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a b s t r a c t

Instance spanning constraints (ISC) are the instrument to establish controls across multiple instances
of one or several processes. A multitude of applications crave for ISC support. Consider, for example,
the bundling and unbundling of cargo across several instances of a logistics process or dependencies
between examinations in different medical treatment processes. Non-compliance with ISC can lead
to severe consequences and penalties, e.g., dangerous effects due to undesired drug interactions. ISC
might stem from regulatory documents, extracted by domain experts. Another source for ISC are
process execution logs. Process execution logs store execution information for process instances, and
hence, inherently, the effects of ISC. Discovering ISC from process execution logs can support ISC
design and implementation (if the ISC was not known beforehand) and the validation of the ISC
during its life time. This work contributes a categorization of ISC as well as four discovery algorithms
for ISC candidates from process execution logs. The discovered ISC candidates are put into context
of the associated processes and can be further validated with domain experts. The algorithms are
prototypically implemented and evaluated based on artificial and real-world process execution logs.
The results facilitate ISC design as well as validation and hence contribute to a digitalized ISC and
compliance management.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Business Process Compliance (BPC) means ‘‘to formally and
(semi-)automatically prove that business processes comply with rel-
evant constraints such as regulations, laws, or guidelines’’ [1] and
poses a tremendous challenge for companies and organizations
nowadays. One example is the ISO 27001 security standard1
where ‘‘for a company the average cost (respectively duration) to
implement the ISO 27001 standard is estimated between $6500
and $26 000 (respectively between 6 and 12 months)’’ [2]. Another
example is IT-supported compliance in the medical domain [3]
which helps to prevent ‘‘errors in medicine [that] are not rare
and may cause severe harm’’ [4]. An example for a compliance
constraint from the medical domain is: If adoption of laboratory
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tests occurs in a trace, it is never followed by a follow-up outpatient
consultation (taken and translated from [1]). Associated treatment
processes must comply to this constraint.

Ensuring BPC refers to both constraints and business pro-
cesses. For the latter, typically, a process type (e.g., dermatology
treatment) is described by a process model. At runtime the model
can be instantiated, e.g., creating an instance per patient, and
the instances are executed through, for example, a Process-Aware
Information System. As stated in [5] ‘‘many organizations main-
tain repositories that contain hundreds of business process models’’,
naming e.g., IBM’s insurance architecture (IAA). Another example
is a large hospital where a patient might undergo more than one
treatment process. Finally, [6] describes a case study from the
higher education institution with 108 process types/models and
375 compliance constraints.

1.1. Problem statement

BPC follows a life cycle that includes several phases, among
them Constraint elicitation, Constraint formalization, Constraint ver-
ification, and Constraint validation & redesign (adapted from [7]).
A body of work exists for the formalization and verification of
the compliance of business process models and process instances
with compliance constraints during design time (e.g., [8]) and
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Fig. 1. Method and created artifacts.

runtime (e.g., [1]). Despite this, among others, the following two
challenges persist:

Ch1 Handling of constraints that span multiple instances of one
or several process types (cf. [9–11]). Such constraints are
called Instance Spanning Constraints (ISC) [9].

Ch2 Support for constraint elicitation from data sources such as
text [12], often in the context of regulatory documents [13,
14] and process execution logs [15].

This work addresses both challenges Ch1 and Ch2 in inter-
play. Challenge Ch1 refers to supporting ISC that are present
in various domains, including logistics, production, and health
care [9]. ISC might span multiple instances of one or several
process types (the latter abbreviated as ISCP ⊆ ISC). An example
for an ISCP is: ‘‘A patient is involved simultaneously in two different
treatments, i.e., dermatology and diabetes. A list of drugs should not
be taken during the dermatology treatment. The diabetes treatment
should consider this list.’’ [16]. In detail: two process types exist,
i.e., one for dermatology and one for diabetes treatment. For the
dermatology treatment a list of drugs is contra-indicated. If a
patient undergoes both treatments at the same time, it has to
be ensured that for the diabetes treatment none of the contra-
indicated drugs for the dermatology treatment is administered.
A violation might lead to severe consequences regarding patient
health. This constraint obviously spans both process types and
hence is an ISCP .

In this work, we refine Challenge Ch2 to ISC and specifically
to ISC discovery and analysis based on process execution logs
in an ex post manner. Although ISC play a significant role in
digitalized process compliance management, ISC discovery from
process execution logs has not been considered comprehensively
enough until now.

The focus is on providing an automatic discovery approach.
This constitutes the next step towards a digitalized compliance
management for companies that is capable of dealing with ISC. In
particular, the approach alleviates the cumbersome discovery of
ISC which is up to now often a manual and error-prone task. Do-
ing so the approach has to go far beyond existing work suggesting
semi-automatic ISC discovery [10].

Note that we envision to discover ISC candidates from process
execution logs. These ISC candidates can be employed in two
ways:

(i) for discovering new ISC on the process instances in case the
ISC were not known beforehand and

(ii) checking existing ISC.

The latter is particularly interesting for flexible and volatile
environments where concept drifts [17] occur in the process
execution logs.

Reacting to Challenges Ch1 and Ch2, this work tackles the
following research questions.

RQ1 How to design an algorithm for discovering ISC candidates
with minimal human involvement?

RQ2 Which characteristics and requirements must process exe-
cution logs meet to enable the discovery of ISC candidates?

RQ3 How can the ISC mining algorithm control varying quality
of process execution logs?

RQ1 targets the provision of discovery algorithms that yield
ISC candidates, i.e., suggestions of possible ISC that can be further
discussed and validated with domain experts. Thus, RQ1 aims at
addressing the sweet spot between results machines can pro-
vide in terms of algorithms and minimal human involvement
in terms of validation. RQ2 focuses on identifying requirements
that process execution logs need to fulfill to enable ISC candidate
discovery. This connects also to RQ3 in terms of finding parameter
settings in the algorithms to adjust the quality of the outcome,
mainly in terms of false positives and negatives, considering the
quality of the underlying log.

1.2. Contribution

The work follows the design science research methodology
[18]. Hence, at an abstract level, it follows the steps ‘‘artefact
creation’’ and ‘‘artefact evaluation’’. Fig. 1 depicts the structure
of the paper and the artifacts created in this paper. At first, we
discuss related work in Section 2 and introduce fundamentals in
Section 3. As a first contribution ISC are analyzed and categorized
along their type and corresponding manifestation in the process
execution log (↦→ Artifact 1: ISC categorization, cf. Section 3),
e.g., ISC demanding an order between tasks in processes of dif-
ferent types reflected by observing the respective order in the
process execution logs. Artifact 1 is utilized for designing the
automatic discovery approach for ISC candidates.

The approach is developed in Section 4 and results in four al-
gorithms (Artifacts 2 – 5) along the ISC categorization. All artifacts
are prototypically implemented (↦→ Artifact 6). Implementation
details are described in Section 5. The automatic discovery al-
gorithms are also evaluated based on 1 artificial and 2 real-life
logs, the latter from the manufacturing and the higher education
domains (cf. Section 6). It can be shown that on the one hand
ISC candidates for actual ISC are discovered for the different cate-
gories, but on the other hand, non-existing ISC are not discovered.
An in-depth analysis of the trade-off of precision and recall is
offered in order to support users in the application of the pre-
sented algorithms, specifically, in setting parameter values for the
algorithms. With a suitable parameter setting, for example, the
false positive rate can be kept low. Subsequent to the evaluation,
we provide a discussion of the approach and its limitations in
Section 7. The paper closes with a summary and outlook on future
research directions in Section 8.
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Fig. 2. Related fields and their intersections.

2. Related work

ISC discovery is rooted in the area of Business Process Compli-
ance (BPC) [1,8,19]. In the BPC life cycle (cf. [7]) ISC discovery can
be located in the phases of constraint elicitation and validation.
ISC discovery can be regarded as constraint mining technique.
Existing constraint mining techniques – from a method point
of view – can be found at the intersection of data mining and
process mining (cf. Fig. 2).

➀ ‘‘[D]ata mining is originally defined as the analysis-step in the
process of the knowledge discovery in data bases which has a more
exploratory nature’’, [20] and is concerned with mining patterns
from different kind of data [21].

➁ Process mining has unfolded as a set of techniques to dis-
cover, analyze, and enhance processes based on process execution
logs [22]. Most of the existing algorithms, e.g., the Heuristics
Miner [23] or Fuzzy Miner [24], are applied ex post, i.e., after pro-
cess instance execution has completed. Recently, online process
mining has gained interest in discovering process models based
on event streams [25,26]. Conformance checking determines in
how far a given process execution log conforms to a given process
model, again either ex post [27] or during runtime [28]. The
quality of discovered process models is measured based on fit-
ness, simplicity, precision, and generalization [29]. Regarding the
trade-off between the automatic provision of results by mining
algorithms and the involvement of humans, the Process Mining
Manifesto further states: ‘‘Balancing fitness, simplicity, precision
and generalization is challenging. This is the reason that most of the
more powerful process discovery techniques provide various param-
eters. Improved algorithms need to be developed to better balance
the four competing quality dimensions. Moreover, any parameters
used should be understandable by end-users.’’ [29]. This work also
involves a set of input parameters chosen by users. Moreover, the
output, i.e., the ISC candidates, typically need to be evaluated by
users such as domain experts.

➂ Compliance constraints and ISC are the subject of investi-
gation in this paper, i.e., the envisioned output of the provided
algorithms. In process compliance management, constraints and
ISC implement regulatory norms on top of the processes. [30]
presents an abstract framework for normative requirements, e.g.,
permissions (something is allowed) and prohibitions (something
is not allowed). The framework in [1] proposes modeling func-
tionalities for constraints, i.e., they might refer to control flow
of the processes, data, time, and resources. The goal is to check
and achieve compliance of the processes with the constraints.
One option is compliance by design as introduced specifically
for artifact-centric business processes in [31]. In the latter work
the business process model is used together with compliance
constraints in order to generate a compliant process model in a
declarative manner. The other options are checking compliance
during design time (i.e., using the process model [8]) or dur-
ing runtime (i.e., compliance monitoring using process execution
logs [1]). The approaches for checking compliance during runtime
can be also utilized to check compliance ex post, i.e., on process
execution logs instead of event streams.

ISC form a subset of constraints by spanning multiple in-
stances of one or several process models [32]. They also follow

a lifecycle. At first, ISC are modeled and formalized using, for
example, Event Calculus (EC) with a well-defined structure and
semantics [9]. ISC can the be implemented, enacted and moni-
tored. One ISC implementation option on top of a Rete rule engine
is provided in [33]. ISC are and can be used in various applications
including instance batching [34,35], instance queuing [36,37], and
security [32]. [11] aim at predicting inter-case features in process
monitoring which can be a first step towards prediction on ISC
compliance.

➃ Discovering constraints from sources such as text using
text mining and Natural Language Processing has emerged as
recent research topic (cf. e.g., [12–14]), but is outside the scope
of this work. Some data mining techniques are concerned with
the discovery of patterns in the form of rules, i.e., association rule
mining [38], sequence mining [39], and episode mining [40]. [41]
employs association rule mining for anomaly detection in process
execution logs. Other approaches utilize classification to find
rules on decision points in processes [15,42]. However, the focus
of these approaches is not on ISC.

➄ Declarative process mining approaches employ process min-
ing techniques to discover rules from process execution logs,
e.g., MobuconEC [43] and MobuconLTL [44], and from event
streams [45]. As pointed out in [1], these approaches are not con-
cerned with ISC yet. Here, the automatic approach presented in
this paper steps in and presents process mining based techniques
to discover ISC from process execution logs.

➅ Semi-automatic ISC discovery: In prior work, we presented
a semi-automatic approach for ISC discovery from process ex-
ecution logs based on classification techniques in [10]. At first,
the process execution logs are pre-processed as for discovering
ISC it becomes necessary to merge traces of the instances based
on ‘‘shared’’ (instance spanning) attributes such as resources,
data and timestamps. The selection of these attributes is done
by the user. Then decision trees are built based on the pre-
processed process execution logs and ISC candidates displayed as
decision rules are derived. Promising results were achieved based
on artificial logs and a real-world process execution log from the
higher education domain. For the latter two previously unknown
ISC expressing best practices were discovered and acknowledged
by experts. However, the approach presented in [10] – beyond
being semi-automatic – does not cover ISCP .

For detecting batch activation rules from process execution
logs, [46] employ an approach similar to the semi-automatic
approach provided in [10], i.e., based on classification. By contrast,
this work presents algorithms for automatic discovery for the far
wider set of ISC including e.g., order relations between process
models.

3. ISC categorization

As said in the introduction, a process type, e.g., a lab process,
is described by a process model. Fig. 3 depicts a lab process mod-
eled using Petri Net notation that consists of 4 process activities
ordered in a sequence. We opt for Petri Net notation as process
mining results are also often presented as Petri Nets and because
Petri Nets are suitable for demonstrating the semantics of ISC
based on these models in the sequel. Another notation would be,
for example, Business Process Modeling and Notation (BPMN) as
the de facto standard.

At runtime the process model can be instantiated, e.g., per
patient or lab sample. The resulting process instances are then
executed. The execution information of the process instances
can be either reflected by markings (see the token in Fig. 3) or
logged in so called process execution logs. More precisely, for each
activity execution one or several corresponding events together
with their timestamp and possibly additional data are stored.



4 K. Winter, F. Stertz and S. Rinderle-Ma / Information Systems 89 (2020) 101484

Fig. 3. Example of a process model (using petri net notation) and a
corresponding process execution log.

Fig. 3 at the bottom shows an excerpt of an execution log for
instances executed based on the process model at the top. The
events are grouped by case ids that correspond and identify the
associated process instances. Formally, a process execution log
can be defined as follows:

Definition 1 (Process Execution Log, [22]). A process execution log
L (log in short) for a process type P consists of several cases, i.e.,
process instances. Each instance corresponds to a trace ti of unique
ordered events. Each event can be equipped with (event) attributes
which may contain information about timestamps, organizational
resources, and costs.

In Fig. 3, the displayed trace with case ID 1 consists of eight
events, each having an event ID as well as the attributes times-
tamp, activity (label) and lifecycle transition. The latter refers to
the fact that the execution of activities might follow a life cycle,
differentiating, for example, the start and completion of activities,
reflected by start and completion events in the log.

This work aims at discovering ISC based on logs. In the follow-
ing structure and semantics of ISC are explained and illustrated.
In a nutshell, an ISC refers to

• a context, i.e., one or multiple instances of one or multiple
processes,

• a connection, i.e., an activity or process pattern in the un-
derlying process model(s) the ISC refers to. This comes to-
gether with a trigger position that reflects whether the ISC
is triggered before or after the associated activity/process
pattern,

• a condition as a logical expression over the data, time, or re-
sources and their values of the underlying process instances,

• a behavior describing the action part triggered by the ISC,
i.e., a resource attribution, timing attribution, or component
semantic exception.

Consider the ISC ‘‘The centrifugation may only be started when
at least five samples have arrived’’. (taken from [10]) based on the
Petri Net depicted in Fig. 4. The context of the ISC is the lab
process. The connection is activity centrifugation where the
trigger position is before the activity start. The condition is that
the number of instances before the start of centrifugation
is ≥ 5. In case the condition is met, centrifugation starts
(behavior).

Fig. 4. Explaining ISC semantics based on ISC decision points (cf. [10]).

The semantics of this ISC can be described as follows: within
the underlying process model, right before the start of activity
centrifugation, the ISC triggers an implicit action wait (un-
til the 5 instances have arrived at the centrifugation). The
resource centrifuge constitutes a shared resource where each
time 5 instances are collected. In order to reflect this behavior, we
introduce a decision point into the process model that invokes the
wait activity until 5 instances have arrived, and then the cen-
trifugation activity is invoked, i.e., the decision rule reflects
the condition part of the ISC. The wait activity corresponds to a
silent task that is not reflected in the log by any event.

The example shows that this ISC cannot be (exclusively) de-
termined based on log information produced by process activities
(activity wait is artificial and silent and not traceable in the log).
In fact, event attributes time, resource or data, have to be addition-
ally considered, i.e., the logs have to be prepared based on these
attributes for ‘‘making the ISC visible’’. As indicated by Fig. 4, we
assume the timestamps of the events thrown by starting activity
centrifugation being equal for process instances 1 to 5. That,
in turn, indicates that the execution of activity centrifugation
is synchronized across a certain number of process instances.

Until now the structure and semantics of ISC were introduced
and explained. Now we reason about how ISC manifest in logs.
Based on the results, ISC discovery algorithms are designed and
provided in the next section. For this, ISC characteristics with
respect to underlying log information based on the data set of
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Fig. 5. Percentage values of ISC categories within the 114 real-life examples.

114 ISC examples from [16] are analyzed (cf. Fig. 5). The analysis
shows that 85.9% of the ISC examples (98 overall) trace back to a
synchronization at a certain point, regardless whether they span
multiple instances or multiple processes. In this case, synchro-
nization means that a sequence of events/instances/processes
must be coordinated, i.e., synchronization can happen at differ-
ent levels, i.e., single or multiple events and instances or entire
processes can synchronize. For synchronization, mostly the ac-
tion wait is triggered (cf. Fig. 4). For exception handling, which
the remaining 14.1% of the ISC examples refer to, the action
can encounter more complex actions like rollback or compen-
sations [47]. Hence, ISC regarding exception handling will be
treated in future work as they require different concepts for
discovery, mainly due to the different behavior part of the ISC.

For the 98 ISC referring to synchronization, the following
categories with respect to the effects on the underlying logs are
extracted (together with number of occurrences):

I Simultaneous execution of activities: 7

II Constrained activity execution (based on time or data con-
straints and constraints regarding the absolute number of
executions): 72

III Order of activity execution: 12

IV Non-concurrent execution of activities: 7

The categorization serves for automatically discovering ISC
candidates (↦→ RQ1) and the analysis of ISC examples yields that
for this, logs need to fulfill the following minimal requirements
(↦→ RQ2):

• Events in the log must have

– concept names, i.e., activity labels (mandatory for all
categories, must be unique);

– timestamps (mandatory for all categories).

• For Category IV lifecycle transitions start and end of an activ-
ity execution are mandatory.

• Whenever ISC span multiple process types, traces or events
should have a unique case identifier, i.e., an attribute that
enables the merging of traces stemming from different pro-
cesses, e.g., a customer id.

If no unique identifier is given, the merging of traces could be
done manually or by using the techniques described in [48] (cf.
Section 4). These types of information are usually provided by
common Process Aware Information Systems (PAIS) and repre-
sent standard extensions of the XES standard.2 In order to meet

2 http://www.xes-standard.org.

RQ3 the ISC mining algorithms presented in the next section con-
tain several parameters for adapting them based on the quality of
the underlying log files.

4. Algorithms for ISC discovery

The automatic discovery of ISC candidates employs four algo-
rithms, each of them reflecting one of the ISC Categories I – IV.
(cf. Section 3, ↦→ Artifact 2 – 5). At first the logs are prepared
as described in Section 4.1. As illustrated in Fig. 6, in parallel
to the ISC candidate discovery, a process model for each log is
mined using a process discovery algorithm.3 Per category, the
result contains one or several process models enriched with the
ISC candidates for the corresponding category.

Pre-processing and the algorithms are illustrated by the exam-
ple depicted in Fig. 7.

4.1. Pre-processing of logs

If one process type is subject to ISC discovery the log asso-
ciated to this process type can be taken as is. If more than one
process type and hence more than one log is analyzed (i.e., to dis-
cover process-spanning ISC candidates), the different logs must
be linked. The reason is that the discovery algorithms have to
‘‘know’’ which instances of the different process types ‘‘belong
together’’, i.e., are linked. Linking is mostly based on the fact that
the instances refer to the same subject such as the same patient,
customer, or product. In detail, linking logs for multiple process
types is done using a linking attribute which is, in the optimum
case, a unique case identifier. Examples comprise customer id,
patient id, or an arbitrary id like 1b5 and 4z7 in the running
example depicted in Fig. 7. Based on this attribute, associated
traces, i.e., traces having the same attribute value, are combined.
The resulting (merged) log file consequently consists of merged
traces of different log files as illustrated in Fig. 8. For example, if
one patient is involved in different processes, the patient’s id is
used to retrieve the traces of this patient. During the merging of
two or more traces into one single trace the events are rearranged
based on their timestamps. If no unique case identifier is given,
the merging can be based on the techniques presented in [48]
where process execution logs are merged based on identifying
shared data that is assumed to stem from the same process
instance and stating merging rules for creating a new process
execution log.

Since ISC of Categ. III and IV are ISCP , i.e., ISC spanning mul-
tiple process types, the merging of logs becomes mandatory. For
Categ. I and II ISC spanning only one process type are possible,
consequently the input can be the original log.

4.2. Processing

For Algorithms 1–4, the (merged) log is used as input data
structure. The output is a list of ISC candidates discovered from
the (merged) log. The ISC candidates enrich the corresponding
process model(s) which are mined in parallel. Each ISC candidate
must be verified by the user afterwards, i.e., the algorithms de-
liver suggestions for ISC. In order to reduce the number of false
positives caused by chance or, e.g., logging errors, each algorithm
can be fine-tuned by at least one parameter. In the following, all
of these parameters are introduced to give an overview. A short
subsequent description as well as the algorithms show how the
parameters are utilized. The evaluation (cf. Section 6) and the
discussion (cf. Section 7) elaborate on the effects of the different
parameter settings.

3 In the evaluation the Heuristics Miner [23] is exemplary used.

http://www.xes-standard.org
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Fig. 6. Overview of ISC discovery approach.

Fig. 7. Running example for illustration of algorithms.

Fig. 8. Preprocessing the logs for the running example.

• Algorithm 1: γ1 ∈ [0, 1] and ε1 ∈ R+

0 in seconds
• Algorithm 2: γ2 ∈ [0, 1] and ε2 ∈ R+

0 in seconds
• Algorithm 3: γ3 ∈ [0, 1] and κ ∈ [0, 0.5)
• Algorithm 4: ε4 ∈ R+

0 in seconds.

Parameters γi, i = 1, 2, 3 represent the filtering of relative
occurrences, i.e., if γi = 1 then in 100% of all cases the observation
must have been made whereas for γi = 0 in 0% of all cases the
observation must have been made. Parameters εj, j = 1, 4 are
intended to compensate logging errors and are therefore given in
seconds. ε2 also has time unit seconds, but represents an activity
execution time limit. The parameter κ is specific for Alg. 3 and
represents the number of inverse orders that may occur.

In the pseudo-codes of the algorithms

• activity labels are abbreviated as lb,
• timestamps as ts,
• lifecycle transitions as lc and
• organizational resources as rs.

4.2.1. Category I
Algorithm 1 discovers ISC candidates of Category I, i.e., based

on simultaneous execution of activities. This, in turn, is reflected in
the (merged) log by events that occur at (almost) the same time
for more than one instance.

The algorithm starts by iterating over all traces in the (merged)
log. If checkLC evaluates true, i.e., if no or only one type of
lifecycle transitions is given (|e.log.lc| ≤ 1) or, if more than one
type of lifecycle transitions is given, only start events are consid-
ered, events of traces are appended to the list events and their
absolute occurrences are counted (cf. lines 1–9). Hereby, events
must start simultaneously, but can finish at different times, which
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is reasonable when considering, e.g., the centrifuge example men-
tioned before (some samples might need more centrifugation
time than others).

Algorithm 1: Simultaneous Activity Execution
Input: (merged) log, ε1, γ1
Result: simActivities (list of ISC candidates for Category I)

1 simActivities = dict(), absOccEvents = dict(), events = [ ]
2 for trace in (merged) log do
3 for event in trace do
4 if checkLC(event) then
5 events.append(event)
6 absOccEvents[event.lb] += 1
7 end
8 end
9 end

10 events.sort(key=ts)
11 filteredEventLabels = filter (events, absOccEvents, γ1, ε1)
12 for i in 0:len(events) do
13 ev1 = events[i]
14 if ev.lb not in filteredEventLabels then
15 continue
16 end
17 cmp = [ev1]
18 for j in i+1:len(events) do
19 ev2 = events[j]
20 if ev2.lb not in filteredEventLabels then
21 continue
22 end
23 if |ev2.ts − ev1.last.ts|≤ ε1 then
24 if ev2.trace!=ev1.trace then
25 cmp.append(ev2)
26 end
27 else
28 break
29 end
30 end
31 if len(cmp) > 1 then
32 simActivities[cmp.labels.uniq.join]. append(cmp)
33 end
34 end

Algorithm 1: Function checkLC
Function checkLC(e):

return ( |e.log.lc|≤ 1 or e.lc == ‘‘start’’);

In the running example, all start events, e.g., event with
ID 1231, are appended to events. Afterwards, the events are
sorted by timestamps (line 10) and filtered (cf. function filter).
Hereby, the algorithm iterates over all events and counts the
number of events with similar timestamps (lines 2–21). Simi-
lar means that timestamps must be within the given tolerance
interval determined by the parameter ε1. This constant should
compensate time measurement errors produced by, e.g., a ma-
chine and should therefore be chosen accordingly, e.g., ε1 =

0.1 s. Events within a range ±0.1 second are then indicated
as simultaneous. In the running example ε1 could be set to
0 s, since the timestamps of the start events of A and A′ are
exactly the same. In the next step, function filter identifies
false positives that happened by chance by returning event labels
whose relative occurrences are above a threshold γ1 ∈ [0, 1]
(lines 23–27). Choosing, e.g., γ1 = 0.9 means that at least 90%
of all observed events must have occurred simultaneously. Based
on set filteredEventLabels only events with these labels are

retained in the final ISC candidate list (simActivities, lines 29–
43). For the running example simActivities = {AstartA′

start →

[[1231, 1671], [2231, 2671]]}, i.e., an ISC candidate is discovered
stating that A and A′ must be executed simultaneously. Regarding
ISCP , it is likely that more than two different events occur simul-
taneously (imagine a third process in the running example with
another event A′′). This situation is covered by the algorithm.

Algorithm 1: Function filter
1 Function filter(events, absOccEvents, γ1, ε1):
2 simOccEvents = absOccEvents
3 found = False
4 for i in 0:len(events) do
5 ev1 = events[i]
6 for j in i+1:len(events) do
7 ev2 = events[j]
8 if |ev1.ts − ev2.ts|≤ ε1 then
9 if ev1.trace!=ev2.trace then

10 found = True
11 break
12 else
13 if found then
14 found=False
15 else
16 simOccEvents[ev1.lb] −= 1
17 end
18 end
19 end
20 end
21 end
22 result = [ ]
23 for key in absOccEvents.keys() do
24 if float(simOccEvents[key])

absOccEvents[key] ≥ γ1 then
25 result.append(key)
26 end
27 end
28 return result;

4.2.2. Category II
Algorithm 2 covers the constrained activity execution and is the

most complex algorithm of the four presented ones. The reason is
that constraints can cause different effects in the log, e.g., delays
w.r.t. execution time, due to various reasons. An example is a
resource that may only be accessed five times a day. The result set
of ISC candidates for this category consists of several subsets cre-
ated by Functions detectRegularities, detectExecution-
Constraint, detectDataConstraint. In order to cover dif-
ferent cases, three types of event pairs are computed (cf. line 2,
function createPairs), i.e., (a) list begin_end between all begin
and end events of traces in the (merged) log, (b) list start_start
between all directly follows events, and (c) list start_complete for
start and completion of one event if lifecycle transitions start and
complete are given. In addition the time differences between the
events are also stored.

For the running example
pairs = {begin_end → {(A, C) →x
[[1231, 1235], 349m], (A, C ′) → [[2231, 2675, 1768m]]},
start_start → {(A, A′) →

[[1231, 1671, 0m], [2231, 2671, 0m]], (A′, B′) →

[[1671, 1673, 137m], [2671, 2673, 90m]], (B′, B) →

[[1673, 1233, 146m], [2673, 2233, 138m]], (B, C ′) →

[[1233, 1675, 3m]], (C ′, C) → [[1675, 1235, 35m]], (B, C) →

[[2233, 2235, 30m]], (C, C ′) → [[2235, 2675, 7m]]}

start_complete → {A →

[[1231, 1232, 73m], [2231, 2232, 63m]], B →

[[1233, 1234, 16m], [2233, 2234, 29m]], C →
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Algorithm 2: Constrained Activity Execution
Input: (merged) log, γ2, ε2
Result: limEvents (list of ISC candidates for Category II)

1 limEvents = dict()
2 pairs = createPairs ((merged) log)
3 limEvents[‘‘regularities_begin_end’’] =

detectRegularities (pairs[0], γ2, ε2)
4 limEvents[‘‘regularities_start_start’’] =

detectRegularities (pairs[1], γ2, ε2)
5 limEvents[‘‘regularities_start_complete’’] =

detectRegularities (pairs[2], γ2, ε2)
6 limEvents[‘‘execution’’] = detectExecutionConstraint
(pairs[2], γ2)

7 outliersStSt = detectOutliers (pairs[1])
8 outliersStCo = detectOutliers (pairs[2])
9 limEvents[‘‘data_start_start’’] = detectDataConstraint
(pairs[1], outliersStSt)

10 limEvents[‘‘data_start_complete’’] =

detectDataConstraint (pairs[2], outliersStCo)

[[1235, 1236, 28m], [2235, 2236, 6m]], A′
→

[[1671, 1672, 13m], [2671, 2672, 3m]], B′
→

[[1673, 1674, 124m], [2673, 2674, 1451m]], C ′
→

[[1675, 1676, 34m], [2675, 2676, 63m]]}}

Algorithm 2: Function createPairs
1 Function createPairs ((merged) log):
2 begin_end = dict()
3 start_start = dict()
4 start_complete = dict()
5 for trname, trace in (merged) log do
6 begin_end[(trace[0].lb,

trace[-1].lb)].append((trace[0], trace[-1],
|trace[0].ts − trace[−1].ts|))

7 end
8 for trname, trace in (merged) log do
9 for i in 0:len(trace) do

10 e1 = trace[i]
11 if e1.lc !=’start’ then
12 continue
13 end
14 for j in i+1:len(trace) do
15 e2 = trace[j]
16 if e1.lb == e2.lb and e2.lc==‘complete’ then
17 start_complete[e1.lb]

.append((e1, e2, |e1.ts − e2.ts|))
18 break
19 end
20 end
21 for j in i+1:len(trace) do
22 e2 = trace[j] if e2.lc==‘start’ then
23 start_start[(e1.lb, e2.lb)]

.append((e1, e2, |e1.ts − e2.ts|))
24 break
25 end
26 end
27 end
28 end
29 return [begin_end, start_start, start_complete];

Function detectRegularities: This function tackles the
effects of constraints that are mainly caused by Service Level

Agreements (SLAs) such as In 99% of all cases the duration of the
process or a specific event may not exceed a certain time frame.

Algorithm 2: Function detectRegularities

1 Function detectRegularities (pairs, γ2, ε2):
2 result = dict()
3 if !ε2 and γ2 then
4 for key, val in pairs do
5 n=⌊len(val) - γ2∗ len(val)⌋
6 result[key]=reverse(sorted(val))[n]
7 end
8 else if ε2 and !γ2 then
9 for key, val in pairs do

10 count = 0
11 for event in val do
12 if event[2] ≤ ε2 then
13 count += 1
14 end
15 end
16 result[key] =

float(count)
len(val)

17 end
18 else
19 for key, val in pairs do
20 count = 0
21 for event in val do
22 if event[2] ≤ ε2 then
23 count += 1
24 end
25 end
26 if float(count)

len(val) ≥ γ2 then
27 result[key] = True
28 else
29 result[key] = False
30 end
31 end
32 end
33 return result;

Two parameters control the results of this part of the algo-
rithm. Parameter γ2 corresponds to the percentage value present
in the ISC, e.g., in the above mentioned SLA 99%. Parameter ε2
refers to a time frame in seconds.

For checking ISC over a log, values for γ2 and ε2 need to
be set (cf. lines 3–7). The result turns out as true if the ISC
was not violated and false if the ISC was violated. For this,
the occurrences of events fulfilling the given ε2 is counted and
divided by the absolute number of occurrences of this event in
all instances. If this value is above the user defined threshold γ2,
the ISC is not violated. Since in this case the user already knows
the ISC and just wants to check if it was violated, the analysis can
be restricted to specific events.

For discovering ISC candidates, either ε2 or the constant γ2
must be provided. In particular, if ε2 is given, γ2 is computed
(cf. lines 8–17) or γ2 is given and the corresponding time frame
ε2 is determined (cf. lines 18–32). Constant γ2 indicates how
many cases need to be executed within a certain time frame (ε2),
e.g., if γ2 = 0.99 then in 99% of all instances the execution of
an activity must be carried out within a certain ε2. For a given
ε2, the constant γ2 is calculated as the fraction between the
occurrences of events fulfilling ε2 and the number of occurrences
of this event in all instances. When threshold γ2 is provided by
the user the algorithm determines the ε2. For each event e, n =

⌊#occurrences of e ∗ (1 − γ2)⌋ is computed and ε2 corresponds
to the nth maximum w.r.t all time frames for events of type e,
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e.g., if γ2 = 0.99 and #occurrences of e = 1000 then n = 10,

i.e., the 10-th maximum is taken as ε2.

Function detectExecutionConstraint: The second func-

tion detectExecutionConstraint covers four different cases:

(a) number of executed instances per day (per_day) (b) number

of executed instances per day per resource (per_day_res) (c)

number of executions per activity per day (per_activity) (d)

number of executions per activity per resource per day

(per_activity_res).

Algorithm 2: Function detectExecutionConstraint
1 Function detectExecutionConstraint ((merged) log,

γ2):
2 result = dict()
3 per_day = dict()
4 per_day_res = dict()
5 per_activity = dict()
6 per_activity_res = dict()
7 for trname, trace in (merged) log do
8 per_day[trace[0].ts.day] += 1
9 per_day_res[(trace[0].ts.day, trace[0].rs)] += 1

10 for event in trace do
11 if |event.lc|== 0 or event.lc == ‘‘start’’ then
12 per_activity[(event.ts.day, event.lb)] += 1
13 per_activity_res[(event.ts.day, event.lb,

event.rs)] += 1
14 end
15 end
16 end
17 result[‘‘day’’] = filter (per_day, γ2)
18 result[‘‘day_resource’’] = filter (per_day_res, γ2)
19 result[‘‘event’’] = filter (per_activity, γ2)
20 result[‘‘event_resource’’] = filter (per_activity_res, γ2)
21 return result;
22 Function filter (inter, γ2):
23 result = list()
24 sum = dict()
25 for val in inter.values() do
26 sum[val] += 1
27 end
28 for key, val in sum do
29 if val

len(inter) ≤ γ2 then
30 result.append((key, val))
31 end
32 end
33 return result;

For the running example:

• per_day = {‘‘20-05-2019’’→ 2}
• per_day_res = {[‘‘20-05-2019’’, R1] → 1, [‘‘20-05-2019’’, R3] → 1]}
• per_activity = {[‘‘20-05-2019’’, A] → 2, [‘‘20-05-2019’’, B] → 1, [‘‘20-05-

2019’’, C] → 1, [‘‘20-05-2019’’, A′
] → 2, [‘‘20-05-2019’’, B′

] → 2, [‘‘20-05-
2019’’, C ′

] → 1, [‘‘21-05-2019’’, B] → 1, [‘‘21-05-2019’’, C] → 1, [‘‘21-05-
2019’’, C ′

] → 1}
• per_activity_res = {[‘‘20-05-2019’’, A, R1] → 2, [‘‘20-05-2019’’, B, R2] →

1[‘‘20-05-2019’’, C, R1] → C, [‘‘20-05-2019’’, A′, R3] → 2, [‘‘20-05-2019’’,
B′, R3] → 2, [‘‘20-05-2019’’, C ′, R3] → 1, [‘‘21-05-2019’’, B, R2] → 1, [‘‘21-
05-2019’’, C, R1] → 1, [‘‘21-05-2019’’, C ′, R3] → 1}.

This function can be extended and customized, e.g., by re-

placing ‘‘day’’ by a different time span or considering different

combinations based on the given event attributes.4 This part of
the algorithm requires parameter γ2 as input which describes
the minimal occurrence of the cases where the ISC is fulfilled
compared to all observed cases. In the running example ISC2
represents an example for case (d). The initial results are filtered
(cf. lines 17–20, Function filter) based on the parameter γ2.

Function detectDataConstraint: Constraints can also
cause delays of execution times which depend on data attributes.
The method for discovering such delays is similar to the decision
miner approach (cf. [15]), i.e., first of all the decision points are
determined and afterwards decision rules are computed. In our
case, instead of searching for decision points, we try to detect
deviations of execution times. These can be understood as outliers
with respect to time. Within Alg. 2, function detectOutliers
performs this task. A large variety of outlier detection techniques
exists and hence, this function can be adapted and customized
depending on the given data set.

In a second step, the algorithm detects the reason for the
deviation in terms of decision rules based on data elements (cf.
function detectDataConstraint). The given event attributes
of each pair of events can be used for classification and the
target variable reflects in this case whether the pair is marked as
an outlier or not, i.e., the result from detectOutliers. Again,
there are a lot of classification techniques available and hence no
pseudo-code is provided for this step. In Section 5, an exemplary
implementation is described.

4.2.3. Category III
Algorithm 3 discovers ISC candidates that impose an order

of activities between different processes. Such an order is re-
flected by pairs of start events (e1, e2) where e1 and e2 stem from
different process execution logs, i.e., different processes. Only
orders across different processes are of interest since the order in
between one process would be an intra instance constraint and
not an ISC. The algorithm creates an initial list of all cross process
orders (ordActivities) and counts the occurrences of each pair
as well as of each event label (countEvs, lines 1–22).

For the running example
ordActivities = {(A, B′) → {‘‘pairs’’ → [[1231, 1673], [2231, 2673]],
‘‘count ’’ → 2},
(A′, B) → {‘‘pairs’’ → [[1671, 1233], [2671, 2233]], ‘‘count ’’ → 2},
(B, C ′) → {‘‘pairs’’ → [[1233, 1675], [2233, 2675]], ‘‘count ’’ → 2},
(B′, B) → {‘‘pairs’’ → [[1673, 1233], [2673, 2233]], ‘‘count ’’ → 2},
(C ′, C) → {‘‘pairs’’ → [[2675, 2235]], ‘‘count ’’ → 1},
(C, C ′) → {‘‘pairs’’ → [[1235, 1675]], ‘‘count ’’ → 1}}
countEvs = {A → 2, A′

→ 2, B → 2, B′
→ 2, C → 2, C ′

→ 2}
Afterwards, ordActivities is filtered based on the assump-

tion that, if e1 should always be followed by e2, the inverse order,
i.e., e2 before e1 should not be discovered (line 23). Since logging
errors are likely to occur in real-life settings, the user can specify
a threshold κ ∈ [0, 0.5) indicating how many inverse pairs may
be observed, with κ = 0 meaning that no inverse pairs may
be present in the log. Note that a value of 0.5 or higher does
not make sense since this would imply that at least 50% of the
observed cases may happen in the inverse order and it cannot
be concluded that there has to be a constraint imposing a strict
order. A second threshold γ3 ∈ [0, 1] describes the relative
occurrence of the order between two events w.r.t. to the minimal
occurrence of the regarded two events.

To illustrate this, consider an order e2 after e1, with e1 and e2
stemming from different processes. Assume that this order has
occurred 10 times, i.e., #(e1, e2) = 10. Let #e1 = 20 and #e2 = 30.
Then #(e1,e2)

min(#e1,#e2)
= 0.5, i.e., only in 50% of all cases this order was

4 Based on the analysis of the 114 real-life examples we chose ‘‘day’’ and
‘‘resource’’ for illustrating the algorithm as these event attributes appear in most
of the cases.
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Algorithm 3: Order of Events
Input: merged log, κ , γ3
Result: ordActivities (list of ISC candidates for Category III)

1 ordActivities = dict()
2 countEvs = dict()
3 for tr in merged log do
4 for i in len(tr) do
5 e1 = tr[i]
6 if !checkLC(e1.lc) then
7 continue
8 end
9 countEvs[e1.lb] += 1

10 j = 1
11 while i+j < len(tr)) do
12 e2 = tr[i+j]
13 if e1.log == e2.log or !checkLC(e2.lc) or

e1.ts == e2.ts then
14 j += 1
15 continue
16 end
17 ordActivities[(e1.lb,e2.lb)][‘‘pairs’’] .append([e1,e2])
18 ordActivities[(e1.lb,e2.lb)][‘‘count’’] +=1
19 break
20 end
21 end
22 end
23 ordActivities = filter (ordActivities, countEvs, κ , γ3)

observed. Therefore, it is not likely that there is an ISC e2 after e1
resulting in a false positive case. Setting, e.g., γ3 = 0.9 filters out
such false positives.

Algorithm 3: Function filter
1 Function filter(ordActivities, countEvs, κ , γ3):
2 result = dict()
3 for tuple in ordActivities do
4 if ordActivities[tuple][′count ′]

min(countEvs[tuple[0]],countEvs[tuple[1]]) ≥ γ3 then
5 count = ordActivities[tuple][’count’]
6 if reverse(tuple) not in ordActivities then
7 result[tuple]= ordActivities[tuple][’pairs’]
8 continue
9 end

10 counttotal = ordActivities[reverse(tuple)][’count’]
+count

11 if float(count)
counttotal ≤ κ then

12 result[tuple]= ordActivities[tuple][’pairs’]
13 end
14 end
15 end
16 return result;

In the running example setting κ to 0 filters out the false
positives (C ′, C), (C, C ′). Four ISC candidates remain, i.e., (A, B′),
(A′, B), (B′, B) and (B, C ′). ISC candidates (A, B′) and (A′, B) are
discovered as A, A′ are always executed simultaneously and the
reverse orderings will consequently never be present. ISC candi-
date (B, C ′) represents the actual ISC that B must be started before
C ′. In this case γ3 has no filtering effect since each of the four ISC
candidates (A, B′), (A′, B), (B′, B) and (B, C ′) happens in 100% of all
cases.

Fig. 9. Non-concurrent and concurrent activity execution and how this is
reflected by the corresponding events (e1 , e2 and e1 , e3 respectively) in the
log.

Note that the algorithm considers start events. Hence ISC such
as B must be finished before C′ are discovered based on the start
events of B and C′. In order to verify that activity B must not only
have started before C ′, but also have finished, the complete events
would have to be compared in addition. This necessitates that
start and complete events are present in the log. The algorithm
can then be adapted such that the first component of tuples like
(B, C ′) is the complete event of B and not the start event of B.

4.2.4. Category IV
ISC of this category impose a non-concurrent execution of activ-

ities and are discovered by Alg. 4. In this case, it is mandatory that
activity lifecycle transitions start and complete are represented by
start and complete events in the log. The reasoning behind this is,
that two activities that may not be executed concurrently should
not overlap in time, i.e., the start of the second event cannot take
place before the first event has been completed. Fig. 9 illustrates
this (cf. possible relations between time intervals, e.g., [49]): e1
and e2 do not overlap, i.e., are not executed concurrently while e1
and e3 overlap and can therefore be executed concurrently. A user
can specify a fuzzy interval using the parameter ε4 analogously
to Alg. 1. Note that the difference between the timestamps of the
corresponding start events may not be 0 since in this case the two
events would be simultaneous, i.e., belong to Category I which is
the opposite of non-concurrency.

The algorithm first of all determines all start and complete
event pairs per trace that have the same labels (lines 1–11). For
the running example
pairs = {‘‘1b5’’ → [[1231, 1232], [1671, 1672], [1673, 1674],
[1233, 1234], [1675, 1676], [1235, 1236]],
‘‘4z7’’ → [[2231, 2232], [2671, 2672], [2673, 2674], [2233, 2234],
[2235, 2236], [2675, 2676]]}.

Afterwards, an initial list of non-concurrent events is created.
Therefore the event pairs are compared, i.e., we check whether
they stem from different processes and whether the completion
of the first event and the start of the second event are not
overlapping with a tolerance of ε4 (lines 12–26). For the running
example with ε4 = 1 second,
nonConActivities =

{(A, B′) → [[[1231, 1232], [1673, 1674]], [[2231, 2232], [2673, 2674]]],
(A, C ′) → [[[1231, 1232], [1675, 1676]], [[2231, 2232], [2675, 2676]]],
(A′, B) → [[[1671, 1672], [1233, 1234]], [[2671, 2672], [2233, 2234]]],
(A′, C) → [[[1671, 1672], [1235, 1236]], [[2671, 2672], [2235, 2236]]],
(B′, B) → [[[1673, 1674], [1233, 1234]], [[2673, 2674], [2233, 2234]]],
(B′, C) → [[[1673, 1674], [1235, 1236]], [[2673, 2674], [2235, 2236]]],
(B, C ′) → [[[1233, 1234], [1675, 1676]], [[2233, 2234], [2675, 2676]]],
(C ′, C) → [[[1675, 1676], [1235, 1236]]],
(C, C ′) → [[[2235, 2236], [2675, 2676]]]}.

Sequentially ordered activities in the processes might lead
to an initially high number of false positives, i.e., nonConAc-
tivities contains many false positives. In order to reduce the
false positive rate, only events that reflect parallel execution of
activities based on the (merged) log are taken into account. For
this, the logic of the alpha miner is applied, i.e., two events e1, e2
are in a parallel branch if and only if e1 is directly followed by e2
and vice versa (cf. function calculate_parallels). Function
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Algorithm 4: Non-concurrent Activity Execution
Input: merged log, ε4
Result: nonConActivities (list of ISC candidates for Category

IV)
1 pairs = dict()
2 for tr in merged log do
3 for e1 in tr do
4 for e2 in tr do
5 if e1.lb == e2.lb and e1.lc == ‘‘start’’ and e2.lc ==

‘‘complete’’ then
6 pairs[tr.lb].append([e1, e2])
7 break
8 end
9 end

10 end
11 end
12 nonConActivities = dict()
13 for tr,events in pairs do
14 for i in 0:len(events) do
15 e1 = events[i]
16 for j in i+1:len(events) do
17 e2 = events[j]
18 if e2[0].ts < e1[0].ts then
19 swap(e1,e2)
20 end
21 if e1.log != e2.log and e2[0].ts − e1[1].ts ≥ ε4 and

e2[0].ts − e1[0].ts != 0 then
22 nonConActivities[(e1.lb,e2.lb)] .append([e1, e2])
23 end
24 end
25 end
26 end
27 nonConActivities = filter (calculate_parallels

((merged) log), nonConActivities)
28 Function filter(parallel, nonConActivities):
29 result = dict()
30 for key,value in nonConActivities do
31 if key in parallel then
32 result[sorted(key)].append(value)
33 end
34 end
35 return result;

filter takes the initial list nonConActivities and the as
parallel identified events as input in order to reduce the number
of false positives in the final result (line 27).

In the running example, C and C ′ are identified as parallel and
the final result after filtering is
nonConActivities =

{(C ′, C) → [[[1675, 1676], [1235, 1236]]],
(C, C ′) → [[[2235, 2236], [2675, 2676]]]},

The resulting ISC candidate turns out as C and C ′ may not be
executed concurrently.

5. Implementation

This section targets Artifact 6, the prototype for the ISC dis-
covery approach presented in Section 4.

The prototype is implemented in Python 3, following common
guidelines for object oriented programming, in order to increase
accessibility and maintainability of the code as well as perfor-
mance. The prototype is provided as a web service available at
http://isc-mining.wst.univie.ac.at.

Algorithm 4: Function calculate_parallels

1 Function calculate_parallels((merged) log):
2 labels = dict()
3 for tr,events in (merged) log do
4 for i in 0:len(events) do
5 e1 = events[i]
6 if e1.lc != ‘‘start’’ then
7 continue
8 end
9 for j in i+1:len(events) do

10 e2 = events[j]
11 if e2.lc == ‘‘start’’ then
12 labels[(e1.lb, e2.lb)]+= 1
13 break
14 end
15 end
16 end
17 end
18 parallels = set()
19 for lb in labels do
20 if reverse(lb) in labels then
21 parallels.add(lb)
22 end
23 end
24 return parallels;

Fig. 10. Visualization of the result for category 1 for the running example.

In addition to the ISC candidate discovery one process model
per log is mined using the Heuristics Miner [23]. For visualizing
the process models and the results of the ISC discovery algorithms
GraphViz5 is used. Each ISC candidate is represented by a gray
filled node which, in the process spanning setting is connected
by a red dashed line to at least one other gray filled node. The
ISC for Category I in the running example (cf. Fig. 7) is visualized
in Fig. 10: Activities A and A′ are colored gray and connected by
a red line. This indicates the ISC candidate A and A’ are executed
simultaneously. In the case of Alg. 2 the nodes are enriched with
decision rules. The results of each ISC discovery algorithm are
additionally available as JSON files, which can be easily read and
further processed by technical experts.

All parameters γi, i = 1, 2, 3, εj, j = 1, 2, 4, κ , minerabs
and minerrel (the latter two are for the Heuristics Miner) are
adjustable by the user. For Alg. 2 the user can additionally provide
a list of attributes that should be used for classification within
function detectDataConstraint. If such a list is not given, all
event attributes except for concept name, lifecycle transition, the
merging attribute, i.e., the attribute that was used for creating
the merged log, as well as uuids are used for the classification.
The first two attributes are already used during the outlier detec-
tion and therefore omitted and the latter two are per definition
unique, i.e., do not contribute to finding decision rules since every
instance would be classified into a separate branch. Moreover,
timestamps have also proven to be inappropriate for classification,
cf. [10].

5 https://www.graphviz.org/.

http://isc-mining.wst.univie.ac.at
https://www.graphviz.org/
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For the outlier detection within function detectOutliers,
the z-score, which is suitable for normally distributed data, is
applied. For the classification task, the decision tree classifier of
the Python package scikit-learn (cf. [50]) is used in combination
with the Gini index since this is not as computationally intense
as the entropy criterion while nearly the same classification per-
formance can be achieved (cf., e.g., [51]). The maximum depth of
the decision tree is chosen as the number of attributes that can be
used for classification. The minimum number of samples required
to split an internal node is set to 2. Since, only paths resulting in
the class ‘‘outlier = true’’ are of interest, only these are displayed
in the visualization.

From a theoretical point of view, the implicit assumption was
made that event labels are unique within and across processes.
From a technical point of view, a unique process id can be added
to every event label in order to ensure uniqueness.

6. Evaluation

For evaluating the approach, artificial process execution logs
as well as real-life process execution logs are used. The log files
and evaluation results are available at http://bit.ly/2lztLv6.

For each of the presented algorithms,

precision =
#true positives

#(true positives + false positives)
and

recall =
#true positives

#(true positives + false negatives)
are computed with precision, recall ∈ [0; 1]. Precision corre-
sponds to the fraction between ISC candidates that are correctly
retrieved and the number of all retrieved ISC candidates. Recall is
the fraction between ISC candidates that are correctly retrieved
and the sum of correctly retrieved ISC candidates and the missing
ones. True positive results correspond to discovered ISC candi-
dates representing actual ISC. False positive results are discovered
ISC candidates that do not represent actual ISC. False negative
results correspond to actual ISC that are not represented by a
discovered ISC candidate.

The evaluation is carried out on a virtual machine with 2
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz and 16 GB RAM.
As stated in Section 5, the resulting ISC candidates are visualized
on top of process models as gray filled nodes in combination
with either red dashed lines (in the case that the ISC is process
spanning) or decision rules next to the nodes (for Alg. 2).

For applying the ISC candidate discovery algorithms presented
in Section 4 different parameters have to be set. In this section,
each algorithm is run for each data set with a parameter set-
ting that leads to an ‘‘optimum’’ result with respect to precision
and recall. Note that the parameter settings are not necessarily
unique, i.e., other settings might lead to the same precision and
recall. We discuss the parameter value choices based on certain
characteristics of the logs (e.g., high regularity of the artificial
log). Appendix presents tables where precision and recall are
summarized for different parameter settings in the algorithms for
each of the logs. Based on the findings of this section and the
tables we draw conclusions on how to set parameters based on
certain log characteristics for the different algorithms in Section 7.

6.1. Artificial example

The artificial logs are generated based on the three pro-
cess models depicted in Fig. 11. P1 describes the steps of de-
signing, printing and dispatching flyers, P2 the corresponding
bill handling process for different orders and P3 the creation
and dispatch of photo posters. The synchronization of processes
P1,P2,P3 obeys the following ISC which are reflected in the
corresponding logs:

ISC1 Finished orders of one day are delivered to the post office
simultaneously in the evening. (↦→ Category I)

ISC2a All print jobs must be completed within 10 min in at least
95% of all cases. (↦→ Category II, time constraint)

ISC2b Printer 1 may only print 10 times per day. (↦→ Category
II, absolute number of executions)

ISC2c If the filling amount of the printing ink is below 5%, it
has to be refilled before further jobs may be printed. (↦→
Category II, data constraint)

ISC3 If a flyer or poster order is received P2 is started. (↦→
Category III)

ISC4 Flyers and posters as well as bills and posters cannot be
printed concurrently on one printer since they require a
different paper format. (↦→ Category IV)

ISC1 to ISC4 are formulated based on the catalog of real-
world ISC in [16]. Moreover, we make sure that ISC1 to ISC4
cover all ISC categories determined in Section 3. In the case of
Category II for each of the presented functions one ISC is provided.

The logs are generated using the techniques described in [52]
resulting in 900 instances of P1 and P3 and 1800 instances of P2.
The generation starts with modeling processes P1,P2 and P3 (cf.
Fig. 11) using Signavio6 and afterwards transforming them into
executable code through the workflow engine CPEE [53]7 which
also ensures the compliance with ISC1 − 4. In detail, every time
an activity is executed, a notification is sent from the process exe-
cution engine via HTTP to a separate logging service, which stores
the information of the event directly in XES format. Per instance
one XES log is produced, i.e., in order to receive the complete
process execution log for one process, all corresponding instances
are merged into a single process execution log by appending
the traces iteratively. The information of an event is provided
directly by the CPEE, i.e., the activity label, the resource executing
the activity, for example which printer, and the duration of the
activity, which is randomly sampled from a given interval.

Since the injected artificial ISC are known, the retrieved ISC
candidates can be easily validated.

The parameters for the Heuristics Miner are set to minerabs
= 100 and minerrel = 0.3, i.e., only paths between activities
occurring with an absolute frequency of at least 100 times and
a relative frequency of at least 0.3 are considered. In order to
demonstrate the effects of the parameters, precision and recall
are computed for various parameter settings and summarized in
tables (cf. Appendix).

6.1.1. Category I
Fig. 12 displays the results for Alg. 1 with γ1 = 0.95, ε1 = 0.1

s, i.e., it depicts the process models annotated with ISC candidates
representing activities that are executed simultaneously. The red
dashed edges imply that the gray filled nodes deliver flyer,
deliver poster, deliver bill are executed simultaneously.
Hence, ISC1 (Finished orders of one day are delivered to the post
office simultaneously in the evening.) is discovered and no false
positives are contained in the result with this parameter setting.
Precision and recall consequently both equal 1. How the param-
eters γ1 and ε1 affect precision (p) and recall (r) is depicted in
Table A.2. It can be deduced that the ISC is not discovered for all
parameter settings since for γ1 = 1 the recall is only 1

3 . Moreover,
activities do not happen close after each other as ε1 needs to be
at least set to 100 s to affect the precision.

6 https://academic.signavio.com/.
7 http://cpee.org/.

http://bit.ly/2lztLv6
https://academic.signavio.com/
http://cpee.org/
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Fig. 11. Artificial example: Process models with ISC.

Fig. 12. Result for artificial example for Algorithm 1 with γ1 = 0.95, ε1 = 0.1
s.

6.1.2. Category II
In the following, we summarize the results for the different

functions of Algorithm 2.
Function detectRegularities: For the artificial log files

we know ISC2a (‘‘All print jobs must be completed within 10
min in at least 95% of all cases. ’’) beforehand. Therefore, we can
demonstrate how to use this function for checking ISC. Hence,
no table containing precision and recall for different parameter
settings is provided.

In order to check ISC2a, we set γ2 = 0.95, ε2 = 600 s. With
this setting, for begin and end events of instances, detectReg-
ularities does not deliver any results, which is correct.

For directly follows activities, two regularities are discovered
between print bill and deliver bill resp. deliver bill
and deliver poster. This indicates that as soon as print bill
starts, bills are delivered the same day and they are delivered in
conjunction with posters which corresponds to the results of Alg.
1. Consequently, this ISC candidate is present due to ISC1.

Between start and complete of same event types, all print
events are discovered as ISC candidates with the given param-
eter setting. Consequently, ISC2a is fulfilled by the underlying
log files. Moreover, regularities for write bill, deliver bill,
receive flyer order, deliver flyer, receive order and
photo and deliver poster are discovered. These are false
positives and can be explained by, e.g., an automatic system that
covers the incoming orders within a regular time frame of less
than 600 s (receive flyer order, receive order and photo)
and that deliver activities do not take longer than 600 s in 95%
of all cases.

Function detectExecutionConstraint: In this case ISC2b
(Printer 1 may only print 10 times per day.) should be discovered.
Setting γ2 to 0.99 or 0.95 does not deliver any results. By setting
γ2 to 0.8 the following four ISC candidates are discovered

1. On 42 days 40 instances were started.
2. On 42 days 20 instances with receive flyer order were

started.
3. On 42 days 40 instances with write bill were started.
4. On 42 days 20 instances with receive order and photo

were started.

These candidates are false positives and trace back to the
fact that the underlying artificial logs obey additional ISC, in this
case ISC3 which states that whenever a flyer or poster order is
received the billing process is started immediately.

With γ2 = 0.5 besides these ISC candidates it is discovered
that On 41 days 10 instances with print flyer were started
by printer1 . This ISC candidate corresponds to ISC2b and
precision is in this case 1

5 while recall equals 1.
Function detectDataConstraint: For this function no pa-

rameters are required.
First of all the set of start and complete pairs, i.e., list

start_complete is viewed. Fig. 13 displays the corresponding pro-
cess models enriched with the ISC candidates. The decision rules
are displayed next to the gray nodes and can be summarized as
Whenever the filling amount of the printing ink is below 5.5, a delay
between the start and end of an print activity occurs. This reflects
ISC2c and precision as well as recall both equal 1. Note that
the discovered ISC candidates could only be intra instance and
not instance spanning constraints as the connection between the
print activities which access the common shared resource, is not
explicitly visualized. This can only be resolved by inspecting the
corresponding JSON files.

For directly follows activities, i.e., list start_start two ISC can-
didates are discovered:

Whenever the resource of print bill is printer1 and

• filling amount of print bill ≤ 15.5 and filling
amount of print bill > 4 or

• filling amount of print bill > 15.5 and filling
amount of print bill > 95.0
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Fig. 13. Result for artificial example Algorithm 2 using detectDataCon-
straint for start and complete Pairs.

then there is a delay between print bill and print poster.
These are not ISC and inspecting the relevant traces and events

reveals the reason why they are discovered. Each of the print
bill activities is executed in the morning and afterwards all
other print bill and print flyer activities are executed. This
results in a delayed execution of all print events with a differ-
ent format, thus resulting in an unusually long time difference
between these events, which marks them as an outlier.

6.1.3. Category III
Table A.3 contains the precision and recall scores for various

parameter settings. It can be deduced that for these process exe-
cution logs γ3 is more pivotal than κ . The best precision and recall
scores, i.e., p =

1
3 , r = 1, are achieved with γ3 = 0.99 and choosing

an arbitrary κ . The corresponding annotated process models are
displayed in Fig. 14. Again ISC candidates are represented as gray
filled nodes and red dashed lines across the process models. It
can be seen that whenever an order arrives, activity write bill
is issued, i.e., ISC3 is clearly supported by the results. The order
between write bill (P2) and design photo poster (P3) that
does not refer to an ISC can be recognized as well as orders
between print flyer and deliver bill resp. deliver flyer
and deliver bill as well as design photo poster and print
bill. These are false positives and present due to the regular
nature of the process execution logs.

6.1.4. Category IV
In this case, the non-concurrent execution of activities is tar-

geted. Table A.4 displays the recall and precision scores for dif-
ferent values for ε4.

Fig. 15 displays the result of Alg. 4 with ε4 = 0 s. Five
ISC candidates are discovered, design flyer not concurrent
with print bill, send draft to customer not concurrent
with print bill, deliver poster not concurrent with print
bill and deliver poster not concurrent with deliver bill.

Fig. 14. Result for the artificial example for Algorithm 3 with γ3 = 0.99, κ =

0.05.

Fig. 15. Result for artificial example for Algorithm 4 with ε4 = 0 s.

It can be deduced that bills and posters may not be printed
concurrently, i.e., ISC4 is partly discovered. The remaining four
candidates are false positives whereas the last ISC candidate can
be explained by the fact that posters take longer for printing than
bills. Consequently poster orders are delivered one day after their
corresponding bills.
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6.1.5. Conclusion
For Category I and III a recall of 1 can be achieved, i.e., all

injected ISC are represented by an ISC candidate. However, for
Category IV we can only receive a recall of 1

2 . A precision of 1 is
achieved for Alg. 1, whereas for Alg. 3 precision is in the optimum
case 1

3 and for Alg. 4 the precision score is 1
5 . Consequently, the

discovery of false positive ISC candidates could not be entirely
avoided. This might happen as the artificially generated processes
might contain regularities and hence are not completely random.
Moreover, ISC that are from a different category can have affects
on the results for other categories. For Alg. 2 it was demonstrated
how to check ISC if they are known beforehand and all ISC could
be resolved.

6.2. Real-life example — manufacturing domain

The process execution logs for this real-life example stem from
the manufacturing domain and consist of nine process models
(cf. [54]). The processes describe the production and quality as-
surance of valve lifters. For evaluating the results a domain expert
has been consulted. According to the expert, only ISC of Category
III are present in the logs. Thus precision and recall are only
calculated with several parameter settings for Alg. 3. For the other
categories the recall cannot be determined as the denominator
would evaluate to 0. However, we can determine whether the
approach delivers false positives or not.

The parameters for the Heuristics Miner are set to minerabs =

1 and minerrel = 0.3.

6.2.1. Category I
As no ISC from this category are contained in the example, we

only want to determine how the parameters affect the number
of false positives. Starting with γ1 = 1 and ε1 ∈ {0, 0.1, 1}
s results in no false positives. Setting ε1 to 10 s, results in a
high number of false positives. These observations differ from
the artificial example because the starts of the events occur way
closer to each other than in the artificial example. The parameter
ε1 has indeed an effect on the false positive rate. This finding also
holds for γ1 ∈ {0.99, 0.95}. For γ1 ∈ {0.8, 0.6, 0.4, 0.2} one to two
false positives are even present for ε1 = 1 s.

6.2.2. Category II
Function detectRegularities: In contrast to the artificial

example the ISC are not known beforehand and must be discov-
ered from scratch. For this either γ2 or ε2 must be provided and
each combination between begin and end events of instances,
between start and start of directly follows events as well as start
and complete of one event is marked as ISC candidate.

An application scenario demonstrating how to use γ2 to de-
termine the production quality is as follows. According to the
domain expert, the duration of Fetch3, i.e., between start of
Fetch3 and complete of Fetch3, must last at least three minutes
to ensure proper production of a valve lifter. This is not an ISC
since this condition must hold per instance. However, in order to
discover, e.g., quality issues like determining whether in 95% of
all instances the time range (ε2) for ensuring a proper production
is met, γ2 can be used. In this case it can be set to 0.05, in order to
calculate the ε2 for 95% of occurrences. This ε2 can be compared
to the demanded ε2 of 3 min provided by the domain expert. Such
a condition spans all instances and is therefore regarded as an ISC.
The ε2 determined by the approach with γ2 = 0.05 for Fetch3 is
238.605 s, i.e., in at least 95% of all cases the production quality
is as desired.

For γ2 ∈ {1, 0.8, 0.6} function detectExecution
Constraint does not detect any execution constraints while
with γ2 = 0.4 one execution constraint (On 2 days 4 instances

were started.) and with γ2 = 0.2 15 additional ones are discov-
ered. According to the domain expert there should not be any
execution constraints within the log files.

No results are retrieved for function detectData
Constraint which is correct according to the domain expert.

6.2.3. Category III
According to the domain expert, there should be a red dashed

line connecting all process models such that each process is con-
nected with another process. Fig. 16 contains the ISC candidates
for Alg. 3 with γ3 = 1 and κ = 0.

According to Table A.5 which contains the precision and recall
scores for different parameter settings, the precision for this case
is 3

4 and recall 3
7 . The false positive result (Check State6 before

Measure with MicroVu9) emerges due to physical conditions
within the production process since measuring can only be car-
ried out if the production has finished and the check for the clamp
opening has been done.

6.2.4. Category IV
With ε4 ∈ {0, 0.1} s, we discover that Check State1 and Ma-

chining8 must not be executed concurrently. Even
though the two processes containing these activities are executed
in parallel, the fact that Check State1 and Machining8 are
never executed concurrently is random, according to the domain
expert. This is therefore one false positive result. With ε4 = 1 s
or higher no false positive results are discovered.

6.2.5. Conclusion
For Category I and IV it is possible to avoid false positives with

the optimal parameters while for Category III the precision evalu-
ates in the optimal case to 3

4 . For Alg. 2 it could be demonstrated
how to use the algorithm for, e.g., monitoring quality during the
production.

6.3. Real-life example — higher education domain

The second real-life case stems from the higher education
domain (cf. [55]), describes the activities of students within one
semester course and consists of one process, i.e., only one log
file. Therefore, Categories III and IV are not present as they only
appear in process spanning settings. For evaluating the results
a domain expert has been consulted and again precision and
recall for Alg. 1 are calculated and displayed for various parameter
settings.

The parameters for the Heuristics Miner are set to minerabs =

12 and minerrel = 0.3.

6.3.1. Category I
Table A.6 summarizes the precision and recall scores for Alg.

1. When setting the parameters to γ1 = 1 and ε1 = 0, 12
ISC candidates are discovered and Fig. 17 depicts the results. All
gray activities like, e.g., the kick-off meeting or the written
exam have happened for 100% of all students at exactly the same
time. An example of an ISC candidate would therefore be that
The written exam took place for all students simultaneously.. All
ISC candidates are indeed ISC according to the expert and were
logged by an automatic system. It can be seen that the upload
activities do not happen simultaneously as each student should
work and resp. upload on his or her own which can happen at
different times.

With γ1 = 0.95 an interesting ISC candidate emerges that is
a mixture of an intra instance and instance spanning constraint.
The algorithm discovers that 3. submission deadline and
final project meeting are executed simultaneously. In fact,
these activities have the same timestamp for almost all instances.
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Fig. 16. Result for Algorithm 3 for the real-life example from the manufacturing domain with γ3 = 1, κ = 0.

Table 1
Durations of algorithms based on the evaluation log files.
Log file Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Artificial example, 30 646 events, 11.2 MB 41.091 s 25.633 s 6.411 s 36.806 s
Manufacturing example, 2546 events, 11.58 MB 4.839 s 8.2 s 4.558 s 29.11 s
Higher education example, 8913 events, 2.8 MB 14.266 s 6.757 s N/A N/A

Table A.2
Precision and recall for the artificial example for Algorithm 1 with different parameter combinations.

γ1 = 1 γ1 = 0.95 γ1 = 0.8 γ1 = 0.6 γ1 = 0.4 γ1 = 0.2

ε1 = 0 s p = 1 p = 1 p = 1 p = 1 p = 1 p = 1
r =

1
3 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 0.1 s p = 1 p = 1 p = 1 p = 1 p = 1 p = 1
r =

1
3 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 1 s p = 1 p = 1 p = 1 p = 1 p = 1 p = 1
r =

1
3 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 10 s p = 1 p = 1 p = 1 p = 1 p = 1 p = 1
r =

1
3 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 100 s p = 1 p = 1 p = 1 p =
3
26 p =

3
45 p =

3
45

r =
1
3 r = 1 r = 1 r = 1 r = 1 r = 1

Table A.3
Precision and recall for the artificial example for Algorithm 3 with different parameter combinations.

γ3 = 1 γ3 = 0.99 γ3 = 0.95 γ1 = 0.8 γ3 = 0.6 γ3 = 0.4 γ3 = 0.2

κ = 0 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

1
6

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

κ = 0.05 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

1
6

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

κ = 0.1 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

1
6

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

κ = 0.2 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

1
6

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

κ = 0.3 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

1
6

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

κ = 0.4 p = 1 p =
1
3 p =

2
7 p =

1
4 p =

1
4 p =

1
5 p =

2
13

r = 0 r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

However, as most process mining algorithms do only consider the
workflow and not the timestamps it is not possible to discover
that there should be a parallel branch because from the workflow
perspective 3. submission deadline is always followed by
final project meeting. Therefore, it cannot be deduced based
on the model that there is an intra instance constraint that these
two activities must be executed simultaneously. According to the
expert this is not an ISC even though it was logged in that way
by the system.

6.3.2. Category II
Function detectRegularities: In this case we test differ-

ent values for γ2 ∈ {1, 0.8, 0.6, 0.4, 0.2} and determine the corre-
sponding limit ε2. For begin and end events of instances regular-
ities between Kick-off meeting and Final mark, Kick-off
meeting and Final project meeting, Kick-off meeting
and Run unit test phase 2 as well as Kick-off meeting and
Run unit test phase 3. These are the discovered ISC candidates
and it can be deduced that not every instance finishes with the
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Fig. 17. Result for Algorithm 1 for the Real-life Example from the Higher Education Domain with γ1 = 1 and ε1 = 0.

same event. Each γ2 delivers the same ε2 for the first two ISC
candidates. This finding corresponds to the duration of the course,
whereas the first limit describes the duration until the grading
and the second one the duration until the last activity that a
student has to take, the final project meeting. These are con-
straints for one student but they span all instances as they apply
to each student. The third ISC candidate also has the same limit
for each γ2 but like the last ISC candidate, which has different
limits depending on γ2, it is not an ISC according to the domain
expert.

For directly follows events, again different values for γ2 are
tested and 31 out of 73 ISC candidates have the same limit for
each γ2. Again this can be explained by the timespans between
deadlines which are the same for each student.

As there are no complete events in the log file, list start_
complete is empty.

The second function, detectExecutionConstraint discov-
ers one ISC candidate On 1 day 69 instances were started which
is present due to the simultaneous execution of this event like
discovered within Category I.

For function detectDataConstraint no results are
retrieved which is correct according to the domain expert.

6.3.3. Conclusion
For this real-life example precision as well as recall equal 1

for Category I with suitable parameters. Moreover, compared to
the previous examples, the precision score remains at a high level
when loosening the parameters. For Category II

7. Discussion

Requirements on logs: Events must have unique concept names
and timestamps. Traces or events should have a unique case iden-
tifier. For Alg. 4 lifecycle transitions start and complete are manda-
tory. Even though the requirements on the logs are kept to a
minimum and are covered by the XES standard lifecycle transi-
tions, they might not be fulfilled for every real-life case. Then pre-
processing of the log files might become necessary, e.g., inserting
missing timestamps or amending lifecycle transitions.
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Table A.4
Precision and recall for the artificial example for Algorithm 4 with different
parameter combinations.

Precision Recall

ε4 = 0 s 1
5

1
2

ε4 = 0.1 s 1
5

1
2

ε4 = 1 s 1
5

1
2

ε4 = 5 s 1
5

1
2

ε4 = 10 s 1
5

1
2

Interplay between parameters and logs: As demonstrated by
the evaluation, the parameters in Algorithms 1–4 allow the user
to carry out the analysis in a flexible way and to adjust it to
the underlying process execution log files. Parameters γi, i =

1, 2, 3 represent the relative occurrences of observations. If it
is known that the underlying log file(s) are likely to contain
errors, e.g., describe settings in which the logging is done after
the work day like it is often the case in the medical domain,
these parameters should be chosen smaller in order to detect ISC
candidates. For Alg. 1, ε1 controls small logging errors and affects
the results whenever event executions are close together, i.e., if
the underlying log contains short durations between events ε1
should be chosen small.

Quality of Process Mining Results: As mentioned in Section 6.3,
the visualization depends on to the process mining results and
if the model is not correctly mined, ISC candidates might not be
visualized correctly. This is, e.g., the case for the real-life example
from the higher education domain in Section 6.3 where two
events that should be in a parallel branch were not determined to
be parallel. Such issues can be resolved by considering the JSON
files.

Runtime: An algorithm should not only be precise and have
a high recall in order to be useful. Furthermore, in order to be
applicable in practice, it should be reasonably fast. Therefore, av-
erage durations of each algorithm are measured and summarized
in Table 1.

Each algorithm was run ten times for γ1 = 0.95, ε1 = 0, γ2 =

0.95, γ3 = 0.99, κ = 0, ε4 = 0 and the average duration over all
these runs is taken. The computation includes the parsing of the
XES file(s), the ISC algorithm computations, the discovery of the
process model(s) as well as the drawing. It can be seen that the
duration in general depends on the number of events. For Alg. 2,
the speed is also affected by the file size, i.e., the amount of event
attributes. We did not measure in detail how the parameters

affect the durations but the lower a γ and the higher an ε the
more observations need to be tested during the filtering which
can increase the duration.

8. Conclusion and outlook

ISC play a crucial rule for companies from various domains.
Violating ISC can cause severe consequences such as fines or qual-
ity problems. Consequently, checking as well as discovering ISC
from process execution logs plays an essential part in a digitalized
compliance management. Hence, in the introduction, we stated
the following research questions:

RQ1 How to design an automatic algorithm for discovering ISC
candidates?
In this paper, we have provided the first automatic ISC candi-
date discovery approach. It is based on a novel categorization
of ISC and the evaluation shows that the approach is precise
and has a high recall, i.e., in most of the cases all ISC could be
discovered.

RQ2 Which characteristics and requirements must process exe-
cution logs meet to enable the discovery of ISC candidates?
Requirements on the logs are kept at a minimum and are
usually provided by Process Aware Information Systems. Thus
the approach is applicable to a wide range of logs.

RQ3 How can the ISC mining algorithm control varying quality
of process execution logs?
For each of the four presented algorithms a user can set
different parameters making the approach adjustable to the
underlying log. We showed how the parameters can be used
to deal with, for example, logging errors and to control varying
durations between activity executions.

Concluding, we can state that the three research questions
have been met. Some limitations exist that we aim to tackle in
future work: regarding RQ1 and RQ3, for example, the number of
false positives and regarding RQ2, for example, the provision of
pre-processing methods dealing with, e.g., logs only containing
start or complete events. Finally, future work will address the
discovery of ISC candidates that trace back to exception handling.
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Table A.5
Precision and recall for the manufacturing example for Algorithm 3 with different parameter
combinations.

γ3 = 1 γ3 = 0.99 γ3 = 0.95 γ1 = 0.8 γ3 = 0.6 γ3 = 0.4 γ3 = 0.2

κ = 0 p =
3
4 p =

5
12 p =

5
12 p =

7
15 p =

7
15 p =

7
15 p =

7
16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1

κ = 0.05 p =
3
4 p =

5
12 p =

5
12 p =

7
15 p =

7
15 p =

7
15 p =

7
16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1

κ = 0.1 p =
3
4 p =

5
12 p =

5
12 p =

7
15 p =

7
15 p =

7
15 p =

7
16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1

κ = 0.2 p =
3
4 p = 5

12 p = 5
12 p =

7
15 p =

7
15 p =

7
15 p = 7

16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1

κ = 0.3 p =
3
4 p =

5
12 p = 5

12 p =
7
15 p =

7
15 p =

7
15 p =

7
16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1

κ = 0.4 p =
3
4 p = 5

12 p =
5
12 p =

7
15 p =

7
15 p =

7
15 p =

7
16

r =
3
7 r =

5
7 r =

5
7 r = 1 r = 1 r = 1 r = 1
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Table A.6
Precision and recall for the higher education example for Algorithm 1 with different parameter
combinations.

γ1 = 1 γ1 = 0.95 γ1 = 0.8 γ1 = 0.6 γ1 = 0.4 γ1 = 0.2

ε1 = 0 s p = 1 p =
12
13 p =

12
13 p =

12
13 p =

12
13 p =

12
13

r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 0.1 s p = 1 p =
12
13 p =

12
13 p =

12
13 p =

12
13 p =

12
13

r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 1 s p = 1 p =
12
13 p =

12
13 p =

12
13 p =

12
13 p =

12
13

r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 10 s p = 1 p =
12
13 p =

12
13 p =

12
13 p =

12
13 p =

12
13

r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

ε1 = 100 s p = 1 p =
12
13 p =

12
13 p =

12
13 p =

12
13 p =

3
4

r = 1 r = 1 r = 1 r = 1 r = 1 r = 1

Appendix. Precision and recall tables

See Tables A.2–A.6.
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