
Constant-Time Dynamic (∆ + 1)-Coloring1

Monika Henzinger2

University of Vienna, Faculty of Computer Science, Vienna, Austria.3

monika.henzinger@univie.ac.at4

Pan Peng5

Department of Computer Science, University of Sheffield, Sheffield, UK.6

p.peng@sheffield.ac.uk7

Abstract8

We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per9

update that maintains a proper (∆ + 1)-vertex coloring of a graph with maximum degree at most ∆.10

This improves upon the previous O(log ∆)-time algorithm by Bhattacharya et al. (SODA 2018).11

Our algorithm uses an approach based on assigning random ranks to vertices and does not need to12

maintain a hierarchical graph decomposition. We show that our result does not only have optimal13

running time, but is also optimal in the sense that already deciding whether a ∆-coloring exists in a14

dynamically changing graph with maximum degree at most ∆ takes Ω(logn) time per operation.15

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms16

Keywords and phrases Dynamic graph algorithms, Graph coloring, Random sampling17

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.4918

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.04745.19

Funding The research leading to these results has received funding from the European Research20

Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant21

Agreement no. 340506.22

1 Introduction23

A (fully) dynamic graph algorithm is a data structure that provides information about a24

graph property while the graph is being modified by edge updates such as edge insertions or25

deletions. When designing a dynamic graph algorithm the goal is to minimize the time per26

update or query operation. The lower bounds of Patrascu and Demaine [24] showed that in27

the cell-probe model many fundamental graph properties, such as asking whether the graph28

is connected, require Ω(logn) time per operation, where n is the number of nodes in the29

graph. Their lower bound technique also gives logarithmic time lower bounds for further30

dynamic problems such as higher types of connectivity, planarity and bipartiteness testing,31

and minimum spanning forest, and it is an open research question for which other dynamic32

graph problems non-constant time lower bounds exist.33

Furthermore, there are only very few graph problems for which it is known that no such34

lower bounds can exist. These are the following problems, which all have constant-time,35

and thus optimal, algorithms: maintaining (a) a maximal matching (randomized) [25], (b) a36

(2 + ε)-approximate vertex cover (deterministic) [7], and (c) a (2k − 1)-stretch spanner of37

size O(n1+ 1
k log2 n) for constant k (randomized) [3]. All these are amortized time bounds38

and each of these algorithms maintains a dynamically-changing sophisticated hierarchical39

graph decomposition.40

In this paper we present a dynamic algorithm with constant update time for a new41

graph problem, expanding the above list. Additionally, our algorithm does not rely on a42

dynamically changing hierarchical graph decomposition, making it (but not its analysis)43

simpler. Our new result is a dynamic algorithm for the following problem: We call a dynamic44

© Monika Henzinger and Pan Peng;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 49; pp. 49:1–49:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0003-2700-5699
mailto:p.peng@sheffield.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2020.49
https://arxiv.org/abs/1907.04745
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Constant-Time Dynamic (∆ + 1)-Coloring

graph ∆-bounded if throughout the updates, the graph has maximum degree at most ∆. A45

proper coloring assigns to each vertex an integer value, called color, such that the endpoints46

of every edge have a different color. A (∆ + 1)-vertex coloring is a proper coloring that47

uses only colors from the range [1, . . . ,∆ + 1]. Note that a proper (∆ + 1)-vertex coloring48

in a (static) graph with maximum degree at most ∆ always exists and can be found in49

linear time by a simple greedy algorithm [27]. A fully dynamic graph algorithm is a data50

structure that maintains a graph G = (V,E) while it is undergoing an arbitrary sequence of51

the following operations: 1) Insert(u, v): insert the edge (u, v) in G; 2) Delete(u, v): delete52

the edge (u, v) from G. In the dynamic (∆ + 1)-vertex coloring problem, the fully dynamic53

graph algorithm maintains after each update operation a proper (∆ + 1)-vertex coloring54

of the current graph in a ∆-bounded dynamic graph. When asked to perform a Query(u)55

operation, the algorithm returns the color of the given vertex u.56

Maintaining a proper (∆ + 1)-vertex coloring in a ∆-bounded dynamic graph can be done57

trivially in O(∆) worst-case update time: the algorithm does nothing after an edge deletion or58

an edge insertion between two nodes of different colors; once an edge is inserted between two59

nodes of the same color it scans the whole neighborhood of one of the nodes and chooses an60

unused color. Recently Bhattacharya et al. [5] presented a randomized (∆+1)-vertex coloring61

algorithm with O(log ∆) expected amortized update time and a deterministic algorithm that62

maintains a (∆+o(∆))-vertex coloring with O(poly log ∆) amortized time. Their randomized63

algorithm works against the oblivious adversary: It is assumed that the sequence of update64

operations is generated by an adversary whose goal is to maximize the running time, but has65

to fix the sequence before the algorithm starts to run. This guarantees that the adversary is66

oblivious to the random choices of the algorithm. Note that if ∆ is polynomial in n, their67

algorithm takes time O(logn). In this paper, we improve upon this result as follows.68

I Theorem 1. There exists a fully dynamic algorithm for maintaining a proper (∆+1)-vertex69

coloring for a ∆-bounded graph against an oblivious adversary with O(1) expected amortized70

update time.71

Unlike the algorithm in [5] our algorithm does not need to maintain a hierarchical graph72

decomposition. Furthermore, apart from having optimal running time, our result is also73

optimal in the sense that deciding whether a proper coloring with only ∆ colors exists in a74

dynamically changing graph (with maximum degree at most ∆) takes at least Ω(logn) time75

per operation, as we show in Theorem 2. More precisely, we define the dynamic ∆-colorability76

testing problem as follows: Besides operations Insert(u, v) and Delete(u, v), there is a77

Query() operation that returns yes if the graph is ∆-colorable and no otherwise, where ∆ is78

the maximum degree in the current graph. We show the following theorem.79

I Theorem 2. Any data structure for dynamic ∆-colorability testing, where ∆ is the maximum80

degree in the graph, must perform Ω(logn) cell probes, where each cell has size O(logn).81

Our Techniques We first give a brief overview of the algorithm in [5] that maintains a82

proper (∆ + 1)-vertex coloring for a dynamic graph with maximum degree at most ∆. Let χ83

be the current proper ∆ + 1-coloring. First note that after an edge deletion and after an84

edge insertion (u, v) that does not cause a conflict, i.e., if χ(u) 6= χ(v), then the coloring85

remains unchanged. If a conflict occurs (i.e., χ(u) = χ(v)), then one needs to fix the coloring86

by recoloring one vertex from {u, v}, say u. Instead of scanning the whole neighborhood87

of u to find the color (called a blank color) that has not been used by any of its neighbors,88

the algorithm in [5] tries to sample a color from a set S that contains only blank colors and89

colors (called unique colors) that have been used by exactly one neighbor of u. Note that S90

M. Henzinger and P. Peng 49:3

has size Ω(∆), which guarantees that a future conflict edge incident to u occurs with low91

probability (i.e., with probability O(1/∆)). On the other hand, if a unique color is chosen,92

one needs to recolor the corresponding vertex w (which is a neighbor of u), again, using a93

new color sampled from the set of blank and unique colors for w. This procedure might cause94

a cascade and even not terminate at all. The dynamic (∆ + 1)-vertex coloring algorithm95

of [5] resolves this problem by maintaining a hierarchical graph decomposition, and when96

recoloring a node it picks a color randomly out of all colors that are either (i) used by none97

of the neighbors or (ii) used by at most one of the neighbors on a lower level in the graph98

hierarchy. The resulting algorithm is then shown to have O(log ∆) amortized update time for99

maintaining a proper coloring. However, maintaining such a hierarchical partition is not only100

complicated, but also inefficient, as it alone already takes O(log ∆) amortized update time.101

Now we describe our main ideas which lead to a constant-time dynamic coloring algorithm.102

We show that an approach based on assigning random ranks to vertices outperforms the103

graph-hierarchy based algorithm: During preprocessing each node v is assigned a random104

rank r(v) from [0, 1] and a random color (assuming as usual that the initial graph is empty).105

Let Lv denote the set of neighbors of a node v with rank lower than r(v) and for any set S of106

neighbors of a node let S< denote the subset of S whose rank is at most the median rank of107

the nodes in S. When recoloring v, we pick a color randomly out of all colors that are either108

(i) used by none of its neighbors (called blank colors) or (ii) by at most one neighbor in Lv109

and this node belongs to L<
v . (We show that there are always Ω(|Lv|) many such colors.)110

In case (ii) this neighbor w must be recolored. Due to the definition of L<
v it is guaranteed111

that r(w) is at most the median rank of the lower-ranked neighbors of v. Recoloring w is112

done with a more refined recoloring procedure that additionally to the above information113

takes into account which nodes of Lw also belong to N(v), the neighborhood of v. This114

is necessary since on the one side (a) we need to guarantee that the new color is chosen115

randomly from a set of Ω(|Lw|) colors and the other side (b) we have to apply a different116

analysis depending on whether the new color belongs to N(v) or not.117

More formally let Lw,new := Lw \N(v), let Lw,old := Lw ∩N(v), and let L∗ equal L<
w,new118

if |Lw,new| > |Lw|/10 and L<
w,old otherwise. The algorithm randomly samples a color out of119

the set which consists of (i) all blank colors and (ii) all colors which are used by exactly one120

node in Lw and are used by a node in L∗. If the color of a node y in L∗ was chosen, y will121

be recolored recursively taking N(x) for all previously visited nodes x into account. If y122

was chosen from L<
w,new, y is called a good vertex, otherwise a bad vertex. This results in123

a recoloring of nodes along a random recoloring path P in the graph until a blank color is124

chosen. The latter is guaranteed to happen when a node y with Ly = ∅ is reached. We give125

a data structure that implements each coloring step, i.e., the selection of a new color of a126

vertex y on P , in time O(|Ly|). Thus, the total time for recoloring P is O(
∑
y∈P |Ly|).127

This sampling routine guarantees that the rank of the next node is at most the median128

rank of the lower-ranked neighbors of the previous node. If there were no dependencies129

between the rank of the current node and the previous nodes on P , the expected rank would130

halve in this coloring step. These dependencies are exactly why we introduced Ly,new, Ly,old,131

and L∗, and labeled the vertices on P as good and bad. More specifically, we show that at132

every good vertex y the expected rank and the expected size of Ly,new halves. This by itself133

would not be sufficient, since we need the expected size of Ly, and not only the expected134

size of Ly,new, to halve. Here we use the definition of L∗ to show that the expected size of135

Ly decreases by a constant factor whenever Ly,new halves. This then implies that the total136

expected time at the good vertices on P , i.e. O(
∑
y∈P,y:good |Ly|), forms a geometric series137

adding up to O(r(v)∆), where v is the initial vertex of P .138

STACS 2020

49:4 Constant-Time Dynamic (∆ + 1)-Coloring

The main difficulty that the analysis still has to overcome is the fact that there might be139

bad vertices. To deal with this we introduce a novel potential function Φ based on the nodes140

on P , which allows us to bound the work, i.e., the number of (“standard” word) operations141

that the algorithm performs, done at bad vertices by the work done at good vertices. More142

specifically, we show that, when traversing P from an initial vertex v, at every bad vertex Φ143

drops. As (i) Φ is always non-negative, (ii) Φ only increases at good vertices, and (iii) the144

drop of Φ gives an upper bound of the time spent at bad vertices, we can bound the total145

time for coloring all the vertices on P by the total time spent at the good vertices on P times146

a constant. This allows us to prove that the total work done for recoloring all vertices on P147

is O(r(v)∆), where v is the initial vertex of P (Lemma 4).148

Finally, we combine this bound with the fact that (a) for many operations (such as all149

deletions and many insertions) no recoloring is necessary and (b) the color of each node y150

was picked uniformly at random from a set of Ω(|Ly|) many colors, to show that the expected151

amortized time per update operation is constant.152

Note that the refined sampling routine as well as the analysis that combines a potential153

function analysis with a careful analysis of the expected size of the sets Ly along a random154

path P is novel. The technique has the advantage that, unlike in a hierarchical graph155

decomposition where the ordering of nodes by levels might change and needs to be updated,156

the ordering of nodes by ranks is static and does not create update costs. However, it has157

the disadvantage that, unlike in the hierarchical graph decomposition of [5], (1) we do not158

have a worst-case upper bound on the number of nodes that are “lower” in the ordering and159

(2) the length of P , which is limited by the longest strictly decreasing path in the ordering,160

might be Θ(n) and not Θ(log ∆) in the worst case, as in [5].161

As we recently learnt, Bhattacharya et al. [6] achieved the same result as Theorem 1162

independently.163

Our proof of Theorem 2 follows from a simple reduction from dynamic connectivity, whose164

cell probe lower bound was known to be Ω(logn) [24].165

Other Related Work Partially due to the Ω(logn) lower bound for the fundamental166

problem of testing connectivity [24], a large amount of previous research on dynamic graph167

algorithms has focused on algorithms with polylogarithmic or super-polylogarithmic update168

time. Examples include testing k-edge (or vertex) connectivity (see e.g., [14, 18, 17]),169

maintaining minimum spanning tree (see e.g., [15, 14, 17, 16, 18, 19, 20, 28, 22, 23]), and170

graph coloring [2, 1, 5, 26, 13]. There are also studies on incremental algorithms that only171

allow edge insertions, and decremental algorithms that only allow edge deletions throughout172

all the updates. In contrast to such studies, our work is focusing on fully dynamic algorithms,173

in which both edge insertions and deletions are allowed.174

The technique of maintaining random ranks for vertices was previously used for dynamic175

maximal independent sets in the distributed setting [10] and very recently in the centralized176

setting [11, 4]. However, our analysis is quite different from theirs.177

2 Maintaining a Proper (∆ + 1)-Vertex Coloring178

In this section, we give our constant-time dynamic algorithm and its analysis for maintaining179

a proper (∆ + 1)-coloring in a dynamic ∆-bounded graph and present the proof of Theorem 1.180

In Section 4, we discuss how to extend our algorithm to handle the case that the maximum181

degree ∆ also changes. Recall that a dynamic graph is said to be ∆-bounded if throughout182

the updates, it is ∆-bounded. Given ∆, let C := {1, · · · ,∆ + 1} denote the set of colors. A183

coloring χ : V → C is proper if χ(u) 6= χ(v) for any (u, v) ∈ E.184

M. Henzinger and P. Peng 49:5

2.1 Data Structures and the Algorithm185

Data structures. We use the following data structures.186

(1) We maintain a vertex coloring χ as an array such that χ(v) denotes the color of the187

current graph and guarantee that χ is a proper (∆ + 1)-vertex coloring after each update.188

(2) For each vertex v ∈ V we maintain: (a) its rank r(v) that is chosen uniformly at189

random from [0, 1] during preprocessing; (b) its degree deg(v); (c) the last time stamp, denoted190

by τv, at which v was recolored; (d) two sets Lv := {u : (u, v) ∈ E, r(u) < r(v)}, Hv := {u :191

(u, v) ∈ E, r(u) ≥ r(v)}, which contain all neighbors of v with ranks less than v, and all192

neighbors of v with ranks at least v (including v itself), respectively; (e) the sizes of the193

previous two sets, i.e., |Lv| and |Hv|. Note that deg(v) = |Lv ∪Hv| = |Lv|+ |Hv|.194

For each vertex v ∈ V note that every color of C is either (i) used by no neighbor of v195

(and we call such color a blank color for v), (ii) used by a neighbor in Hv, or (iii) used by a196

neighbor in Lv and by no neighbor in Hv. We call the corresponding sets of colors (i) Bv,197

(ii) Cv(H), and (iii) Cv(L). We further partition Cv(L) into (iii.1) Uv(L), which denotes the198

set of unique colors for v that have been used by exactly one vertex in Lv and (iii.2)Mv(L),199

which denotes the set of colors that have been used by at least two vertices in Lv. Thus,200

C = Cv(H) ∪̇ Bv ∪̇ Uv(L) ∪̇ Mv(L). As it will be useful in the description of the algorithm,201

we finally define Cv(H) := Bv ∪ Uv(L) ∪Mv(L). Note that for any fixed v, a color c can202

appear in exactly one of the two sets Cv(H) and Cv(H).203

(3) (i) For every vertex v, we maintain Cv(H) and Cv(H) in doubly linked lists. (ii) For204

each color c ∈ C and vertex v ∈ V , we keep the following information: (a) a pointer pc,v from205

c to its position in either Cv(H) or Cv(H), depending on which list it belongs to; (b) a counter206

µHv (c) such that µHv (c) equals the number of neighbors in Hv with color c if c ∈ Cv(H); or207

equals 0 if c ∈ Cv(H). (iii) For any vertex v and color c ∈ C we keep the pointer pc,v in a208

hash table Av which is indexed by c. (iv) For any vertex v and color c ∈ Cv(H), we maintain209

the pairs (c, µHv (c)) in a hash table AHv which is indexed by the pair (v, c).210

More precisely, we use the dynamic perfect hashing algorithm by Dietzfelbinger et al. [12],211

which takes amortized expected constant time per update and worst-case constant time for212

lookups. (Alternatively we can get constant worst-case time for updates and lookups by213

spending time O(n∆) during preprocessing to initialize suitable arrays). To simplify the214

presentation and since the randomness in the hash tables is independent of the randomness215

used by the algorithm otherwise, we will not mention the randomness introduced through216

the usage of hash tables in the following.217

Initialization. As the initial graph G0 is empty, we initialize as follows: (1) For each vertex218

u ∈ V , sample a random number (called rank) r(u) ∈ [0, 1]. (2) Color each vertex u by219

a random color χ(u) ∈ C := {1, · · · ,∆ + 1} and initialize all the data structures suitably.220

In particular, for each u ∈ V , we initialize Cu(H) to be the empty list and Cu(H) to be221

the doubly linked list containing all colors in C. Note that the latter takes O(n∆) time.222

We discuss how to reduce the initialization time to O(n) while keeping constant expected223

amortized update time in Section 4.224

Time stamp reduction. Our algorithm does not use the actual values of the time225

stamps, only their relative order. Thus, every poly(n) (say, n4) number of updates we226

determine the order of the vertices according to the time stamps and set the time stamps of227

every vertex to equal its position in the order and set the current time stamp to n+ 1. This228

guarantees that we only need to use O(logn) bits to store the time stamp τv for each vertex229

v and it does not affect the ordering of the time stamps. The cost of the recomputation of230

time stamps is O(n logn) and can be amortized over all the operations that are performed231

STACS 2020

49:6 Constant-Time Dynamic (∆ + 1)-Coloring

between two updates, increasing their running time only by an additive constant.232

Handling an edge deletion. As any edge deletion (u, v) does not lead to a violation of the233

current proper coloring, we do not need to recolor any vertex, except to update the data234

structures corresponding to u, v, the details of which are deferred to Section 2.1.1.235

Handling an edge insertion. For an edge insertion (u, v), we note that if χ(u) 6= χ(v) before236

the insertion, then we only need to update the basic data structures corresponding to the two237

endpoints. If χ(u) = χ(v), i.e, the current coloring χ is not proper any more, then we need238

to recolor one vertex w ∈ {u, v} as well as to update the relevant data structures. We always239

recolor the vertex that was colored last, i.e., the one with larger τw. W.l.o.g., we assume240

this vertex is v. Then we invoke a subroutine Recolor(v) to recolor v and potentially some241

other lower level vertices, and update the corresponding data structures. That is, we will242

first update Hu, Lu, Hv, Lv and their sizes trivially in constant time. Then if χ(u) 6= χ(v),243

we update the data structures corresponding to u, v as described in Section 2.1.1.244

If χ(u) = χ(v), and w.l.o.g., suppose that τv > τu, then we recolor v by invoking the245

procedure Recolor(v) below, where Uv(L) denotes the set of colors that have been used by246

exactly one vertex in Lv.

Recolor(v)
1. Run SetColor(v) and obtain a new color c (from Bv ∪ Uv(L)).
2. Set χ(v) = c. Update the data structures by the process (>) described in Section 2.1.1.
3. If c ∈ Uv(L),

a. Find the unique neighbor w ∈ Lv with χ(w) = c.
b. Recolor(w).

4. If c ∈ Bv, then remove all the visited marks generated from the calls to SetColor.

247

Note that the recursive calls will eventually terminate as for every call Recolor(w) in248

Step 3 it holds that r(w) < r(v). Furthermore, no recursive call will be performed when249

Lv = ∅ as it implies that Uv(L) = ∅. The subroutine ReColor(v) calls the following250

subroutine Setcolor(v).251

SetColor(v)
1. Mark v as visited. Initialize sets Lv,old := {v} and Lv,new := ∅.

Scan the list Lv: for any u ∈ Lv, if it is marked as visited, then add u to Lv,old;
otherwise (i.e., it is not marked), then add u to Lv,new and mark u as visited.

2. If |Lv|+ |Hv| < ∆
2 (i.e., deg(v) < ∆

2), repeatedly sample a color uniformly at random
from [∆ + 1] until we get a color c that is contained in Bv, the set of blank colors for v
that have not been used by any neighbor of v.

3. Otherwise, we let L<
v,new denote the subset of vertices in Lv,new with ranks at most

the median of all ranks of vertices in Lv,new. We let Uv(L<
new) denote the set of colors

that each has been used by exactly one vertex in Lv,new and additionally this vertex
belongs to L<

v,new. Define L<
v,old and Uv(L<

old) similarly.
a. If |Lv,new| ≥ 1

10 |Lv| or Lv = ∅, then we sample a random color c from the set of
the first min{|Bv ∪ Uv(Lg

new)|, |L<
v,new|+ 1} elements of Bv ∪ Uv(L<

new).
b. Else (i.e., |Lv,old| > 9

10 |Lv|) we sample a random color c from the set of the first
min{|Bv ∪ Uv(L<

old)|, |L<
v,old|+ 1} elements of Bv ∪ Uv(L<

old).
4. Update the relevant data structures (i.e. of v and its neighbors in Lv) and Return c.

M. Henzinger and P. Peng 49:7

2.1.1 Updating the Data Structures252

Case I: an edge deletion (u, v). Whenever an edge (u, v) gets deleted, we update the data253

structures corresponding to u and v as follows. More precisely, we first update the sets254

Hu, Lu, Hv, Lv and their sizes trivially in constant time. The lists Cu(H), Cu(H), Cv(H), Cv(H)255

can be updated in constant worst-case time. The hash tables AHu ,AHv can also be maintained256

in constant amortized expected update time. More precisely, suppose w.l.o.g., u ∈ Lv, then257

we do the following:258

1. Delete (χ(v), µHu (χ(v))) from AHu ; µHu (χ(v))← µHu (χ(v))− 1.259

2. If µHu (χ(v)) = 0, then Cu(H)← Cu(H) \ {χ(v)}, Cu(H)← Cu(H) ∪ {χ(v)}.260

3. Otherwise, insert (χ(v), µHu (χ(v))) to AHu .261

Case II: an edge insertion (u, v) such that χ(u) 6= χ(v). In this case, w.l.o.g., suppose262

that r(u) < r(v), we update the data structures as follows:263

1. Cu(H)← Cu(H) ∪ {χ(v)}, Cu(H)← Cu(H) \ {χ(v)}, µHu (χ(v))← µHu (χ(v)) + 1264

2. Delete (χ(v), µHu (χ(v))− 1) from AHu if µHu (χ(v)) > 1, insert (χ(v), µHu (χ(v))) to AHu .265

Case III: procedure (>) in the subroutine Recolor(v). In the subroutine Recolor(v), if266

the color of v is changed from c′ to c, then we update the relevant data structure as follows:267

(>) For every w ∈ Lv:268

1. µHw (c′)← µHw (c′)− 1269

2. If µw(c′) = 0, then Cw(H)← Cw(H) \ {c′}, Cw(H)← Cw(H) ∪ {c′},270

3. Cw(H)← Cw(H) ∪ {c}, Cw(H)← Cw(H) \ {c}, µHw (c)← µHw (c) + 1.271

4. Delete (c, µHw (c)) from AHw if µHw (c) > 1, and insert (c, µHw (c)) to AHw .272

2.2 The Analysis273

Next we prove Theorem 1. Let v0 := v be the vertex that needs to be recolored after an274

insertion and let v1, v2, · · · , v` denote the vertices on which the recursive calls of Recolor()275

were executed. We call v0, v1, · · · , v` the recoloring path originated from v. In the following276

lemma, we show that the expected total time for all calls Recolor(vi) is O(1 +
∑`
i=0 |Lvi

|),277

where the expectation is not over the random choices of ranks or colors at Step 3, but comes278

from the use of hash tables and sampling colors at Step 2.279

I Lemma 3. Subroutine SetColor(v) can be implemented to run in O(1 + |Lv|) expected280

time. For any recoloring path v0, v1, · · · , v`, the expected time for subroutine Recolor(u)281

for any u ∈ {v1, . . . , vl} excluding the recursive calls to Recolor() is O(|Lu|) if u 6= v`, and282

is O(1 +
∑`
i=0 |Lvi

|) if u = v`.283

Proof. Recall that we store Lv, Cv(H), and Cv(H) for every vertex v. We use them to build284

all the sets needed in SetColor(v). First we use an array Rv,Lnew (resp. Rv,Lold) to store285

ranks of vertices in Lv,new (resp. Lv,old), and then find the median mv,new (resp. mv,Lold) of286

the set of ranks of vertices in Lv,new (resp. Lv,old) deterministically in O(|Rv,Lnew |) = O(|Lv|)287

time [8]. Traversing Lv again (and using an empty array of length ∆ that we clean again288

after this step) we compute (1) the sets Uv(L<
new) and Uv(L<

old) of colors that contain all289

colors that have been used by exactly one vertex in L<
v,new, and by exactly one vertex in290

L<
v,old, respectively, and (2) the setsMv(L) of colors that contain all colors that have been291

used by at least two vertices in Lv. Note that Uv(L) = Uv(L<
new) ∪ Uv(L<

old), and, thus, it292

can be computed by copying these lists. All these lists have size O(|Lv|) and, thus, all these293

steps take time O(|Lv|).294

STACS 2020

49:8 Constant-Time Dynamic (∆ + 1)-Coloring

We will keep the setsMv(L), Uv(L), Uv(L<
new), Uv(L<

old) in four separate lists and build295

hash tables for these sets with pointers to their positions in the lists. Next we delete all296

colors in Mv(L) ∪ Uv(L) from the list Cv(H) and the resulting list will be Bv. Note that297

the hash tables can be implemented in time linear in the size of corresponding sets, and298

each lookup (i.e., check if an element is in the set) takes constant worst-case time [12]. This299

completes the building of the data structure before Step 1.300

Recall that |Lv| + |Hv| = deg(v). Then for Step 2, if deg(v) < ∆
2 , we know that301

|Bv| > ∆−∆
2 = ∆

2 . Thus, a randomly sampled color from [∆+1] belongs to Bv with probability302

at least 1/2, which implies that in O(1) expected time, we will sample a color c from Bv.303

Note that a color c belongs to Bv if and only if c is not contained inMv(L)∪Uv(L)∪ Cv(H),304

which can be checked by using the hash tables forMv(L), for Uv(L) and the hash table AHv .305

All the other steps only write, read and/or delete lists or hash tables of size proportional306

to |Lv| or |Mv(L) ∪ Uv(L)|, which is at most |Lv|. Though the list Bv ∪ Uv(L<
new) might307

have size much larger than |L<
v,new|, it suffices to read at most |L<

v,new| elements from it in308

Step 3 (similar for Bv ∪ Uv(L<
old) versus |L<

v,old|). In Step 4, to update the relevant data309

structures, we add all colors inMv(L)∪Uv(L) back to the list Bv to construct Cv(H). Thus,310

SetColor(v) takes O(1 + |Lv|) expected time.311

To analyze the running time of Recolor(u) (apart from the recursive calls), for any312

u ∈ v0, v1, . . . , v`, note that apart from calling Setcolor(u), Recolor updates the data313

structures, determines the neighbor w that needs to be recolored next (if any) and if no such314

neighbor w exists, i.e. c is a blank color and u is the last vertex of the recoloring path, then315

it unmarks all vertices that were marked by all the calls to Setcolor on the recoloring316

path. For this Setcolor has stored all the marked vertices on a list, which it returns to317

Recolor. This list is then used by recolor to unmark these vertices. The time to update318

the data structures is constant expected time (the expectation arises due to the use of hash319

tables) to update its own data structure and O(|Lu|) to update the data structures of its320

lower neighbors. Determining w requires O(|Lu|) time, as all lower neighbors of u have to321

be checked. Finally, Recolor(u) for the last vertex u = v` on the recoloring path takes322

expected time O(1 +
∑
i |Lvi

|) as it unmarks all vertices on the recoloring path and their323

neighbors. J324

Throughout the process we have two different types of randomness: one for sampling325

the ranks for the vertices and the other for sampling the colors. These two types of326

randomness are independent. Furthermore, only the very last vertex v` on the recoloring327

path P = v0, v1, · · · , v` can satisfy the condition of Step 2 in SetColor, as once the328

condition is satisfied, we will sample a blank color which will not cause any further recursive329

calls. Thus, for all vertices on P , with the possible exception of v`, Step 3 will be executed.330

We call a vertex w with deg(w) < ∆
2 a low degree vertex. Note that for a low degree vertex331

w, SetColor(w) executes Step 2 and takes O(1) expected time, as with probability at least332

1/2 a randomly sampled color will be blank. In the following, we consider the expected333

time Tv of recoloring P that excludes the time of recoloring any low degree vertex (which, if334

exists, must be the last vertex on P). We first present a key property regarding the expected335

running time for recoloring a vertex v. Let N(v) denote the set of all neighbors of v in the336

current graph.337

I Lemma 4. Let G denote the current graph. For any vertex v with rank r(v) ≤ α, the338

expected running time Tv (over the randomness of choosing ranks of other vertices) is339

E[Tv|r(v) ≤ α] = O(α∆) (1)340

M. Henzinger and P. Peng 49:9

Furthermore, conditioned on ranks of vertices in N(v) and r(v) ≤ α, it holds that the expected341

running time Tv (over the randomness of sampling ranks of V \ (N(v) ∪ {v})) is342

E[Tv|r(v) ≤ α, r(w)∀w ∈ N(v)] = O(|Lv|) +O(α∆) (2)343

The proof of the above lemma is deferred to Section 2.2.1. We remark that Lemma 4 assumes344

that for each operation, it is executed in any possible current graph G with any proper345

(∆ + 1)-coloring (i.e. worst-case analysis for graph and coloring) and that each rank is346

sampled uniformly at random from [0, 1] in G. This is true as the adversary is assumed to be347

oblivious, i.e., the sequence of all updates has been written down before the algorithm starts348

to process the updates. That is, for any current graph G, the random ranks of vertices still349

follows from the same distribution as the one in the beginning. The above further implies350

that we can bound the work for recoloring a conflicting vertex v in G by a function that351

depends only on the randomness for sampling ranks (and not on the randomness for selecting352

colors in previous updates).353

We will also need the following lemma regarding the size of the sampled color set. The354

proof of the lemma follows from a more refined analysis of the proof of Claim 3.1 in [5] and355

can be found in the full version of the paper.356

I Lemma 5. Let v be any vertex that needs to be recolored. Let s denote the size of the set357

of colors that the algorithm samples from in order to choose a new color for v. Then it holds358

that 1) if |Lv|+ |Hv| < ∆
2 , then s ≥

∆
2 + 1; 2) otherwise, s ≥ 1

100 |Lv|+ 1.359

With the lemmas above, we are ready to prove Theorem 1.360

Proof of Theorem 1. Note that an edge deletion does not lead to the recoloring of any361

vertex. Let us consider an insertion (u, v). If χ(u) 6= χ(v), we do not need to recolor any362

vertex. Otherwise, we need to recolor one vertex from {u, v}. Suppose w.l.o.g. that τv > τu,363

where τu denotes the last time that u has been recolored. This implies that v is recolored364

at the current time step, which we denote by τ . We will invoke Recolor(v) to recolor v.365

Note that by definition, after calling subroutine Recolor, there will be no conflict in the366

resulting coloring. This proves the correctness of the algorithm. In the following, we analyze367

its running time.368

Recall that we let Tv denote the running time of calling Recolor(v), including all the369

recursive calls to Recolor, while excluding the time of recoloring any low degree vertex370

(i.e. a vertex where SetColor(w) executed Step 2) on the recoloring path originated from371

v (which, if exists, must be the last vertex on the path). If the last vertex is indeed a low372

degree vertex, then the expected total running time (over all sources of randomness) of373

Recolor(v) will be E[Tv]+O(1), where the expectation E[Tv] in turn is over the randomness374

of sampling ranks of all vertices; otherwise, the expected total running time (over all sources375

of randomness) of Recolor(v) will be E[Tv]. Let α0 = 4C log ∆
∆ for some constant C ≥ 1.376

Now we consider two cases:377

Case I: r(v) ≤ α0. First we note that this case happens with probability at most α0 as378

r(v) is chosen uniformly at random from [0, 1]. Furthermore, by Lemma 4, conditioned on379

the event that r(v) ≤ α0, the expected time of the subroutine Recolor(v) is E[Tv|r(v) ≤380

α0] = O(α0∆), where the expectation is taken over the randomness of choosing ranks of all381

other vertices except v. Therefore, the expected time of Recolor(v) (over the randomness382

of choosing ranks of all vertices) is at most α0 ·O(α0∆) = O(α2
0∆) = O(log2 ∆

∆) = O(1).383

Case II: r(v) > α0. Let r(v) = α. Conditioned on the event that r(v) = α, by Lemma 4,384

the expected running time (over the randomness of choosing ranks of other vertices) of385

Recolor(v) at time τ is O(α∆).386

STACS 2020

49:10 Constant-Time Dynamic (∆ + 1)-Coloring

We let Lv and L′v denote the set of neighbors of v with ranks lower than v in the graph387

at (current) time τ and at time τv, (the latest time that v was recolored), respectively. Note388

that τu < τv implies that neither χ(u) nor χ(v) changed between τv and τ . We define Hv, H
′
v389

similarly. We let deg(v) = |Lv ∪Hv| and deg′(v) = |L′v ∪H ′v| denote the degree of v at time390

τ and τv, respectively.391

Case (a): deg′(v) < ∆/2. In this case, we know that at time τv, we will sample a color392

from the set of blank colors B(v), which has size at least ∆/2. Thus, the probability that we393

sampled any fixed color at time τv is at most 2/∆. This also applies to the color χ(u). Thus,394

the probability that χ(v) = χ(u) at time τv is at most 2/∆. As neither χ(v) nor χ(u) have395

changed between τv and τ (which implies that the random choices of the algorithm between396

τv and τ have no influence on χ(v) or χ(u)), the probability that χ(v) = χ(u) at time τ is at397

most 2/∆. On the other hand, at time τ , we will spend at most O(α∆) = O(∆) expected398

time (over the randomness of sampling ranks of vertices in V \ {v}). Thus, the expected399

time (over the randomness of sampling ranks and of sampling colors at time τv) we spent on400

recoloring v at time τ is O(1
∆ ·∆) = O(1).401

Case (b): deg′(v) ≥ ∆/2. We now consider two sub-cases.402

Case (b1): If deg(v) < ∆/4, then there must have been at least deg′(v)/2 = Ω(∆)403

deletions of edges incident to v between τv and τ . We can recolor v at time τ in expected404

O(α∆) = O(∆) time. We charge this time to the updates incident to v between τv and τ .405

Note that each update is only charged twice in this way, once from each endpoint, adding a406

constant amount of work to each deletion.407

Case (b2): If deg(v) ≥ ∆/4, then E[|Lv|] = α deg(v) ≥ α∆/4 ≥ α0∆/4 ≥ C log ∆ for408

some constant C ≥ 1 and E[|Lv|] = α deg(v) ≤ α∆. Then over the randomness of sampling409

ranks for vertices in N(v), it follows from a Chernoff bound that with probability at least410

1− 1
∆ , E[|Lv|]

2 ≤ |Lv| ≤ 3E[|Lv|]
2 , which implies that with probability at least 1− 1

∆ ,411

(α∆)/8 ≤ E[|Lv|]/2 ≤ |Lv| ≤ (3E[|Lv|])/2 ≤ (3α∆)/2 (3)412

By Ineq. (2) in Lemma 4, over the randomness of sampling ranks for V \ (N(v) ∪ {v}), the413

expected work for recoloring v at time τ is O(|Lv|) + O(α∆) = O(α∆). We first analyze414

the case that Ineq. (3) does not hold, which happens with probability at most 1/∆. Then415

the work for recoloring is O(∆) as |Lv| ≤ ∆. Thus the expected work of this case is416

1
∆ ·O(∆) = O(1).417

Next we analyze the case that Ineq. (3) holds and further distinguish two sub-cases.418

Case (b2-1): If |Lv4L′v| > 1
10 |Lv|, then there must have been at least 1

10 |Lv| = Θ(α∆)419

edge updates incident to v between τv and τ . By the same argument as above we can420

amortize the expected work of O(α∆) over these edge updates, charging each edge update at421

most twice. This adds an expected amortized cost of O(1) to each update.422

Case (b2-2): If |Lv4L′v| ≤ 1
10 |Lv|, then it holds that |L′v| ≥ |Lv| − |Lv4L′v| ≥ 9

10 |Lv|.423

By Lemma 5, χ(v) was picked at time τv from a set of Ω(|L′v|) many colors. By similar424

argument for the Case (a), the probability that we picked the color χ(u) at time τv is at425

most O(1
|L′v|

) = O(1
|Lv|). As the expected work at time τ is at most O(α∆) = O(|Lv|) (with426

the expectation over randomness of sampling ranks), the expected amortized update time is427

O(1
|Lv|) ·O(|Lv|) = O(1).428

This completes the proof of the theorem. J429

2.2.1 Bounding the Expected Work per Recoloring: Proof of Lemma 4.430

Let v0, v1, · · · be the vertices on the recoloring path after an insertion. By Lemma 3 the431

total expected time for all calls Recolor(vi) is O(1 +
∑
i≥0 |Lvi

|). Recall that the running432

M. Henzinger and P. Peng 49:11

time Tv excludes the time spent on recoloring a low degree vertex (and a low degree vertex433

can only be the last vertex of a recoloring path). Thus, for all vertices vi that contribute434

to Tv only Step 3a or Step 3b of SetColor can occur. Let vi0 = v0, vi1 , vv2 , · · · be the435

vertices for which Step 3a occurred during Setcolor(v), which we call good vertices. We436

bound the expected value of ranks of good vertices and the expected size of the lower-ranked437

neighborhood of these vertices in the following lemma. Note that the expectations are taken438

over the randomness for sampling ranks of vertices, whose ranks are not in the conditioned439

events.440

I Lemma 6. For any j ≥ 0, it holds that441

E[r(vij+1)|r(v0) ≤ α] ≤ α/2j , E[|Lvij
||r(v0) ≤ α] ≤ (10 · α ·∆)/2j−1.442

Furthermore, for any j ≥ 1, it holds that443

E[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α/2j−1,444

E[|Lvij
||r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ (10 · α ·∆)/2j−2.445

Proof. To prove the lemma, we use the principle of deferred decisions: Instead of sampling446

the ranks for all vertices (independently and uniformly at random from [0, 1]) at the very447

beginning, we sample the ranks of vertices sequentially by the following random process:448

Starting from v0 with rank r(v0), we sample all the ranks of vertices in N(v0). We449

will then choose v1 as described in the algorithm Recolor (if a non blank color has been450

sampled). Now for each i ≥ 1, we note that the ranks of all the vertices in Nold(vi) :=451

N(vi) ∩ (∪j<iN(vj) ∪ {v0}) have already been sampled, and then we only need to sample452

(independently and uniformly at random from [0, 1]) the ranks for all vertices in Nnew(vi) :=453

N(vi) \Nold(vi). In this case, we say that the ranks of vertices in Nnew(vi) are sampled when454

we are exploring vi. Then we will choose vi+1 in the algorithm Recolor (if a non blank455

color has been sampled). We iterate the above process until Recolor has sampled a blank456

color.457

For any i, we call Nnew(vi) the free neighbors of vi with respect to v0, v1, · · · , vi−1. In458

particular, Nnew(v0) = N(v0) and N(vi) = Nnew(vi)∪̇Nold(vi). Now a key observation is459

that460

(?) for any vertex vi, it holds that Lvi,new (as defined in the algorithm SetColor(vi)) is461

entirely determined by the ranks of the vertices Nnew(vi) and is independent of the462

randomness for sampling ranks of Nold(vi).463

This is true since Lvi,new contains all the neighbors of vi with ranks less than r(vi) and have464

not been visited so far: for any vertex in Nold(vi), either its rank is higher than vi, or its465

rank is less than vi and it has been marked as visited before we invoke SetColor(vi).466

We first prove the first part of the lemma. We assume for now that r(v0) is fixed and we467

denote by R(ij) the randomness of sampling ranks for vertices in Nnew(vij). We will prove468

by induction on the index j that469

ER(ij)[r(vij+1)] ≤ r(v0)/2j and ER(ij)[|Lvij
,new|] ≤ (r(v0) ·∆)/2j−1. (4)470

Note that this holds for j = 0 since i0 = 0, r(v1) ≤ r(v0), Lvi0 ,new = Lv0 , and ER(0)[|Lv0 |] =471

r(v0) · |N(v0)| ≤ r(v0) ·∆. Next we assume it holds for j−1, and prove it also holds for j. By472

the definition of the good vertex vij , we know that vij+1 ∈ Lvij
, and that the rank of vij+1473

is at most the median, denoted by mvij
,new, of all the ranks of vertices in Lvij

,new, which in474

turn consists of all vertices in Nnew(vij) with rank not larger than r(vij). Furthermore, by475

STACS 2020

49:12 Constant-Time Dynamic (∆ + 1)-Coloring

the observation (?), the rank of r(vij+1) depends only on r(vij) and the ranks in Nnew(vij).476

This implies that477

ER(ij)[r(vij+1)|r(vij)] ≤ ER(ij)[mvij
,new|r(vij)] ≤ r(vij)/2,478

where the last inequality follows from the fact that mvij
,new is the median of a set of numbers479

chosen independently and uniformly at random from [0, 1], conditioned on that they are at480

most r(vij) (see e.g., Lemma 8.2 and 8.3 in [21]). Since r(vij) ≤ r(v(ij−1)+1) in all cases and,481

by the induction assumption, ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)
2j−1 , it holds that482

ER(ij)[r(vij+1)] ≤ Er(vij
)[ER(ij)[r(vij+1)|r(vij)]] ≤ 1

2Er(vij
)[r(vij)]483

≤ 1
2ER(ij−1)[Er(vij

)[r(vij)|r(v(ij−1)+1)]] ≤ 1
2ER(ij−1)[r(v(ij−1)+1)] ≤ r(v0)

2j .484

Furthermore, for any j ≥ 0, by the observation (?), Lvij
,new depends only on r(vij) and485

ranks in Nnew(vij). Thus486

ER(ij)[|Lvij
,new| |r(vij)] ≤ r(vij) · |Nnew(vij)| ≤ r(vij) ·∆.487

This further implies that488

ER(ij)[|Lvij
,new|] = Er(vij

)[ER(ij)[|Lvij
,new| |r(vij)]] ≤ Er(vij

)[r(vij)] ·∆ ≤ r(v0) ·∆
2j−1 .489

Now let us no longer assume that r(v0) is fixed, but instead condition on the event that490

r(v0) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α] ≤ α
2j and ER(ij)[|Lvij

,new| |r(v0) ≤491

α] ≤ α·∆
2j−1 .492

Now by the definition of good vertices, we have |Lvij
,new| ≥ 1

10 |Lvij
|. This implies that493

ER(ij)[|Lvij
| |r(v0) ≤ α] ≤ 10 · ER(ij)[|Lvij

,new| |r(v0) ≤ α] ≤ 10 · (α ·∆)/(2j−1).494

This completes the proof of the first part of the lemma.495

For the “Furthermore” part of the lemma, the analysis is similar as above. Now we start496

with the assumption that r(v0), r(w)∀w ∈ N(v0) are fixed. Note that vi1 ∈ N(v0), which497

implies that r(vi1) is also fixed. We will then prove by induction on the index j that498

ER(ij)[r(vij+1)] ≤ (r(vi1))/(2j−1) and ER(ij)[|Lvij
,new|] ≤ (r(vi1) ·∆)/(2j−2).499

In the case j = 1, the above two inequalities hold as r(vi1+1) ≤ r(vi1) and ER(i1)[|Lvi1 ,new|] =500

r(vi1) · |Nnew(vi1)| ≤ r(vi1) · ∆. The inductive step from case j − 1 to j can be then501

proven in the same way as we proved Inequalities (4). Then instead of assuming that502

r(v0), r(w)∀w ∈ N(v0), we condition on the event that r(v0) ≤ α, r(w)∀w ∈ N(v0), which503

directly implies that r(vi1) ≤ α. Then it follows that ER(ij)[r(vij+1)|r(v0) ≤ α, r(w)∀w ∈504

N(v0)] ≤ α
2j−1 and ER(ij)[|Lvij

,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ α·∆
2j−2 . Finally, by the505

definition of good vertices, |Lvij
,new| ≥ 1

10 |Lvij
|, which implies that ER(ij)[|Lvij

| |r(v0) ≤506

α, r(w)∀w ∈ N(v0)] ≤ 10 · ER(ij)[|Lvij
,new| |r(v0) ≤ α, r(w)∀w ∈ N(v0)] ≤ 10α·∆

2j−2 . This507

completes the “Furthermore” part of the lemma. J508

Now we relate the total work to the work incurred by Step 3a. Note that the total work509

Tv is proportional to the sum of sizes of all lower-ranked neighborhoods of v0, v1, We510

will prove the following lemma, which implies that the total work of recoloring v is at most a511

constant factor of the total work for recoloring all the good vertices on the recoloring path.512

I Lemma 7. It holds that
∑
i |Lvi

| ≤ 3
∑
i : vi is good |Lvi

| = 3
∑
j |Lvij

|.513

M. Henzinger and P. Peng 49:13

Proof. We first introduce the following definition. For any i and k < i, we let F(vk, vi)514

denote the set of vertices whose ranks are less than r(vi), and are sampled when we are515

exploring vk, i.e., F(vk, vi) = {w : w ∈ Nnew(vk), r(w) < r(vi)}. Note that as r(vi+1) < r(vi),516

it always holds that for any 0 ≤ k < i, F(vk, vi+1) ⊆ F(vk, vi). Now we define the following517

potential function Φ:518

Φ(−1) := 0 and Φ(i) :=
∑
k:k≤i

|F(vk, vi+1)| ∀i ≥ 0, (5)519

We have the following claim regarding the potential functions.520

B Claim 8. For any i ≤ 0, Φ(i) ≥ 0. Furthermore, if vi is a good vertex, then Φ(i)−Φ(i−1) ≤521

|Lvi |/2, otherwise Φ(i)− Φ(i− 1) ≤ −7|Lvi |/20.522

Proof. Note that if Step 3a in subroutine SetColor is executed at vertex vi, i.e., vi is523

good, then the potential Φ(i) might be larger or smaller than Φ(i− 1). If vi is good then524

|F(vi, v1+i)| ≤
|L<

vi,new|
2 by the fact that r(v1+i) is at most the median rank in L<

vi,new.525

Furthermore, it holds that526

Φ(i) =
∑
k:k≤i

|F(vk, v1+i)| ≤
∑

k:k≤i−1
|F(vk, vi)|+ |F(vi, vi+1)|527

≤ Φ(i− 1) + |L<
vi,new|/2 ≤ Φ(i− 1) + |Lvi |/2528

Now suppose that Step 3b is executed at vertex vi, i.e., vi is not good. Since v1+i is a vertex529

from the lower half of the old lower neighbors of vi (i.e., v1+i ∈ L<
vi,old ⊆ ∪k<iF(vk, vi) ∩530

Lvi,old), we have that to obtain the set ∪k<iF(vk, v1+i) from the set ∪k<iF(vk, vi), we need531

to remove at least 1
2 |Lvi,old| ≥ 1

2 (1− 1
10)|Lvi

| vertices. Furthermore, F(vi, v1+i) can contain532

at most |Lvi,new| ≤ 1
10 |Lvi | vertices. This implies that533

Φ(i) =
∑
k:k≤i

|F(vk, v1+i)| =
∑

k:k≤i−1
|F(vk, v1+i)|+ |F(vi, v1+i)|534

≤
∑

k:k≤i−1
|F(vk, vi)| −

1
2(1− 1

10)|Lvi
|+ 1

10 |Lvi
| = Φ(i− 1)− 7

20 · |Lvi
|535

J536

Now we distinguish three types of indices. We call an index i, a type I index, if Step 3a537

occurred during Setcolor(v) and the Φ(i) − Φ(i − 1) ≥ 0. By Claim 8 it holds that for538

such an index i, |Lvi
| ≥ 2(Φ(i) − Φ(i− 1)). We call i a type II index, if Step 3a occurred539

during Setcolor(v) and the Φ(i)− Φ(i− 1) ≤ 0. It holds that for such an index i (as for540

any index), |Lvi
| ≥ 0. We call i a type III index, if Step 3boccurred during Setcolor(v),541

i.e. vi is not a good vertex. By Claim 8 it holds that for such an index i, Φ decreases and542

|Lvi
| ≤ (Φ(i− 1)− Φ(i)) · 20

7 < 3 · (Φ(i− 1)− Φ(i)).543

Now we bound the sum of sizes of lower-ranked neighborhoods of vertices corresponding544

to Step 3b. It holds that545 ∑
i: Step 3b

|Lvi
| ≤

∑
i: type III

3(Φ(i− 1)− Φ(i)) ≤
∑

i: type II or III
3(Φ(i− 1)− Φ(i))546

≤
∑

i: type I
3(Φ(i)− Φ(i− 1)) ≤

∑
i: type I

3 · 1
2 |Lvi

| <
∑

i: type I
2|Lvi

|547

STACS 2020

49:14 Constant-Time Dynamic (∆ + 1)-Coloring

where the third inequality follows from the fact that Φ starts at 0 and is non-negative at the548

end, and, thus, the total decrease of Φ is at most its total increase. Thus, it follows that549 ∑
i

|Lvi
| =

∑
i: type I or II

|Lvi
|+

∑
i: type III

|Lvi
| ≤ 3

∑
i: type I or II

|Lvi
| = 3

∑
j

|Lvij
|550

J551

Now we finish the proof of Lemma 4. By Lemma 7 and Lemma 6, it holds that552

E[
∑
i

|Lvi | |r(v) ≤ α] ≤ 3 · E[
∑
j

|Lvij
| |r(v) ≤ α] = O(α ·∆ ·

∑
j

1
2j) = O(α∆).553

Since the expected work Tv satisfies that Tv = O(
∑
i |Lvi

|), the first part of the lemma554

follows. By the “Furthermore” part of Lemma 6, it holds that555

E[
∑
i

|Lvi
||r(v) ≤ α, r(w)∀w ∈ N(v)]556

≤3 · |Lv|+ 3 · E[
∑
j≥1
|Lvij

||r(v) ≤ α, r(w)∀w ∈ N(v)]557

≤3 · |Lv|+ 3 · 10 · α ·∆ ·
∑
j

1
2j−2 = 3 · |Lv|+O(α ·∆ ·

∑
j

1
2j) = O(|Lv|) +O(α∆).558

559

Then the “Furthermore” part of Lemma 4 follows from the fact that Tv = O(
∑
i |Lvi

|).560

3 Lower Bound for Dynamic ∆-Colorability Testing: Proof of561

Theorem 2562

In [24] Patrascu and Demaine construct an n-node graph and show that there exists a sequence563

S of T edge insertion, edge deletion, and query operations such that any data structure for564

dynamic connectivity must perform Ω(T logn) cell probes to process the sequence, where565

each cell has size O(logn). This shows that the amortized number of cell probes per operation566

is Ω(logn).567

We now show how to use this result to get a lower bound for the dynamic ∆-colorability568

testing problem with ∆ = 2.569

The graph G in the proof of [24] consists of a
√
n×
√
n grid, where each node in column570

1 has exactly 1 edge to a node of column 2 and no other edges, each node in column i, with571

1 < i <
√
n has exactly 1 edge to a node of column i− 1 and 1 edge to a node of column572

i + 1 and no other edges, and each node in column
√
n has exactly 1 edge to a node of573

column
√
n− 1 and no other edges. Thus, the graph consists of

√
n paths of length

√
n− 1574

and the edges between column i and i+ 1 for any 1 ≤ i <
√
n represent a permutation of575

the
√
n rows. The sequence S consists of “batches” of O(

√
n) edge updates, replacing the576

permutation of some column i by a new permutation for column i. Between the batches of577

updates are “batches” of connectivity queries, each consisting of
√
n connectivity queries and578

a parameter 1 ≤ k ≤
√
n, where the j-th query for 1 ≤ j ≤

√
n of each batch tests whether579

the j-th vertex of column 1 is connected with a specific vertex of column k.580

Note that the maximum degree ∆ is 2. We now show how to modify each connectivity581

query (u, v) such that it consists of a constant number of edge updates and one query whether582

the resulting graph is ∆-colorable. The answer will be no iff u and v are connected. Thus,583

in the resulting sequence S ′ the number of query operations equals the number of query584

operations in S and the number of update operations is linear in the number of update and585

M. Henzinger and P. Peng 49:15

query operations in S. Thus the total number of operations in S ′ is only a constant factor586

larger than the number of operations in S, which, together with the result of [24], implies587

that the amortized number of cell probes per operation is Ω(logn).588

We now show how to simulate a connectivity query(u, v), where u is in column 1 and v is589

in column k for some 1 ≤ k
√
n. We assume that k is even and explain below how to deal590

with the case that k is odd. The instance for the dynamic ∆-colorability testing consists of G591

with an additional node s added. To simulate a connectivity query(u, v) we (1) remove the592

edge from v to its neighbor in column k+ 1 if k <
√
n, (2) add the edges (u, s) and (v, s) and593

then (3) ask a ∆-colorability query. Note that the resulting graph still has maximum degree594

2. Furthermore, if u and v are connected in G then there exists a unique path of odd length595

k − 1 between them. Together with the edges (u, s) and (v, s) and the assumption that k is596

even, this results in an odd length cycle, so that the answer to the 2-colorability query is no.597

If, however, u and v are not connected in G, then adding the edges (u, s) and (v, s) creates a598

path of length 2 +
√
n− 1 + k − 1 =

√
n+ k, but no cycle. Thus, the 2-colorability query599

returns yes. Thus u and v are connected in G iff the 2-colorability query in the modified600

graph returns no. Afterwards we remove the edges (u, s) and (v, s). Finally if k is odd, we601

do not add a vertex s to G and to simulate the connectivity query(u, v) we simply insert the602

edge (u, v). As before there exists an odd length cycle in the graph iff u and v are connected.603

The rest of the proof remains unchanged.604

This finishes the proof of Theorem 2.605

I Remark 9. Let us recall Brooks’ theorem [9]: every connected graph admits a ∆-coloring,606

except that it is an odd cycle or a complete graph. This implies that if the dynamic graph is607

guaranteed to be connected, then we can answer ∆-colorability in constant time for ∆ ≥ 3608

by checking if the graph is complete. However, since the graph is not necessarily connected,609

it is unclear if the query can be answered in constant time for ∆ ≥ 3. In particular, testing610

whether a dynamic graph is connected or not requires Ω(logn) time per operation [24].611

4 Further Discussions612

Initialization in O(n) Time Now we describe how we can reduce the initialization time613

from O(n∆) to O(n). Note that the only part that takes O(n∆) time is to initialize Cu(H)614

for each vertex u, and the rest part of initialization already only takes O(n) time. The main615

observation is that Cu(H) is only needed in the sampling subroutine of SetColor(u) and616

even there only once the degree of a vertex is at least ∆/2. Since we make the standard617

assumption that we start with an empty graph, this means that Ω(∆) insertions incident to618

u must have happened. Thus, we build Cu(H) only once this is the case and amortize the619

cost of building it over these previous Ω(∆) insertions.620

To be more precise, we change the initialization phase as follows: We do not build Cu(H)621

for any vertex u. Note that all other data structure are built as before, but they only have622

size O(n) and only take time O(n) to build.623

When an edge (u, v) is inserted, we check whether one of the endpoints, say u, of the624

newly inserted edge reaches the degree ∆/2 and does not yet have the data structure Cu(H).625

If so, we build Cu(H) and its hash table at this point in time O(∆). We amortize this cost626

over the ∆/2 updates that increased the degree of u to ∆/2, adding a constant amortized627

cost to each of them. (If the other endpoint v also reaches the degree ∆/2, we handle it628

analogously.)629

Note that this does not affect the SetColor algorithm: as long as the degree of a vertex630

u is less than ∆/2, SetColor(u) selects a new color by sampling in Step 2 from Bu. To631

STACS 2020

49:16 Constant-Time Dynamic (∆ + 1)-Coloring

do so Cu(H) is not needed: In time O(|Lu|) time we build the lists and corresponding hash632

tables forMu(L) ∪ Uu(L), which together with the maintained list and hash table for Cu(H)633

suffice for us to sample a color from Bu in O(1) time: We pick a random color from C and634

test whether it belongs to Bu by making sure that it does not belong toMu(L) ∪ Uu(L) or635

Cu(H). The fact that the degree of u is at most ∆/2 implies that in expectation the second636

randomly chosen color will belong to Bu.637

Once Cu(H) and its hash table has been built, it is used in the way as we described before638

and updated as in Section 2.1.639

Extension to Work for Changing ∆ As we mentioned, we can extend our algorithm to640

work with changing ∆. (A similar extension was also done in [5]). For any time stamp t ≥ 0,641

we will maintain a global value ∆t := maxtj=1 maxv∈V degj(v), where degj(v) denotes the642

degree of v in the graph after j edge updates, that is, ∆ is the maximum degree seen so643

far (till time t). Then we have a randomized algorithm for maintaining a (∆t + 1)-coloring.644

More precisely, for any time stamp j, for each vertex v, we only need to guarantee that the645

color χ(v) is chosen from {1, . . . ,degj(v) + 1}. Then for each vertex v ∈ V , we let Cv(H) ⊆ C646

consist of all the colors in {1, . . . ,degj(v) + 1} that have not been assigned to any neighbor647

u of v for u ∈ Hv. It is easy to see that Lemma 3, 4 and 5 still hold, and our randomized648

dynamic coloring algorithm maintains a proper (∆t + 1)-coloring of the graph Gt at time t649

with constant amortized update time, for any t ≥ 0.650

Additionally we can keep a variable ∆ such that we rebuild the data structure every ∆n651

operations as follows: We determine the list of current edges and set ∆ to be the maximum652

degree of the current graph. Then we build the data structure for an empty graph and653

insert all edges using the insert operation. This increases the running time by an amortized654

constant factor and guarantees that ∆ is the maximum degree in the graph within the last655

∆n updates.656

References657

1 Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel658

Roeloffzen, and Sander Verdonschot. Dynamic graph coloring. In Workshop on Algorithms659

and Data Structures, pages 97–108. Springer, 2017.660

2 Leonid Barenboim and Tzalik Maimon. Fully-dynamic graph algorithms with sublinear time661

inspired by distributed computing. Procedia Computer Science, 108:89–98, 2017.662

3 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized663

algorithms for graph spanners. ACM Transactions on Algorithms (TALG), 8(4):35, 2012.664

4 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu665

Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In IEEE666

56th Annual Symposium on Foundations of Computer Science (FOCS), 2019. IEEE, 2019.667

5 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.668

Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-SIAM669

Symposium on Discrete Algorithms, pages 1–20. SIAM, 2018.670

6 Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay671

Solomon. Fully dynamic (δ + 1) coloring in constant update time. Private communication.672

7 Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ε)-673

approximate minimum vertex cover in O(1/ε2) amortized update time. In Proceedings of the674

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1872–1885. SIAM,675

2019.676

8 Manuel Blum, Robert W Floyd, Vaughan Pratt, Ronald L Rivest, and Robert E Tarjan. Time677

bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.678

M. Henzinger and P. Peng 49:17

9 R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the Cambridge679

Philosophical Society, 37(2):194–197, 1941.680

10 Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin. Optimal dynamic distributed mis.681

In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages682

217–226. ACM, 2016.683

11 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log684

update time. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS),685

2019. IEEE, 2019.686

12 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans687

Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM688

J. Comput., 23(4):738–761, 1994.689

13 Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved approxima-690

tion. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,691

pages 1937–1945. SIAM, 2019.692

14 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a693

technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.694

15 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees695

(preliminary version). In STOC, pages 252–257, 1983.696

16 Monika R Henzinger and Valerie King. Maintaining minimum spanning trees in dynamic697

graphs. In International Colloquium on Automata, Languages, and Programming, pages698

594–604. Springer, 1997.699

17 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with700

polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.701

18 Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic702

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.703

Journal of the ACM (JACM), 48(4):723–760, 2001.704

19 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum705

spanning forest. In Algorithms-ESA 2015, pages 742–753. Springer, 2015.706

20 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-707

ithmic worst case time. In SODA, pages 1131–1141, 2013.708

21 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and709

probabilistic analysis. Cambridge university press, 2005.710

22 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case711

update time: adaptive, Las Vegas, and O(n1/2−ε)-time. In Proceedings of the 49th Annual712

ACM SIGACT Symposium on Theory of Computing, pages 1122–1129. ACM, 2017.713

23 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum714

spanning forest with subpolynomial worst-case update time. In Foundations of Computer715

Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 950–961. IEEE, 2017.716

24 Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM717

J. Comput., 35(4):932–963, 2006. URL: https://doi.org/10.1137/S0097539705447256, doi:718

10.1137/S0097539705447256.719

25 Shay Solomon. Fully dynamic maximal matching in constant update time. In Foundations of720

Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 325–334. IEEE,721

2016.722

26 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. In 26th Annual European723

Symposium on Algorithms, 2018.724

27 Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic number of a725

graph and its application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.726

28 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case727

update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of728

Computing, pages 1130–1143. ACM, 2017.729

STACS 2020

https://doi.org/10.1137/S0097539705447256
http://dx.doi.org/10.1137/S0097539705447256
http://dx.doi.org/10.1137/S0097539705447256
http://dx.doi.org/10.1137/S0097539705447256

	Introduction
	Maintaining a Proper (+1)-Vertex Coloring
	Data Structures and the Algorithm
	Updating the Data Structures

	The Analysis
	Bounding the Expected Work per Recoloring: Proof of Lemma 4.

	Lower Bound for Dynamic -Colorability Testing: Proof of Theorem 2
	Further Discussions

