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Abstract.—Molecular sequence data that have evolved under the influence of heterotachous evolutionary processes are
known to mislead phylogenetic inference. We introduce the General Heterogeneous evolution On a Single Topology
(GHOST) model of sequence evolution, implemented under a maximum-likelihood framework in the phylogenetic program
IQ-TREE (http://www.iqtree.org). Simulations show that using the GHOST model, IQ-TREE can accurately recover the tree
topology, branch lengths, and substitution model parameters from heterotachously evolved sequences. We investigate the
performance of the GHOST model on empirical data by sampling phylogenomic alignments of varying lengths from a
plastome alignment. We then carry out inference under the GHOST model on a phylogenomic data set composed of 248
genes from 16 taxa, where we find the GHOST model concurs with the currently accepted view, placing turtles as a sister
lineage of archosaurs, in contrast to results obtained using traditional variable rates-across-sites models. Finally, we apply
the model to a data set composed of a sodium channel gene of 11 fish taxa, finding that the GHOST model is able to elucidate
a subtle component of the historical signal, linked to the previously established convergent evolution of the electric organ in
two geographically distinct lineages of electric fish. We compare inference under the GHOST model to partitioning by codon
position and show that, owing to the minimization of model constraints, the GHOST model offers unique biological insights
when applied to empirical data. [Convergent evolution; heterotachy; maximum likelihood; mixture model; phylogenetics.]

The success and reliability of model-based phylogen-
etic inference methods are limited by the adequacy of
the models that are assumed to approximate the evolu-
tionary process. Time-homogeneous models of sequence
evolution have long been recognized as inadequate
because the rate of evolution is known to vary across
sites (Fitch and Margoliash 1967; Holmquist et al. 1983)
and across lineages (Lopez et al. 2002; Baele et al. 2006;
Wu and Susko 2011; Jayaswal et al. 2014). Many models
have been proposed to compensate for rate heterogeneity
across sites. The classical example is the discrete � model
(Yang 1994), which allows different classes of variable
sites to have their rates drawn from a � distribution.
More recently, Kalyaanamoorthy et al. (2017) relaxed
the requirement for the rates of the classes to fit a �
distribution, implementing a probability-distribution-
free (PDF) rate model. However, these models still
assume that the substitution rate for each site is constant
across all lineages. This is too restrictive; biologically
speaking it is not hard to accept that evolutionary
processes can be both lineage and time dependent. In the
context of a phylogenetic tree this manifests as lineage-
specific shifts in evolutionary rate, coined heterotachy
(Philippe and Lopez 2001; Lopez et al. 2002), resulting
in sequences that cannot be characterized as having
evolved according to a single set of branch lengths and
one substitution model.

The effect of heterotachy on phylogenetic inference
was thrust into the spotlight by Kolaczkowski and

Thornton (K&T) (2004). They used a simulation study
to show that heterotachously evolved sequences could
mislead the popular inference methods of maximum-
likelihood (ML) and Bayesian Markov Chain Monte-
Carlo to a greater extent than maximum parsimony
(MP). Their findings were controversial and were widely
challenged on the grounds that the simulations captured
only a special case of heterotachy (Gadagkar and Kumar
2005; Philippe et al. 2005; Spencer et al. 2005; Steel 2005),
and more general studies of heterotachy concluded that
ML performed at least as well as, and in most cases
better than, MP (Gadagkar and Kumar 2005; Spencer
et al. 2005). Valid as these criticisms may have been,
the key issue that the K&T study brought to light
stood firm—heterotachy was a primary source of model
misspecification and the models and methods of the time
were ill-equipped to deal with it.

The main impediment to the development of mod-
els that can accommodate heterotachously evolved
sequences has been the computational expense. Models
that account for heterogeneity of rates of change across
sites can be integrated relatively cheaply, but modeling
heterotachy is not so simple. One approach has been
covarion (COV) models (Fitch and Markowitz 1970).
Tuffley and Steel (1998) described a model in which sites
could switch between variable and invariable states in
different lineages. All variable sites in the model shared
a common substitution model and rate. This model was
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gradually extended (Galtier 2001; Huelsenbeck 2002),
eventually reaching its most complex form in which sites
can switch along lineages between a number of different
rates as well as an invariable state (Wang et al. 2007).

Another approach has been to use partition models
(Lanfear et al. 2012), which require the data to be
partitioned a priori. The analysis then proceeds by infer-
ring separate branch length and model parameters for
each partition. Sequence data are commonly partitioned
based on genes and/or codon position (CP). However,
the inherent assumption of this approach is that het-
erotachy only occurs between partitions, not within each
partition. This may not be a valid assumption, so the
requirement to partition the data in advance of the
analysis is a possible source of model misspecification.

An alternative approach has been to use mixture
models, in which the likelihood of the data at each
site in the alignment is calculated as a weighted sum
across multiple classes (see Pagel and Meade 2005 for
a detailed description of phylogenetic mixture models).
The most common approaches can be referred to as
mixed substitution rate (MSR) models (Foster 2004; Lar-
tillot and Philippe 2004; Pagel and Meade 2004), whereby
each class has its own substitution rate matrix; and
mixed branch length (MBL) models (Kolaczkowski and
Thornton 2004; Meade and Pagel 2008), whereby each
class has its own set of branch lengths on the tree. Hybrid
versions of these models have also been proposed, such
as the heterogeneity-across-lineages and heterogenetiy-
across-sites (HAL-HAS) model of Jayaswal et al. (2014).
Zhou et al. (2007) compared a COV model to an MBL
model, finding the COV model to be more efficient at
handling heterotachy. They did however conclude that
both methods warranted further exploration, going on
to propose the COV mixture model (Zhou et al. 2010),
which incorporates COV parameters that vary across
sites. As a consequence of their parameter-rich nature,
these models have all been implemented only within
a Bayesian framework. Wu and Susko (2009) proposed
a general framework for heterotachy, encompassing
both MSR and MBL models as special cases. Another
example is the CAT models of Lartillot and Philippe
(2004), which have been widely used (Whelan and
Halanych 2017 and references therein). Whelan and
Halanych (2017) carried out extensive simulation and
empirical studies comparing the performance of the CAT
models to partition models. They concluded that despite
their additional complexity and associated increase in
runtime, the CAT models generally perform no better
than partition models. They also lamented that when
new mixture models are introduced in the literature
their performance is not always assessed against the
current popular methods for phylogenetic analysis, such
as partition models.

As a consequence of their varied nature, mixture
models require many parameters and the associated
computational expense has thus far impeded their
implementation in a ML framework. The issue of
computational expense is an ever diminishing one; as

computing power increases and algorithmic architec-
ture improves, the opportunity to employ more and
more complex models of sequence evolution does also.
We introduce the General Heterogeneous evolution On
a Single Topology (GHOST) model for ML inference.
The GHOST model combines features of both MSR and
MBL models. It consists of a number of classes, all
evolving on the same tree topology. For each class, the
branch lengths, nucleotide or amino-acid frequencies,
substitution rates, and class weight are all parameters
to be inferred. The motivation behind this modeling
approach is the desire to minimize assumptions that
might lead to model misspecification. Although the cost
of this approach, in terms of model complexity and
the associated risk of over-parameterization, is not to
be ignored, by refraining from placing strict constraints
on the inference we allow the opportunity to recover
new, and perhaps surprising, historical signals from the
data. We provide an easy-to-use, ML implementation
of the GHOST model in the phylogenetic program IQ-
TREE (Nguyen et al. 2015) (http://www.iqtree.org), the
first mixture model of comparable flexibility to be made
available in a ML framework.

MATERIALS AND METHODS

Model Description
The GHOST model consists of a user-specified number

of classes, m, and one inferred tree topology, T, common
to all classes. All other parameters are inferred separately
for each class. For the jth class, we define λj as the
set of branch lengths on T; Rj, the relative substitution
rate parameters; Fj, the set of nucleotide or amino-acid
frequencies; and wj, the class weight (wj >0,

∑
wj =1).

Given a multiple sequence alignment (MSA), A, we
define Lij as the likelihood of the data observed at the ith
site in A under the jth class of the GHOST model. Lij is
computed using Felsenstein’s (1981) pruning algorithm.
The likelihood of the ith site, Li, is then given by the
weighted sum of the Lij over all j:

Li =
m∑

j=1

wjLij(T,λj,Rj,Fj).

Therefore, if A contains N sites (length of the alignment),
the full log-likelihood, �, is given by:

�=
N∑

i=1

log
( m∑

j=1

wjLij(T,λj,Rj,Fj)
)

.

We make use of the existing parameter optimization
algorithms within IQ-TREE, extending them, where
necessary, to incorporate parameter estimation across
the m classes.
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Model Parameter Estimation for a Fixed Tree, T
Given a fixed tree topology, T, let �={w1,...,

wm,λ1,...,λm,R1,...,Rm,F1,...,Fm} denote the GHOST
model parameters (i.e., class weights, branch lengths,
relative substitution rates, and nucleotide or amino-acid
frequencies) for each of the m classes. To estimate all
parameters for a tree, T, we employ the expectation–
maximization (EM) algorithm (Dempster et al. 1977;
Wang et al. 2008). We initialize � with all R̂j =1 in
each class, uniform nucleotide or amino-acid frequencies
F̂j [i.e., the Jukes–Cantor (JC) model], and ŵj and
λ̂j obtained by parsimonious branch lengths rescaled
according to the rate parameters of a discrete, PDF rate
model (Kalyaanamoorthy et al. 2017) with m categories.
This becomes the current estimate �̂. The EM algorithm
iteratively performs an expectation (E) step and a
maximization (M) step to update the current estimate
until an optimum in likelihood is reached.

Derivation of EM Algorithm
The premise underlying the GHOST model is that

each site evolved according to just one of the m classes;
however, we do not have any information about which
sites belong to which class. We define c={c1,c2,...,cN}
as a vector that maps the N sites to one of the m classes.
The EM algorithm works by formulating an expression
for the expected value of our objective function and then
maximizing that expectation. In the context of GHOST,
we can restate the likelihood equation as follows:

�=
m∑

j=1

N∑
i=1

I{ci = j}log
(

Lij(T,λj,Rj,Fj)
)

,

where I{ci = j} is an indicator function that is equal to 1
when the class of the ith site is equal to j, and 0 otherwise.
Taking the expectation of this expression yields:

E[�]=
m∑

j=1

N∑
i=1

E[I{ci = j}|A]log
(

Lij(T,λj,Rj,Fj)
)
.

E-step.—In the context of the GHOST mixture model,
the goal of the E-step is to evaluate the quantity E[I{ci =
j}|A] for a fixed set of tree and model parameters. An
intuitive interpretation of the expected value of this
indicator function, is that it is simply the probability that
a given site i belongs to a given class j. For simplicity,
we define this quantity as p̂ij and evaluate it using a
simple application of Bayes Theorem. Given the current
parameter estimates, we can calculate p̂ij as follows:

p̂ij =
ŵjLij(T,λ̂j,R̂j,F̂j)∑m

k=1ŵkLik(T,λ̂k,R̂k,F̂k)
.

M-step.—The goal of the M-step is then to update
the parameter estimates to maximize the expected
likelihood, fixing the pij that were calculated during the
E-step. For each class j, we maximize the expectation of
the log-likelihood function:

E[�j]=
N∑

i=1

p̂ij log
(

Lij(T,λj,Rj,Fj)
)

to obtain the next λ̂j
NEW

,R̂j
NEW

,F̂j
NEW

. Within IQ-

TREE, λ̂j
NEW

is obtained via Newton–Raphson optim-

ization, whereas R̂j
NEW

and F̂j
NEW

are estimated by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Fletcher 2013). Finally, the weights are updated by:

ŵj
NEW = 1

N

N∑
i=1

p̂ij.

That is, the new weight for class j is the mean posterior
probability of each site belonging to class j. This

completes the proposal of the new estimate �̂
NEW

. If

�(�̂
NEW

)>�(�̂)+� (where � is a user-defined tolerance,

�=0.01 by default), then �̂ is replaced by �̂
NEW

and the
E and M steps are repeated. Otherwise, the EM algorithm
finishes.

An auxiliary benefit of the ML implementation of
the GHOST model in IQ-TREE is that once the EM
algorithm has converged, we can soft-classify sites to
classes, according to their probability of belonging to a
particular class. This classification can be used to identify
sites in the alignment that belong with high probability
to a particular class of interest.

Tree Search
The tree search algorithm in IQ-TREE (Nguyen et al.

2015) is based on the construction of a candidate tree
set. Trees from the candidate tree set are rearranged
by Nearest Neighbor Interchange (NNI) to explore the
tree space. This algorithm was tested extensively during
the ML implementation of the GHOST model and two
significant changes to the heuristic were required:

1. In the original implementation of IQ-TREE, after
each NNI is performed, IQ-TREE will sequentially
optimize each branch length parameter using the
Newton–Raphson algorithm. It will optimize each
branch only once (as opposed to a full optimization
in which the process of sequentially optimizing
the branch lengths is repeated until convergence of
the likelihood). During the implementation of the
GHOST model, our experiments showed that this
amount of partial optimization (applying Newton–
Raphson just once per branch) was not sufficient.
Under the GHOST model, when considering a
new tree, IQ-TREE will sequentially optimize each
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branch length (simultaneously across all classes)
using Newton–Raphson as before, except it will
do this m times, instead of once (where m is
the number of classes in the GHOST model). It
should be noted that during this process, only
the branch lengths are optimized, the substitution
model parameters and the class weights are not
changed.

2. Prior to the ML implementation of the GHOST
model, IQ-TREE only fully optimized the model
parameters of the best tree in the candidate tree
set. During the ML implementation of the GHOST
model, we found that this technique proved to
provide too much of an advantage to the current
best tree. The algorithm was modified such that
when the GHOST model is used, all trees in the set
of candidate trees are fully optimized.

Software

The GHOST model has been implemented in IQ-
TREE (Nguyen et al. 2015) (http://www.iqtree.org).
IQ-TREE can perform inference with the GHOST
model on both nucleotide and amino-acid sequences,
although it should be noted that simulation studies
have only been carried out for nucleotide sequences.
The GHOST model is executed in IQ-TREE v1.6 by
augmenting the model argument as shown below
(summarized in Table 1). If one wants to fit a four-
class, fully linked (model parameters are common
to all classes) GHOST model with a general time
reversible (GTR) model of evolution, to sequences
contained in data.fst, one would use the following
command:

iqtree -s data.fst -m GTR+H4

The above command infers four sets of branch lengths, a
single set of GTR model parameters (which are common
to all classes) and the weights of each class. The base
frequencies are taken from the empirical values observed
in the alignment. So, in effect the four classes only differ

TABLE 1. Reference guide for model syntax in IQ-TREE

Model Linked parameters Unlinked parameters

GTR+F+Hx Tree topology, substitution
rates, empirical base
frequencies

Branch lengths

GTR+FO+Hx Tree topology, substitution
rates, inferred base
frequencies

Branch lengths

GTR+FO*Hx Tree topology Branch lengths,
substitution rates,
inferred base
frequencies

Note: Linked parameters are common to all classes, unlinked paramet-
ers are inferred separately for all classes.

in that they each have their own set of branch lengths.
However, we can gradually increase the complexity of
the model if we so choose. To infer equilibrium base
frequencies using ML, instead of using the empirical
base frequencies from the alignment, we add the +FO
option:

iqtree -s data.fst -m GTR+FO+H4

The relative rate and base frequency parameters are still
fully linked across all four classes. If one also wishes to
infer separate GTR rate parameters and base frequencies
for each class then the unlinked version is required:

iqtree -s data.fst -m GTR+FO*H4

This is the most general, fully unlinked version of the
GHOST model. If one wishes to obtain a file with the
probability of each site belonging to each class, then this
can be done by using the -wspm option, as in:

iqtree -s data.fst -m GTR+FO*H4 -wspm

On the Identifiability of the GHOST Model
An ongoing concern regarding parameter-rich mix-

ture models has been whether or not they are iden-
tifiable. There are several examples of theoretically
nonidentifiable mixture models in the literature (Mat-
sen and Steel 2007; Štefankovič and Vigoda 2007b).
These examples have inspired much theoretical work
on the identifiability or otherwise of different types
of phylogenetic mixture models (Allman and Rhodes
2006; Štefankovič and Vigoda 2007a; Allman et al. 2008;
Allman and Rhodes 2008; Steel 2010; Allman et al. 2011).
Of particular interest to the current study, Allman et al.
(2011) showed that for a single topology, four taxa, two-
class mixture under the JC model (Jukes and Cantor
1969), only the tree topology is identifiable but not the
branch lengths. This provides a theoretical justification
for the procedure carried out by K&T (and replicated
here), measuring performance of the methods/models
based only on recovery of the topology and paying no
attention to recovery of branch length parameters. With
regard to the identifiability of the GHOST model more
generally, we rely on a result from Rhodes and Sullivant
(2012). They established an upper bound on the number
of classes, m, for which tree topology, branch lengths,
and model parameters are identifiable, as a function of
the number of character states, �, and the number of taxa,
n:

m<�� n
4 �−1

For the simulations we carry out in the current study,
with 12 taxa and four character states, the model is
identifiable up to a maximum of 16 classes. For 32 taxa
and four character states, the model is identifiable up to
a maximum of 16,384 classes. In the case of the electric
fish data set, with four character states and only 11
taxa, the model is identifiable up to 16 classes. However,
there is a technical caveat. The result is shown based
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on assuming a general Markov model across the tree.
There are specific choices of parameters that can result
in nonidentifiability, but these are of little concern in
practical data analysis. Problems arise only when the
parameters selected collapse the parameter space to
some lower dimension. For example, we could fit the
GTR model but if we chose parameters such that all
base frequencies were equal and all substitution rates
were equal then we are in fact using a JC model, and
identifiability may be compromised. However, these
technical examples of nonidentifiability are not relevant
in practice, as in the absence of any constraints there is no
reasonable chance of inferring parameters that collapse
the parameter space in such a way.

Testing of the GHOST Model in IQ-TREE
We tested the efficacy of the ML implementation of the

GHOST model in IQ-TREE by carrying out three separate
simulation studies. The first study was a replication
of the simulations carried out by Kolaczkowski and
Thornton (2004), focusing on IQ-TREE’s ability to recover
the correct tree topology from heterotachously evolved
data on quartet trees. The second study used 12-
taxon trees and focused on IQ-TREE’s ability to recover
branch length and substitution model parameters from
heterotachously evolved data. The third study used
32-taxon trees and focused on the problem of model
selection, specifically to determine the correct number
of classes from simulated alignments. Finally, we invest-
igated the effect of using the incorrect number of classes
on topological accuracy.

K&T simulations.—We followed the simulations of
Kolaczkowski and Thornton (2004) precisely and com-
pared the performance of MP, ML-JC (ML under
a JC model), and ML-JC+H2 (ML under JC with
2 GHOST classes). We used Seq-Gen (Rambaut and
Grassly 1997) to simulate nucleotide sequences on
two symmetric, four-taxon trees of identical topology
(see Supplementary Fig. S1a available on Dryad at
http://dx.doi.org/10.5061/dryad.t389h81) using the JC
model of substitution. The branch lengths were construc-
ted such that each tree comprised of two nonsister long
branches (length p) and two nonsister short branches
(length q) separated by an internal branch (length r). We
replicated three separate experiments previously carried
out by K&T.

12-Taxon simulations.—The replication of the K&T simu-
lations focused on recovering tree topology only. How-
ever, the GHOST model is parameter rich and naturally
the implementation process must assess the ability of IQ-
TREE to accurately recover branch lengths and model
parameters under the GHOST model. We constructed
independent sets of parameters for two classes on a
randomly generated 12-taxon tree using the GTR model
of substitution. For each class, the branch lengths were

drawn randomly from an exponential distribution with a
mean of 0.1. We then used Seq-Gen (Rambaut and Grassly
1997) to simulate MSAs. When specifying a GTR rate
matrix in Seq-Gen, the G↔T substitution rate is fixed at 1
and all other substitution rates are expressed relatively.
Within each class, the five relative substitution rates were
drawn randomly from a uniform distribution between
0.5 and 5. The four base frequencies for each class were
assigned a minimum of 0.1, with the remainder allocated
proportionally by scaling a normalized set of four
observations from a uniform (0, 1) distribution. From
these two classes, MSAs were constructed by varying
the weight of each class. The weight of Class 1, w1, was
varied from 0.2 to 0.8 in increments of 0.05 and at each
increment 20 separate MSAs were simulated. Each MSA
was constructed by concatenating two independently
simulated sets of sequences, the first of length 10,000×
w1 simulated using the Class 1 parameters, and the
second of length 10,000×(1−w1) simulated using the
Class 2 parameters. We used IQ-TREE to infer parameters
from each MSA under a GHOST model with two GTR
classes (GTR+FO*H2). We also inferred parameters from
each MSA under a partitioned GTR model, where the
branch length parameters were unlinked (i.e., estimated
separately for each partition). We also repeated the
procedure with a range of shorter sequence lengths: 100,
500, 1000, and 5000 nucleotides. The treefiles in Newick
format and substitution model parameters used in the
simulations can be found in the Supplementary Material
available on Dryad.

The accuracy of inferred base frequency and relat-
ive rate parameters for the 12-taxon simulations was
measured by calculating the mean absolute difference
between the inferred and true parameters. The accuracy
of branch length estimates was assessed using the branch
score (BS) metric (Kuhner and Felsenstein 1994). In order
to assess the accuracy of branch length recovery, we
needed to establish a frame of reference to gauge whether
the results obtained are suitably close to the truth or
not. To do this, we made use of the estimates under
the branch-unlinked partition model as a baseline. The
fundamental difference between the partition model and
the GHOST model is that the partition model has a priori
knowledge of which sites in the alignment belong to
which class. This means that in effect (and excluding the
possibility of inferring the incorrect topology) the results
of the partition model are identical to those that would be
obtained by fitting GTR models to the Class 1 and Class
2 sequences independently. Naturally, we cannot expect
that the GHOST model can perform better than this, so
we can consider the accuracy of the partition model as a
benchmark.

Model Selection
32-Taxon simulations.—In order for the GHOST model to
be used on empirical sequence alignments we must have
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some method of model selection, in particular selecting
the appropriate number of classes. Information criterion
methods such as Akaike’s Information Criterion (AIC)
(Akaike 1974) or Bayesian Information Criterion (BIC)
(Schwarz 1978) are commonly used in phylogenetics for
this purpose, so we carried out simulations to establish
whether these criteria could accurately predict the
correct number of classes that generated an alignment.
We also investigated the influence of the number of
classes inferred on topological accuracy. We generated
300 heterotachous sequence alignments for each of m=
2,3 and 4 classes. Each alignment was 10,000 bp long,
contained 32 taxa and used the GTR model of sequence
evolution for each class. The weight of each class, wi,
was held fixed at 1

m . For each alignment, the model
parameters for each of the m classes were generated
as in the 12-taxon simulations. For each alignment, a
“base set” of branch lengths, λ, was generated randomly
from an exponential distribution with a mean of 0.1. The
branch length parameters for the m classes were then
generated as follows:

1. For the ith class, a vector of random variables (of
same length as λ), si, was drawn from a uniform
distribution on (0, 1).

2. For the ith class, a class scaling factor, �i, was drawn
from a uniform distribution on (0, 1).

3. Finally, an overall scaling factor, �, was calculated
to ensure that the weighted total tree length (TTL)
of the m classes was equivalent to the TTL of the
“base set”:

�=
∑

λ∑m
i=1wi�isiλ

4. The branch length vectors for the ith class were
then given by:

λCi =��isiλ

For the ith class, we used Seq-Gen to simulate a sequence
alignment of length 10,000×wi bp. These were concaten-
ated together to form the heterotachous alignment. This
procedure was repeated to generate 300 heterotachous
sequence alignments for each of m∈{2,3,4}.

For each of the 900 simulated alignments we used IQ-
TREE to fit GHOST models with 1,2,3,...,8 classes. For
each alignment, we used AIC and BIC (where we used
sequence length as the proxy for n in the BIC formula) to
determine the number of classes that provided the best
fit between tree, model, and data. We also investigated
the influence of the inferred number of classes on the
topological accuracy, as measured by the Robinson–
Foulds (RF) distance (Robinson and Foulds 1981). Finally,
we investigated the computation time required for IQ-
TREE to arrive at ML estimates under the GHOST model,
as a function of the number of classes in the model
(Supplementary Fig. S2 available on Dryad).

Plastome alignments.—In order to investigate the vari-
ability in the number of classes recommended by AIC
and BIC on empirical alignments, we created separate
empirical alignments by subsampling from a plastome
alignment, taken from Yan et al. (2017), which consisted
of 66 genes for 26 species. We discarded all genes shorter
than 1000 bp, leaving a total of 20 genes. From these 20
genes, we randomly sampled 20 groups of 1, 3, 5, 10, and
15 genes to create a total of 100 separate alignments. We
then fitted GHOST models with increasing number of
classes to each alignment to determine the number of
classes that provided the best fit according to both AIC
and BIC.

Placement of Turtles among Archosaurs
One can think of the linked version of the GHOST

model in terms of the discrete � model, with the removal
of some constraints. The linked GHOST model does
not require the classes to be of equal weight, nor does
it impose that the branch lengths between classes are
correlated. The PDF rate model can be thought of as an
intermediate step between the discrete � and the linked
GHOST models. To demonstrate the effect of relaxing
these constraints we applied four-class discrete �, PDF
rate and linked GHOST models to a phylogenomic
alignment consisting of 248 genes (187,026 bp) for 16 taxa.
The alignment was taken from Chiari et al. (2012), in
which they concluded that turtles were a sister group to
birds and crocodiles, as opposed to crocodiles only.

Convergent Evolution of the Nav1.4a Gene among Teleosts
We applied the GHOST model to a sequence align-

ment (2178 bp) taken from the coding region of a sodium
channel gene, Nav1.4a, for 11 teleost species.

Model selection is the first challenge when using the
GHOST model on an empirical alignment. We tested
a wide variety of substitution models, as shown in
Supplementary Figure S3 available on Dryad. Starting
with the two-class GHOST model, we used IQ-TREE to
optimize the likelihood of the data under each substitu-
tion model. Subsequently, we repeated the process with
up to a maximum of six classes. For each run we used the
unlinked version of the GHOST model, so that each class
had its own set of branch lengths, base frequencies, and
substitution model parameters inferred. We then used
AIC to determine the substitution model and number of
classes that provided the best fit. For the best GHOST
model, we also tested the linked versions to evaluate
whether inferring model parameters individually for
each class was necessary. Finally, we found the best PDF
rate model (Kalyaanamoorthy et al. 2017) and compared
that to the best GHOST model based on AIC.

In order to compare the GHOST model to alternative
current phylogenetic methods, we also used IQ-TREE to
fit a branch-unlinked partition model. The electric fish
alignment was split into three partitions, based on codon
structure. We then used PartitionFinder (Lanfear et al.
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2012) to evaluate the best substitution models to use
on each partition. Finally, IQ-TREE was used to fit the
best branch-unlinked partition model to the alignment,
using the models of sequence evolution suggested by
PartitionFinder.

RESULTS AND DISCUSSION

Testing of the GHOST model—K&T Simulations
Experiment 1.—We fixed p=0.75 and q=0.05 (see Sup-
plementary Fig. S1a available on Dryad) and varied
the internal branch length, r, on the interval [0.01,0.4]
in increments of 0.01. For each value of r, 200 sim-
ulated MSAs were constructed by concatenating two
subalignments of equal length, one simulated on each
of the trees in Supplementary Figure S1a available
on Dryad. We carried out phylogenetic inference on
each MSA using MP, ML-JC and ML-JC+H2 (GHOST).
The experiment was repeated for sequence lengths of
1000, 10,000 and 100,000 bp. The results are shown in
Supplementary Figure S1b available on Dryad. We found
that both ML-JC and MP were misled when r was short,
but as r increased the performance of MP recovered
before ML. For a sequence length of 100,000 bp, MP
was misled to some extent for r<0.24 and ML-JC was
misled for r<0.3. These findings mirrored those of K&T
precisely. However, the ML-JC+H2 model was never
misled. Supplementary Figure S1b available on Dryad
shows that given sufficient sequence length, the ML-
JC+H2 model inferred the correct topology from the
heterogeneous sequences 100% of the time with r as low
as 0.01. These results demonstrate that the ML-JC+H2
model can correctly infer the tree topology when both
ML-JC and MP are misled by the heterotachous nature
of the data.

Experiment 2.—We tested nine different combinations
of p∈{0.3,0.5,0.7} and q∈{0.001,0.1,0.2,0.3,0.4} (see
Supplementary Fig. S1a available on Dryad). For each of
the three methods/models (MP, ML-JC and ML-JC+H2)
and at each combination of p and q, we determined the
smallest value of r (subject to the minimum r=0.001),
denoted BL50 by K&T, such that the correct topology
was returned at least 50% of the time for simulated
alignments of length 10,000 bp. The results (Supplement-
ary Fig. S4 available on Dryad) indicate that ML-JC+H2
consistently outperformed the two alternatives, with
the difference most apparent when the influence of
heterotachy was strongest (most notably when p is large
and q is small). Again, the results we observed for MP
and ML-JC closely emulated the findings of K&T.

Experiment 3.—We tested the impact of varying the
weight, w, of each of the two classes in the simulated
MSAs for a variety of branch length combinations.
Initially, p and q (see Supplementary Fig. S1a available
on Dryad) were fixed at 0.75 and 0.05 respectively, with
r∈{0.05,0.15,0.25} and w1 ∈{0.01, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.99}. The process was then repeated,
this time with p and r fixed at 0.75 and 0.15 respectively,
with q∈{0.05,0.15,0.25}and w as before. Sequence length
was held fixed throughout at 100,000 bp (mirroring the
experiment of K&T) and 200 replicates were simulated
at each combination of branch lengths and weight. We
found that for almost all branch length combinations
ML-JC+H2 was able to recover the correct topology for
all replicates. In the entire experiment, only one data
set (out of 13,200) returned the incorrect topology. The
results of K&T indicate that ML-JC could not reliably
recover the correct topology for all weights for any of
the branch length combinations.

The positive performance of the GHOST model across
the three K&T experiments should be expected in some
sense, as it enjoys substantial advantage over the two
alternatives. The GHOST model is correctly specified as
it has the freedom to fit two classes evolved under the JC
substitution model, which are precisely the conditions
used to generate the data. Conversely, ML-JC has only
a single class and therefore is subject to model misspe-
cification. No single set of branch lengths can reproduce
the signal present in the simulated alignments. While
MP is nonparametric, it is however subject to the long-
established artifact of long branch attraction (LBA)
(Felsenstein 1978). Supplementary Figure S1a available
on Dryad shows the two trees used for the classes in
the mixture, both sharing the same AB|CD topology.
The Class 1 tree has long terminal branches on the A
and C lineages, therefore the LBA artifact biases MP
towards the AC|BD topology. The Class 2 tree is in a
sense the symmetric opposite of the Class 1 tree, it has
long terminal branches on the B and D lineages so the
result is the same: LBA biases MP towards the AC|BD
topology.

Therefore, the successful replication of the K&T
simulations is a necessary but not sufficient condition
for the GHOST model’s endorsement. It indicates that
the ML implementation of the GHOST model within
IQ-TREE’s algorithm structure has been successful, but
these simulations are on only four taxa and use the most
simple model of sequence evolution. Moreover, they only
focus on recovering the correct tree topology and not
inferring branch length parameters.

12-Taxon Simulations
We simulated heterotachously evolved MSAs of vary-

ing lengths (100, 500, 1000, 5000, and 10,000 bp) on
a random 12-taxon tree topology, with two classes
evolving according to a GTR model of evolution. Both
the GHOST model and the partition model recovered
the correct topology in 100% of simulated alignments.
Figure 1 shows the performance of the GHOST model
in recovering the various tree and model parameters for
Class 1 of the 10,000 bp simulated alignments. The ana-
logous plots for Class 2 can be found in Supplementary
Figure S5 available on Dryad. The results of the 12-taxon
simulations show that under the GTR+FO*H2 model,
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FIGURE 1. Twelve-taxon simulations, 10,000 bp alignments—Class 1 inferred parameters versus Class 1 weight. The data points indicate
the mean value of the inferred parameter or statistic, the error bars represent ±2 standard errors of the mean. Dotted lines represent the true
parameter value used for data simulation. (a) Base frequencies. (b) Relative substitution rates. (c) BS for both the GHOST and partition models.
(d) Inferred Class 1 weight.

IQ-TREE recovered the base frequencies, relative rate
parameters and weights to a high degree of accuracy
for both classes. With respect to the branch length
estimates (Fig. 1c and Supplementary Fig. S5c available
on Dryad), we see that the mean BS for the GHOST
model approaches that obtained by the partition model
(which can be considered a benchmark), as class weight
(and therefore share of sequence length in the mixed
alignment) increases. This is despite the fact that the
partition model has full knowledge of which sites were

simulated under which class. A mean BS of zero would
imply that the true simulation parameters were inferred
for every simulated alignment. Thus, the magnitude of
the mean BS for the partition model can be thought
of as a measure of the stochastic simulation error. The
difference between the BS for the GHOST and partition
models can then be considered the error attributable to
losing the knowledge of the true partitioning scheme.
This error appears negligible in comparison to the
simulation error. In Figure 1c, when w1 >0.5, the overlap
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of the error bars (which represent ±2 standard errors of
the mean) suggests that, collectively, the branch lengths
inferred by the GHOST model are not significantly
different from those inferred by the partition model.
When analyzing empirical data, any partitioning of the
MSA is based on assumptions, and therefore introduces a
potential source of model misspecification. The GHOST
model can be applied without any such assumptions.

To demonstrate the ability of the GHOST model
to provide meaningful information about which sites
might belong to which class, we performed a soft
classification on one of the MSAs generated for the 12-
taxon simulations. That is, we consider that a site belongs
to all classes, according to its probability distribution
of evolving under each class. For simplicity, we have
chosen an MSA where Class 1 and Class 2 are of equal
weight. Supplementary Figure S6 available on Dryad
indicates that the probability of a site belonging to
Class 1 is generally higher for those sites that were
simulated under the Class 1 parameters. However, given
the stochastic element of the simulations, there are
some sites simulated under the Class 2 parameters
that are classified as having a higher probability of
evolving under Class 1, and vice versa. For this reason,
we never attempt to “hard classify” the sites, that is,
allocating specific sites to a particular class with absolute
certainty.

The effect of sequence length.—An important consideration
when employing parameter-rich models is the amount
of information in the alignment. Estimating many para-
meters from an insufficient amount of information will
result in unreliable parameter estimates. Supplementary
Figure S7 available on Dryad shows that the GHOST
model and the partition model recover the correct tree
topology at similar rates. For simulated alignments of
length 100 bp, tree inference was poor for both GHOST
(30.8% inferred trees correct) and the partition model
(33.5%). This failing is quickly remedied by increasing
sequence length, with topological accuracy for both
models greater than 90% for 500 bp alignments. When
looking at parameter inference we see a similar story.
Supplementary Figure S8 available on Dryad shows both
an increase in the accuracy of inferred branch length
parameters, and a decrease in the variability of the
parameter estimates, as sequence length is increased. For
sequence lengths of 100 bp, the parameter estimates are
completely unreliable. This is not surprising given the
dearth of information on which to base the inference.
As sequence length increases so does the strength of
the phylogenetic signal from each class. At 500 and
1000 bp, the estimates are reasonably close to the true
values but still exhibit a moderate level of variance. For
5000 and 10,000 bp the parameter estimates are very
close to the true values and with little variance. These
12-taxon, two-class simulations have a total of 59 free
parameters to be estimated. Based on these results, when
applying the GHOST model to empirical data sets, it
would seem prudent to ensure a minimum of 10*k sites in

the alignment, where k is the number of free parameters
under the proposed model.

Model Selection
32-Taxon simulations.—The primary purpose of the 32-
taxon simulations was to investigate the issue of model
selection (in particular the number of classes to choose),
to allow the GHOST model to be applied to empir-
ical alignments with confidence. Information theory
methods such as AIC and BIC are typically used by
phylogeneticists to choose amongst models. AIC and
BIC are theoretically underpinned by a different set of
assumptions, not all of which are met in the context of
phylogenetic inference. But in practice, the difference
between the two measures is in the size of the penalty
that is applied for an increase in model complexity.
How these two methods perform on complex mixture
models such as GHOST is unclear. Zhou et al. (2007)
found that when applied to models with high numbers of
parameters, AIC tended to overfit the data (inclusion of
parameters is penalized too lightly) whereas BIC tended
to underfit the data (inclusion of parameters is penalized
too heavily). Dziak et al. (2019) counsel that whereas
information criteria are useful guides, they do have
their limitations, and so nuance and judgment remain
important elements in the model selection process.

For each of the 900 simulated alignments (300 for
each m∈{2,3,4}, 10,000 bp long), we used AIC and BIC
to determine the optimal number of classes for IQ-
TREE to infer under the GHOST model. The results are
summarized in Table 2. AIC selects the correct number
of classes in 95% of cases for m=2, always erring on
the side of overfitting (preferring more classes than were
used to simulate the data). As m increases, the accuracy
of AIC rises to more than 99% for m=4. BIC selects the
correct number of classes 100% of the time for m=2, but
the accuracy of BIC decreases as m increases, dropping
to 90% for m=4. Conversely to AIC and in line with
expectations based on the literature, BIC always erred
on the side of underfitting (preferring less classes than
were used to simulate the data).

Plastome alignments.—The results of the 32-taxon sim-
ulations discussed above indicate that BIC and AIC
agree on the number of classes in the vast majority
of cases, so there is little ambiguity in the model
selection process. However, this may not be the case
in empirical alignments. We subsampled genes from a
phylogenomic alignment, taken from Yan et al. (2017),
to create 100 different alignments, 20 each of single-
gene, 3-gene, 5-gene, 10-gene, and 15-gene alignments.
Supplementary Figure S9 available on Dryad shows
the level of variability between the number of classes
recommended by BIC and AIC. It is apparent that the
broad agreement between BIC and AIC when applied
to simulated alignments is not mirrored in empirical
data. One reason for this might be that when applied
to the simulated alignments, the true model is available
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TABLE 2. 32-taxon simulations, model selection using AIC or BIC

True number Inferred number of classes
of classes 1 2 3 4 5 6 7 8 Total

A
IC

2 0 285 14 1 0 0 0 0 300
3 0 0 292 6 2 0 0 0 300
4 0 0 0 298 2 0 0 0 300

BI
C

2 0 300 0 0 0 0 0 0 300
3 0 5 295 0 0 0 0 0 300
4 0 0 30 270 0 0 0 0 300

Note: For each of the 900 simulated alignments (300 for each m∈{2,3,4}, where m is the true number of simulated classes), we used AIC and BIC
to determine the optimal number of classes to infer under the GHOST model.

as one of the candidate models and so both criteria tend
to select this model or something quite close to it. This is
obviously not the case for empirical data, and so this may
explain why we see considerably more variation in the
results between the criteria. Regardless, it does highlight
that when applying the GHOST model to empirical
alignments, choosing the number of classes requires a
more nuanced approach.

Choosing the number of classes.—Model selection can be
thought of as a trade-off between bias (the chosen
model has too few parameters to adequately represent
the underlying evolutionary processes) and variance
(the model has too many parameters to provide stable
parameter estimates) (Burnham and Anderson 2003;
Posada and Buckley 2004). Given that the primary motiv-
ation behind the development of the GHOST model
was the minimization of model misspecification, we
should prefer modest overfitting to modest underfitting.
A model that has too many classes has the advantage
that the true model is nested within it, and therefore
the true parameters remain recoverable, albeit with some
undesirable redundancy. Conversely, a model with too
few classes must merge at a minimum two classes
into one, and therefore the true parameters are not
recoverable. Thus, we can respectively consider the BIC-
and AIC-based optimal number of classes as a lower
and upper bound on the number of classes in the best-
fit GHOST model. The challenge is to find a way to
sensibly choose the optimal number of classes between
these bounds.

Intuitively, there does not seem to be any way to
predict the effect of underfitting (fitting less classes
than was used to generate the data) on the inferred
parameters. However, the same is not true of overfitting.
If we fit too many classes then we may expect one of two
things to happen:

1. We will recover the true branch lengths, model
parameters and weights for the correct number of
classes, with any remaining classes having weight
very close to zero.

2. We may have two or more inferred classes in which
the inferred branch lengths and model parameters
are very similar to each other, with the sum of their
weights being approximately equal to the weight
of a single true class.

Given the apparent lack of consensus in the number of
classes recommended by AIC and BIC for empirical data,
we recommend that users need to adopt an interactive
approach to model fitting. For each empirical data set,
some experimentation is necessary to manually assess
the trees and model parameters inferred under the
GHOST model. If AIC results in the inference of classes
that bear a strong similarity to each other, then it would
be reasonable to reduce the number of classes in the
model. The forthcoming discussion of the convergent
evolution of the Nav1.4a is an example of an empirical
alignment in which AIC appears to give a reasonable
number of classes, with no signs of overfitting present.
A counter example is provided in Crotty et al. (2018),
where AIC is found to overfit the data whereas BIC offers
a more reasonable fit.

Impact of model misspecification.—In the absence of a
reliable, deterministic approach to model selection, we
must address the potential for over/underfitting to occur
in practice with empirical alignments. To do so, we
used the 32-taxon simulations to investigate the effect
of choosing the wrong number of classes on IQ-TREE’s
ability to infer the correct topology under the GHOST
model. We calculated the RF distance between the trees
used for simulation and those inferred by IQ-TREE.
Figure 2 displays the mean RF distance as a function
of the number of classes in the fitted model, expressed
relative to m, the true number of classes used to simulate
the alignments. As we should expect, for all values of m
the mean RF distance is minimized when m classes are
inferred. However, the mean RF distance increases much
faster in the presence of underfitting than it does in the
presence of overfitting.

Placement of Turtles among Archosaurs

The placement of turtles in the phylogenetic tree of
amniotes has been controversial, due in part to their
morphological peculiarities (Burke 1989; Theißen 2009).
It is currently accepted that turtles are a sister lineage
to archosaurs (birds and crocodiles), as opposed to
crocodiles alone. Chiari et al. (2012) assembled and
analyzed a 248-gene, 187,026 nucleotide alignment of 16
taxa, concluding that the tendency to place turtles as
sister to crocodiles was a phylogenetic artifact caused
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FIGURE 2. 32-Taxon simulations, effect of under/overfitting on topological accuracy, for the 900 simulated alignments (300 each for m∈{2,3,4}).
The y-axis displays the mean RF distance between the inferred trees and the trees used to simulate the alignment. The x-axis shows the number
of classes used for the inference, expressed relative to m, the true number of classes used to simulate the alignments.

by saturation at CP three sites. They found the preferred
grouping of turtles as sister to archosaurs was returned
when the alignment was partitioned by CP or when
only CP1 and CP2 sites were included. Among the
models that returned the nonpreferred topology was
the GTR+G, with four rate categories. To evaluate the
influence of the restrictions imposed by the discrete �
model, we tested the discrete �, the PDF rate model and
the GHOST model on the same alignment. In order to
ensure a fair comparison, all models used four classes (as
in Chiari et al. 2012) and the linked version of the GHOST
model was used. Supplementary Table S1 available on
Dryad indicates that the GHOST model proved superior
in terms of both AIC and BIC. The resulting tree
topologies can be found in Figure 3, showing that the
discrete � and PDF rate models returned the turtles
and crocodiles grouping, whereas the GHOST model
returned the turtles and archosaurs grouping. Therefore,
the GHOST model is not misled by the saturation found
at CP three sites, whereas the discrete � and PDF rate
models are.

Convergent Evolution of the Nav1.4a Gene among Teleosts
Model selection.— To further investigate the GHOST
model’s performance on empirical data, we analyzed the
coding region of a sodium channel gene, Nav1.4a, for 11
teleost species. Zakon et al. (2006) demonstrated the role
of this gene in the convergent evolution of the electric
organ amongst electric fish species from South America

and Africa. AIC determined that GTR+FO*H4 (AIC =
27602) provided the best fit between tree, model and data
(Supplementary Fig. S3 available on Dryad). Conversely,
BIC determined that GTR+FO*H2 provided the best fit.
Examining the class weights and trees (Fig. 4) inferred
by GTR+FO*H4 indicates that all classes have non-
negligible weight (minimum class weight is 0.13) and all
four trees appear reasonably distinct. Thus, we conclude
that there are no obvious signs of overfitting present,
and we accept four classes as optimal for this alignment.
We also tested the empirical base frequencies version
(GTR+F*H4, AIC = 27,749) and linked substitution rates
version (GTR+FO+H4, AIC = 27,860). Each of these mod-
els returned a significantly higher AIC value, indicating
that the unlinked version provided the best fit. We then
tested the PDF rate model, finding that the best such
model had six classes (GTR+FO+R6), but still a much
higher AIC (27813) than that of the GTR+FO*H4 model
(27602).

We then partitioned the electric fish sequence align-
ment into three partitions, based on CP. PartitionFinder
suggested GTR+FO+G4 (GTR with inferred equilibrium
base frequencies plus discrete � with four classes) for
both the CP1 and CP2 partitions, and GTR+FO+I+G4
(same as above but with the inclusion of an invariable
sites class) for the CP3 partition. We used IQ-TREE to run
the codon partition model with the models indicated by
PartitionFinder. The trees inferred by the partition model
can be found in Supplementary Figure S10 available on
Dryad.
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FIGURE 3. Turtle alignment—the two different topologies obtained from the turtle alignment. The topology on the left is returned by the
four-class discrete � and PDF rate models and places turtles as sister to crocodiles alone. The topology on the right is returned by the four-class
linked GHOST model and places turtles as sister to archosaurs (crocodiles and birds).

Interpretation of results.—We labeled the four classes
inferred by IQ-TREE under the GTR+FO*H4 model
in order of increasing TTL: the “Conserved Class,”
the “Convergent Class,” “Fast-evolving Class A,” and
“Fast-evolving Class B.” Of particular interest is the
Convergent Class, so named as it corresponds well to
Zakon et al.’s (2006) hypothesis of convergent evolution
of Nav1.4a among the South American and African
electric fish clades. They explained that the Nav1.4a
gene arose from a single gene duplication event which
occurred in a species ancestral to all 11 fish species in
the alignment, and was historically expressed in muscle
tissue. They then show that the gene is now expressed in
the electric organ of all but one of the electric fish species
in both the South American and African electric fishes,
but obviously not in the nonelectric fishes. Because
these lineages constitute two separate clades, Zakon
et al. concluded that this morphological trait evolved
twice independently, once in the South American clade
and once in the African clade. Hence, this appears to
be an interesting example of convergent evolution. It
should be made clear that the convergence occurs at
the morphological level and not at the sequence level.
The frequency and duration of electric pulses from each
species are unique, and therefore the Nav1.4a gene differs
between electric fish species at the sequence level. The
conclusion of convergent evolution refers to the fact that
the Nav1.4a gene appears to have been co-opted in the
electric fish species for electric signal control, and it
appears to have happened twice independently, on two
different continents. The inferred tree associated with
the Convergent Class displays much more evolution
in the electric rather than the nonelectric fish lineages

(Fig. 4). This is indicative of either a relaxation of
purifying selection pressure, an introduction of positive
selection pressure or a combination of both. The notable
exception is the Brown Ghost Knifefish, which appears
relatively conserved. The Brown Ghost Knifefish is
unique amongst the electric fish in the data set, in
that its electric organ has evolved from neural, rather
than muscle tissue. Consequently, in the Brown Ghost
Knifefish the Nav1.4a gene is still expressed in muscle,
just as it is in the nonelectric fish. The distinction
in terminal branch length between the Brown Ghost
Knifefish and the other electric fishes offers compelling
evidence that the GHOST model has identified a subtle
component of the historical signal related to the con-
vergent evolution of Nav1.4a, as opposed to returning
a somewhat arbitrary set of parameters that happen
to maximize the likelihood function. To further verify
that this conclusion was justified, we examined the
trees inferred under the GTR+FO*H5 and GTR+FO*H6
models. If a convergent evolution signal is indeed
present in the alignment then it should also be revealed
under these models. Supplementary Figure S11 available
on Dryad shows two trees, one each inferred by the
five- and six-class model. These trees appear to recover
a similar signal to that recovered by the Convergent
Class of the four-class model. This fact, combined with
the apparent concordance between that signal and an
accepted biological hypothesis, leads us to conclude
that inference under the GHOST model can elucidate
historical signals of genuine biological relevance.

Soft classification of sites to classes.—Having identified the
Convergent Class as being of biological interest, it may
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FIGURE 4. The four trees inferred under the General Time Reversible, four-class mixture model (GTR+FO*H4) for the electric fish data. The
classes are displayed in order of increasing tree size, as determined by the sum of the branch lengths. We refer to this as the TTL: TTLCons =0.23,
TTLConv =0.99, TTLFEA =4.06, and TTLFEB =4.18.

be useful to determine which sites in the alignment are
likely to belong to this class. The soft classification of
sites enables the prospective identification of sites in
the alignment that are highly likely to have evolved
under the Convergent Class. By extension, these sites
may play a role in the co-opting of the Nav1.4a gene for
electric signal control. Zakon et al. (2006) report several
amino-acid sites from the data set that are influential
in the inactivation of the sodium channel, a process
critical to electric organ pulse duration. Figure 5a shows

that these sites generally have a higher than average
probability of belonging to the Convergent Class in at
least one CP. Detailed investigation reveals that the sites
that exhibit this elevated probability are precisely those
that are required to facilitate the observed amino-acid
replacement. For example, at position 647, an otherwise
conserved proline (codon CCN) is replaced by a valine
(GTN) in the Pintailed Knifefish and a cysteine (TGY)
in the Electric Eel. Specific and distinct nucleotide
substitutions at CP1 and CP2 are necessary for both
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FIGURE 5. Probability of sites belonging to the convergent class by CP. (a) The amino-acid positions selected correspond with those identified
by Zakon et al. (2006) as being functionally important to the inactivation of the Na+ channel gene. The horizontal dotted line at 0.13 represents
the average probability of belonging to the convergent class over all sites in the alignment. (b) The amino-acid positions selected correspond to
those with the highest probability of belonging to the convergent class, summed across the first two CPs.

of these amino-acid replacements, and we find these
two sites have a very high probability of belonging to
the convergent class. With this result in mind, for each
amino acid we summed the probability of CP1 and CP2
belonging to the Convergent Class. Figure 5b shows the
results for the eight amino-acid sites with the highest
score. Comparing the magnitude of these bars with those
of the amino-acid sites in Figure 5a (which are identified
in the literature as being functionally important), one
is led to suspect that these amino acids might also be
critical to the operation of the sodium channel gene in
electric fishes. Given that there are many other sites
in the alignment with a high probability of belonging
to the Convergent Class, one can envisage the GHOST
model helping to identify sites of potential interest in
an alignment, thereby focusing the experimental work

of biologists. It must be made clear that we have not
used the GHOST model to positively identify sites as
being functionally important. Rather, we have identified
sites in the alignment that are highly influential in
the inference of a particular class of interest, and then
observed that these same sites have been shown by
other methods to be functionally important. That said,
Kuzminkova et al. (2019) have successfully used the
GHOST model in a novel method to identify functional
changes within protein families.

Comparison to the partition model.—It is apparent upon
examination of the trees in Supplementary Figure S10
available on Dryad that the phylogenetic signal captured
by the Convergent Class (Fig. 4) has not been recovered
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by the codon-based partition model. None of the three
trees in Supplementary Figure S10 available on Dryad
have the distinctive pattern, whereby the majority of the
TTL is associated with the electric fish species (with the
exception of the Brown Ghost Knifefish). The reason that
the partition model was unable to recover this signal
has to do with the relative contribution of sites from
each CP to the Convergent Class. By scrutinizing the
results of the soft classification process, we can ascertain
that, of the total weight of the Convergent Class: 40%
is attributable to sites in CP1; 36% is attributable to
sites in CP2; and 24% is attributable to sites in CP3.
The partition model constrains the analysis, such that
sites in different CPs are modeled independent of each
other. It is impossible for a model constrained in such
a way to effectively recover the convergent evolution
signal because the signal is distributed across all three
partitions. The decision to partition the data based on
CP may make sense superficially, but in doing so the
analysis is constrained and the results are compromised.
We no longer have the ability to uncover the evolutionary
stories concealed within the data. We can only hope
to obtain those stories that happen not to conflict with
the assumptions and constraints that have been placed
on the analysis a priori. Minimizing these assumptions
and constraints where possible, while computation-
ally expensive, is necessary in order to illuminate
the evolutionary history without distorting it in the
process.

CONCLUSION

Heterotachy has been somewhat of an Achilles heel
for ML since K&T published their study. Through
minimization of model assumptions, the GHOST model
offers significant advantages and flexibility to infer
heterotachous evolutionary processes, illuminating his-
torical signals that might otherwise remain hidden.
Owing to the diversity of selective pressures acting on
different genes, the GHOST model seems well suited
to the analysis of phylogenomic data sets (albeit with
the limitation of being constrained to a single tree
topology), commonly used to address deep phylogenetic
questions.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.t389h81.
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