
Towards a Better Understanding of Randomized Greedy Matching∗

Zhihao Gavin Tang† Xiaowei Wu‡ Yuhao Zhang§

Abstract

There has been a long history for studying randomized greedy matching algorithms since the
work by Dyer and Frieze (RSA 1991). We follow this trend and consider the problem formulated
in the oblivious setting, in which the algorithm makes (random) decisions that are essentially
oblivious to the input graph.

We revisit the Modified Randomized Greedy (MRG) algorithm by Aronson et al. (RSA 1995)
that is proved to be (0.5 + ε)-approximate. In particular, we study a weaker version of the
algorithm named Random Decision Order (RDO) that in each step, randomly picks an unmatched
vertex and matches it to an arbitrary neighbor if exists. We prove the RDO algorithm is 0.639-
approximate and 0.531-approximate for bipartite graphs and general graphs respectively. As a
corollary, we substantially improve the approximation ratio of MRG.

Furthermore, we generalize the RDO algorithm to the edge-weighted case and prove that
it achieves a 0.501 approximation ratio. This result solves the open question by Chan et
al. (SICOMP 2018) about the existence of an algorithm that beats greedy in this setting. As
a corollary, it also solves the open questions by Gamlath et al. (SODA 2019) in the stochastic
setting.

∗This work is supported by National Natural Science Foundation of China (NSFC) 61902233. The research leading
to these results has received funding from the European Research Council under the European Communitys Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement No. 340506.
†ITCS, Shanghai University of Finance and Economics. tang.zhihao@mail.shufe.edu.cn
‡IOTSC, University of Macau. xiaoweiwu@um.edu.mo. Part of the work was done when the author was a postdoc

at the University of Vienna.
§Department of Computer Science, The University of Hong Kong. yhzhang2@cs.hku.hk

1

ar
X

iv
:1

90
7.

05
13

5v
2

 [
cs

.D
S]

 9
 M

ar
 2

02
0

1 Introduction

Maximum matching is a fundamental problem in combinatorial optimization. Although the problem
admits an efficient polynomial time algorithm, the greedy heuristic is widely used and observed to
have good performance [20, 16]. Since the initial work by Dyer and Frieze [7] in the early-nineties,
computer scientists have been interested in the worst-case performance of (randomized) greedy
algorithms. In addition to this pure theoretical interest, greedy algorithms have also attracted
attention due to kidney exchange applications [19]. In such scenarios, information about the graph
is incomplete and greedy algorithms are the only algorithms one can implement.

To this end, the oblivious matching model is formulated [9, 3]. Consider a graph G = (V,E)
in which the vertices V are revealed while the edges E are unknown. The algorithm picks a
permutation of unordered pairs of vertices

(
V
2

)
. Each pair is probed one-by-one according to the

permutation to form a matching greedily. In particular, when the pair (u, v) is probed, if the edge
exists and both u, v are unmatched, then we match the two vertices; otherwise, we continue to
the next pair. That is, the algorithm works under the query-commit model. We compare the
performance of an algorithm to the size of a maximum matching.

Note that any permutation induces a maximal matching and, hence, any algorithm is 0.5-
approximate. On the other hand, no deterministic algorithms can do better than this ratio. The
interesting question is then to design a randomized algorithm with approximation ratio greater
than 0.5.

1.1 Prior Works

The first natural attempt for randomization is to permute all pairs of vertices uniformly at random.
Unfortunately, Dyer and Frieze [7] proved that it fails to beat the 0.5 approximation ratio. The
first non-trivial theoretical guarantee for the problem is provided by Aronson et al. [1]. In the
paper, they proposed the Modified Randomized Greedy (MRG) algorithm and proved a (0.5 + ε)1

lower bound on its approximation ratio. The analysis of MRG was later improved by Poloczek
and Szegedy [18] to 0.504.2 Different randomized greedy algorithms are also studied, including
Ranking [15, 14, 17, 3], FRanking [11, 12], etc.

Interestingly, all existing algorithms fall into the family of vertex-iterative algorithms [9]:

1. Iterates through the vertices according to a decision order.

2. In the iteration of u, probe u with other vertices according to the preference order of u.

There are |V | + 1 different orders to be specified, including a decision order in the first step and
|V | individual preference orders in the second step. The names are chosen due to the following
equivalent statement of the framework: 1) let the vertices make decisions sequentially according to
the decision order; 2) if a vertex is not matched at its decision time, it would choose its favorite
unmatched neighbor, according to its individual preference.

Existing algorithms differ in the way the orders are generated. In particular, MRG samples
the decision order and the preference orders independently and uniformly at random. Ranking [15]
samples only one random permutation uniformly and uses it as the decision order and the common
preference order. It was observed [9, 18] that the approximation ratio of Ranking for the oblivious
matching problem on bipartite graphs is the same as for online bipartite matching with random
arrival order. Hence the result of Mahdian and Yan [17] translates to a 0.696-approximation

1ε = 1/400000.
2It was pointed out by Chan et al. [3] that their paper contains some gaps in the proof.

1

in the oblivious setting for bipartite graphs. For general graphs, Ranking is proved to be 0.526-
approximate [3, 2]3. Recently, the FRanking algorithm has been studied in the fully online matching
model [11, 12]4. Their results can be transformed to an oblivious matching algorithm that uses an
arbitrary decision order5 and a common random preference order. The competitive ratios 0.567 and
0.521 achieved for bipartite graphs [12] and general graphs [11] are then inherited in our setting.

Decision Preferences Bipartite General

Ranking Common Random 0.696 [17] 0.526 [3, 2]

FRanking Arbitrary Common Random 0.567 [12] 0.521 [11]

MRG Independent Random 0.5 + ε [1, 18] → 0.531 (Section 4)

IRP Arbitrary Independent Random 0.5 [7]

RDO Random Arbitrary 0.639 (Section 3) 0.531 (Section 4)

Table 1: A summary of prior works and our results. Our results are marked in bold. “Common
random” means a single random permutation is used for all orders. “Independent random” means
the orders are generated independently.

1.2 Our Contributions

Despite the successful progresses of these results, we lack a systematic understanding on the roles
of the decision order and preference orders. In this paper, we revisit the MRG algorithm and study
separately the two kinds of randomness on the decision order and the preference orders.

Consider a variant of the MRG algorithm in which the decision order is fixed arbitrarily while
the preference orders are drawn independently and uniformly for all vertices. We refer to this
algorithm as Independent Random Preferences (IRP). Due to the instance from [7], IRP is not better
than 0.5-approximate.6 In other words, the random decision order is necessary and crucial for MRG
to work. On the other hand, it is not clear from the previous analysis [1, 18] whether the random
decision order alone is sufficient.

In this paper, we answer this question affirmatively and conclude that the randomness of decision
order plays a more important role than the preference orders for the MRG algorithm. Consider the
following variant of the MRG algorithm.

Random Decision Order (RDO) We sample the decision order uniformly at random and fix
the individual preference orders arbitrarily.

Theorem 1.1 RDO is 0.639-approximate for the oblivious matching problem on bipartite graphs.

Theorem 1.2 RDO is 0.531-approximate for the oblivious matching problem on general graphs.

As an immediate corollary, the approximation ratios apply to MRG, that substantially improve
the (0.5 + ε) ratios by Aronson et al. [1] and Poloczek and Szegedy [18] for general graphs. Besides,

3Goel and Tripathi (FOCS 2012) claimed that Ranking is 0.56-approximate, but later withdrew the paper when
they discovered a bug in their proof.

4In their paper, the algorithm is named Ranking. We use FRanking to distinguish it from the original Ranking
algorithm, since they have different behavior when adapted to the oblivious matching setting.

5The feature of arbitrary decision time comes from the online nature of their setting.
6This is observed in the online matching literature. For completeness, we include a formal discussion in Ap-

pendix C.

2

our result beats the state-of-the-art 0.526-approximation by Ranking [2] for the oblivious matching
problem.

Corollary 1.1 MRG is 0.531-approximate for the oblivious matching problem.

We also show some hardness results for the RDO algorithm. First, we give a 0.646 upper bound
on the approximation ratio of RDO on bipartite graphs by experiments, which is very close to our
0.639 lower bound. Second, we prove that RDO is at most 0.625-approximate on general graphs.
Together with Theorem 1.1, it gives a separation on the approximation ratio of RDO on bipartite
and general graphs. To the best of our knowledge, no such separation has been shown to exist for
other algorithms including MRG, Ranking and FRanking.

Extension to Edge-weighted Case. Interestingly, the better understanding of MRG towards
RDO lends us to a natural generalization of the algorithm to the edge-weighted oblivious matching
problem. In the edge-weighted case, the graph is associated with a weight function w defined on
all pairs of vertices that is known by the algorithm. If an edge (u, v) exists, its weight is given
by wuv. It is straightforward to check that the greedy algorithm that probes edges in descending
order of the weights is 0.5-approximate. It has been proposed as an open question in [3] to study
the existence of a better than 0.5-approximate algorithm. In this paper, we answer it positively by
studying the following generalization of RDO.

Perturbed Greedy. Each vertex u ∈ V draws a rank yu ∈ [0, 1] independently and uniformly.
Then probe all pairs of vertices (u, v) in descending order of their perturbed weights7, which is
defined as (1− g(min{yu, yv})) · wuv, where g is a non-decreasing function to be fixed later.

Theorem 1.3 There exists a function g so that Perturbed Greedy is 0.501-approximate for the
edge-weighted oblivious matching problem.

It is easy to show that the Perturbed Greedy algorithm degenerates to RDO for unweighted
graphs, for any increasing function g. Indeed, consider yu as the decision time of vertex u. We
list all vertices in ascending order of their decision times. This is equivalent to sampling a random
decision order. Upon the decision of u, all remaining edges incident to u would have the same
smallest perturbed weight 1− g(yu). By breaking ties arbitrarily and consistently, it is equivalent
to study arbitrary individual preference orders, i.e. the RDO algorithm.

Extension to Stochastic Probing. Another well-studied maximum matching model is the
stochastic probing problem [4, 5, 8]. In addition to the edge-weighted oblivious setting, each edge
is associated with an existence probability that is known by the algorithm. It is assumed that the
underlying graph is generated by sampling each edge independently with the existence probability.

Very recently, Gamlath et al. [8] proposed a (1 − 1
e)-approximate algorithm for the problem

on bipartite graphs, which is the first result bypassing the 0.5 barrier. They proposed8 two open
questions: (1) does algorithm with approximation ratio strictly above 0.5 exist on general graphs?
(2) what approximation ratio can be obtained if the existence probabilities of edges are correlated?

Observe that any algorithm in the oblivious setting can be applied in the stochastic setting by
ignoring the extra stochastic information. Moreover, the approximation ratio is preserved since it
holds for every realization of the underlying graph, even when the edges are sampled from correlated
distributions. Thus, as a corollary of Theorem 1.3, we answer both questions positively.

7Break ties arbitrarily and consistently.
8The open questions are raised in their SODA 2019 conference presentation.

3

Corollary 1.2 There exists an algorithm for the edge-weighted stochastic probing problem on gen-
eral graphs that is 0.501-approximate, even when the existence probabilities of edges are correlated.

1.3 Our Techniques

We will prove our results starting with RDO on bipartite graphs, then RDO on general graphs and
finally Perturbed Greedy on edge-weighted general graphs, in progressive order of difficulty. Our
analysis builds on the randomized primal dual framework introduced by Devanur et al. [6] and
recently developed in a sequence of results [11, 13, 12]. Roughly speaking, we split the gain of
each matched edge to its two endpoints. By proving that the expected combined gain of any pair
of neighbors u, v is at least r · wuv, we have that the approximation ratio is at least r. However,
our approach differs from previous works in a way that we only look at the pairs that appear in
some fixed maximum matching. We refer to such pairs as perfect partners. In order to prove the
algorithm is r-approximate, we observe that it suffices to show the expected combined gain of (u, v)
is at least r · wuv for all perfect pairs (u, v). As far as we know, our result is the first successful
application of the randomized primal dual technique to the oblivious matching problem, or to any
edge-weighted maximum matching problems.

Unweighted Bipartite Graphs. As discussed in the previous subsection, the random decision
order can be generated by sampling decision times independently and uniformly from [0, 1] for all
vertices and then list the vertices in ascending order of their decision times. We shall use this
interpretation for the purpose of analysis. We use yu to denote the decision time of vertex u, and
it plays a similar role as the rank of u in the Ranking algorithm in our analysis.

Consider a pair of neighbors (u, v), where u has an earlier decision time than v. Existing analysis
on Ranking relies on an important structural property that whenever v is unmatched, u must be
matched to some vertex with rank smaller than yv. However, we have nothing to say about u’s
choice on its decision time, since we assume it makes the decision based on its individual preference.
To this end, whenever an edge is matched, we split the gain between the endpoints based on the
current decision time instead of the rank/decision time of the passively chosen vertex. We specify
such a gain sharing rule so that by fixing the decision times of all vertices other than u, v arbitrarily
and taking the randomness over yu, yv, the expected combined gain of u and v is at least 0.639.

Unweighted General Graphs. For bipartite graphs, our analysis relies on a crucial structural
property that if u is matched when its neighbor v is removed from the graph, then u remains
matched when v is added back, no matter what the decision time v has. Going from bipartite
graphs to general graphs takes away this nice property. A similar issue arises in the analysis of
Ranking, FRanking. The recent work by Huang et al. [11] introduce a notion of victim to tackle
the problem. Roughly speaking, they call an unmatched vertex v the victim of its neighbor z if v
becomes matched when z is removed. Then they define a compensation rule in which each active
vertex sends an amount of gain, named compensation, to its victim (if any).

In this work, we propose a new definition of victim together with a compensation rule that is
arguably more intuitive and has a clearer structure compared to that of [11].

Suppose vertex z actively matches u in our algorithm. If u is matched with its perfect partner
v when z is removed, we call v the victim of z. After sharing the gain as we have described
for bipartite graphs, let each active vertex send a portion of its gain to its victim if the victim
is unmatched. This compensation rule is designed to retrieve some extra gain for u, v when the
aforementioned property for bipartite graphs fails to hold.

4

Weighted General Graphs. For unweighted graphs, the contribution of each matched vertex is
fixed. Therefore, it suffices to summarize the status of a vertex as matched or unmatched. However,
being matched is no longer a meaningful signature on edge-weighted graphs. E.g., being matched
in an ε-weighted edge and being matched in a large weight edge should be treated differently. This
observation prevents the victim notion of Huang et al. [11] from generalizing to edge-weighted case.

More specifically, under their notion, the victim v of z will become matched when z is removed.
However, there is no guarantee on the weight of edge v matches. In contrast, we define v the victim
of z only if v matches its perfect partner u when z is removed.

Consequently, our definition of victim generalizes naturally to the weighted case, and the analy-
sis for unweighted graphs extends with a minimum change of the compensation rule. In particular,
we fix a function h that represents the amount of compensation one would like to send. The com-
pensation rule works in the following way. Suppose v is the victim of z. We know that z is matched
with v’s perfect partner u. Our compensation rule ensures that after the compensation, v has gain
at least h(yz) · wzu. Note that the amount of compensation that z sends depends on the current
gain of v. This generalization further justifies the advantage of our new notion of victim and we
believe the new notion will find more applications in other matching problems on general graphs.

1.4 Other Related Works

For the hardness results of the oblivious matching problem, Goel and Tripathi [9] show a 0.7916
upper bound on the approximation ratio of any algorithm for unweighted graphs. When restricted
to the family of vertex iterative algorithms, they give a stronger bound of 0.75. For the MRG
algorithm, Dyer and Frieze [7]’s bomb graphs give a 2/3 upper bound on its approximation ratio.
For the Ranking algorithm, the hard instance provided by Mahdian and Yan [17] implies a 0.727
upper bound, which was later improved to 0.724 by Chan et al. [3].

Independent from our work, Huang [10] studied the edge-weighted online bipartite matching
problem using the randomized primal-dual technique. They provide a simplification of the algorithm
by Zadimoghaddam [21], and show that it obtains an improved competitive ratio of 0.514.

2 Preliminaries

Recall the general algorithm for the edge-weighted oblivious matching problem as follows.

Algorithm 1 Perturbed Greedy

Fix a non-decreasing function g : [0, 1]→ [0, 1].
Each vertex u independently draws a rank yu ∈ [0, 1] uniformly at random.
Probe pairs in descending order of their perturbed weights (1− g(min{yu, yv}))wuv.

We use ~y to denote the ranks of vertices, and M(~y) to denote the matching produced by our
algorithm with ranks ~y. We use Mu(~y) to denote the matching produced by our algorithm on
G − {u}, i.e. when vertex u is removed from the graph. Fix any maximum weight matching M∗,
the approximation ratio is the ratio between the expected total weight of edges in M(~y), and the
total weight of edges in M∗.

The gain sharing framework we use in this paper is formalized as follows.

Lemma 2.1 If there exist non-negative random variables {αu}u∈V depending on ~y such that
• for every ~y,

∑
u∈V αu =

∑
(u,v)∈M(~y)wuv;

5

• for every (u, v) ∈M∗, E
~y

[αu + αv] ≥ r · wuv,

then our algorithm is r-approximate.

Proof: The approximation ratio of Perturbed Greedy is given by
E
~y
[
∑

(u,v)∈M(~y) wuv]∑
(u,v)∈M∗ wuv

=
E
~y
[
∑

u∈V αu]∑
(u,v)∈M∗ wuv

≥
E
~y
[
∑

(u,v)∈M∗ (αu+αv)]∑
(u,v)∈M∗ wuv

≥
∑

(u,v)∈M∗ r·wuv∑
(u,v)∈M∗ wuv

= r.

Next, we define the notion of active and passive vertices for edge-weighted general graphs and
provide the monotonicity on the ranks (the proof can be found in Appendix A).

Definition 2.1 (Active, Passive) For every edge (u, v) added to the matching by Perturbed Greedy
with yu < yv, we say that u is active and v is passive.

Lemma 2.2 (Monotonicity) Consider any matching M(~y) and any vertex v. If v is passive or
unmatched, then there exists some threshold y ≤ yv such that if we reset yv to be any value in (y, 1),
the matching remains unchanged; if we reset yv to be any value in (0, y), then v becomes active.
Moreover, the weight of the edge v actively matches is non-increasing w.r.t. yv ∈ (0, y).

2.1 Unweighted Graphs.

In this subsection, we focus on unweighted graphs and provide the standard alternating path prop-
erty. An analog for edge-weighted graphs will be provided in Section 5.

As we have discussed in Section 1, we can equivalently interpret the algorithm as follows.
We call the rank yu of vertex u as the decision time of u, and let vertices act in ascending order

of their decision times. If a vertex is not matched yet at its decision time, then it will match the
unmatched neighbor according to its own preference order. We also call min{yu, yv} the decision
time of edge (u, v) ∈ E, which is the only possible time the edge is included in the matching.

Algorithm 2 Random Decision Order

Each vertex u independently draws a rank yu ∈ [0, 1] uniformly at random.
At decision time yu of u, if u is unmatched, u chooses its favourite unmatched neighbor.

Note that for each vertex, the preference order of its neighbors is arbitrary but fixed for each
vertex. In other words, it does not depend on the ranks ~y of vertices.

It is easy to see that for the unweighted case, if a vertex v is passively matched by u, then the
threshold of v in Lemma 2.2 coincides with the rank yu of u. Thus we have the following.

Corollary 2.1 (Unweighted Monotonicity) Consider any matching M(~y) and any vertex v.
If v is passively matched by u, then when v has decision time in (yu, 1), the matching remains
unchanged; when v has decision time in (0, yu), then v becomes active. If v is active, then the set
of unmatched neighbors v sees at its decision time grows when yv decreases.

The following important property characterizes the effect of the removal of a single vertex. For
continuity of presentation we defer the proof of the lemma to Appendix A.

Lemma 2.3 (Alternating Path) If u is matched in M(~y), then the symmetric difference between
M(~y) and Mu(~y) is an alternating path (u0 = u, u1, u2, . . .) such that for all even i, (ui, ui+1) ∈
M(~y) and for all odd i, (ui, ui+1) ∈ Mu(~y). Moreover, the decision times of edges along the path
are non-decreasing. Consequently, vertices u1, u3, . . . are matched no later in M(~y) than in Mu(~y).

6

Given the above lemma, we show the following useful property, which roughly says that any
vertex v can not affect the matching status of another vertex u if u is matched before yv.

Corollary 2.2 Suppose at time y, vertex u is matched while vertex v is still unmatched. Then
resetting yv to be any value in (y, 1) does not change the matching status of u.

Proof: Since v is unmatched when u gets matched, if v is removed, then the matching status of
u is not affected. Now suppose that we insert v with yv ∈ (y, 1), then if v is matched, then it must
be matched at time later than y (the time when u gets matched). In other words, the insertion
of v triggers a (possibly empty) alternating path in which all edges (and therefore vertices) have
decision time at most y. Hence, u is not included in the alternating path and its matching status
is not affected.

For bipartite graphs, Lemma 2.3 also implies the following nice property.

Corollary 2.3 For bipartite graphs, if u is matched in Mv(~y) and v is a neighbor of u, then u is
also matched in M(~y). Moreover, the time u is matched in M(~y) is no later than in Mv(~y).

Proof: By Lemma 2.3, inserting v (at any rank) creates a (possibly empty) alternating path
(v, v1, v2, . . .). As the graph is bipartite, if u appears in the path, then it must be one of {v1, v3, . . .},
which is matched no later than in Mv(~y). Otherwise its matching status is not affected.

3 Unweighted Bipartite Graphs

Recall that for unweighted case, vertices act in ascending order of their decision times, and each
unmatched vertex chooses its favorite unmatched neighbor. We first give the gain sharing rule for
every matched pair (u, v) ∈M(~y).

Gain Sharing. Whenever u actively chooses v at time yu, let αu = g(yu) and αv = 1 − g(yu),
where g is a non-decreasing function to be fixed later.

General Framework. Recall that to prove an approximation ratio of r, it suffices to show that
E
~y

[αu + αv] ≥ r for every (u, v) ∈ M∗. Fix such a pair (u, v), and fix the decision times of all

vertices other than u, v arbitrarily. For ease of notation, we use M(yu, yv) to denote the matching
produced by our algorithm when u, v’s decision times are yu and yv, respectively. In the following,
we will give a lower bound f(yu, yv) of αu + αv for each M(yu, yv), and show that there exists an
appropriate function g such that

∫ 1
0

∫ 1
0 f(yu, yv)dyudyv ≥ 0.639, finishing the proof of Theorem 1.1.

Consider matching M(1, 1), i.e., when u, v have the latest decision times compared with other
vertices. Depending on whether u, v are matched together, we divide our analysis into two parts.

3.1 Symmetric Case: (u, v) ∈M(1, 1)

In this case, u and v are not chosen by any other vertex. At time 1, u and v are matched together.

Lemma 3.1 If (u, v) ∈ M(1, 1), then when yu < yv, u is active in M(yu, yv) and v is unmatched
before time yu; when yv < yu, v is active in M(yu, yv), and u is unmatched before time yv.

7

Proof: Suppose yu < yv. Consider the first time t when one of u, v (say, x ∈ {u, v}) is matched.
Obviously, t ≤ yu. If t < yu, then x must be chosen by a vertex z at its decision time yz = t. By
Lemma 2.2, we have (x, z) ∈ M(1, 1), which violates the assumption of the lemma. Thus t = yu,
i.e, u is active, and v is unmatched before time yu. The case when yv < yu is similar.

We decrease yu gradually from 1 to 0 and studyM(yu, 1). By Corollary 2.1, the set of unmatched
neighbors of u at time yu grows when yu decreases. Hence there exists a transition time θ such that
v is no longer u’s favorite vertex when yu < θ. In other words, when yu > θ, u actively matches
v in M(yu, 1); when yu < θ, u actively matches a vertex other than v in M(yu, 1). Moreover, by
Corollary 2.2, the matching status of u in M(yu, yv) is the same as in M(yu, 1), as long as yv > yu.
Thus we have (refer to Figure 3.1a)
• αu + αv = 1 when yu > θ and yv > yu;
• αu = g(yu) when yu < θ and yv > yu.
Similarly, we decrease yv gradually from 1 to 0 and study M(1, yv). Let τ be the transition

time such that u is v’s favourite neighbor if and only if yv > τ . Then we have (refer to Figure 3.1a)
• αu + αv = 1 when yv > τ and yu > yv;
• αv = g(yv) when yv < τ and yu > yv.

�(��)

�(��)

�(��)
+�(��)

�(��) + � ��

1

1

�0 1

1

�

(a) Symmetric case: u, v match each other

�0 1

1

1 − �(�)

�(��)

1 − � �
+ �(��)

1

�
�(��)
+�(��)

�(��) + � ��

(b) Asymmetric case: u is chosen at θ

Figure 3.1: Unweighted bipartite graphs: the horizontal and vertical axes correspond to yu, yv
respectively. For each region, the formula written serves as a lower bound of αu + αv.

We refer to these gains as the basic gain of our analysis as they come immediately after we
properly define θ, τ . Next, we study the matching status of the vertex with later decision time and
achieve some extra gains, where we crucially use the bipartiteness of the graph.

Lemma 3.2 (Extra Gain) For all yu < θ and yv < τ , both u and v are matched in M(yu, yv).

Proof: By definition, when yu < θ, u actively matches a vertex other than v in M(yu, 1). Thus
removing v does not change the matching status of u. In other words, u is matched in Mv(yu, yv).
By Corollary 2.3, u remains matched in M(yu, yv). Similarly, we have v is matched in M(yu, yv)
for all yv < τ , which finishes the proof.

Let m(y)
def
= min{g(y), 1 − g(y)}. It is easy to see that whenever u is matched (actively or

passively), αu ≥ m(yu). In summary, we have the following lower bound (refer to Figure 3.1a).

E
yu,yv

[αu + αv] ≥
∫ θ

0
(1− yu)g(yu)dyu +

1

2
(1− θ)2 +

∫ τ

0
(1− yv)g(yv)dyv +

1

2
(1− τ)2

+

∫ θ

0
min{yu, τ}m(yu)dyu +

∫ τ

0
min{yv, θ}m(yv)dyv.

(3.1)

8

3.2 Asymmetric Case: (u, v) /∈M(1, 1)

In this case, at least one of u, v is matched before time 1. Without loss of generality, suppose u is
matched at time θ < 1, and strictly earlier than v. Observe that u must be passive since yu = 1.
Let z be the vertex that actively matches u. Then we have yz = θ. Intuitively, u is the “luckier”
vertex compared with v since it is favored by a vertex with early decision time. Indeed, u would
remain matched even when v is removed from the graph.

First, observe that when both u and v have decision times larger than θ, u is always matched
by z, and thus αu = 1 − g(θ). When yu < θ, u must be active in M(yu, 1), since at time yu,
u is unmatched and has unmatched neighbors z and v (with later decision times). Moreover, by
Corollary 2.2, u is active in M(yu, yv) as long as yu < θ and yv > yu. Thus αu = g(yu). Similarly,
for all yv < θ and yu > yv, v is active and αv = g(yv).

Again, we decrease yv gradually from θ to 0 and study M(1, yv). Observe that at time yv, u
is an unmatched neighbor of v. Then there exists a transition time τ such that u is the favourite
neighbor of v when yv ∈ (τ, θ); and v matches a vertex other than u when yv < τ . In summary, we
have the following basic gains (refer to Figure 3.1b)
• αu = 1− g(θ) when yu, yv > θ;
• αu + αv = 1 when yv ∈ (τ, θ) and yu > yv;
• αu = g(yu) when yu < θ and yv > yu;
• αv = g(yv) when yv < τ and yu > yv.
Next we retrieve some extra gains. Again, the following holds only for bipartite graphs.

Lemma 3.3 (Extra Gain) When yu < θ and yv < τ , both u and v are matched in M(yu, yv).
When yu > θ and yv < τ , αu ≥ 1− g(θ).

Proof: Consider when yu < θ and yv = 1. According to the previous discussion, u has two
unmatched neighbors z and v at time yu. Thus u would still be actively matched even if we remove
v from the graph. That is, u is active in Mv(yu, 1). Then by Corollary 2.3, after inserting v at any
rank, u remains matched. In other words, u is matched in M(yu, yv) for all yu < θ.

By definition of τ , v actively matches a vertex other than u in M(1, yv) for all yv < τ . Thus v
is active in Mu(1, yv), and matched in M(yu, yv) for every yu by Corollary 2.3.

Now we consider the second statement, when yu > θ and yv < τ . Observe that in M(yu, 1), z
matches u at time θ while at this moment v is unmatched. Removing v does not affect z and u, i.e.
z actively matches u in Mv(yu, 1). Then by Corollary 2.3, inserting v at any rank does not increase
the time that u gets matched. Hence in M(yu, yv), u is passively matched at time no later than θ,
which implies αu ≥ 1− g(θ) by the monotonicity of g.

Adding these extra gains to the basic gains, we have (refer to Figure 3.1b)

E
yu,yv

[αu + αv] ≥
∫ θ

0
(1− yu)g(yu)dyu +

∫ τ

0
(1− yv)g(yv)dyv + (1− θ)(1− θ + τ)(1− g(θ))

+

∫ θ

0
min{yu, τ}m(yu)dyu +

∫ τ

0
yvm(yv)dyv +

1

2
(2− τ − θ)(θ − τ).

(3.2)

Analysis of Approximation Ratio. To complete the analysis, it remains to find a non-decreasing
function g : [0, 1]→ [0, 1] so that the minimum (over all possible values of θ, τ) of Equations (3.1)
and (3.2) is at least 0.639. We prove Theorem 1.1 by fixing g to be a step function and running a
factor revealing LP. See Appendix B for a detailed discussion.

9

4 Unweighted General Graphs

Since Corollary 2.3 holds only for bipartite graphs, the extra gains we proved in the previous section
cease to hold for general graphs. It is easy to check that applying the previous analysis while only
having the basic gains, we are not able to beat the 0.5 barrier on the approximation ratio.

The same difficulty arises in the fully online matching problem [11]. The authors bypass it by
introducing a novel concept of “victim”. They call a vertex v the victim of w in M(~y) if (1) v is
a neighbor of w; (2) w is active and v is unmatched; (3) v is matched in Mw(~y). Intuitively, v
is unmatched in M(~y) because of the existence of w. It is then shown that either u, v are both
matched for some recipe of yu, yv, or v is the victim of some vertex and receives compensation. In
either case, the improved analysis beats the 0.5 barrier.

In this paper, we introduce a new notion of victim and compensation, which is arguably clearer
and more fundamental than the notion given in [11]. Fix a maximum matching M∗, we call u and
v perfect partners of each other if (u, v) ∈M∗.

Definition 4.1 (Victim) Suppose in M(~y), z actively matches u and v is the perfect partner of
u. Then we call v the victim of z if u and v match each other in Mz(~y).

Intuitively, the existence of z prevents the algorithm from making the correct decision of match-
ing u, v together. Compared to the definition of Huang et al. [11], we regard v the victim of z even
when v is matched in M(~y). The same definition will be applied to edge-weighted graphs in Sec-
tion 5. Built upon this definition, we define the following gain sharing rule.

Gain Sharing. Let g be a non-decreasing function and h be a function that is pointwise smaller
than g. Consider the following two-step gain sharing procedure in matching M(~y):
• Whenever u actively matches v at time yu, let αu = g(yu) and αv = 1− g(yu).
• For each active vertex z that has an unmatched victim v, decrease αz and increase αv by the

same amount h(yz).

We refer to the second step of gain sharing as the compensation step, and the amount h(yz)
of gain as the compensation sent from z to v. Note that the compensation step does not change∑

u∈V αu, which means that Lemma 2.1 can still be applied. It is easy to see that the passive gain
of a vertex u is at least 1− g(yu) and the active gain is at least g(yu)− h(yu).

Fact 4.1 If u is matched in M(~y), then αu ≥ m(yu)
def
= min{g(yu)− h(yu), 1− g(yu)}.

Moreover, if v is the victim of vertex z, either v is matched, αv ≥ m(yv), or v receives compen-
sation from z, αv ≥ h(yz). For analysis purpose, we choose g, h so that miny{m(y)} ≥ maxy{h(y)},
i.e., the gain of a matched vertex is at least the compensation of an unmatched vertex. To help
understanding, one can imagine the compensation to be a very small amount of gain compared
with m(·). Consequently, we have the following.

Fact 4.2 If v is the victim of vertex z in M(~y), then αv ≥ h(yz).

Following the same framework as for bipartite graphs, we fix a pair of perfect partners u, v,
and fix the decision times of all vertices other than u, v arbitrarily. Let M(yu, yv) denote the
realized matching when u, v have decision times yu and yv, respectively. Again, we consider whether
(u, v) ∈M(1, 1) and proceed differently.

10

4.1 Symmetric Case: (u, v) ∈M(1, 1)

The analysis is similar to the bipartite case. Let θ be the transition time such that u actively
matches v in M(yu, 1) when yu > θ; matches a vertex other than v in M(yu, 1) when yu < θ. The
transition time τ of yv is defined analogously.

Following the same analysis for bipartite graphs, we have (refer to Figure 4.1)
• αu + αv = 1 when yu > θ and yv > yu; u is active when yu < θ and yv > yu;
• αu + αv = 1 when yv > τ and yu > yv; v is active when yv < τ and yu > yv.
Observe that for general graphs, the gain of an active vertex u is no longer g(yu), but is lower

bounded by g(yu)− h(yu). However, if u, v match each other, then the active vertex does not need
to send compensations (recall that u, v are perfect partners).

� �� − ℎ(��)

� �� − ℎ ��

�(��)

� ��

1

1

�0 1

1

�

Figure 4.1: Unweighted general graphs: (u, v) ∈M(1, 1).

For bipartite graphs, we show that both u and v are matched in M(yu, yv) when yu < θ and
yv < τ . Unfortunately, this is not guaranteed in general graphs. However, we manage to achieve a
weaker version of the extra gains that if only one of u, v is matched when yu < θ and yv < τ , then
it need not send compensation.

Lemma 4.1 (Extra Gain) For all yu < θ and yv < τ , we have αu + αv ≥ g(yu) in M(yu, yv)
when yv > yu and αu + αv ≥ g(yv) when yu > yv.

Proof: We first consider the case when yv > yu. If v is matched, then αu +αv ≥ g(yu)− h(yu) +
m(yv) ≥ g(yu). Now suppose v is unmatched. By definition, v actively matches a vertex other
than u in M(1, yv) when yv < τ . Thus, v is also active in Mu(1, yv). In other words, v becomes
unmatched after inserting u at decision time yu < θ. We show that in this case u need not send
compensation in M(yu, yv), which implies αu = g(yu).

Suppose u matches z in M(yu, yv). By Lemma 2.3, removing u triggers an alternating path
that starts at u and ends at v. Thus the perfect partner of z is either matched in both of M(yu, yv)
and Mu(yu, yv); or unmatched in both. Consequently, u does not have an unmatched victim.

Symmetrically, we have αu + αv ≥ g(yv) when yu > yv.

In summary, we have the following lower bound on E [αu + αv]. Note that u, v are symmetric.

We safely assume that τ ≤ θ (refer to Figure 4.1).

E
yu,yv

[αu + αv] ≥
1

2
(1− θ)2 +

1

2
(1− τ)2 +

∫ τ

0

(
(1− yv)g(yv)− (1− θ)h(yv)

)
dyv

+

∫ θ

0

(
(1− yu)g(yu)− (1−max{τ, yu})h(yu)

)
dyu.

(4.1)

11

4.2 Asymmetric Case: (u, v) /∈M(1, 1)

As before, at least one of u, v is matched before time 1. We assume without loss of generality that
u is matched strictly earlier than v in M(1, 1), and let z be the active vertex that matches u with
decision time yz = θ. First, when yu, yv > θ, u is always matched by z, and thus αu = 1 − g(θ).
When yu < θ, we know that u is active in M(yu, 1), and thus active in M(yu, yv) as long as yv > yu
(by Corollary 2.2). Now consider M(1, yv) when yv < θ. Following the same analysis as for bipartite
case, let τ < θ be the transition time such that v chooses u when yv ∈ (τ, θ) and chooses a vertex
other than u when yv ∈ (0, τ). Moreover, since v is active in Mu(1, yv) when yv < τ , following the
same analysis as in Lemma 4.1, it can be shown that αu + αv ≥ g(yu) when yv < τ and yu < yv.
Similarly, it is easy to show that αu + αv ≥ g(yv) when yv < τ and yu > yv

9.
In summary, we have (refer to Figure 4.2a)

(L1) αu = 1− g(θ) when yu > θ and yv > θ;
(L2) αu + αv = 1 when yv ∈ (τ, θ) and yu > yv;
(L3) αu ≥ g(yu)− h(yu) when yu < min{θ, yv} and yv > τ ;
(L4) αu + αv ≥ g(yu) when yu < yv and yv < τ ;
(L5) αu + αv ≥ g(yv) when yv < τ and yu > yv.

1 − � �

�(��)

� ��

1

� �� − ℎ ��

�0 1

1

�

Zone-A

Zone-B

(a) basic gains

1 − � �

�(��)

� �� − ℎ �� + �(��)

1

� �� − ℎ ��

�0 1

1

�

(b) u is matched earlier

1 − � �
+�(��)

�(��)

� ��

1

� �� − ℎ ��

�0 1

1

�

(c) v is matched earlier

Figure 4.2: Simple lower bounds and the case when (u, v) /∈Mz(1, 1).

Unsurprisingly, the above basic gains do not yield an approximation ratio strictly above 0.5.

Extra Gains. For convenience of discussion, we define Zone-A to be the matchings M(yu, yv)
when yu > θ and yv > θ (where lower bound (L1) is applied), and Zone-B to be the matchings
M(yu, yv) when yv < τ, yu > yv (where lower bound (L5) is applied). In the following, we show that
better lower bounds can be obtained for either (L1) or (L5). Roughly speaking, if v is unmatched
in Zone-A, then either it is compensated by z (in which case (L1) can be improved), or u will be
matched in Zone-B (in which case (L5) can be improved). Hence depending on the matching status
of u and v in Mz(1, 1), i.e., when z is removed, we divide our analysis into two cases.

4.2.1 Case 1: (u, v) /∈Mz(1, 1)

In this case, at least one of u, v is matched passively before time 1 in Mz(1, 1). We first consider the
case when u is matched strictly earlier than v. We show that in this case u is matched in Zone-B,
and thus (L5) can be improved (see Figure 4.2b).

Lemma 4.2 If u is matched strictly earlier than v in Mz(1, 1), then u is matched in Zone-B.

9The key observation is, u is matched in Mv(1, yv), and thus in every Mv(yu, yv). This implies that after inserting
v with yv < τ , either u is matched, or v need not send compensation.

12

Proof: To show that u is matched in Zone-B, by Lemma 2.2 it suffices to show that u is matched
in M(1, yv), for all yv < τ . Suppose otherwise, i.e., u is unmatched in M(1, yv) for some yv < τ .

Since z matches u in Mv(1, yv), the symmetric difference between M(1, yv) and Mv(1, yv) is
an alternating path that starts from v and ends with u. Moreover, z is the second last vertex in
the alternating path. Now suppose we remove v and z simultaneously in M(1, yv). Then in the
resulting matching, all vertices between v and z in the alternating path recover their matching
status in Mv(1, yv), while all other vertices remain the same matching status. In particular, u
remains unmatched when both v and z are removed from M(1, yv). However, since u is matched
strictly earlier than v in Mz(1, 1), u should remain matched to the same vertex when we further
remove v, which is a contradiction.

Given the lemma, we improve (L5) and obtain the following (refer to Figure 4.2b). As we will
show later, this is not the bottleneck case since this lower bound is strictly larger than (4.5).

E
yu,yv

[αu + αv] ≥(1− θ)2(1− g(θ)) +
1

2
(2− θ − τ)(θ − τ) +

∫ τ

0
(1− yv)(g(yv)− h(yv))dyv

+

∫ θ

0

(
(1− yu)g(yu)− (1−max{τ, yu})h(yu)

)
dyu +

∫ 1

0
min{τ, yu}m(yu)dyu.

(4.2)

Next, we consider the case when v is matched strictly earlier than u in Mz(1, 1). We show that
in this case v is matched in Zone-A, which improves (L1).

Lemma 4.3 If v is matched earlier than u in Mz(1, 1), then v is matched in Zone-A.

Proof: Consider adding z back to Mz(1, 1). Since z chooses u, v remains matched in M(1, 1).
Moreover, all matchings M(yu, 1) for yu > θ are the same and hence, v is matched in M(yu, 1) for
all yu > θ. Finally, by Lemma 2.2 v is matched in Zone-A.

Thus, we obtain the following lower bound (refer to Figure 4.2c). As we will show later, this is
neither the bottleneck case since the lower bound is strictly larger than (4.4).

E
yu,yv

[αu + αv] ≥(1− θ)2(1− g(θ)) + (1− θ)
∫ 1

θ
m(yv)dyv +

1

2
(2− θ − τ)(θ − τ)

+

∫ θ

0
(1− yv)g(yv)dyv +

∫ θ

0

(
(1− yu) · g(yu)− (1−max{τ, yu})h(yu)

)
dyu.

(4.3)

4.2.2 Case 2: (u, v) ∈Mz(1, 1)

Now we study the second case when u, v match each other in Mz(1, 1). This is where the notion of
victim applies. Formally, we have the following lower bound of αv in Zone-A.

Lemma 4.4 (Compensation) For all yu, yv > θ, if u matches v in Mz(yu, 1), then we have
αv ≥ h(θ) in M(yu, yv).

Proof: When yu < yv, u actively matches v in Mz(yu, yv). Hence v is the victim of z and
αv ≥ h(θ). When yv < yu, either v actively matches u in Mz(yu, yv) and thus v is the victim of z in
M(yu, yv), or v actively matches a vertex other than u. In the first case, αv ≥ h(θ). In the second
case, when we add back z to the graph, z chooses u and does not affect the matching status of v.
Hence, αv ≥ m(yv) ≥ h(θ).

To apply this lemma, we first consider the case when u matches v in all Mz(yu, 1), where yu > θ.

13

The lemma implies that αv ≥ h(θ) in Zone-A. Refer to Figure 4.3a, we have

E
yu,yv

[αu + αv] ≥(1− θ)2(1− g(θ) + h(θ)) +
1

2
(2− τ − θ)(θ − τ) +

∫ τ

0
(1− yv)g(yv)dyv

+

∫ θ

0

(
(1− yu)g(yu)− (1−max{τ, yu})h(yu)

)
dyu.

(4.4)

1 − � �
+ℎ(�)

� ��

�(��)

1

� �� − ℎ ��

�0 1

1

�

(a) u matches v in Mz(yu, 1) when yu > θ

� ��
� �� +

� �� − ℎ ��

� �� − ℎ ��

1 − � �
+ ℎ �

0 1

1

��

1

�
�(��)

1 −
� �

(b) u matches v in Mz(yu, 1) when yu > γ

Figure 4.3: u, v match each other in Mz(1, 1).

Since h(x) ≤ m(y) for all x, y ∈ [0, 1], it is obvious that this lower bound is no larger than (4.3).
We would like to remark that in this case, we can see clearly how the compensation rule helps us
achieve an approximation ratio strictly above 0.5. Without the compensation v receives in Zone-A,
the lower bounds become Figure 4.2a, which cannot beat 0.5.

Finally, we consider the case when u does not always match v in Mz(yu, 1) for all yu > θ. Let
γ > θ be the transition time such that u matches v in Mz(yu, 1) when yu > γ and matches a vertex
other than v when yu ∈ (θ, γ) (see Figure 4.3b).

Applying Lemma 4.4 to M(yu, yv) where yu > γ and yv > θ, we have αv ≥ h(θ). Now consider
the matching Mz(yu, 1), where yu < γ. Intuitively, since u is matched strictly earlier than v, (in
the same spirit of Lemma 4.2) u has another neighbor as a backup, and hence is still matched when
we decrease yv. Formally, we have the following.

Lemma 4.5 When yu < γ and yv < τ , u is matched in M(yu, yv).

Proof: The proof is similar to that of Lemma 4.2. It suffices to show that u is matched in
M(γ, yv) for all yv < τ . By definition of γ, u actively matches a vertex other than v in Mz(γ, 1).
Thus u remains active if we further remove v from the graph.

On the other hand, if u is unmatched in M(γ, yv), then the symmetric difference between
M(γ, yv) and Mv(γ, yv) is an alternating path that starts from v and ends u. Moreover, z is the
second last vertex in the alternating path. Consequently, u remains unmatched if we remove both
v and z from the graph, which is a contradiction.

Plugging in the improved version of (L1) and (L5), we obtain the following (refer to Figure 4.3b).

E
yu,yv

[αu + αv] ≥(1− θ)2(1− g(θ)) + (1− γ)(1− θ)h(θ) +
1

2
(2− τ − θ)(θ − τ)

+

∫ θ

0

(
(1− yu)g(yu)− (1−max{τ, yu})h(yu)

)
dyu +

∫ γ

0
min{yu, τ}m(yu)dyu

+

∫ τ

0

(
(1− yv)g(yv)− (γ − yv)h(yv)

)
dyv.

(4.5)

14

Observe that when γ = 1, this bound degenerates to (4.2). It is easy to see this by comparing
Figure 4.3b and Figure 4.2b.

Analysis of Approximation Ratio. Equipped with the previous lower bounds, it suffices to
find functions g, h : [0, 1]→ [0, 1] so that the minimum of (4.1), (4.4), (4.5) over all possible θ, τ, γ
is maximized. Again, a factor revealing LP shows that RDO is 0.531-approximate, finishing the
proof of Theorem 1.2.

5 Weighted General Graph

We analyze the approximation ratio of our algorithm on weighted general graphs in this section.
Recall that our algorithm probes pairs (u, v) in descending order of the perturbed weights (1 −
g(min{yu, yv}))wuv. Sometimes it will be helpful to interpret the algorithm as replacing every
(potential) edge (u, v) with two directed edges (u, v) and (v, u). Then we set the perturbed weight
of a directed edge (u, v) to be (1− g(yu))wuv and probe the directed edges in descending order of
their perturbed weights.

Our analysis is structured similarly to the unweighted case. However, we will see many of the
previous properties fail when the analysis goes into details. We first provide some basic properties
of Perturbed Greedy for weighted graphs, which will be the building blocks of our analysis. Notably,
we generalize the gain sharing and compensation rule to edge-weighted graphs.

First we observe the following property that is analogous to Lemma 2.3 for the unweighted case,
where we substitute decision times with perturbed weights. The proof is almost identical to that of
Lemma 2.3, thus is omitted.

Lemma 5.1 (Weighted Alternating Path) If u is matched in M(~y), the symmetric difference
between M(~y) and Mu(~y) is an alternating path (u, u1, u2, . . .) in which the perturbed weights of edges
are decreasing. Consequently, vertices u1, u3, . . . are matched earlier10 in M(~y) than in Mu(~y).

Following the same definition of victim, we define the gain sharing rules for edge-weighted
graphs. For technical reasons, we set h(y) = 1

10(1− g(y)) and restrict ourselves to non-decreasing
function g such that g(y) ∈ [0.4, 0.6] for all y ∈ [0, 1]. As a consequence, for all y ∈ [0, 1] we have

m(y)
def
= min{g(y)− h(y), 1− g(y)} = min{1.1g(y)− 0.1, 1− g(y)} ≥ 0.34 > 5 ·max

x
{h(x)}.

Gain Sharing. Consider the following two-step approach for gain sharing in matching M(~y):
• Whenever an edge (u, v) is added to the matching with u active and v passive, let αu =
g(yu) · wuv and αv = (1− g(yu)) · wuv.
• For each active vertex z, if z has a victim v, decrease αz and increase αv by the same amount

such that αv ≥ h(yz) ·wuz afterwards, where u is the vertex matched by z. More specifically,

the amount of compensation is (where [t]+
def
= max{t, 0})

– h(yz) · wuz if v is unmatched;
– at most [h(yz) · wuz − (g(yv)− h(yv)) · wvx]+ if v actively matches some vertex x;
– [h(yz) · wuz − (1− g(yx)) · wvx]+ if v is passively matched by x.

Note that the above compensation step is consistent with the unweighted case: if the victim v
is matched, then the amount of compensation is 0, since m(yv) > h(yz); otherwise it is h(yz).

10There is no explicit concept of time. However, since the edges are probed in descending order of their perturbed
weights, a vertex being matched earlier means that the new edge has larger perturbed weight than the old one.

15

Lower Bounds of Gains. Suppose u is matched with v. By the gain sharing rules, if u is active,
then its gain is at least (g(yu)−h(yu))wuv; if it is passive, then its gain is (1− g(yu))wuv. Thus the
gain of a matched vertex u is lower bounded by m(yu)wuv. While the amount of compensation a
victim v (of z) receives depends on the gain of v in the first step, our compensation rule guarantees
αv ≥ h(yz) · wzu afterwards, where u is the perfect partner of v and is matched by z in M(~y).

We follow the previous framework by fixing an arbitrary pair of perfect partners (u, v), and
fixing the ranks of all vertices other than u, v arbitrarily. We derive lower bounds on αu + αv for
every M(yu, yv), and show that the integration (over yu and yv) of the lower bound is at least
0.5014. For convenience, we assume wuv = 1.

In the remaining part of this section, we say that a vertex u is matched strictly earlier than
v in matching M(~y) if v remains unmatched after u is matched; we say that u is matched earlier
than v if either u is strictly earlier than v, or u actively matches v.

Fact 5.1 Suppose u is matched earlier than v in M(yu, yv).
1. Increasing the rank of v does not change the matching status of u.
2. If u is active, αu ≥ g(yu)− h(yu); if u is passive, αu ≥ 1− g(yu).

Proof: For the first statement, increasing the rank of v can not increase the perturbed weights
of edges adjacent to v. Thus before u is matched, all probes have the same results before and after
the increment of yv, which means u is matched to the same neighbor.

For the second statement, suppose u is matched with some vertex z (which can be v). If u is
active, then (1− g(yu))wuz ≥ (1− g(yu))wuv since edge (u, z) is probed no later than (u, v). Hence
αu ≥ (g(yu)− h(yu))wuz ≥ g(yu)− h(yu). When u is passive, the perturbed weight of (u, z) equals
(1−g(yz))wuz, which is at least the perturbed weight of (u, v). Thus we have αu ≥ (1−g(yz))wuz ≥
1− g(yu).

Lemma 5.2 Suppose u is active and matched earlier than v in M(yu, yv). If v is matched with
some x such that wvx ≥ 1

2 in Mu(yu, yv), then we have αu + αv ≥ g(yu) in M(yu, yv).

Proof: By Fact 5.1, we have αu ≥ g(yu) − h(yu). If v remains matched with x in M(yu, yv),
then the lemma holds since αu + αv ≥ g(yu)− h(yu) + 1

2m(yv) ≥ g(yu) (recall that miny{m(y)} ≥
5 ·maxx{h(x)}.). If u does not have a victim, or only need to send 0 compensation to its victim,
then we are also done.

Otherwise, by Lemma 5.1, the symmetric different between M(yu, yv) and Mu(yu, yv) is an
alternating path starting from u that contains (v, x). Let z be matched by u in M(yu, yv) and z∗ be
the victim of u. Since the edge z∗ matches inM(yu, yv) appears no later than (v, x) in the alternating
path, by Lemma 5.1, the perturbed weight of this edge is at least (1 − g(min{yv, yx}))12 ≥ 0.2
(recall that g(·) ∈ [0.4, 0.6]). Hence the gain of z∗ in M(yu, yv) before the compensation step is
at least m(yz∗) · 0.2

1−g(0) = m(yz∗) · 13 . Consequently the gain of u after the compensation step is

αu ≥ (g(yu)− h(yu))wuz +m(yz∗) · 13 ≥ g(yu).

We regard the above lemma as a weighted generalization of Lemma 4.1, which says when u is
active, it need not send compensation if v matches an edge that is not too bad when u is removed.

Now we are ready to derive lower bounds on αu +αv for every M(yu, yv). Similar as before, we
divide our analysis into two cases depending on whether (u, v) ∈M(1, 1).

16

5.1 Symmetric Case: (u, v) ∈M(1, 1)

Since u, v are matched together in M(1, 1), we define θ to be the transition rank such that u matches
v in M(yu, 1) when yu > θ; matches a vertex other than v in M(yu, 1) when yu ∈ (0, θ). We define
λ analogously for v. Assume w.l.o.g. that θ ≥ λ.

First, we show that for yu > θ and yv > λ, u, v are matched together in M(yu, yv). Suppose
otherwise, and assume u is matched strictly earlier. By Fact 5.1, if we increase yv to 1, the matching
status of u should not be affected. Hence u is not matched with v in M(yu, 1), which contradicts
the definition of θ (recall that yu > θ). The same argument implies that v is not matched strictly
earlier. Hence αu + αv = 1 when yu > θ and yv > λ (recall that u, v are perfect partners).

Under the same logic, when yu < θ and yv > λ, v is not matched strictly earlier than u.
Otherwise v is also not matched with u in M(1, yv), which contradicts the definition of λ. Hence
when yu < θ and yv > λ, u is active and matched earlier than v. By Lemma 5.1 we have
αu + αv ≥ g(yu) − h(yu)11. Symmetrically, we have αu + αv ≥ g(yv) − h(yv) when yu > θ and
yv < λ.

Finally, we consider the case when yu < θ and yv < λ. We show that in this case we must
have αu +αv ≥ min{g(yu), g(yv)}. Suppose u is matched earlier than v. Then u must be active, as
otherwise u is also passive in M(yu, 1). By definition of λ, we know that in Mu(yu, yv), the edge v
matches has weight at least wuv = 1. Applying Lemma 5.2, we have αu + αv ≥ g(yu). Similarly,
when v is matched earlier than u, we have αu+αv ≥ g(yv). Therefore, αu+αv ≥ min{g(yu), g(yv)}.
Given that g is non-decreasing, αu + αv ≥ g(yu) when yu < yv and αu + αv ≥ g(yv) when yv < yu.

In summary, we have (refer to Figure 5.1a)

E
yu,yv

[αu + αv] ≥(1− λ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu + (1− θ)

∫ λ

0

(
g(yv)− h(yv)

)
dyv

+

∫ λ

0
(λ− yu)g(yu)dyu +

∫ λ

0
(θ − yv)g(yv)dyv + (1− θ)(1− λ).

(5.1)

1�(��) − ℎ(��)

�(��) − ℎ(��)

�(��)

�(��)

�0 1

1

�

(a) (u, v) ∈M(1, 1).

1 − �(min{�, �})�(��) − ℎ(��)

�(��)

�0 1

1

�

min{� �� ,
� �� − ℎ �� }

Zone-A

Zone-B

(b) Basic lower bounds

1 − �(min{�, �})�(��) − ℎ(��)

� 0 +
�(��) − ℎ(��)

�(��) − ℎ(��)

�0 1

1

�

(c) u strictly earlier in Mz(1, 1)

Figure 5.1: Lower bounds on αu + αv.

5.2 Asymmetric Case: (u, v) /∈M(1, 1)

Without loss of generality, suppose u is matched strictly earlier than v in M(1, 1) by z. Let θ be
the transition rank such that u is active in M(yu, 1) when yu < θ and passive when yu > θ. Note
that when yu > θ, u is always passively matched by z in M(yu, 1). Let λ be the transition rank
such that v is matched earlier than u in M(1, yv) when yv < λ and later than u when yv > λ.

11It is possible that u is active and matched strictly earlier than v even when yu > yv. This is a key difference
between the weighted and unweighted case: smaller rank does not necessarily imply earlier decision time.

17

Notably, λ = θ = yz in the unweighted case, while all three parameters might differ for weighted
graphs. For example, suppose u has another neighbor x and θ is the critical rank such that the
perturbed weight of edge (u, x) beats the perturbed weight of the edge x is matched with in M(1, 1).

First of all, u is matched by z when yu > θ and yv > λ, which means that αu = (1− g(yz))wuz.
Since edge (u, z) is probed earlier than (u, v) when yu > θ, we have (1− g(yz))wuz ≥ (1− g(θ))wuv.
Similarly (1− g(yz))wuz ≥ (1− g(λ))wuv. Thus αu ≥ 1− g(min{θ, λ}) when yu > θ and yv > λ.

When yu < θ and yv > λ, we know that u is matched earlier than v, as otherwise v would
be matched strictly earlier than u in M(1, yv), violating the definition of λ. Moreover, u must be
active, as otherwise it is also passive in M(yu, 1), violating the definition of θ. Then by Fact 5.1,
we have αu ≥ g(yu) − h(yu). Similarly, when yu > θ and yv < λ, v must be active and matched

earlier than u. Observe that wuz ≥ 1−g(1)
1−g(yz) >

1
2 . Applying Lemma 5.2, we have αu + αv ≥ g(yv).

Finally, when yu < θ and yv < λ, the vertex matched earlier is active. Moreover, since u is
matched strictly earlier than v in M(1, 1), the edge u matches in every Mv(yu, 1) has weight at
least wuz ≥ 1

2 . Hence by Lemma 5.2, for all yu < θ and yv < λ, if v is matched earlier then we
have αu + αv ≥ g(yv). By Fact 5.1, if u is matched earlier we have αu ≥ g(yu) − h(yu). Thus,
αu+αv ≥ min{g(yu)−h(yu), g(yv)}. Note that symmetrically, if we can show the edge v matches in
every Mu(1, yv), where yv < λ, has weight at least 1

2 , then by applying Lemma 5.2 we can improve
the lower bound to αu + αv ≥ min{g(yu), g(yv)}.

In summary, we have the following lower bounds that serve as our basic gains (refer to Fig. 5.1b).

(L1) αu ≥ 1− g(min{θ, λ}) when yu > θ and yv > λ;

(L2) αu ≥ g(yv)− h(yu) when yu < θ and yv > λ;

(L3) αu + αv ≥ g(yv) when yu > θ and yv < λ;

(L4) αu + αv ≥ min{g(yu)− h(yu), g(yv)} when yu < θ and yv < λ.

Extra Gains. Similar to our analysis for the unweighted case, we define Zone-A to be the match-
ings M(yu, yv) when yu > θ and yv > λ (where lower bound (L1) is applied), and Zone-B to be the
matchings M(yu, yv) when yv < λ (where lower bounds (L3) (L4) are applied). In the following, we
show that better lower bounds can be obtained for at least one of these bounds. Roughly speaking,
(like the unweighted case) if only one of u, v is matched in Zone-B, then we should be able to
recover some extra gain in Zone-A, e.g., the compensation received by v. We continue our analysis
according to the matching status of u and v in Mz(1, 1), i.e., when z is removed from the graph.

5.2.1 Case 1: (u, v) /∈Mz(1, 1)

In this case, at least one of u, v is passively matched by other vertices in Mz(1, 1). We first consider
the case when u is matched strictly earlier. In such case, we show that u has gain at least m(yu) in
Zone-B, as it has a “backup” neighbor other than z, v. The following lemma is a weighted version
of Lemma 4.2, and the proof is similar. We formalize it in a general way so that we can also apply
it in later analysis.

Lemma 5.3 When yu > θ and yv < λ, if u is matched strictly earlier than v in Mz(yu, 1), we have
αu ≥ m(yu) in M(yu, yv).

Proof: First, by definition u is passively matched by z in Mv(yu, yv). Now consider M(yu, yv).
If the insertion of v does not change the matching status of u, i.e., u remains passively matched

with z, then we have αu ≥ 1− g(min{θ, λ}) ≥ m(yu).

18

If u is matched even earlier after the insertion, then the edge (u, x) vertex u matches has
perturbed weight larger than 1−g(min{θ, λ}). Hence if u is passive, αu ≥ 1−g(min{θ, λ}) ≥ m(yu);

if u is active, αu ≥ (g(yu)− h(yu))1−g(min{θ,λ})
1−g(yu) ≥ g(yu)− h(yu) ≥ m(yu).

Otherwise u appears in the alternating path triggered by the insertion of v as a vertex v2i, which
is matched later after the insertion (refer to Lemma 5.1). Note that in this case, the vertex v2i−1
right before v2i = u must be z. Hence the matching status of u is not changed if we remove both
v and z simultaneously in M(yu, yv) (following the same argument as in the proof of Lemma 4.2).
On the other hand, by Fact 5.1, we have αu ≥ m(yu) in Mz(yu, 1). Moreover, the matching status
of u is not changed if we further remove v in Mz(yu, 1). Thus we have αu ≥ m(yu) in M(yu, yv).

Note that if u is matched strictly earlier than v in Mz(1, 1), then by above lemma, for all yv < λ,
the gain of u in M(1, yv) is at least m(1). Now consider decreasing the rank of u. By Lemma 2.2,
when u is passive, the gain of u does not change until it becomes active, which gives αu ≥ 1−g(yu);
when u is active, decreasing u’s rank would not decrease the edge weight it matches, and hence
αu ≥ g(yu)− h(yu). For ease of analysis, we choose function g such that m achieves its minimum
at m(0). To sum up, we have αu ≥ m(0) in M(yu, yv) for all yv < λ.

Therefore, we improve (L3) to αu+αv ≥ m(0)+g(yv)−h(yv) and (L4) to αu+αv ≥ min{g(yu)−
h(yu),m(0)+g(yv)−h(yv)}. Note that by restricting g(y) ∈ [0.4, 0.6], m(0)+g(yv)−h(yv) is larger
than g(yu)− h(yu) for all yu, yv. Consequently, we have the following (refer to Figure 5.1c).

E
yu,yv

[αu + αv] ≥
∫ θ

0

(
g(yu)− h(yu)

)
dyu + (1− θ)

∫ λ

0

(
g(yv)− h(yv)

)
dyv

+ (1− θ)(1− λ)(1− g(min{λ, θ})) + (1− θ)λ ·m(0).

(5.2)

It remains to consider the case when v is matched strictly earlier than u in Mz(1, 1). As we will
show later, this case can actually be regarded as a “better” case of (u, v) ∈ Mz(1, 1), and thus we
defer its analysis to the next subsection (see Remark 5.1).

5.2.2 Case 2: (u, v) ∈Mz(1, 1)

Finally, we consider the case when u, v match each other in Mz(1, 1). By definition, v is the victim
of z in M(1, 1), and hence

αv ≥ h(yz)wuz = 1
10(1− g(yz))wuz ≥ 1

10(1− g(min{θ, λ})) = h(min{θ, λ}).

We remark that this is the major reason for restricting h = 1
10(1 − g), as otherwise we do not

have an immediate connection between h(yz)wuz and h(min{θ, λ}). Next, we show that v receives
this compensation in (part of) Zone-A.

Lemma 5.4 (Compensation) For all yu > θ and yv > λ, if u matches v in Mz(yu, 1), then we
have αv ≥ h(min{θ, λ}) in M(yu, yv).

Proof: Consider Mz(yu, yv). If u, v match each other, then v is the victim of z in M(yu, yv)
and the lemma holds. Otherwise we know that v must be matched strictly earlier than u: if u
is matched strictly earlier, than it will also be matched strictly earlier than v in Mz(yu, 1), which
contradicts the assumption that u matches v in Mz(yu, 1).

Thus we have αv ≥ m(yv) in Mz(yu, 1). Moreover, if we further remove u in Mz(yu, 1), the
matching status of v is not changed. Since z matches u in M(yu, yv), removing both z and u does
not change the matching status of v, which means that αv ≥ m(yv) > h(min{θ, λ}) in M(yu, yv).

The above lemma indicates that it is crucial to determine whether u matches v in Mz(yu, 1)

19

when yu > θ. Recall that (u, v) ∈Mz(1, 1). We define γ ∈ [θ, 1] to be the transition rank such that
u matches v in Mz(yu, 1) when yu ∈ (γ, 1) and matches other vertex when yu ∈ (θ, γ).

We first consider the case that u matches v in Mz(yu, 1) for all yu > θ. In this case γ = θ,
and thus by Lemma 5.4, we have αu + αv ≥ 1− g(min{θ, λ}) + h(min{θ, λ}) in Zone-A. The gain
in Zone-B is more complicated. In particular, we need to consider whether u, v match each other
in M(1, yv) when yv < λ. Let τ ∈ [0, λ] be the transition rank such that v matches u in M(1, yv)
when yv ∈ (τ, λ) and matches strictly earlier than u when yv ∈ (0, τ).

�(��) − ℎ(��)

�(��)

�(��)

�0 1

1

�

1 − � � + ℎ(�)

(a) γ = θ and λ > θ

�(��) − ℎ(��)

�(��)
�(��)

1

1 − � � + ℎ(�)

�0 1

1

�

�

(b) γ = θ and λ ≤ θ

1 − � min �, �

� �� − ℎ ��

� ��� ��

ℎ min �, �

� 0 +

� �� − ℎ ��

�0 1

1

�

�

 �
1

(c) γ ∈ (θ, 1)

Figure 5.2: (u, v) ∈Mz(1, 1).

To proceed, we compare θ and λ and consider the following two cases.

When λ > θ. First, observe that when λ > θ, we must have τ = λ. In other words, v never
matches u in M(1, yv) when yv < λ. The reason is, when yv = λ−, the perturbed weight of edge
(u, v) is 1− g(yv) < 1− g(θ) < (1− g(yz))wzu. However, we know that v is matched earlier than z.
Thus, v actively matches an edge with weight larger than 1. Consequently by Lemma 2.2, v does
not match u in M(1, yv) for all yv < λ.

In other words, v is matched in Mu(1, yv) with an edge of weight at least 1 for all yv < λ. Thus
we apply Lemma 5.2 and improve (L4) to αu + αv ≥ min{g(yu), g(yv)}. To sum up, we have the
following lower bound (refer to Figure 5.2a).

E
yu,yv

[αu + αv] ≥(1− θ)(1− λ)(1− g(θ) + h(θ)) + (1− λ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu

+ (1− θ)
∫ λ

0
g(yv)dyv +

∫ θ

0
(θ + λ− 2y)g(y)dy.

(5.3)

When λ ≤ θ. In this case v matches u in M(1, yv) when yv ∈ (τ, λ). Moreover, u remains matched
by v in M(yu, yv) when yu > θ and yv ∈ (τ, λ). When yv < τ , we have αu+αv ≥ min{g(yu), g(yv)},
by a similar argument as before. In summary, we have (refer to Figure 5.2b)

E
yu,yv

[αu + αv] ≥(1− θ)(1− λ)(1− g(λ) + h(λ)) + (1− τ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu

+ (1− θ)(λ− τ) + (1− θ)
∫ τ

0
g(yv)dyv +

∫ τ

0
(θ + τ − 2y)g(y)dy.

(5.4)

The derivative over λ of the RHS of above is (1− θ)
(
g(λ)− h(λ)− (1− λ)(g′(λ)− h′(λ))

)
. Our

choice of g, h guarantees that g(y)−h(y) is always larger than g′(y)−h′(y), and thus this derivative
is positive. Therefore, the minimum is achieved when λ = τ .

20

To sum up, the two lower bounds can be unified as follows.

E
yu,yv

[αu + αv] ≥(1− θ)(1− λ)(1− g(min{θ, λ}) + h(min{θ, λ})) + (1− θ)
∫ λ

0
g(yv)dyv

+ (1− λ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu +

∫ min{θ,λ}

0
(λ+ θ − 2y)g(y)dy.

(5.5)

Remark 5.1 Now if we turn our attention back to the case when v is matched strictly earlier than
u in Mz(1, 1), we can see that (5.5) also serves as a lower bound. For Zone-A, the lower bound
1− g(min{θ, λ}) + h(min{θ, λ}) holds since v is matched strictly earlier than u in Mz(1, yv) when
yv > λ, which implies αv ≥ m(yv). Exactly the same analysis on lower bounds for Zone-B can also
be applied to this case.

Finally, we consider the case when γ > θ. By the definition of γ and Lemma 5.4, αv ≥
h(min{θ, λ}) in the part of Zone-A when yu > γ. When yu > θ and yv ∈ (τ, λ), u, v match each
other and αu + αv = 1. It remains to give lower bounds when yv < τ .

Since v is matched strictly earlier than u in M(1, yv), Lemma 5.2 applies and we have αu+αv ≥
min{g(yu), g(yv)} for all yu ∈ (0, 1) and yv < τ . Furthermore, since γ > θ, we can actually improve
this bound further. First, by Lemma 5.3, we have αu ≥ m(yu) ≥ m(0) when yu ∈ (θ, γ) and yv < τ .
Second, when yu < θ and yv < τ , we can improve (L3) to αu + αv ≥ min{g(yu), g(yv) − h(yv) +
m(yu)} = g(yu). In summary, we have the lower bounds as shown in Figure 5.2c.

E [αu + αv] ≥(1− θ)(1− λ)(1− g(min{θ, λ})) + (1− γ)(1− λ)h(min{θ, λ})

+

∫ θ

0

(
g(yu)− (1− τ)h(yu)

)
dyu +

∫ τ

0

(
g(yv)− (γ − θ)h(yv)

)
dyv

+ (1− θ)(λ− τ) + (γ − θ)τ ·m(0).

(5.6)

It is straightforward to see that for every fixed τ , the minimum of the lower bound is achieved
when λ = τ (given that 1− g(y) + h(y) is always smaller than 1). Moreover, for every fixed λ = τ ,
the derivative over γ is a constant. Hence the minimum must be achieved when γ ∈ {θ, 1}. It is
easy to check that when γ = 1, Equation (5.2) serves as an lower bound for Equation (5.6); when
γ = θ, Equation (5.5) serves as an lower bound.

5.3 Lower Bounding the Approximation Ratio

Unlike the unweighted case, the performance of Perturbed Greedy on edge-weighted graphs depends
on the design of the function g. To this end, we explicitly construct one and analytically prove
the approximation ratio, rather than running a factor revealing LP. In particular, we construct a
function g that satisfies all pre-specified constraints such that the lower bounds (5.1) (5.2) (5.5) are
at least 0.5014, which completes the proof of Theorem 1.3. We remark that the piece-wise linear
function is just an artifact of the proof, and is not optimal for maximizing the approximation ratio.

In the following, we fix function g(y) =


0.365y + 0.48926, y ≤ 0.13

0.067y + 0.528, y ∈ (0.13, 0.4)

0.5548 y ≥ 0.4.

First, it is easy to see that the constraints we put on g are satisfied: for every y ∈ (0, 1), we
have g(y) ∈ (0.4, 0.6) and g(y)− h(y) ≥ g′(y)− h′(y). It is also easy to check that for the function
g we fix, miny{m(y)} = m(0) = g(0)− h(0) = 0.438186.

21

5.3.1 Equation (5.1)

We prove that the RHS of (5.1) (shown as follows) is at least 0.5014 (over θ ≥ λ).

(1− θ)(1− λ) + (1− λ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu +

∫ λ

0
(λ− yu)g(yu)dyu

+ (1− θ)
∫ λ

0

(
g(yv)− h(yv)

)
dyv +

∫ λ

0
(θ − yv)g(yv)dyv.

First, if we take derivative over θ, we have

(1− λ)(g(θ)− h(θ)− 1) +

∫ λ

0
h(y)dy,

which is negative (for any θ) when λ ≤ 0.9.
Thus for λ ≤ 0.9, the minimum is achieved when θ = 1:

(1− λ)

∫ 1

0

(
g(y)− h(y)

)
dy +

∫ λ

0
(λ− y)g(y)dy +

∫ λ

0
(1− y)g(y)dy.

By taking derivative over λ, we have∫ λ

0
g(y)dy + (1− λ)g(λ)−

∫ 1

0

(
g(y)− h(y)

)
dy.

Since this derivative is non-decreasing, the minimum is achieved when λ = λ∗ = 0.0344402
(solution for

∫ λ
0 g(y)dy + (1− λ)g(λ) =

∫ 1
0 g(y)− h(y)dy), and the value is at least 0.5014.

For λ > 0.9, we relax (1− θ)(1− λ) to be (1− λ)
∫ 1
θ

(
g(yu)− h(yu)

)
dyu, then we have

(1−λ)

∫ 1

0

(
g(yu)−h(yu)

)
dyu+

∫ λ

0
(λ−yu)g(yu)dyu+(1−θ)

∫ λ

0

(
g(yv)−h(yv)

)
dyv+

∫ λ

0
(θ−yv)g(yv)dyv,

which attains its minimum when θ = λ: (the inequality holds since h is non-increasing)

(1− λ)

∫ 1

0

(
g(y)− h(y)

)
dy + (1− λ)

∫ λ

0

(
g(y)− h(y)

)
dy + 2

∫ λ

0
(λ− y)g(y)dy

≥(1− λ)

∫ 1

0

(
g(y)− h(y)

)
dy + (1 + λ)

∫ λ

0
g(y)dy − 2

∫ λ

0
y · g(y)dy − (1− λ)λ · h(0).

Observe that the derivative (for λ ≥ 0.9)∫ λ

0
g(y)dy + (1− λ)g(λ)−

∫ 1

0

(
g(y)− h(y)

)
dy − (1− 2λ)h(0) > 0.

Thus the minimum is achieved when λ = 0.9, which is at least 0.53.

5.3.2 Equation (5.2)

We prove the RHS of (5.2) (shown as follows) is at least 0.5016 (over all θ and λ):∫ θ

0

(
g(yu)− h(yu)

)
dyu + (1− θ)

∫ λ

0

(
g(yv)− h(yv)

)
dyv

+ (1− θ)(1− λ)(1− g(min{λ, θ})) + (1− θ)λ ·m(0).

22

First observe that if λ > θ, then the derivative over λ is non-negative, which means that the
minimum in this case is achieved when λ = θ. Thus it suffices to consider the case when λ ≤ θ.
For this case, the derivative over θ is given by

g(θ)− h(θ)− (1− λ)(1− g(λ))− λ ·m(0)−
∫ λ

0

(
g(y)− h(y)

)
dy.

It can be verified (by taking another derivative over λ) that the maximum value of the above
derivative is achieved when λ = 0:

g(θ)− h(θ)− (1− g(0)) ≤ g(1)− h(1)− (1− g(0)) = 0.51028− 0.51074 < 0.

Thus the minimum of (5.2) is attained when θ = 1:∫ 1

0

(
g(y)− h(y)

)
dy ≥ 0.5016.

5.3.3 Equation (5.5)

We prove the RHS of (5.5) (shown as follows) is at least 0.5014 (over all θ and λ):

(1− θ)(1− λ)(1− g(min{θ, λ}) + h(min{θ, λ})) + (1− θ)
∫ λ

0
g(yv)dyv

+ (1− λ)

∫ θ

0

(
g(yu)− h(yu)

)
dyu +

∫ min{θ,λ}

0
(θ + λ− 2y)g(y)dy.

First, observe that except for a (1− λ)
∫ θ
0 h(y)dy term, the lower bound is symmetric for θ and

λ. Moreover, if θ < λ, then (1 − θ)
∫ λ
0 h(y)dy > (1 − λ)

∫ θ
0 h(y)dy, which means that by swapping

the values of θ and λ, the lower bound decreases. Hence it suffices to consider the case when θ ≥ λ.
When θ ≥ λ, the derivative over θ is given by

(1− λ)
(

(g(λ)− h(λ)) + (g(θ)− h(θ))− 1
)

=
11

10
(1− λ)

(
(g(λ) + g(θ))− 12

11

)
.

Let λ0 ≈ 0.12835 be the solution for g(λ) + g(1) = 12
11 . Since g(y) is non-decreasing, for λ < λ0,

we have g(λ) + g(1) < 12
11 , which implies that the above derivative is negative. Hence the minimum

is achieved when θ = 1:

(1− λ)

∫ 1

0

(
g(y)− h(y)

)
dy +

∫ λ

0
(1 + λ− 2y)g(y)dy.

Then following the same argument as in Section 5.3.1, the minimum value is at least 0.5014.
For λ ≥ λ0, the minimum is achieved when θ = θ∗, where g(λ) + g(θ∗) = 12

11 . Let λ∗ = 0.260516
be the solution for g(λ) = 6

11 . Note that we must have λ ≤ λ∗ ≤ θ∗ ≤ 0.4.
For λ ∈ (λ0, 0.13], by definition of function g, g(λ) + g(θ∗) = 12

11 is equivalent to

0.067 · θ∗ + 0.528 + 0.365 · λ+ 0.48926 =
12

11
.

Plugging in θ∗ and using g(λ) = 0.365 · λ+ 0.48926, we can explicitly express the lower bound
as a cubic function of λ, which achieves its minimum value 0.5026 when λ = 0.13.

For λ ∈ (0.13, λ∗], we have θ∗ = 2λ∗ − λ. Plugging in θ∗ and using g(λ) = 0.067 · λ+ 0.528, we
can explicitly express the lower bound as another cubic function of λ, which achieves its minimum
value 0.50235 when λ ≈ 0.204.

Thus for all λ, θ ∈ [0, 1], the lower bound is at least 0.5014.

23

6 Conclusion and Open Questions

In this paper, we prove that RDO breaks the 0.5 barrier by using a random decision order and
arbitrary preference orders. A natural question to ask is whether the random preferences help in
MRG, i.e., whether MRG has strictly larger approximation ratio than RDO in the worst case. We
slightly believe so and would like to see techniques extending the current gain sharing framework
to analyze random preference orders.

We also propose the first algorithm that achieves approximation ratio strictly greater than
0.5 for the edge-weighted oblivious matching problem. Careful readers might wonder what is the
approximation ratio of our algorithm when applied to edge-weighted bipartite graphs. Actually we
are aware of a modified version of our algorithm that achieves 1 − 1

e approximation12, in which
we only sample ranks on one side of the graph and then perturb the weight of each edge (u, v) by
a multiplicative factor (1 − g(yu)). We conjecture that the Perturbed Greedy algorithm (with an
appropriate choice of g) proposed in this paper has approximation ratio strictly greater than 1− 1

e
and we leave this as an open problem.

References

[1] Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized greedy match-
ing. ii. Random Struct. Algorithms, 6(1):55–73, January 1995.

[2] T.-H. Hubert Chan, Fei Chen, and Xiaowei Wu. Analyzing node-weighted oblivious matching
problem via continuous LP with jump discontinuity. ACM Trans. Algorithms, 14(2):12:1–12:25,
2018.

[3] T.-H. Hubert Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on arbitrary graphs:
Rematch via continuous linear programming. SIAM Journal on Computing, 47(4):1529–1546,
2018.

[4] Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra. Approx-
imating matches made in heaven. In ICALP (1), volume 5555 of Lecture Notes in Computer
Science, pages 266–278. Springer, 2009.

[5] Kevin P. Costello, Prasad Tetali, and Pushkar Tripathi. Stochastic matching with commitment.
In ICALP (1), volume 7391 of Lecture Notes in Computer Science, pages 822–833. Springer,
2012.

[6] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of RANKING for online bipartite matching. In SODA, pages 101–107. SIAM, 2013.

[7] Martin E. Dyer and Alan M. Frieze. Randomized greedy matching. Random Struct. Algorithms,
2(1):29–46, 1991.

[8] Buddhima Gamlath, Sagar Kale, and Ola Svensson. Beating greedy for stochastic bipartite
matching. In SODA, pages 2841–2854. SIAM, 2019.

[9] Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. In FOCS, pages 718–727,
2012.

12We have a manuscript containing the proof. To avoid distraction, we decide not to include it in this paper.

24

[10] Zhiyi Huang. Understanding zadimoghaddam’s edge-weighted online matching algorithm:
Weighted case. CoRR, abs/1910.03287, 2019.

[11] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and Xue Zhu. How
to match when all vertices arrive online. In STOC, pages 17–29. ACM, 2018.

[12] Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao Zhang.
Tight competitive ratios of classic matching algorithms in the fully online model. In SODA,
pages 2875–2886. SIAM, 2019.

[13] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals. In ICALP, volume 107 of LIPIcs,
pages 79:1–79:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[14] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In STOC, pages 587–596, 2011.

[15] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In STOC, pages 352–358, 1990.

[16] Jacob Magun. Greedy matching algorithms: An experimental study. ACM Journal of Exper-
imental Algorithmics, 3:6, 1998.

[17] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In STOC, pages 597–606, 2011.

[18] Matthias Poloczek and Mario Szegedy. Randomized greedy algorithms for the maximum
matching problem with new analysis. In FOCS, pages 708–717, 2012.

[19] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. Pairwise kidney exchange. J. Economic
Theory, 125(2):151–188, 2005.

[20] Gottfried Tinhofer. A probabilistic analysis of some greedy cardinality matching algorithms.
Annals OR, 1(3):239–254, 1984.

[21] Morteza Zadimoghaddam. Online weighted matching: Beating the 1/2 barrier. CoRR,
abs/1704.05384, 2017.

25

A Missing Proofs from Section 2

Proof of Lemma 2.2: For every vertex v, let Ev be the set of edges (u, v) ∈ E such that yv < yu.
Note that if we increase yv, then the perturbed weights of edges in Ev decrease.

Suppose v is passive. Then at the moment when v is matched, if an edge in Ev is probed, then
the other endpoint must be matched already. Hence when yv increases, all these probes remain
unsuccessful, i.e., v gets matched by the same vertex and nothing is changed to the matching. The
case when v is unmatched is similar.

Consequently, imagine that we increase yv gradually from 0 to 1, then once v becomes passive or
unmatched, then the matching remains unchanged afterwards. Thus there exists threshold y < yv
such that v is active when yv ∈ (0, y); passive or unmatched otherwise.

Finally, for the last argument, suppose v actively matches u when yv ∈ (0, y), then when yv
decreases, perturbed weights of edges in Ev increase. Thus when edge (v, u) is probed, either v is
already matched (with some edge with a larger perturbed weight), or v matches u. Since all edges
in Ev is perturbed by a factor of 1− g(yv), for smaller value of yv ∈ (0, y), the weight of the edge
v matches is not smaller.

Proof of Lemma 2.3: Suppose u is matched with u1 in M(~y), then after removing u, at decision
time of edge (u, u1), u1 is no longer matched. If u1 is unmatched in Mu(~y), then the symmetric
difference is a single edge (u, u1) and the statements trivially hold. Otherwise let u2 be matched
with u1 in Mu(~y). Observe that the decision time of edge (u1, u2) is no earlier than (u, u1), as
otherwise u1 will remain matched with u2 in M(~y). Then by induction on the number of remaining
vertices, the symmetric difference between M(~y) and Mu2(~y) is an alternating path P starting from
u2 such that the decision times of edges are non-decreasing. Thus the symmetric difference between
M(~y) and Mu(~y) is an alternating path starting from u, u1, u2, followed by path P . Moreover, the
decision time of (u, u1) is no later than (u1, u2), and the first edge of P has decision time no
earlier than (u1, u2), which implies the first statement. For every vertex ui with odd index in the
alternating path, since the decision time of (ui−1, ui) ∈ M(~y) is no later than (ui, ui+1) ∈ Mu(~y),
compared with Mu(~y), ui is matched no later in M(~y).

B Factor Revealing LP

Recall that to lower bound the approximation ratio, we need to define appropriate functions g and
h such that the lower bounds we formulate on E [αu + αv] are at least some ratio r > 0.5 for all

parameters θ, λ, τ and γ.
For instance, for the unweighted bipartite case13, we formulated the following two lower bounds:

L1(θ, τ) =

∫ θ

0
(1− y)g(y)dy +

∫ θ

0
min{y, τ}m(y)dy + (1− θ)(1− θ + τ)(1− g(θ))

+

∫ τ

0
(1− y)g(y)dy +

∫ τ

0
ym(y)dy +

1

2
(2− τ − θ)(θ − τ),

L2(θ, τ) =

∫ θ

0
(1− y)g(y)dy +

∫ θ

0
min{y, τ}m(y)dy +

1

2
(1− θ)2

+

∫ τ

0
(1− y)g(y)dy +

∫ τ

0
ym(y)dy +

1

2
(1− τ)2.

13The same approach can be applied to formulate a factor revealing LP for the unweighted general case.

26

To prove Theorem 1.1, it remains to find function g such that

min
θ,τ
{L1(θ, τ), L2(θ, τ)} ≥ 0.639.

This can be proved by solving the following continuous optimization problem and showing that
the optimal solution is at least 0.639.

max . r

s.t. r ≤ L1(θ, τ), ∀θ, τ ∈ [0, 1]

r ≤ L2(θ, τ), ∀θ, τ ∈ [0, 1]

g(y) ∈ [0, 1], ∀y ∈ [0, 1]

g(y) is non-decreasing.

Since L1(θ, τ), L2(θ, τ) are both linear in g(y), we can discretize them as follows. Let n be the
size of discretization. The larger n is, the more accurate we can solve for the above continuous
optimization problem. Let g be a step function such that g(y) = gi for all y ∈ [in ,

i+1
n). By doing

so, the integrations in the equations L1, L2 can be represented by linear summations over gi’s.
Moreover, if we can formulate linear functions D1(i, j), D2(i, j) in a way that D1(i, j) ≤ L1(θ, τ)

and D2(i, j) ≤ L2(θ, τ) for all θ ∈ [in ,
i+1
n) and τ ∈ [jn ,

j+1
n), then the optimal solution of the

following finite LP provides a lower bound on the approximation ratio.

max . r

s.t. r ≤ D1(i, j), ∀i, j ∈ [n]

r ≤ D2(i, j), ∀i, j ∈ [n]

gk−1 ≤ gk, ∀k ∈ [n]

g0 ≥ 0, gn ≤ 1.

We use L1(θ, τ) to illustrate how we derive the discretized relaxation D1(i, j). L2(θ, τ) and
other lower bounds derived in Section 4 can be relaxed in a similar way. Thus, a similar factor
revealing LP can be formulated for unweighted general graphs. We omit the tedious details. Our
codes for solving the linear programmings are available upon request.

Suppose θ ∈ [in ,
i+1
n) and τ ∈ [jn ,

j+1
n). We consider the terms of L1(θ, τ) one by one and obtain

the following lower bounds.

1.
∫ θ
0 (1− y)g(y)dy ≥ 1

n

∑j−1
k=0(1−

k+1
n)gk and

∫ τ
0 (1− y)g(y)dy ≥ 1

n

∑i−1
k=0(1−

k+1
n)gk;

2.
∫ θ
0 min{y, τ}m(y)dy ≥ 1

n

∑i−1
k=0

min{k,j}
n ·mk and

∫ τ
0 y ·m(y)dy ≥ 1

n

∑j−1
k=0

k
n ·mk, where each

mk is a new variable and we introduce two extra constraints mk ≤ gk and mk ≤ 1− gk;

3. (1− θ)(1− θ + τ)(1− g(θ)) ≥ (1− i+1
n)(1− i+1

n + j
n)(1− gi+1);

4. 1
2(2− τ − θ)(θ − τ) ≥ 1

2(2− j+1
n −

i+1
n)(in −

j+1
n).

Observe that D1(i, j) asymptotically approaches L1(θ, τ) when n approaches infinity. Hence the
optimal value of the discretized program approaches that of the continuous program when n→∞.

27

C Hardness Results

C.1 RDO on Bipartite Graphs

In this section, we construct a bipartite graph called Double-Bomb that is similar to the one in [3].
We evaluate the average performance of RDO on the given graph by experiments. By doing so, we
suggest an experimental hardness result for RDO.

Figure C.1: Double-Bomb

Refer to Figure C.1, vertices of Double-Bomb consists of 6 parts (A,B,C,D,E, F). C,D contain
n1 vertices each, and A,B,E, F contain n2 vertices each. n1, n2 will be specified later in the
experiment. The edges of the graph are defined as the following:

1. ∀i ∈ [n1], let there be an edge (C[i], D[i]);

2. ∀i ∈ [n2], let there be edges (A[i], B[i]) and (E[i], F [i]);

3. ∀i ∈ [n1], j ∈ [n2], let there be edges (B[j], C[i]) and (D[i], E[j]);

4. ∀i, j ∈ [n1], let there be an edge (B[i], E[j]).

Each group of vertices share the same preference order. Vertices in A,F have only one neighbor,
hence we don’t need to specify the preferences. For vertices in B, they prefer vertices in E to vertices
in C and finally to vertices in A. For vertices in C, they prefer vertices in B to vertices in D. For
vertices in E, they prefer vertices in B to vertices in D and finally to vertices in F . For vertices in
D, they prefer vertices in E to vertices in C. Here, within a group of vertices, the preference order
is always from small index to large index.

We run experiments for different n1, n2 (each for 105 times), the average performance is shown
in the following table.

n1 = 100 200 500 1000

n2/n1 = 1 0.6514 0.6504 0.6499 0.6497

n2/n1 = 1.3 0.6479 0.6471 0.6465 0.6464

n2/n1 = 1.5 0.6474 0.6467 0.6461 0.646

n2/n1 = 1.8 0.6477 0.6471 0.6466 0.6465

n2/n1 = 2 0.6484 0.6478 0.6473 0.6471

28

We observe that the worst performance achieves when n2/n1 = 1.5, which is close to 0.646. We
leave as future work to analyze it theoretically.

C.2 RDO on General Graphs

In this section, we construct a non-bipartite graph with 4 vertices for which the maximum matching
matches 4 vertices while the RDO algorithm matches 2.5 vertices in expectation. In other words,
the approximation ratio of RDO on general graphs is at most 0.625. Together with Theorem 1.1,
we show a separation on the approximation ratio of RDO on bipartite and general graphs.

Theorem C.1 RDO is at most 0.625-approximate for general graphs.

Proof: Let the four vertices be {a, b, c, d}, and let there be 4 edges: (a, b), (a, c), (b, c) and (c, d).
Obviously there exists a perfect matching.

Let the preference of all vertices be c > b > a > d. It is easy to check that unless d has
the earliest decision time, RDO matches only one edge. Thus the expected size of the matching
produced by RDO is 5

4 while the maximum matching has size 2.

C.3 IRP

Theorem C.2 IRP is no better than 0.5-approximate, even for bipartite graphs.

Proof: We state the instance from [7]. Let the set of vertices be {ui, vi}i∈[n], where ui is
connected to vi, for all i ∈ [n] and there is a complete bipartite graph between {u1, . . . , un

2
} and

{un
2
+1, . . . , un}. If in the decision order, all ui’s appear before vi’s, it is easy to check that the

approximation ratio is 0.5 + o(1). We omit the formal proof.

29

	1 Introduction
	1.1 Prior Works
	1.2 Our Contributions
	1.3 Our Techniques
	1.4 Other Related Works

	2 Preliminaries
	2.1 Unweighted Graphs.

	3 Unweighted Bipartite Graphs
	3.1 Symmetric Case: (u,v)M(1,1)
	3.2 Asymmetric Case: (u,v)-.25ex-.25ex-.25ex-.25exM(1,1)

	4 Unweighted General Graphs
	4.1 Symmetric Case: (u,v) M(1,1)
	4.2 Asymmetric Case: (u,v) -.25ex-.25ex-.25ex-.25exM(1,1)
	4.2.1 Case 1: (u,v)-.25ex-.25ex-.25ex-.25exMz(1,1)
	4.2.2 Case 2: (u,v)Mz(1,1)

	5 Weighted General Graph
	5.1 Symmetric Case: (u,v) M(1,1)
	5.2 Asymmetric Case: (u,v)-.25ex-.25ex-.25ex-.25exM(1,1)
	5.2.1 Case 1: (u,v) -.25ex-.25ex-.25ex-.25exMz(1,1)
	5.2.2 Case 2: (u,v) Mz(1,1)

	5.3 Lower Bounding the Approximation Ratio
	5.3.1 Equation (??)
	5.3.2 Equation (??)
	5.3.3 Equation (??)

	6 Conclusion and Open Questions
	A Missing Proofs from Section ??
	B Factor Revealing LP
	C Hardness Results
	C.1 RDO on Bipartite Graphs
	C.2 RDO on General Graphs
	C.3 IRP

