
Toward Active and Passive Confidentiality Attacks
On Cryptocurrency Off-Chain Networks

Utz Nisslmueller1, Klaus-Tycho Foerster1, Stefan Schmid1, and Christian Decker2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
2 Blockstream, Zurich, Switzerland

Keywords: Cryptocurrencies, Bitcoin, Payment Channel Networks, Routing, Privacy

Abstract: Cryptocurrency off-chain networks such as Lightning (e.g., Bitcoin) or Raiden (e.g., Ethereum) aim to increase
the scalability of traditional on-chain transactions. To support nodes to learn about possible paths to route their
transactions, these networks need to provide gossip and probing mechanisms. This paper explores whether
these mechanisms may be exploited to infer sensitive information about the flow of transactions, and eventually
harm privacy. In particular, we identify two threats, related to an active and a passive adversary. The first is
a probing attack: here the adversary aims the maximum amount which is transferable in a given direction
of a target channel, by active probing. The second is a timing attack: the adversary discovers how close
the destination of a routed payment actually is, by acting as a passive man-in-the middle. We then analyze
the limitations of these attacks and propose remediations for scenarios in which they are able to produce
accurate results.

1 INTRODUCTION

Blockchains, the technology underlying cryp-
tocurrencies such as Bitcoin or Ethereum, herald an
era in which mistrusting entities can cooperate in the
absence of a trusted third party. However, current
blockchain technology faces a scalability challenge,
supporting merely tens of transactions per second,
compared to custodian payment systems which eas-
ily support thousands of transactions per second.

Off-chain networks (Gudgeon et al., 2019), a.k.a.
payment channel networks or second-layer block-
chain networks, have emerged as a promising solu-
tion to mitigate the blockchain scalability problem:
by allowing participants to make payments directly
through a network of payment channels, the over-
head of global consensus protocols and committing
transactions on-chain can be avoided. Off-chain net-
works such as Bitcoin Lightning (Lightning Network,
2019f), Ethereum Raiden (Raiden Network, 2020),
and XRP Ripple (Fugger, 2004), to just name a few,
promise to primarily reduce load on the underlying
blockchain, as well as completing transactions in sub-
seconds and substantially reducing transaction fees.

In all these networks, each node typically rep-
resents a user and each weighted edge represents
funds escrowed on a blockchain; these funds can be
transacted only between the endpoints of the edge.
Many payment channel networks use source routing,

in which the source of a payment specifies the com-
plete route for the payment. If the global view of all
nodes is accurate, source routing is highly effective
because it finds all paths between pairs of nodes. Nat-
urally, nodes are likely to prefer paths with lower per-
hop fees, and are only interested paths which support
their transaction, i.e., have sufficient channel capacity.

However, the fact that nodes need to be able to
find routes also requires mechanisms for nodes to
learn about the payment channel network’s state. The
two typical mechanisms which enable nodes to find
and create such paths are gossip and probing. The
gossip protocol defines messages which are to be
broadcast in order for participants to be able to dis-
cover new nodes and channels and keep track of cur-
rently known nodes and channels (Lightning Net-
work, 2019c). Probing is the mechanism which is
used to construct a payment route based on a local
network view delivered by gossip, and ultimately per-
form the payment. In the context of §3, we are going
to exploit probing to discover whether a payment has
occurred over a target channel. The gossip store is
queried for viable routes to the destination, based on
the desired route properties (Russell, 2019a). Because
the gossip store contains global channel information,
it is possible to query payment routes originating from
any node on the network.

This paper explores the question whether the in-
herent need for nodes to discover routes in general,



and the gossip and probing mechanisms in particular,
can be exploited to infer sensitive information about
the off-chain network and its transactions.

1.1 Our Contributions

This paper identifies two novel threats for the con-
fidentiality of off-chain networks. In particular, we
consider the Lightning Network as a case study and
present two attacks, an active one and a passive one.
The active one is a probing attack in which the adver-
sary wants to determine the maximum amount which
can be transferred over a target channel it is directly
or indirectly connected to, by active probing. The
passive one is a timing attack in which the adver-
sary discovers how close the destination of a routed
payment actually is, by acting as a man-in-the mid-
dle. We then analyze these attacks, identify limita-
tions and also propose remediations for scenarios in
which they are able to produce accurate results.

1.2 Organization

Our paper is organized as follows. We introduce some
preliminaries in §2, and then first describe the probing
attack in §3 followed by the timing attack in §4. We
review related work in §5 and conclude in §6.

2 Preliminaries

While our contribution is more general, to be con-
crete, we will consider the Bitcoin Lighning Network
(LN) as a case study in this paper. In the following,
we will provide some specific preliminaries which are
necessary to understand the remainder of this paper.

The messages which are passed from one Light-
ning node to another are specified in the Basics of
Lightning Technology (Lightning Network, 2019e).
Each message is divided into a subcategory, called a
layer. This provides superior separation of concerns,
as each layer has a specific task and, similarly to the
layers found in the Internet Protocol Suite, is agnostic
to the other layers.

For example in Lightning, the channel announce
and channel update messages in particular are cru-
cial for correct payment routing by other nodes on the
network. channel announce signals the creation of a
new channel between two LN nodes and is broadcast
exactly once. channel update is propagated at least
once by each endpoint, since even initially each of
them may have a different fee schedule and thus, rout-
ing capacity may differ depending on the direction the
payment is taking (i.e., when c is the newly created

channel between A and B, whether c is used in direc-
tion AB or BA). Each Lightning node keeps track of
the current channel set (the gossip store) and modi-
fies it based on the gossip messages it receives from
other nodes on the network. Probing is the mech-
anism which used to actually construct the payment
route and then perform the payment. The gossip store
is queried for viable routes to the destination, based
on the desired route properties (Russell, 2019a). Be-
cause the gossip store contains global channel infor-
mation, it is possible to query payment routes origi-
nating from any node on the network.

Once a viable route has been determined, the
sending node needs to construct a message (a trans-
action “request”) which needs to be sent to the first
hop along the route. Each payment request is accom-
panied by an onion routing packet containing route
information. Upon receiving a payment request each
node strips one layer of encryption, extracting its rout-
ing information, and ultimately preparing the onion
routing packet for the next node in the route. For the
sake of simplicity, cryptographic aspects are going to
be omitted for the rest of this chapter. We refer to
(Lightning Network, 2019b) and (Lightning Network,
2019d) for specifics.

Two BOLT Layer 2 messages are essential in or-
der to to establish a payment chain:
• update add htlc: This message signals to the

receiver, that the sender would like to estab-
lish a new HTLC (Hash Time Locked Con-
tract), containing a certain amount of mil-
lisatoshis, over a given channel. The mes-
sage also contains an onion routing packet
field, which contains information to be for-
warded to the next hop along the route. In Fig-
ure 1, the sender initially sets up an HTLC with
Hop 1. The onion routing field contains an-
other update add htlc (set up between Hop 1
and Hop 2), which in turn contains the ultimate
update add htlc (set up between Hop 2 and
Destination) in the onion routing field.

• update fulfill htlc: Once the payment mes-
sage has reached the destination node, it needs
to release the payment hash preimage in order
to claim the funds which have been locked in
the HTLCs along the route by the forwarded
update add htlc messages. For further infor-
mation on why this is necessary and how HTLCs
ensure trustless payment chains, see (Antonopou-
los, 2014). To achieve this, the preimage is passed
along the route backwards, thereby resolving the
HTLCs and committing the transfer of funds (see
Steps 4, 5, 6 in Figure 1).
The gossip messages mentioned earlier are sent



Source DestinationHop 2Hop 1

update_add_htlc

1

4

update_add_htlc

3

update_add_htlc

2

update_fulfill_htlc

6 5

update_fulfill_htlcupdate_fulfill_htlc

Figure 1: An exemplary transaction from source to destination, involving two intermediate nodes.

to every adjacent node and eventually propagate
through the entire network. update add htlc
and update fulfill htlc however are only
sent/forwarded to the node on the other end of
the HTLC.

In order to test the attacks proposed in §3 and §4,
we have set up a testing network consisting of four
c-lightning nodes, with two local network computers
running two local nodes each (Figure 2). Node 1 and
2 are connected via a local network link and can form
hops for payment routes between nodes 3 and 4.

Node 2

Node 1 Node 3

Node 4

System A

System B

Figure 2: Local Testing Setup

3 Probing Attack

3.1 Design

The Lightning Network uses an invoice system to
handle payments. A LN invoice consists of a des-
tination node ID, a label, a creation timestamp, an
expiry timestamp, a CLTV (Check Lock Time Ver-
ify) expiry timestamp and a payment hash. Paying an

invoice with a randomized payment hash is possible
(since the routing nodes are yet oblivious to the ac-
tual hash) and will route the payment successfully to
its’ destination, which forms the basis of this attack.
Optionally it can contain an amount (leaving this field
empty would be equal in principle to a blank cheque),
a verbal description, a BTC fallback address in case
the payment is unsuccessful, and a payment route sug-
gestion. This invoice is then encoded, signed by the
payee, and finally sent to the payer.

Having received a valid invoice (e.g. through their
browser or directly via e-mail), the payer can now
either use the route suggestion within the invoice or
probe the network themselves, and then send the pay-
ment to the payee along the route which has been de-
termined. In this section, we will use the c-lightning
RPC interface via Python - the functions involved are
getroute() (Russell, 2019a) and sendpay() (Rus-
sell, 2019b), which takes two arguments: the return
object from a getroute() call for a given route, a
given amount and a given riskfactor, and the payment
hash. Using sendpay() on its own (meaning, with
a random payment hash instead of data from a corre-
sponding invoice) will naturally result in one of two
following error codes:

• 204 (failure along route): This error indicates
that one of the hops was unable to forward the
payment to the next hop. This can be either due to
insufficient funds or a nonexistent connection be-
tween two adjacent hops along the specified route.
If we have ensured that all nodes are connected as
depicted in Figure 2, we can safely assume the
former. One sequence of events leading up to this
error can be seen in Figure 3.

• 16399 (permanent failure at destination):
Given the absence of a 204 error, the attempted
payment has reached the last hop. As we are using
a random payment hash, realistically the destina-
tion node will throw an error, signalling that no
matching preimage has been found to produce the
payment hash. The procedure to provoke a 16399
error code can be seen in Figure 4.



Node 2

Node 1 Node 3

Node 4

1) sendpay(tx, payment_hash)

2) sendpay
(tx, payment_hash)

4,5) HTLC
rollbacks

3) insufficient capacity
to Node 4

6) error code 204

Figure 3: Causing a 204 error by trying to send a payment
to Node 4, which Node 3 is unable to perform.

The goal of this attack is trace payment flow over
a channel, which the attacker node is directly or in-
directly connected to. Recalling Figure 2, the goal
of Node 3 will therefore be to determine whether a
payment has occurred on the channel between Node
2 and Node 4. Each of the channels has a balance of
200,000,000 millisatoshis, with each node holding a
stake of 100,000,000 millisatoshis in each of its chan-
nels. Node 3 will hold a slightly higher balance in
order to accommodate probing fees.

3.2 Implementation

The goal of Node 3 is to determine the maximum pay-
ment size between nodes 2 and 4. We can use the to-
tal channel balance, as received via gossip, as an up-
per ceiling for this value (200,000,000 millisatoshis in
this case). We can then send payments from Node 3
to Node 4 with random payment hashes - resulting in
either error code 16399 or error code 204 (§3.1). To
this end, we perform a binary search on the available
funds which we can transfer, searching for the highest
value yielding a 16399 error instead of a 204 error.

We thus arrive at the approximate maximum
amount, which Node 2 can transfer to Node 4. The
next step is to continuously probe for this amount of
millisatoshis in regular intervals. The expected re-
sponse is a 16399 error code, with a 204 error code
implying that the amount we are trying to send is
higher than the available amount which Node 2 can
transfer to Node 4 (or that it has disconnected from
Node 4). Upon receiving a 204 response, we start
looking for the maximum payable amount to Node 4
once more. Subtracting the new amount from the old
amount, we arrive at the size of the transaction which
has occurred between nodes 3 and 4.

Node 2

Node 1 Node 3

Node 4

1) sendpay(tx, payment_hash)

2) sendpay
(tx, payment_hash) 5,6,7) HTLC

rollbacks

4) no matching
preimage

8) error code 16399

3) sendpay 
(tx, payment_hash)

Figure 4: Causing a 16399 error by trying to send a payment
to Node 4, who can’t produce a matching preimage and thus
fails the payment.

Figure 5 shows the trade-off between probing run
time and the error in the channel balance estimate. As
we want to avoid overly excessive probing, we are sat-
isfied with any answer which is less than 1000 msat
lower than the actual channel balance. Another possi-
ble approach could be keeping the amount of probes
constant, hence providing a more uniform level of bal-
ance error and probing duration.

1.00s

2.00s

4.00s

8.00s

16.00s

32.00s

64.00s

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

Error Duration

Figure 5: Visualizing the trade-off between probing accu-
racy and duration.

3.3 Results, Implications, and further
Considerations

In §3.2 we have demonstrated that it is in fact possible
to trace channel payments if the network is structured
in a certain way. In theory, this method should hold
true for any node which is reachable from the attack-
ing node and has only one channel whose balance is
lower or or equal to the second lowest balance on the
route from the attacking node. This is particularly a
threat to end users, since most of them connect to a



single well connected node, in order to interact with
the rest of the network (1ML, 2019). Nonetheless,
there are several caveats to this method, the most sig-
nificant of which are:

• Omission of private channels: Upon creating
a channel, the node can declare the channel as
private, and thus prevent it from being broadcast
via gossip. The channel is fully functional for
both nodes which are connected by it, but no for-
eign payments can be routed through it. Looking
ahead to increasing adoption of the Lightning Net-
work, this provides an intriguing opportunity for
nodes, which do not wish to participate in routing
(e.g. mobile wallets) or nodes with limited uptime
(personal computers). Routing would only oc-
cur between aggregating nodes (such as payment
providers), with most of the nodes on the network
invisible to malicious participants.

• Disregard of potential bottlenecks: The pro-
posed method of monitoring channel transactions
does not hold, if a single channel along the route
has a lower balance than the target channel in the
desired direction. This can often happen if an end
user node is used as a hop prior to a high-capacity
node. The procedure is depicted in Figure 6.

Node 2

Node 1 Node 3

Node 4

1) sendpay(tx, payment_hash)

3) roll back HTLC

2) insufficient capacity to
pay Node 2

4) error code 205

Figure 6: Trying to send a payment to Node 4, with Node 1
having an insufficient balance to Node 2 to cover the whole
amount.

4 Timing Attack

4.1 Design

The Lightning Network is often referred to as a pay-
ment channel network (PCN). Performing payments
over multiple hops is possible due to the use of
HTLC’s (Poon and Dryja, 2016), a special bitcoin
transaction whose unlocking conditions effectively
rid the Lightning Network and its users of all trust
requirements. An exemplary chain of HTLCs along

with their shortened unlocking conditions is shown in
Figure 7. Note that any node can only retrieve the
funds locked in the HTLCs if they share R, and that
each HTLC starting from Node 4 is valid for 2 hours
longer than the previous HTLC to provide some room
for error/downtime.

Node 2

Node 1 Node 3

Node 4

1) send invoice,
along with payment hash H(R)

2) HTLC: signature of Node 1 and R or 
signature of Node 3 and 6 hours passed

3) HTLC: sig(Node 2 && R) or
sig(Node 1) && 4 hours passed

4) HTLC: sig(Node 4 && R) or
sig(Node 2) && 2 hours passed

7) R (preimage)

9) R

8) R

Figure 7: Paying a LN invoice over multiple hops. Mes-
sages 2-4 are update add htlc messages, messages 7-9
are update fulfill htlc messages.

Due to the Onion Routing properties of the Light-
ning Network, it is cryptographically infeasible to try
and determine where along the route a forwarding
node is located, since each node can only decrypt the
layer which was intended for it to decrypt. Attempts
to analyze the remaining length of the routing packet
have been thwarted at the protocol level by imple-
menting a fixed packet size with zero padding at the
final layer (Lightning Network, 2019b).

The only opportunity left to analyze the encrypted
traffic between the nodes is to extract time-related in-
formation from the messages. One possibility would
be to analyze the cltv expiry delta field (anal-
ogous to “hours passed” in Figure 7, measured in
mined blocks since the establishment of the HTLC):
By looking at the delay of both the incoming and
the outgoing HTLC, a node could infer how many
hops are left until the payment destination. However,
this possibility has been accounted for by the adding
”shadow routes” to the actual payment path, with each
nodes fuzzing path information by adding a random
offset to the cltv expiry delta value, hence effec-
tively preventing nodes from guessing their position
along the payment route (Lightning Network, 2019c).

The method we propose, is to time messages at
the network level, rather than at the protocol level
(e.g. through cltv expiry delta). Recalling Figure
7, Node 2 can listen for response messages from Node
4, since there is currently no mechanism in place
to add delay to update fulfill htlc responses (in
fact, (Lightning Network, 2019a) states that “a node



SHOULD remove an HTLC as soon as it can”). Based
on response latency, Node 2 could infer its position
along the payment route to a certain extent, examined
in §4.2.

4.2 Implementation

Initial analysis has shown that analyzing packets di-
rectly (e.g. via Wireshark) is of little avail, since LN
messages are end-to-end encrypted - meaning that
even if we know the target nodes’ IP address and
port number, we can not detect the exact nature of the
messages exchanged. We hence chose to redirect the
output of the listening c-lightning node to a log file,
which we then analyze with Python. As in §3.2, the
source code can be found at (Nisslmueller, 2020).

Looking at the log file, we are particularly
interested in the two messages discussed in §2:
update add htlc and update fulfill htlc. The
node output includes these events, complete with
timestamps and the corresponding node ID with
which the HTLC is negotiated. By repeatedly send-
ing money back and forth between nodes 1 and 3 in
our test setup 2, we arrive at a local (and therefore
minimum) latency of 189ms on average. The latency
distribution for small (1,000 msat) payments can be
seen in Figure 8.

0.00s

0.10s

0.20s

0.30s

0.40s

0.50s

0.60s

0.70s

0.80s

0 5 10 15 20 25 30

Figure 8: Latency times for local payments containing
1,000 msat (µ = 0.1892, σ = 0.1168, n = 25)

We have found that latencies remain largely unaf-
fected by transaction size - increasing payment size
by a factor of 100,000 actually slightly reduced aver-
age settlement time and standard deviation (Figure 9).

4.3 Results, Implications and further
Considerations

Considering the findings in §4.2, we can see that tim-
ing produces fairly reliable and uniformly distributed

0.00s

0.10s

0.20s

0.30s

0.40s

0.50s

0.60s

0.70s

0.80s

0 5 10 15 20 25 30

Figure 9: Latency times for local payments containing
100,000,000 msat (µ = 0.1822, σ = 0.049, n = 25)

results over a local network with little outside inter-
ference, however, due to the nature of LN routing, it
is not possible to determine the distance or path to the
initial payment source. . Further research will have to
show how confident the results produced by a timing
node are, if the destination is 1 or more hops away.
Data acquired during monitoring the local (mostly
idle) network suggests that the timing node won’t be
able to distinguish local network traffic from the traf-
fic in §4.2 due to low latency times ranging from 2ms
to 5ms. It would be worth investigating the latency
threshold at which timing can no longer produce ac-
curate results.

5 Related Work

Off-chain networks in general and the Lightning
network in particular have recently received much at-
tention, and we refer the reader to the excellent sur-
vey by Gudgeon et al. (Gudgeon et al., 2019). The
Lightning Network as an second-layer network al-
ternative to pure on-chain transactions was first pro-
posed by (Poon and Dryja, 2016), with the technical
specifications laid out in (Lightning Network, 2019f).
Despite being theoretically currency-agnostic, current
implementations such as c-lightning (cli, 2019) sup-
port BTC exclusively. A popular alternative for ERC-
20 based tokens is the Raiden Network (Raiden Net-
work, 2020).

Several papers have already analyzed security and
privacy concerns in off-chain networks. Rohrer et
al. (Rohrer et al., 2019) focuses on channel-based
attacks and proposes methods to exhaust a victim’s
channels via malicious routing (up to potentially to-
tal isolation from the victim’s neighbors) and to deny
service to a victim via malicious HTLC construction.
Tochner et al. (Tochner et al., 2019) propose a denial



of service attack by creating low-fee channels to other
nodes, which are then naturally used to route pay-
ments for fee-minimizing network participants and
then dropping the payment packets, therefore forcing
the sender to await the expiration of the already set-up
HTLCs. (Herrera-Joancomartı́ et al., 2019) provides a
closer look into the privacy-performance trade-off in-
herent in LN routing. The authors also propose an
attack to discover channel balances within the net-
work. (Wang et al., 2019) examines the LN routing
process in more detail and proposes a split routing
approach, dividing payments into large size and small
size transactions. The authors show that by routing
large payments dynamically to avoid superfluous fees
and by routing small payments via a lookup mecha-
nism to reduce excessive probing, the overall success
rate can be maintained while significantly reducing
performance overhead. (Béres et al., 2019) makes a a
case for most LN transactions not being truly private,
since their analysis has found that most payments oc-
cur via single-hop paths. As a remediation, the au-
thors propose partial route obfuscation/extension by
adding multiple low-fee hops. Currently still work
in progress, (Antonopoulos et al., 2019) is very close
to (Antonopoulos, 2014) in its approach and already
provides some insights into second-layer payments,
invoices and payment channels in general. The Light-
ning Network uses the Sphinx protocol to implement
onion routing, as specified in (Lightning Network,
2019b). The version used in current Lightning ver-
sions is based on (Danezis and Goldberg, 2009) and
(Kate and Goldberg, 2010), the latter of which also
provides performance comparisons between compet-
ing protocols.

6 Conclusion

This paper has shown that off-chain routing mech-
anisms may be exploited to infer confidential infor-
mation about the network state. In particular, consid-
ering the LN as a case study, we set up a local infras-
tructure and proposed two ways in which the current
implementation c-lightning can be exploited to gain
knowledge about distant channel balances and trans-
actions to unconnected nodes: By deliberately failing
payment attempts, we were able to deduce the exact
amount of (milli-)satoshis on a channel located two
hops away. Using this technique repeatedly, we were
able to determine whether a transaction occurred be-
tween this node and another over the monitored chan-
nel. By timing the messages related to HTLC con-
struction and termination, we were able to infer the
remaining distance of a forwarded packet accurately.

Our work raises several interesting research ques-
tions. In particular, it remains to fine-tune our attacks
and conduct more systematic experiments including
more natural/interconnected network topologies, also
on other off-chain networks. More generally, it will
be interesting to explore further attacks on the con-
fidentiality of off-chain networks exploiting the rout-
ing mechanism and investigate countermeasures. Fur-
thermore, our work raises the question whether such
vulnerabilities are an inherent price of efficient off-
chain routing or if there exist rigorous solutions.

REFERENCES

(2019). 1ML - Bitcoin Lightning Analysis Engine. https:
//1ml.com/. [Online; accessed 10-November-2019].

(2019). c-lightning GitHub Repository. https://github.
com/ElementsProject/lightning. [Online; ac-
cessed 26-December-2019].

Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking
Digital Crypto-Currencies. O’Reilly Media, Inc., 1st
edition.

Antonopoulos, A. M., Osuntokun, O., and Pickhardt, R.
(2019). Mastering the Lightning Network. https:
//github.com/lnbook/lnbook. [Online; accessed
22-November-2019].

Béres, F., Seres, I. A., and Benczúr, A. A. (2019). A cryp-
toeconomic traffic analysis of bitcoins lightning net-
work. arXiv, abs/1911.09432.

Danezis, G. and Goldberg, I. (2009). Sphinx: A compact
and provably secure mix format. In IEEE Symposium
on Security and Privacy, pages 269–282. IEEE Com-
puter Society.

Fugger, R. (2004). Money as IOUs in social trust net-
works & a proposal for a decentralized currency net-
work protocol. Hypertext document. Available elec-
tronically at http://ripple. sourceforge. net, 106.

Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P.,
and Gervais, A. (2019). Sok: Off the chain transac-
tions. IACR Cryptology ePrint Archive, 2019:360.

Herrera-Joancomartı́, J., Navarro-Arribas, G., Pedrosa,
A. R., Pérez-Solà, C., and Garcı́a-Alfaro, J. (2019).
On the difficulty of hiding the balance of lightning net-
work channels. In AsiaCCS, pages 602–612. ACM.

Kate, A. and Goldberg, I. (2010). Using sphinx to improve
onion routing circuit construction. In Financial Cryp-
tography, volume 6052 of Lecture Notes in Computer
Science, pages 359–366. Springer.

Lightning Network (2019a). BOLT 2: Peer Protocol
for Channel Management. https://github.
com/lightningnetwork/lightning-rfc/blob/
master/02-peer-protocol.md. [Online; accessed
6-January-2020].

Lightning Network (2019b). BOLT 4: Onion
Routing Protocol. https://github.com/
lightningnetwork/lightning-rfc/blob/



master/04-onion-routing.md. [Online; ac-
cessed 3-January-2020].

Lightning Network (2019c). BOLT 7: P2P Node
and Channel Discovery. https://github.com/
lightningnetwork/lightning-rfc/blob/
master/07-routing-gossip.md. [Online; ac-
cessed 4-December-2019].

Lightning Network (2019d). BOLT 8: Encrypted
and authenticated transport. https://github.
com/lightningnetwork/lightning-rfc/blob/
master/08-transport.md. [Online; accessed
4-January-2020].

Lightning Network (2019e). Lightning Network Specifica-
tions. https://github.com/lightningnetwork/
lightning-rfc/. [Online; accessed 29-November-
2019].

Lightning Network (2019f). Lightning RFC: Light-
ning Network Specifications. https://github.com/
lightningnetwork/lightning-rfc. [Online; ac-
cessed 18-November-2019].

Nisslmueller, U. (2020). Python code repository. https:
//github.com/utzn42/icissp_2020_lightning.
[Online; accessed 02-January-2020].

Poon, J. and Dryja, T. (2016). The bitcoin light-
ning network: Scalable off-chain instant

payments. https://lightning.network/
lightning-network-paper.pdf. [Online; ac-
cessed 3-January-2020].

Raiden Network (2020). Raiden Network. https://
raiden.network/. [Online; accessed 02-January-
2020].

Rohrer, E., Malliaris, J., and Tschorsch, F. (2019). Dis-
charged payment channels: Quantifying the lightning
network’s resilience to topology-based attacks. In Eu-
roS&P Workshops, pages 347–356. IEEE.

Russell, R. (2019a). lightning-getroute – Command for
routing a payment (low-level). https://lightning.
readthedocs.io/lightning-getroute.7.html.
[Online; accessed 6-December-2019].

Russell, R. (2019b). lightning-sendpay – Low-
level command for sending a payment via a
route. https://lightning.readthedocs.io/
lightning-sendpay.7.html. [Online; accessed
4-January-2020].

Tochner, S., Schmid, S., and Zohar, A. (2019). Hijacking
routes in payment channel networks: A predictability
tradeoff. arXiv, abs/1909.06890.

Wang, P., Xu, H., Jin, X., and Wang, T. (2019). Flash:
efficient dynamic routing for offchain networks. In
CoNEXT, pages 370–381. ACM.


