strategic
decision situation. Its classic framework, using concepts like Nash equilibria usually makes some key
assumptions about the players’ rationality, their beliefs and cognitive abilities. In contrast, evolutionary
game theory, as a generic approach to evolutionary dynamics [42] 43| 20], considers a population of
players with bounded rationality instead. Each player adopts a strategy to interact with other population
members in a game. The players’ payoffs from these interactions — which depend on the actions of
the co-players and therefore on the abundance of different strategies — are considered to be their evolu-
tionary fitness. Success in the game is translated into reproductive success: good strategies reproduce
faster, whereas disadvantageous strategies go extinct. In a nutshell, evolutionary game theory describes
dynamics that are dependent on the frequency of different strategies in a population.

The evolutionary dynamics depends on the setup and structure of the population, the underlying
game, and the way strategies spread. There is a distinction to be made between deterministic dynamics
in the limit of infinite populations [19]], described by differential equations ([20]), and stochastic dynam-
ics in the case of finite populations [22]] that take into account the intrinsic randomness of evolutionary
processes. Under appropriate conditions, stochastic models however approach their deterministic coun-
terparts as the population size becomes large [45]].

Furthermore, the way strategies spread crucially depends on the way members of the population are
connected to each other. Evolutionary graph theory considers different population structures and how



the dynamics are changed by changing the underlying graph [28]. Vertices now represent the members
of the population, and edges the spatial/social connections between them. This is a natural model for
multi-player systems, as interactions then happen only between neighbors. The stochastic process is
described by a Markov chain on the states of the graph. However, analytical results on these properties
in games on arbitrary graphs are difficult to obtain in general; many of the fundamental underlying
problems are computationally hard (e.g., [21]).

3 The Evolutionary Price of Anarchy

It may not be realistic to assume that nodes in a game such as the virus game in [2] will have perfect
information in the first place. In large networks, it is unlikely that nodes separated by many neigh-
bors would know G and each others’ decision and would then optimally react to this large amount of
information. Rather, it is more natural to think that nodes only have /local information. They can see
their neighbors’ most recent choices and react to them only when updating their strategy, while being
unaware of the choices of nodes with a higher degree of separation. To model this, we first introduce an
evolutionary virus inoculation game and three different kinds of stochastic evolutionary dynamics. We
then define a general notion of the evolutionary price of anarchy.

3.1 The evolutionary virus inoculation game

We consider an evolutionary process on a static graph G = (V, E) with V' the set of vertices (players)
and E the set of edges. The N = |V vertices are occupied by players in the game, and we say that
two nodes/players are neighbors if there is an edge connecting them. One iteration of the evolutionary
process consists of three stages:

1. Decision making. All players make a decision whether to inoculate themselves against possible
virus infections in the network. In case they choose to do so, they pay a cost V, and pay nothing
otherwise. Players’ propensity to inoculate is encoded in their strategy a;.

2. Virus propagation. After everyone has concurrently made a decision, expected costs of the nodes
when the system is attacked by a virus are calculated. To do so, we use a process with n steps:
in each step, the virus starts at a different node of the graph and spreads throughout the network.
Inoculated players are unaffected by the virus and cannot transmit it to their neighbors, while
unprotected players pay a cost once they become infected, and spread the virus to their other
insecure neighbors. Uninfected players who are not inoculated do not pay anything. We will use
the term “realized cost vector” to describe the vector ¢t = [I,V, L = 0], where infected nodes
pay I, inoculated nodes pay V, and insecure but uninfected nodes pay nothing. Once the virus
has swept over the system, infecting unprotected players and their unprotected neighbors, costs
are recorded, infection status is reset, and the next virus starts at the next node, until every node
has served as a starting point. Alternatively, the process can be randomized by letting sufficiently
many viruses start at random nodes. Once this has happened, cumulative costs are averaged, giving
expected negative payoffs for the current strategy configuration, and the next stage commences.

3. Evolution of strategies. After receiving their expected negative payoff, players can assess the
damage done and subsequently change their strategy based on comparisons with their neighbors’
payoffs, before they again decide which action to take, and the next game begins. It is important
to realize that this updating process is based on purely local information: nodes only need to
know their neighbors’ payoffs in order to make their decisions. This means that also the outcomes
that can be realized may differ from the Nash equilibria that are found in the perfect information
model of Aspnes et al. We consider dynamics that can take both selection and mutation into
account: strategies typically evolve according to their (frequency-dependent) fitness, but they can
also randomly change with a small probability p, which we will refer to as the mutation rate.
This prevents absorbing states in the process and lets us compute a unique stationary distribution
that gives the long-term frequencies of system configurations. In the limiting case of u — 0, the



Algorithm 1 Moran Death-Birth process

1: Global Parameters: N, k > Number of players, maximum updates in one generation

2: time < 0

3: while time | k£ do

4: if DrawRandomNumber(0,1) < u then

5: mNode < PickRandomNode

6: mN ode.strategy < DrawRandomNumber(0, 1)

7: else

8: pl <+ PickRandomNode > Choose a node u.a.r.

9: p2 < ChooseWeightedNeighbor(pl) > Choose one of p1’s neighbors, weighted by payoff
10: pl.strategy <— p2.strategy > Update strategy of pl
11: end if
12: time < time+1

13: end while

Algorithm 2 Moran Birth-Death process

1: Global Parameters: N, k > Number of players, maximum updates in one generation
2: time < 0

3: while time | k£ do

4: if DrawRandomNumber(0,1) < p then

5: mNode < PickRandomNode

6: mN ode.strategy <— DrawRandomNumber(0, 1)

7: else

8: pl < ChooseWeightedNode > Choose a node with probability proportional to its payoff
9: p2 < PickRandomNeighbor(p1) > Choose one of pl’s neighbors u.a.r.
10: p2.strategy < pl.strategy > Update strategy of p2
11: end if
12: time <— time+1

13: end while

process always terminates and reaches a state where either all nodes are inoculated, or none are.

We differentiate here between two kinds of well known memoryless evolutionary dynamics, but in
general we can configure our framework for general monotone imitation dynamics as described in [12]:

(a)

(b)

Genetic evolution: On one hand, we consider genetic evolution as described by the Moran pro-
cess. In this context, we analyze two different variants: a death-birth (DB) and birth-death (BD)
scenario, respectively (cf [44] and Algs.[T]and 2)). In the DB scenario, a node is picked to die in
each time step of the process. The vacancy is then filled by a copy of one of its neighbors, with
the probability of one node being the replacement in some (possibly non-linear) way proportional
to its payoff, such that nodes with higher payoffs (or rather, fewer losses) have a higher chance
of being chosen as the replacement. In the BD scenario, meanwhile, first a node is picked for
reproduction in each round with probability proportional to its payoff. This node subsequently
chooses one of its neighbors uniformly at random and replaces it with a copy of itself. After every
update, payoffs are recomputed. To visualize an example of such a process, we illustrate the DB
scenario in Fig.

Cultural evolution: On the other hand, we also consider ”cultural” evolution through imitation
dynamics in the form of the pairwise comparison process ([46] and Alg.[3). Here, a focal player
picks a neighboring “role model” node uniformly at random in every time step, observes its payoff,

and switches to its strategy with probability
0= I fe B ©

where 7’ is the payoff of the neighbor and 7 the node’s own payoff. This function is parameterized



Algorithm 3 Pairwise comparison: Imitation process
1: Global Parameters: N, k, 5 > Number of players, maximum updates in one generation, selection

strength
2: time < 0
3: while time ; k£ do
4: if DrawRandomNumber(0,1) < p then
5: mNode < PickRandomNode
6: mNode.strategy <— DrawRandomNumber(0, 1)
7: else
8: pl < PickRandomNode > Choose “learner” node uniformly at random
9: p2 + PickRandomNeighbor(p1) > Choose “role model” node u.a.r.
10: 7+ GetPayoff(pl)
11: 7!+ GetPayoff(p2)
12: 0= m
13: if DrawRandomNumber(0,1) < o then > Update strategy of pl to p2’s with prob. o
14: pl.strategy < p2.strategy
15: else
16: pl.strategy <— pl.strategy
17: end if
18: end if
19: time < time+1

20: end while

by the selection strength 3 > 0, which is a measure for the noise in the update probability, and
with it, how much the payoff difference influences the dynamics. Thus, for 8 = 0, updating is
random with probability o = 1/2, whereas for 5 > 0, strategies with lower costs are preferred.
These processes are simulated until timeout: once there have been k update steps, we calculate the
average welfare of the population (which is the average sum of payoffs), as well as the average count of
how often the system visited the different states, and return.
With this dynamic game, we have a model that does not use the assumption of nodes having full
information or memory; at most, they need to compare their payoff with the payoffs of their neighbors.

3.2 The evolutionary price of anarchy

In the analysis of an evolutionary game, a most fundamental question of interest is to which distribution
different dynamics converge to, for various topologies and parameters. Such a stationary distribution
of the Markov chain underlying the evolutionary dynamics contains the long-run frequencies of states,
which correspond to the long-run probabilities of finding the system in the different states. Since we
obtain an ergodic process on the space of all possible population compositions (hereon called configu-
rations) by our elementary updating rules, this stationary distribution of inoculation states exists and is
unique. It is also called the selection-mutation equilibrium x of a given evolutionary process, and forms
the basis of further analysis. We note that it is the nonzero mutation rate & > 0 that provides ergodicity
— otherwise, the Markov chain would have absorbing states where all nodes are inoculated or none are.

We can subsequently find the average social cost S for any of the dynamics we use, either by aver-
aging over the total cost in each round (when the process is simulated), or multiplying x with the vector
R containing the cost of all possible configurations, such that

S=x-R=) =R, )

where R; = Zé\;l fr; , and 7%; is the average payoff of player j in configuration :. We measure the



Figure 1: We illustrate the evolutionary dynamics given by the Moran Death-Birth process. Step 1: The
nodes in the network shown use either Strategy 1 (white) or Strategy 2 (black). Step 2: One random
node — in our example, a black one — is picked for death (visualized by the grey dashed line). Step 3:
One of the nodes that neighbor the new vacancy is picked for reproduction, depending on its payoff.
Here, this is a white node. Step 4: The reproducing node has passed on its strategy, such that there is
one more white node on the graph.

efficiency of a process by comparing the average social cost S with the optimum 2. At this point, we
introduce the concept of the evolutionary price of anarchy ePoA as the ratio of the average social cost
(or payoffs) of a process against the social optimum. Similarly to the static PoA, we hence define, for a
particular evolutionary dynamics and assuming negative payoffs:

ePoA = S/Q. (5)

For positive payoffs, we define ePoA = Q/ S and note that in both cases, ePoA > 1, as the static
PoA. In general, this quantity gives an indication which processes are most conducive to spending large
fractions of time in configurations that minimize overall cost (or maximize positive payoffs). We also
note that in principle, the evolutionary PoA can be both smaller or larger than the static PoA.

Note that the concept of an evolutionary price of anarchy is neither bound to a particular game nor
a particular evolutionary dynamics: it can serve as a general framework for analyzing a rich variety of
dynamic games with arbitrary update dynamics.

4 Results and Analysis

In the following, we will consider pure strategies and the analysis of a setting with positive mutation
rate © > 0. We will first show how to exactly calculate the selection-mutation equilibrium x of the
evolutionary process for two fundamental graphs, and then use this to show how the ePoA can differ
from a static analysis.

4.1 Analytical results

For simple graphs and pure strategies, a; € {0, 1}, we can calculate the stationary distribution of the
underlying Markov chain under the different dynamics. We consider two instructive cases here (similar
cases have been studied also in [2]]), situated at the opposite ends of the spectrum: the clique (which
results in perfectly global information) and the star (which is fully local). In these cases, we find exact
results.

4.1.1 Clique

In a clique, the (IV + 1) states of the Markov chain are ¢ = 0, ..., N, denoting the number of currently
inoculated nodes. Here, the threshold for infection of an arbitrary insecure node is 1, as an infected
node automatically spreads the virus to all other not inoculated nodes. We use the entries of the cost
vector ct = [I,V, L = 0] as the realized negative payoffs of infected (), inoculated (V') and unaffected



(L = 0) nodes. For the expected payoffs frZX of nodes using strategy X, in the state ¢, with X either
C (a; = 1) or D (a; = 0), we then find the following simple expressions:

L=V (6)

and . Noi  N_i
v 7 — 1 —1
™= N + N N (7

Meanwhile, the expressions for the transition probabilities including mutation (that is, with a muta-
tion rate p > 0) are as follows (for a derivation of Moran process transition probabilities, cf. e.g.[44]):

N—-7 1

Piiy1= N M3 + (1 — p)piita (8
and .
1 1
Pii1 = ~Ha + (1 = p)pii—1 )

The terms p; ; generally depend on the dynamics being used. One caveat is that the virus inoculation
game leads to expected payoffs 7% < 0. To be able to plug these terms into the equations for the
Moran process probabilities, we use the standard assumption of an exponential fitness function (see [47]):
expected payoffs are mapped to a fitness with the function F'(z) = e*, such that the fitness becomes

fi = e, (10)

We subsequently set the parameter s = 1, as is common in the literature. This quantity is now always
positive, is larger for smaller costs (or equivalently, larger payoffs), and can be used in the standard
Moran probabilities (cf. [36]] and Eqns. in the Appendix).

Meanwhile, for the pairwise comparison — imitation dynamics, we can still use the payoffs them-
selves without transforming them, and get Eqns. [21]and 22] (see Appendix).

From these transition probabilities, we can calculate the stationary distribution of the process: it is
the normalized left eigenvector of the transition matrix, which is the tridiagonal matrix P, see Appendix
section [Al

The mutation-selection equilibrium is then the solution to

xP = x.

It gives the long-run frequencies of all possible states. These frequencies can also be obtained by simu-
lating the process for long enough and counting how often each state occurs.

To be able to compare the evolutionary price of anarchy with the static price of anarchy, we first
need to describe the Nash equilibria of the system. For the complete graph, by using Corollary 1.1, the
static analysis predicts one equivalence class of Nash equilibria, N/, where exactly N —¢t = N — VN/I
nodes are inoculated. We denote the efficiency of these equilibria as PoA, the static price of anarchy.

In order to calculate e PoA, we first calculate the average social cost S. We do so either by averaging
over the total cost in each round in our simulations, or taking S = xR (cf. Eq. . For the complete
graph, the vector R containing the total system cost in all possible configurations, with ¢ = 0, ..., N
inoculated nodes, has the components

N —1
N

We also know the cost of the optimum; it is attained in the state with ¢* = , which is

the number of inoculated nodes where R; = max; R; holds. The optimal cost is then 2 = *V +

WI . With this, we can use Eq. |5 to measure the efficiency of the different dynamics by finding

R; = ittt 4 (N — )7ty = iV + (N — i) I. (11)

N(2L-V)
2L

their corresponding evolutionary price of anarchy as S /2. We present our analysis below.
Using our evolutionary process, our findings can now be summarized in the following lemma:



Lemma 1. For a fixed cost vector ¢t = [V,I,0], large N Z 30, any reasonable mutation rates 0 <
w < 0.5, and intermediate to large selection strength 3 > 1 (for the pairwise comparison process),
we always recover the predicted equivalence class of Nash equilibria, N, as the most abundant state
in the selection-mutation equilibrium of both types of processes. That is, the process spends the largest
fraction of time in the Nash equilibria, where exactly t = V N /I nodes are inoculated.

We note that there is also substantial weight on neighboring states of the Nash equilibria (with ¢ &7,
where ¢ € {1,2,3,...}) with worse total welfare, due to the stochasticity of the process. However, the
average social cost S is not substantially different from the cost of the Nash equilibria, since the weight
on neighboring states is symmetrically distributed. The numerical results these insights are based on are
provided via Figs. 2] [7jand[8] as well as upon request in full.
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Figure 2: Stationary distribution for the pairwise comparison process on a clique, with N = 30, V/I =
1/2 and p = 0.001. We show the number of inoculated nodes (corresponding to the states of the Markov
chain) on the x-axis, and their weight in the invariant distribution on the y-axis. The Nash equilibrium,
with N — ¢ = 15 inoculated nodes, is the most abundant state, even though there is significant weight
on the neighboring states. The Moran processes lead to qualitatively similar results, but with a stronger
dependence on N.

What this means for the evolutionary price of anarchy is expressed in the following corollary.

Corollary 2 (Evolutionary Price of Anarchy for Cliques.). The evolutionary price of anarchy ePoAcjique
in a cliqgue with N nodes approaches the efficiency of the Nash equilibrium (the price of anarchy
PoAciigue), as p — 0 and N grows large, such that imy_,« |ePoAciique — PoAciique| = 0.

A straightforward argument shows why Lemma [I| and Corollary [2| hold. For the base case of the
unstructured population on a complete graph, the perfect information setting corresponds to the local
information setting, as each node only has distance 1 from every other node. Furthermore, the Markov
chain underlying the stochastic evolutionary process is ergodic by 1 > 0, such that there exists a station-
ary distribution and the process converges to it. This stationary distribution then places most weight on
the Nash equilibrium described in [2], as it is the configuration where nodes have no incentive to switch
their strategy, and are aware of this fact, just as in the static case. The stochastic noise becomes smaller
as the number of nodes grows larger (which inhibits the system spending too much time in the two ex-
tremal states of all nodes inoculated and all nodes insecure), and as the mutation rate becomes smaller
(which sharpens the peak of the distribution at the equilibrium). This lets us recover the equilibrium
results of [2].



4.1.2 Star graph

For star graphs K7 ny_1, we can also numerically compute the expected payoffs and the Markov chain
properties of the process. The 2N states in this case are of the form (¢,1), ¢ € {0,1}and ! € {0,..., N—
1}. The parameter ¢ denotes the inoculation state of the center node, whereas [ gives the number of
inoculated leaf nodes.

By using Corollary 1.1 again, we find two equivalence classes of Nash equilibria: class A7 has
N —t = N — |V N/I| inoculated leaf nodes (which in our notation is the state (0, N — t)), whereas N
contains the optimal equilibrium, which features the center as the only inoculated node (state (1,0)). We
will show that for this highly structured population, the outcome can be quite different from the predic-
tions of the static analysis of the one-shot game. Local evolutionary processes prevent the system from
spending too much time in either of the equilibria classes. We detail this in the following paragraphs.

To see this, we first compute the expected payoffs of leaf nodes (frg’(l, with X € {C,D}) and the

center node (frglem .,) in the configurations (t,1):

ﬁ-tél = ﬁ-éinte'r = V’ (12)
L0l A0 N —1 [ N —1
D =Center = 1t yL="J 1 (13)
and N -1 1 1
1) —
O Sy Iy S § 14
D A (14

For the Moran and pairwise comparison — imitation dynamics we derive probabilities pﬁ:? that

describe the transitions (k,n) — (m,o0) without mutation, again with fitness f;gl — ™% . The exact
expressions can be found in Section

We can now again get the transition matrix, with its entries Pl?l’l (Eqgns. in the Appendix), and

subsequently the selection-mutation equilibrium x of the process with its corresponding average system
cost.

Having calculated/simulated the stationary distribution, we observe the following (for results, see

Appendix):

e No matter the network size or the process, the Nash equilibria in N7, N> are not abundant states in
the stationary distribution, with up to a factor 10% in weight difference to the more frequent states.
We instead find a high abundance of costly non-equilibrium states X = {(0, N —¢ — )} for some
integers ¢t > ¢ > (. There is also substantial weight on the beneficial configurations with low cost
(1, N — t — i) for the same values of i.

e The equilibrium A7 = (0, N — t) is typically of far lower frequency than the non-equilibrium
states . But it still plays more of a role overall than the optimum O = N3 = (1,0), which is a rare
state at stationarity and almost never visited in the long run.

We will now argue why the process exhibits this off-equilibrium behavior. First of all, starting from

the above observations, it is straightforward to show why the optimum, that is, the state O = (1,0),
cannot be an abundant state in the mutation-selection equilibrium of a star graph.

Lemma 2 (The optimal Nash equilibrium is rare in the mutation-selection equilibrium.). Consider a
star graph, with fixed but arbitrary number of nodes N. For arbitrary mutation rates j. > 0, arbitrary
|V| < |I|, and any of the three evolutionary processes we consider, the optimal Nash equilibrium
O = (1,0) cannot be an abundant state in the mutation-selection equilibrium.

Proof. In fact, the equilibrium is not even reached if not for mutation. To see this, consider the states
a = (0,0) and b = (1,1), and suppose 1 = 0. While both these states only differ in one node’s strategy
from the Nash equilibrium, they cannot serve as starting points for a transition. State a is absorbing in
this scenario, as there is no inoculated node to pass on its strategy. Meanwhile, in the state b, the one
inoculated leaf node cannot change its strategy without the center node being not inoculated — the terms
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pl17}1_1 are always zero. This however leads to the opposite of the Nash equilibrium we are trying to
reach. Thus, only a nonzero mutation rate can provide access to this state. At the same time, it is clear
that the transitions from O do not need mutation to reach the neighboring states a and b, which leads to
a higher probability to leave the state than to reach it. This makes O unsustainable in the long run. [

The following lemma states the corresponding result for the other Nash equilibria.

Lemma 3 (The Nash equilibria from the equivalence class A cannot form an abundant state in the
mutation-selection equilibrium.). Consider a star graph, with fixed but arbitrary number of nodes N.
For arbitrary mutation rates i, arbitrary |V| < |I|, and any of the three evolutionary processes we
consider, the Nash equilibria of the form (0, N —t) cannot be an abundant state in the mutation-selection
equilibrium. Instead, pairs of states of the form (0, N —t — i) and (1, N —t — i), i € Z with the set
T C Ng depending on N, V, I, i and the evolutionary dynamics used, act as sinks of the process.

Proof. We use three facts arising from the transition matrix of the process. We argue here for the case
of the pairwise comparison process, as it exhibits behavior that is less dependent on network size NV, but
argumentation for the Moran BD scenario is very similar:

1. As the distance ¢ increases, the probabilities u; ;1) and 7; decrease for ¢ > 1, as it becomes more
unlikely for an insecure node to pass on its strategy to a secure one. However, they do not decrease
at the same rate. Rather, their ratio increases exponentially in ¢, such that at some point it is far
more likely for the center to become inoculated than for a leaf to switch to insecure. The ratio is

Bi(=1)
N
= (15)

<
!
@

(1)

Itis 1 for the critical value of ¢ =7,
2. As i increases, the probabilities ¢(; ;1) and s; decrease at a constant rate, as it becomes overall
less likely that an inoculated node will be chosen to pass on its strategy. This ratio is

B(I-NV)
e N

= (16)
q(i,i-1) N -1

Si

We see that s; is always larger than g(; ;_1), as it is always more likely for one of the leaf nodes to
get picked for reproduction if the center is inoculated.
3. As i increases, the difference p(; ;1) — q(;,4+1) decreases and eventually changes sign. We find
the ratios
BI_ gy . .

_ Bil

qGi-1) (% +1) (—il - NV + 1)

These ratios change from u/q > 1to u/q < 1 at a particular value of i = igzt, which is the
break-even point where moving forward in the lower level of the Markov chain with the center
node inoculated is equally probable to moving in the opposite direction in the upper level of the
chain.
Putting together these three facts, we end up with the following explanation for the behavior of the
process.
1. Start in the Nash equilibrium N7 = (0, N —t).
2. Setting i = 0 in Eq. (39), the random walk now has a (N — 1) times higher probability of leaving
N1 with a transition to the state (0, N — ¢ — 1) than it does of leaving towards (1, N — t).
3. The probability u of decreasing the number of inoculated leaf nodes in the states (0, N—t—:) then
gradually decreases with larger ¢, and decreases faster than the probability r of moving towards

the state (1, N—t—1). This means that after zgzt where the two probabilities are equal, a move to

a state with the center being inoculated becomes more likely. In our example, ng)n = 1, such that
(0, 7) is the breakeven point, and the first state where w is significantly different from r is (0, 6).
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Figure 3: Crucial section of the Markov chain underlying evolutionary processes with local information
on the star graph K 11. The ratios 7 /u, s/q, and u/q of transition probabilities and their dependency on
the distance ¢ from the Nash equilibrium (0, 8) has the two-dim. random walk do oscillations between
pairs of states {(0,5), (1,5)} and {(0,4), (1,4)}, and thus be trapped in increasingly constricted cycles.

4. However, the probability of a transition from (1, N—t—1) to (1, N—t—i+1) only slowly increases
with increasing 7. This leads to oscillations between opposite states (1, N—t—i) and (0, N —t—1)
until the process escapes — and the probability of this happening is larger for the transition on the
upper level from (0, N —t—i) to (0, N—t—i—1), as long as the ratio in Eq. (43) u/q > 1.

5. The further away the process moves from A/, the longer it takes to escape from the oscillations

between the pairs of states. This is most pronounced in the pairs ((0, [V —t—igzt), (1, N —t—iggt))
(2)

corresponding to the threshold value of i ;, where moving forward in ¢ on the upper level and

moving backward in the lower level are equal, as well as ((0, N—t—i? 1), (1, N—t—i? —1)).

It is intuitive that the latter pair acts as the strongest sink, since thecgﬁobabilities of lea\c/ﬁg it in
either way are smallest. Finding igigt = 5, the two pairs — {(0,5), (1,5)} and {(0,4), (1,4)} —are
circled in Fig.[3] .

6. It is more likely that leaving the last sink happens via the transition (1, N — ¢ — iy — 1) —
(1, N —t — icrit). Then, the cycles repeat, starting from the other side. This makes it intuitive
why the process will not find its way back easily to N7.

O

The proof is additionally visualized by Fig. [3] where we show the case of the pairwise comparison
process on a star graph with N = 12 and V/I = 1/3.

Consider the process as a two-dimensional random walk, defined by our transition probabilities p’fl’;,n
(Eq. in the limit of the mutation rate y — 0. Let t = V N/I; the Nash equilibrium N is then
the state (0, N — t), as discussed above. In the example, we have ¢ = 4, such that N7 = (0, 8).

For easier readability, we use the notation {u; ; 11y, q(i,i—1), Ti, Si } for

0,0 1,1 0,1 1,0 . .
(PN Nt PNoi N1 PNt N—ti» PNeti Nti (. Eqns - That is, u gives the prob-
ability of moving one further step away from the Nash equilibrium Ay by one leaf node switching to
insecure; ¢ the probability of moving one step closer to A7 by one leaf node switching to secure; r the
probability of the center switching to secure, and s the probability of the center switching to insecure.
The parameter 4 can be thought to be the distance to ;. Note that this two-dimensional random walk
has a defined direction; there is no possibility to increase ¢ in the lower level of the chain (where the
center is inoculated), and no possibility to decrease 7 in the upper level (where the center is insecure).
We show in the Appendix that due to the setup of these transition probabilities, the random walk gets
trapped in increasingly constricting cycles as it moves away from N;In the example of Fig. [3 these
states form the set {(0,5), (0,4), (1,5), (1,4)}, with the most weight on (0, 4) and (0, 5).

We thus have shown that using local information only, the system spends a high fraction of time
in states that are not Nash equilibria, and will not reach the optimum. What does this mean for the
evolutionary price of anarchy?

Seeing that the abundant states carry a high social cost compared to the optimum and also the worse
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Figure 4: Stationary distribution for the pairwise comparison process on a star, with N = 20, V/I = 1/2
and ;o = 0.001. We show the state (¢, j) (where i € {0, 1} and j € [0, 19]) on the x-axis, and their weight
in the invariant distribution on the y-axis. The two Nash equilibria, (0, 10) and (1, 0) are not abundant
states; rather, we find most weight on states with less inoculated nodes, cf. Section#.1.2] The pairwise
comparison process is again the most efficient dynamics.

equilibria in N7, it is already intuitive that ePoA will be larger than PoA in the star graph, as long
as the mutation rate 4 is sufficiently small (1 < 0.005). Indeed, using the stationary distribution x to
calculate the social cost S as in Eq. 4} and then the evolutionary price e PoA as in Eq.|5| we find that the
evolutionary process has to settle for a relatively high S, and with it, a high ePoA (see Figs. . We
summarize this in the following corollary:

Corollary 3 (Evolutionary Price of Anarchy for Star Graphs.). For small mutation rates ji 5 0.005,
arbitrary N and arbitrary |V'| < |I|, the evolutionary price of anarchy e PoAg;q, in a star graph K1 n_1
with N nodes is at least equal to or higher than the static price of anarchy PoAsz,,. That is, e PoAss, —
PoAgir > 0.

We note that the exact evolutionary price in relation to the static price of anarchy is determined by
parameter choices. This means that with a mutation rate ;2 £ 0.005, for some choices of cost vector and
network size, it is possible to achieve a slightly lower average cost than can be achieved by the worst
possible solution to the one-shot game due to the higher mutation rate facilitating contributions from
states that lead to a high total payoff (see Fig.[7).

However, our results let us conjecture that for a local information model with reasonably small
mutation rates, we cannot hope to do much better on average than the worst Nash equilibrium in highly
structured networks (like a star), much less reach the optimum, such that paying (at least) the price of
anarchy is not only a theoretical possibility, but also a realized fact.

S Simulation of more complex topologies

With the algorithms introduced above, we are able to simulate the process also for more complicated
graphs. While numerical analysis is usually impossible in these cases - it is intuitive that obtaining
numerically precise results on the stochastic process will be harder with increasing graph size and less
inherent symmetry in the graph, as the resulting Markov chain can have as many as 2% states already for
pure strategies - we can always compute the average social welfare by simulating the different dynamics
long enough. We can even feasibly find the stationary distribution for graphs that have some inherent
symmetry (which prevents the Markov chain from being of size 2V). We will exemplify this by briefly
discussing the evolutionary price of anarchy for two such graphs, which are highly symmetric and built
from cliques and stars as the two basic components previously analyzed.
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Figure 5: The 2CLIQUE graph, which consists of two complete graphs that are connected at one of their
nodes (“hubs”).

Figure 6: The 2STAR graph, which consists of two star graphs that are connected at their nodes.

5.1 2-clique network

An example of such a graph is depicted in Fig[5} two cliques, connected by a single path. The states
of the Markov chain are now (a, b, ¢, d), with a,c € {0, 1} denoting the inoculation state of the two
nodes where the cliques are joined (subsequently called the hubs), and b,d € {0,...N — 1} denoting
how many of the N — 1 remaining nodes on each side are inoculated. For this graph, seeing that the
underlying Markov chain of the process only has N? states, it is indeed possible to also find both the
selection-mutation equilibrium and the average social cost S by simulation. To be able to calculate
ePoA, and compare it to the efficiencies of other equilibria as well as the static price of anarchy PoA,
we also compute the social welfare in all possible configurations (vector é), and find the optimum as the
maximum over . This section describes our findings after running our simulations with . = 0.001 for
the network sizes N = {10, 12, 20,50} and the realized cost vectors ct = {[—2, —1,0],[—3,—1,0]}.

1. First considering static Nash equilibria as the baseline, we again use Corollary 1.1 with ¢ =
V/I and find two equivalence classes N7, N> of Nash equilibria. Class N7 contains the states
(0,p,0,q), with p + ¢ = N — t, which have both hubs insecure, and p respective ¢ inoculated
nodes in the remainders of the two cliques. The other class of equilibria, N5, is composed of the
states (1, N/2 —t — 1,r,s) and (r,s,1,N/2 —t — 1) with r + s = N/2 — ¢, which are the
states where at least one hub is always inoculated. In the case where NV is divisible by I, the two
equilibria classes are equivalent, giving the same cost. However, when N is not divisible by I,
N5 is more efficient with respect to the overall cost, such that it is the cost of the equilibria in N}
which is used to calculate the PoA.

2. Inevolution, we find an e PoA > 1 for all three network sizes and all three evolutionary processes
— the optimum is not an abundant state. It is also the case that ePoA > PoA, making the
average cost slightly higher than the static price of anarchy, even though e PoA becomes smaller
with increasing network size. In all the tested scenarios, the system does not spend a substantial
fraction of time close to social optima and does not make up for partially costly off-equilibrium
behavior it exhibits otherwise. We again find that the Moran processes show behavior that is
slightly dependent on the network size /N, whereas the pairwise comparison process gives more
consistent results even for smaller NV, and also exhibits the smallest value of e PoA.
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We have seen in Corollary |2| that for one clique on its own, we recover the Nash equilibria in our
evolutionary process. However, the behavior of such a process on the 2CLIQUE graph leads to an
outcome that differs both from the optimum and the static predictions for Nash equilibria. Intuitively,
this is due to the link between the two hubs acting as a bottleneck for information flow.

5.2 2-star network

Another example of a symmetric graph is depicted in Fig. [} two stars, joined at their hubs. Here, our
findings are the following:

1. We again begin by finding the static Nash equilibria and the static PoA. In this case, there are
three equivalence classes of equilibria: N7 corresponds to its counterpart in the 2CLIQUE graph
— it contains states (0, p, 0, q) (defined analogously to above), with p + ¢ = N — ¢, and is again
the class with the most costly equilibria. It therefore is used for the static price of anarchy. Class
N5 consists of the states (1,0, s,0), with s = 0if ¢ > N/2 and s = 1 otherwise. Lastly, N3 exists
if t < N/2, and features states of the type (1,0,0, N/2 — ¢ + 1). Here, we can also explicitly
characterize the optimum: it is always the state O = (1,0, 1,0).

2. An evolutionary process on the 2STAR graph for the network sizes and V/I ratios tested again
leads to an ePoA > PoA. Seeing that the basic component of the graph — the simple star —
already exhibits off-equilibrium behavior, this is not too surprising. However, as opposed to the
single star, we now observe that the Moran Birth-Death scenario is advantageous for all network
sizes, as it leads to the lowest overall e PoA.
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Figure 7: We visualize the ratio of the evolutionary price of anarchy to the price of anarchy, ePoA/PoA,
for the four discussed topologies, two different values of /I, and varying mutation rate. The network
size is kept constant at N = 20. We plot the three different evolutionary dynamics together: Moran-DB
(blue), Moran-BD (yellow), and pairwise comparison process (green). We see that different processes
show different efficiency, depending on the network topology and the mutation rate, and the behavior of
the e PoA does not have to be strictly monotonic - there can be “sweet spots” for certain combinations
of parameters. Simulations were run for 5 * 10° iterations.
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Figure 8: We visualize the ratio of the evolutionary price of anarchy to the price of anarchy, ePoA/PoA,
for the four discussed topologies, two different values of V/I, and varying network size. The mutation
rate is kept constant at 4 = 0.001. We again plot the three different evolutionary dynamics together:
Moran-DB (blue), Moran-BD (yellow), and pairwise comparison process (green). We see that different
processes show different efficiency, depending on the network topology and the network size. Again,
the behavior of the e PoA does not have to be strictly monotonic - there can be “sweet spots” for certain
combinations of parameters. Simulations were run for 5 * 10° iterations.

5.3 Cycle graph

Another structure of interest is the cycle graph. While this topology is simpler than the previously
discussed 2-star and 2-clique networks, the process does not show straightforward behavior due to the
large state space with few possible transitions. We start with a description of the states of the Markov
chain and the Nash equilibria.

Encoding of states and size of the state space for network size N. Due to symmetry considerations,
we can encode states corresponding to configurations a € 0,1V by counting the number of insecure
nodes in between every two inoculated nodes, and listing the number of gaps ordered by their size,
starting at 1. As an example, we can take a network of size N = 6 with ¢+ = 4 inoculated nodes in the
configuration 010111, which corresponds to the state [4,2,0,0,0, 0, 0], where the first number in the
list is simply 2 = 4. This is thereby also equivalent to the configurations 101011, 110101 and 111010.
To enumerate and order these states, we can describe the sets of states with ¢ inoculated nodes more
generally as {i}-integer partitions of N — ¢, where an {i }-partition of x is the set of partitions of x with
length < 4. This way, we get a natural ordering on states - from the smallest partition length to the
largest-, and find a simple way to enumerate them. In the previous example, the corresponding partition
of N — ¢ =2is (1,1). The total number of states in a network with N nodes is then

2 + Z > k(N =), (18)

where py () is the partition function, giving the number of integer partitions of  with length k.
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Nash equilibria. For a state to be a Nash equilibrium, the largest insecure component cannot be larger
than ¢t = V N/I. For this condition to hold, the number of inoculated nodes has to be i* = L%W , and

the Nash equilibrium states is then the {i}-partition of N — i*, where the largest part is at most ¢. In our
toy example above, using V/I = 1/2, those are the states [2,1,0,1,0,0,0] and [2,0, 2,0, 0,0, 0].

Results. We run simulations for N = {10, 12, 20,50} and x = {0.0001, 0.001,0.01, 0.1}, and again
find the ePoA to be higher than the PoA, making the cycle a suboptimal topology for efficient inoc-
ulation due to the fact that clusters of inoculated/insecure nodes can not be broken if not for mutation.
Intuitively speaking, a Nash equilibrium with e.g. 2 inoculated nodes that are not next to each other will
not easily be reached, as moving an inoculated node from point A to B has to involve mutation: starting
from a cluster of two inoculated nodes, two imitation events and two mutation events are necessary to
move the second node two steps away from the first one. This becomes more unlikely as ;# — 0. How-
ever, a surprising result can be seen in Fig.[7| for V//I = 1/3: the three evolutionary processes behave
more or less the same in this case, and the efficiency is monotonic in the mutation rate, just as in the
complete graph. An interesting direction for future work would thus be a more thorough analysis of the
role of regular graphs in the behavior of stochastic evolutionary processes.

6 Related work

The term price of anarchy was introduced by Koutsoupias and Papadimitriou in [27], however, the idea of
measuring inefficiency of equilibrium is older [8]]. The PoA was first mainly studied for network models
(see [35] for an overview), but literature now covers a wide spectrum, from health care to basketball [39].
The price of anarchy comes in different variations, also considering equilibria beyond Nash (e.g., the
Price of Sinking [14]).

While in many text book examples, Nash equilibria are typically “bad” and highlight a failure of
cooperation (e.g., Prisoner’s Dilemma, tragedy of the commons, etc.), research shows that in many
application domains, even the worst game-theoretic equilibria are often fairly close to the optimal out-
come [39]. However, these examples also have in common that users have full information about the
game. While the study of incomplete information games also has a long tradition [16], much less is
known today about the price of anarchy in games with partial information based on local interactions.
In general, it is believed that similar extensions are challenging [39]]. An interesting line of recent work
initiated the study of Bayes-Nash equilibria [41] in games of incomplete information (e.g., [41]]), and in
particular the Bayes-Nash Price of Anarchy [39]].

Another interesting concept is the stochastic price of anarchy [7], addressing the issue that some
PoAs are sensitive to small perturbations, motivating the study of more stable notions. However, while
the stochastic price of anarchy is also a dynamic concept, it requires even stronger assumptions on play-
ers: beyond current information (which is derived implicitly) the players also need knowledge of the
execution history, to decide on their best action. Also the dynamic games based on learning dynam-
ics [S]], such as regret minimization [[17] or fictitious play [18]], require players to keep track of historical
information. All these results hence do not apply to the evolutionary games we study here, as our strate-
gies do not require the nodes to have memory, only local information about their neighbors’ payoffs.
To the best of our knowledge, this paper is the first to consider the application of the price of anarchy
to evolutionary games with this kind of limited information and memoryless players, also providing a
novel perspective on the discussion of the impact of limited information in games.

In particular, we apply our framework in a case study, a specific network game where players interact
topologically. Such games have already received much attention in the past: the price of anarchy was
originally introduced with such games in mind [39]. However, such games are still not well-understood
from an evolutionary perspective. In general, evolutionary games on graphs are considered challenging
to analyze, even if the underlying topology is simple. See [1] for a review on this area.

More specifically, we revisited Aspnes et al.’s virus inoculation game [2]] in this paper. Traditional
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virus propagation models studied virus infection in terms of birth and death rates of viruses [4} [11] as
well as through local interactions on networks [25) 24} 48]| (e.g., the Internet [37, [23]]). An interesting
study is due to Montanari and Saberi [33]] who compare game-theoretic and epidemic models, investigat-
ing differences between the viral behavior of the spread of viruses, new technologies, and new political
or social beliefs.

Aspnes et al.’s model is motivated by percolation theory [26]] as infected node infect all unprotected
neighbors, and already led to much follow-up work, e.g., also considering the impact of a small number
of malicious players [34], or considering social network contexts where users account at least for their
friends’ costs [31, [30]. There also exists literature on how to encourage highly connected nodes to
inoculate [3l]. However, we are not aware In this paper, we extended Aspnes et al.’s model accounting
for local information and evolving players (the two main open questions stated in [2]), revisiting and
refining their conclusions.

7 Conclusion

This paper introduced the evolutionary price of anarchy to study equilibrium behavior of simple agents
interacting in a distributed system, based on local information. We showed that for memoryless agents,
the resulting equlibria can be significantly different from their static equivalent, and that Nash equilibria
are sometimes assumed only very infrequently.

We believe that our work can provide a novel perspective on the discussion of the impact of limited
information in games. In particular, it opens several interesting avenues for future research. Our model
still comes with several limitations due to the well-known notorious difficulty of analyzing evolutionary
multi-player games on graphs. In particular, it will be interesting to analyze the ePoA for additional
topologies and more general interaction models (beyond memoryless), as well as to explore randomized
(mixed) strategies. It would also be interesting to prove or disprove our conjecture that processes based
on imitation dynamics always result in a ePoA which is higher than the PoA in the virus inoculation
game.
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A Clique: Markov chain transition probabilities
The standard Moran probabilities for the complete graph (clique) look the following:

N -—i i f&
Piji+1 = N /Lfév+(N_l) 7 0

and )
i (N-Dfh
Niflc—i-(N—z’)f})'

Piji-1=

The pairwise comparison process does not use exponential fitness, but the original payoffs:

. N—ii 1
Dii+1 = N N 1+6—B(ﬁic—frf:>)7

and
N —1 1 1
N N 14 BlEp—1g)

The transition matrix P for the process with mutation looks the following:

Dii—1 =

1-— P()’l PO,l 0 ...... 0
P170 1- P17() — Pl,g P172 ...... 0
P=| : o :
0 0 0 .oo... Py_in
0 0 0 ..oo... 1— Pyn_1

The terms P; ; correspond to the terms in Eqns. [8F.
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In the version of the complete graph that corresponds to the standard case of a well-mixed popula-
tion (where we have a positive probability of the same node being chosen for reproduction and death),
the two Moran processes are equivalent. We note that while Eqns. correspond to the standard
Moran process on complete graphs as described in the literature [36], it is however simple to change the
expressions such that there is no possibility of self-replacement for the nodes. This does not change our
qualitative results, but does introduce a difference between birth-death and death-birth processes. We re-
mark that the difference between e PoA and PoA is always slightly smaller for the pairwise comparison
process as compared to the Moran processes. For large values of IV, both kinds of stochastic processes
lead to an outcome with the same average efficiency as the Nash equilibria. Meanwhile, for smaller IV,
the outcomes are somewhat different on first glance: the Moran process has the system drift towards
the two extremal configurations, where either all nodes are inoculated or none are. This comes with
an overall increased social cost, and is due to the inherent randomness of the stochastic process. This
effect can then be mitigated by using the pairwise comparison process with intermediate to strong selec-
tion strength (3 instead, or increasing the parameter s in the transformation of payoffs into fitness. This
lets us again recover the Nash equilibria as the most abundant states, and with them the corresponding
efficiency.

B Star graph transition probabilities

It is intuitive that the two Moran processes on the star graph will not lead to the same dynamics, unlike
in the case of the complete graph: for the clique, the global minimal cost and the minimal cost of a
neighbor coincide, giving equal probabilities for the best node overall to reproduce and for the best
neighboring node to reproduce. This does not hold for the star graph, such that the two Moran processes
are no longer equivalent (cf.[[15]. The probabilities are the following:

Death-birth process

1 1o
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W= (26)
P =Piy =0 27
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The transition matrix has the entries
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Comparing the probabilities for the two Moran processes now, we can indeed see that they will not
lead to the same dynamics (e.g. by comparing the two expressions for p?}(il). In fact, we make the

following observations:

e The different evolutionary dynamics indeed show different behavior, which is reflected in the
weight distribution on the states as given by their invariant distribution, as well as their evolu-
tionary price of anarchy. We find that for any choice of parameters N, p and V/I, the Moran
Death-Birth process leads to the worst e PoA of the three described processes. It spends a large
fraction of time in the two extremal states (for small mutation rates ¢ < 0.05), or has an almost

uniform invariant distribution over the states.
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e For the other two processes, Moran Birth-Death and pairwise comparison, we also observe off-
equilibrium behavior. The outcome of the Birth-Death scenario again depends on the network size
N: for small N < 12, there is again drift towards the two extremal states (0,0) and (1, N — 1) as
a result of random noise. The smaller the mutation rate, the more pronounced this drift is, and the
larger the network size needed to balance it out. The pairwise comparison process however does
not show the same strong dependence on the network size in its behavior.
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