
A
Survey on Algorithms for Self-Stabilizing Overlay Networks1

Michael Feldmann1 Christian Scheideler1 Stefan Schmid2

1 Paderborn University, Germany 2 Faculty of Computer Science, University of Vienna, Austria

The maintenance of efficient and robust overlay networks is one of the most fundamental and reoccurring themes in networking.

This paper presents a survey of state-of-the-art algorithms to design and repair overlay networks in a distributed manner. In

particular, we discuss basic algorithmic primitives to preserve connectivity, review algorithms for the fundamental problem

of graph linearization, and then survey self-stabilizing algorithms for metric and scalable topologies. We also identify open

problems and avenues for future research.

1. INTRODUCTION

Many distributed systems today rely on some kind of overlay network connecting the communicat-

ing nodes or “peers” of an application using logical links: each link corresponds to a path, potentially

through many physical links, in the underlying network. The most prominent example are overlay

networks over the Internet which allow to route messages according to logical addresses rather than

IP addresses, introducing great flexibilities. Well-known overlay networks include Chord [59], Pas-

try [53], Tapestry [62], CAN [48], Kademlia [42], Viceroy [48], Koorde [28], SkipNet [23], among many

others [43; 34; 4]. More recently, overlays are also used by content distribution providers such as Aka-

mai [24], or in crypto-currency infrastructures (e.g., Bitcoin [47]), to improve scalability.

Overlay networks are often fairly transient and dynamic, i.e., nodes join and leave frequently. They

hence require mechanisms to support changing memberships. Reasons for such dynamic membership

include, e.g., the limited time window during which users are interested in contents shared in a peer-

to-peer network, changing popularity of contents, diurnal patterns, failures, etc. Peer-to-peer systems

are particularly dynamic as they are designed for open membership and are self-organizing. In general,

with an increasing scale, distributed systems are likely to become more dynamic and have to deal with

nodes continuously entering and leaving the system.

Besides efficiency, fault-tolerance is arguably one of the most important requirements of large-scale

overlay networks. Overlay topologies are usually maintained by the nodes (a.k.a. peers) themselves.

1This work has been partially supported by the German Research Foundation (DFG) within the Collaborative Research Center

901 ”On-The-Fly Computing” under the project number 160364472-SFB901.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

Therefore, distributed algorithms are needed to maintain the overlay network and support joining,

leaving, and routing between the nodes. These distributed algorithms should also be scalable, given

the large size of many overlay networks. Furthermore, such algorithms cannot rely on the assumption

that all peers leave the network gracefully, e.g., execute a pre-defined “leave protocol” before departure.

Rather, many peers are likely to leave unexpectedly (e.g., crash). Furthermore, topological changes

may also happen due to attacks: the larger and hence more popular the overlay network, the more

attractive it also becomes for attackers. For example, adversarial nodes may join and leave the network

strategically [54], to occupy strategic positions in the overlay or eclipse other nodes. Malicious nodes

may further disconnect other nodes by overloading them with requests (denial-of-service attack).

It is hence difficult in practice to rely on certain invariants and assumptions on what can and what

cannot happen during the (possibly very long) lifetime of an overlay. Accordingly, it is important that

a distributed overlay network be able to automatically recover from unexpected or even arbitrary

situations. This recovery should also be quick: once in an illegal state, the overlay network may be

more vulnerable to further changes or attacks.

This motivates the study of self-stabilizing overlay networks. Self-stabilzation is a very powerful

concept in fault-tolerance: self-stabilizing algorithms guarantee that in the absence of external influ-

ences, they reconverge to a desirable state from any initial state (known as the convergence property),

and then preserves this state (known as the closure property). The notion of self-stabilization was

first coined by E.W. Dijkstra in 1974 [12]. Leslie Lamport, in his ACM PODC 1983 keynote address,

acknowledged self-stabilization as one of the most brillant concepts introduced by Dijkstra [35].

In general, the design of self-stabilizing algorithms is fairly well-understood today. Since Dijkstra’s

paper, self-stabilization has been studied in many contexts, including graph theory problems, termina-

tion detection, clock synchronization, and fault containment [13]. In the context of communication net-

works, many self-stabilizing algorithms exist, from spanning tree construction [46] to software-defined

control [10]. In fact, already in the late 1980s, very powerful results have been obtained on how any

synchronous, not fault-tolerant local network algorithm can be transformed into a very robust, self-

stabilizing algorithm which performs well both in synchronous and asynchronous environments [5;

6; 36]. However, while these transformations are attractive to strengthen the robustness of local al-

gorithms on a given network topology, e.g., for designing self-stabilizing spanning trees, they are not

applicable, or only applicable at high costs, in overlay overlay networks where the topology is subject

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

to change and optimization itself. Indeed, many decentralized overlay networks (including well-known

examples like Chord) are not self-stabilizing, in the sense that the proposed protocols only manage to

recover the network from a restricted class of illegal states [1; 3; 59].

Informally, the self-stabilizing overlay network design problem is the following:

(1) An adversary can manipulate the peers’ neighborhood (and hence topology) information arbitrarily.

In particular, it can remove and add arbitrary nodes and links.

(2) As soon as the adversary stops manipulating the overlay topology, say at some unknown time t0,

the self-stabilization protocols will ensure that eventually, and in the absence of further adversarial

changes, a desired topology is reached.

As any self-stabilizing algorithm, a topologically self-stabilizing algorithm must guarantee conver-

gence and closure properties: by local neighborhood changes (i.e., by creating, forwarding, and deleting

links with neighboring nodes), the nodes will eventually form an overlay topology with desirable prop-

erties (e.g., polylogarithmic degree and diameter) from any initial topology. The system will also stay

in a desirable configuration provided that no further external topological changes occur.

We also note the basic fact that in order for a distributed self-stabilizing algorithm to recover any

connected topology, the initial topology must at least be weakly connected. A directed graph G = (V,E)

is weakly connected, if the undirected version of G, namely G′ = (V,E′) is connected, i.e., for two nodes

u, v ∈ V there is a path from u to v in G′.

In this paper, we present a survey on distributed algorithms for maintaining overlay networks. In

contrast to the vast existing literature on overlay network designs and algorithms (e.g. [50; 41; 37]),

our focus is on self-stabilizing algorithms. In Section 2, we first present a generic model which is

useful to design and analyze topologically self-stabilizing algorithms. In Section 3, we discuss the basic

primitives of manipulating neighborhoods while preserving connectivity, and discuss their application

in the design of self-stabilizing algorithms. Section 4 presents self-stabilizing algorithms for a basic

line topology, and we extend our study to metric graphs in Section 5. We discuss scalable topologies

and in particular, expander graphs, in Section 6. We survey additional relevant aspects related to

monotonic searchability and node departures in Section 7. In Section 8, we conclude and identify open

problems.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

2. A BASIC MODEL OF TOPOLOGICAL SELF-STABILIZATION

Let us introduce the basic and standard model for self-stabilizing overlay networks. The overlay net-

work is represented as a directed graph G = (V,E) with n = |V |. We assume that the set of nodes is

static as otherwise a termination of the self-stabilization process may not be reached (this has been

shown in [7]). Each peer in the system is represented by a node v ∈ V . Each node v ∈ V can be identified

by its unique reference or its unique identifier v.id ∈ N (called ID). Additionally, each node v maintains

local protocol-based variables and has a channel v.Ch, which is a system-based variable that contains

incoming messages. The message capacity of a channel is unbounded and messages never get lost. If a

node u knows the reference of some other node v, then u can send a message m to v by putting m into

v.Ch.

We distinguish between two different types of actions: The first type is used for standard procedures

and has the form 〈label〉(〈parameters〉) : 〈command〉, where label is the name of that action, parameters

defines the information needed for the execution of this action, and command defines the statements

that are executed when calling that action. It may be called locally or remotely, i.e., every message

that is sent to a node has the form 〈label〉(〈parameters〉). The second action type has the form 〈label〉 :

(〈guard〉) −→ 〈command〉, where label and command are defined as above and guard is a predicate over

local variables. An action for some node u may only be executed if its guard is true or if there is a

message in u.Ch that requests to call the action. In both cases, we call the action enabled. An action

whose guard is simply true is executed periodically. When a node u processes a message m, then m is

removed from u.Ch.

We define the system state to be an assignment of a value to every node’s variables and messages

to each channel. A computation is an infinite sequence of system states, where the state si+1 can be

reached from its previous state si by executing an action that is enabled in si. We call the first state of

a given computation the initial state. We assume fair message receipt, meaning that every message of

the form 〈label〉(〈parameters〉) that is contained in some channel, is eventually processed. Furthermore,

we assume weakly fair action execution, meaning that if an action is enabled in all but finitely many

states of a computation, then this action is executed infinitely often. We place no bounds on message

propagation delay or relative node execution speed, i.e., we allow for fully asynchronous computations

and non-FIFO message delivery. A self-stabilizing protocol does not manipulate node identifiers and

thus only operates on them in compare-store-send mode. That is, we are only allowed to compare node

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

IDs to each other, store them in a node’s local memory, or send them in a message. Note that we

compute the hash value of a node’s identifier in some protocols, but this does not manipulate the ID

itself.

We are interested in the formation and maintenance of a certain graph topology that connects the

nodes. As it is standard, we assume that there are no corrupted IDs in the initial state of the system,

i.e., node IDs are read-only. Note that we are not able to repair initially corrupted node IDs within the

scope of this model, as we do not consider the usage of failure detectors. Thus we can assume that node

IDs are always correct in all states, as our protocol is compare-store-send. Nevertheless, node channels

may contain an arbitrary amount of messages containing false information in initial states: We call

these messages corrupted. We say the system is in a legitimate (stable) state, if the nodes and the edges

form the desired graph topology and there are no corrupted messages in the system. We are now ready

to define what it means for a protocol to be self-stabilizing:

Definition 2.1 (Self-stabilization). A protocol is self-stabilizing if it satisfies the following two prop-

erties:

— Convergence: Starting from an arbitrary system state, the protocol is guaranteed to arrive at a

legitimate state.

— Closure: Starting from a legitimate state, the protocol remains in legitimate states thereafter.

There is a directed edge (u, v) ∈ E, if u stores the reference of v in its local memory or if there is a

message in u.Ch carrying the reference of v. In the former case, we call that edge explicit and in the

latter case we call that edge implicit. In order for our distributed algorithms to work, we require the

directed graph G containing all explicit and implicit edges to stay at least weakly connected at every

point in time. Once there are multiple weakly connected components in G, these components cannot

be connected to each other anymore as it has been shown in [44] for compare-store-send protocols.

For a graph that contains multiple weakly connected components, our protocol converts each of these

components to our desired topology.

In general, the following performance metrics are most relevant in topological self-stabilization:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

(1) Convergence Time: Assuming a synchronous environment (or assuming an upper bound on the

message transmission per link), the distributed convergence time measures how many (parallel)

communication rounds are required until the final topology is reached.

(2) Work: The work measures how many edges are inserted, changed, or removed in total, during the

covergence process.

3. FROM CONNECTIVITY PRIMITIVES TO SELF-STABILIZING ALGORITHMS

Before designing distributed algorithms to maintain and repair topologies, we need to answer a most

fundamental question: how can nodes manipulate their neighborhoods locally, without risking to lose

connectivity? And more generally: which primitives exist that allow to iteratively and locally change

a graph, such that it eventually reaches its desired final state? Such connectivity primitive operations

are a prerequisite for the self-stabilizing convergence.

The identification of such primitives however does not yet answer the question how a distributed

self-stabilizing algorithm can actually use them. In the following, we hence first discuss the universal

primitives for reliable connectivity, and then discuss their use in algorithms.

3.1. Universal Primitives for Reliable Connectivity

Universal connectivity primitives are local graph operations which allow us to transform any topology

into any other topology. While we focus on feasibility in the following, we will later use these primitives

to design topologically self-stabilizing algorithms.

Let us first define the notion of links (u, v). Links can either be explicit or implicit. An explicit link

(u, v) (in the following depicted as solid line) means that u knows v, i.e., u stores a reference of v (e.g.,

v’s IP address). An implicit link (u, v) (depicted as dashed line) means that a message including v’s

reference is currently in transit to u (from some arbitrary sender). We are often interested in the union

of the two kinds of links.

As discussed above, a first most fundamental principle in the design of distributed self-stabilizing

algorithms is that links can never be deleted:

RULE 1.1. During the execution of a topologically self-stabilizing algorithm, weak connectivity must

always be preserved. In particular, a pointer (i.e., information about a peer) can never be deleted.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

If a link is removed, it may happen that this link is the only link connecting two otherwise discon-

nected components. Clearly, once disconnected, connectivity can never be established again.

u

v

w

u

v

w

u

v

w

u

v

w

u v u v

u v u v

Introduce:

Forward:

Merge:

Invert:

Fig. 1.1. Basic connectivity primitives (solid: explicit edges dashed: implicit edges).

We next identify four basic primitives which preserve connectivity (cf. Figure 1.1): INTRODUCE,

FORWARD, MERGE, INVERT.

(1) INTRODUCE: Assume node u has a pointer to nodes v and w: there are two directed links (u, v) and

(u,w). Then, u can introduce w to v by sending the pointer to w to v.

(2) FORWARD: Assume node u has a pointer to nodes v and w, i.e., (u, v) and (u,w). Then, u forwards

the reference to w to v and removes the reference of w from its local memory.

(3) MERGE: If u has two pointers to v, i.e., (u, v) and (u, v), then u can merge the two.

(4) INVERT: If u is connected to v, it can invert the link (u, v) to (v, u) by forwarding a pointer to itself

to v, and delete the reference to v.

It is easy to see that these primitives indeed preserve weak connectivity. In fact one can show that

the INTRODUCE, FORWARD, and MERGE operations even preserve strong connectivity. We also note

that we need a compare operation to implement the merge operation: namely, we need to be able to

test whether two references point to the same node.

These operations turn out to be very powerful. In fact, three of them are sufficient to transform any

weakly connected graph into any strongly connected graph. In other words, they are weakly universal:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

THEOREM 3.1. The three primitives INTRODUCE, FORWARD, and MERGE are weakly universal:

they are sufficient to turn any weakly connected graph G = (V,E) into any strongly connected graph

G′ = (V,E′).

We just provide intuition for this theorem and refer to [50] for more details. Essentially, the proof

proceeds in two stages, from G = (V,E) to a complete graph (the clique), and from the clique to G′ =

(V,E′). In the first stage, if in each communication round, each node introduces its neighbors to each

other as well as itself to its neighbors, we reach a clique after O(log n) communication rounds. Due to

weak connectivity, it follows that for any two nodes v and w, there is a path from v to w (ignoring link

directions). For the second stage, assume G = (V,E) is a clique. Then using FORWARD and MERGE

operations, we can transform G into G′ as follows (without removing edges in G′). Let (u,w) be an

arbitrary edge which needs to be removed, i.e., (u,w) 6∈ E′. Since G′ = (V,E′) is strongly connected,

there is a shortest directed path from u to w in G′. Let v be the next node along this path. Now node

u can forward (u,w) to v, i.e., (u,w) becomes (v, w). This will reduce the distance between an unused

node pair in G′ by 1, and since the maximal distance is n− 1, the distance of a superfluous edge can be

reduced at most n− 1 many times before it merges with an edge in G′. Thus, we eventually obtain G′.

All four primitives together are even universal: they are sufficient to transform any weakly connected

graph into any weakly connected graph.

THEOREM 3.2. The four primitives INTRODUCE, FORWARD, MERGE, and INVERT are universal:

they are sufficient to turn any weakly connected graph G = (V,E) into any weakly connected graph

G′ = (V,E′).

The intuition for this theorem is as follows. Let G′′ = (V,E′′) be the graph in which for each edge

(u, v) ∈ E′, both edges (u, v) and (v, u) are in E′′. Note that G′′ is strongly connected. Now, according to

Theorem 3.1, it is possible to transform any G to G′′. So in order to transform G′′ to G′, we need the

INVERT primitive, to remove undesired edges: we invert any undesired edge (u, v) to (v, u) and then

merge it with (v, u).

Interestingly, the primitives are not only sufficient but also necessary.

THEOREM 3.3. The four primitives INTRODUCE, FORWARD, MERGE, and INVERT are also neces-

sary.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

The reason is that INTRODUCE is the only primitive which generates an edge, FORWARD is the

only primitive which separates a node pair, MERGE is the only primitive which removes an edge, and

INVERSION is the only primitive rendering a node unreachable (as one can see in Figure 1.1 we cannot

go from u to v anymore once we inverted the explicit edge (u, v) into the implicit edge (v, u)).

3.2. From Connectivity Primitives to Self-Stabilizing Algorithms

Universal primitives allow us to transform any weakly-connected graph G into any weakly-connected

graph G′. However, the mere existence or feasibility of such transformations is often not interesting in

practice, if there do not exist efficient distributed algorithms to find a transformation.

Before we show how to derive distributed algorithms, we introduce some fundamental concepts and

provide some additional insights into how connectivity can be maintained. A central requirement in

topologically self-stabilizing systems is monotonic reachability: if v is reachable from u at time t, using

explicit or implicit edges, then, if no further failures or errors occur and given a static node set, v is

also reachable from u at any time t′ > t. The following theorem can easily be proved by induction, as

long as there are no references to non-existing nodes in the system.

THEOREM 3.4. The INTRODUCE, FORWARD, and MERGE operations fulfill monotonic reachability.

Remarks:

(1) There is also the concept of monotonic searchability: if u can send a message at time t that is suc-

cessfully delivered to v according to some routing protocol R, then any further message generated

at u at time t′ > t with v as its destination is successfully delivered. Monotonic reachability is nec-

essary to implement monotonic searchability, it is not sufficient. We will later (in Section 7) discuss

how to realize also monotonic searchability.

(2) One particularly annoying challenge in the design of self-stabilizing algorithms is due to the fact

that there may still be corrupted messages in transit in the system. Such messages can threaten

the correctness of an algorithm later. In particular, corrupted messages may violate the closure

property: although initially in a legal state, the system may move to an illegal state. The set of

legal states is hence only a subset of the “correct states”.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

As it has already been stated by Theorem 3.1, the primitives INTRODUCE, FORWARD and MERGE

not only fulfill monotonic reachability but are also weakly universal, so applying these can turn any

weakly connected graph into a strongly connected one. This is sufficient for most topologies in practice

because usually each node should be allowed to send messages to any other node. It is however not clear

on the first glance how to progress from any illegal state to a legitimate one using these primitives.

Therefore we need mechanisms to ensure the convergence of the system. A universal approach for this

could be to combine a mechanism that allows nodes to find out in finite time if the system is in an

illegal state with the transitive closure framework (see Section 6.3). On the positive side, being able to

check if the system is in an illegal state is usually possible, allowing the creation of a clique in order to

“reset” the system as it is demonstrated in the transitive closure framework. However, in general this

is very inefficient because the amount of work for each node can grow linear in the size of the network.

Therefore, researchers came up with more efficient protocols tailored to more specific topologies.

4. TOPOLOGICALLY SELF-STABILIZING LINEARIZATION

Many topologically self-stabilizing protocols rely on some basic Linearization algorithm [19; 26; 52].

Using linearization, one can establish an ordering of nodes legitimate states. In this section we first

present the idea of linearization based on a self-stabilizing protocol for a sorted list [45]. We call that

protocol BUILDLIST for the remainder of this survey. Afterwards we explore a protocol for a de Bruijn

graph that relies on the linearization technique.

4.1. Linearization Protocol

Before we can describe the actions of BUILDLIST, we need to define the variables for a node u: A pointer

u.left storing u’s closest left neighbor and a pointer u.right storing u’s closest right neighbor. The idea

of BUILDLIST is that each node always wants to keep its closest left and right neighbors (based on local

information only) and delegate all remaining outgoing connections using the FORWARD primitive.

More formally, BUILDLIST consists of two actions TIMEOUT and LINEARIZE, where TIMEOUT is

executed periodically at each node, and LINEARIZE can be called locally or remotely.

In TIMEOUT, a node u first performs a consistency check on its variables u.left and u.right: It may

happen that in initial states u.left > u (or u.right < u). If that is the case then u resets the node

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

assignment to u.left (or u.right) and locally calls LINEARIZE(w) for the removed node w. Furthermore

u introduces itself to u.left and u.right via the INTRODUCE primitive in TIMEOUT.

When processing a LINEARIZE(w) message at u with w < u, then u first compares the identifier of

w with its own identifier and the identifier of u.left. Node u distinguishes between the following two

cases:

(i) w < u.left: This case leads to u forwarding w to u.left by calling LINEARIZE(w) on u.left.

(ii) u.left < w < u: In this case u replaces u.left by w and forwards the old value of u.left to w via a

LINEARIZE call.

We proceed analogously at node u in case w > u, this time considering u.right instead of u.left.

Consider Figure 1.2 for a visualization of the different cases for LINEARIZE.

u w u w

u w u w

w u w u

w u w u

u.right

u.right

u.right

u.right

u.left u.left

u.left

u.left

Right Linearization:

Left Linearization:

Fig. 1.2. Different cases when calling LINEARIZE(w) at node u.

Using the above actions, one can show that BUILDLIST satisfies convergence and closure, culminat-

ing in the following theorem:

THEOREM 4.1. BUILDLIST is self-stabilizing, i.e.,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

(i) BUILDLIST transforms any weakly connected graph G = (V,E) into a sorted list after O(n) rounds

(Convergence) and

(ii) if the explicit edges in G already form a sorted list, then they are preserved at any point in time

(Closure).

We provide some intuition for the proof: To show convergence, consider a pair of nodes (u, v) with u <

v that is adjacent in legitimate states. As the graph G is weakly connected, there exists an undirected

path P between u and v. Consider the potential function Φ = vr − vl, where vl is the process with

minimum identifier in P and vr the process with maximum identifier in P . One can show that Φ

monotonically decreases over time until Φ = v − u corresponding to (u, v) being directly connected,

which implies convergence. The bound on the convergence time stems from the fact that an implicit

edge to some node v has to be delegated along the whole list in a worst-case scenario: In case the list is

already fully built with only one edge missing, there are no shortcut edges for an implicit edge in order

to reach its target, so it has to traverse the whole list.

In order to show closure, we can argue that an explicit edge (u, v) is only forwarded, if u gets to know

a closer neighboring process than v. But this is not possible as processes already form a sorted list, so

closure holds.

4.2. The Linearized de Bruijn Graph

Linearization has been used as a basis for several other self-stabilizing topologies. In this section we

provide an example for this by examining the linearized de Bruijn graph from [51].

Consider the standard de Bruijn graph:

Definition 4.2. Let d ∈ N. The standard (d-dimensional) de Bruijn graph consists of nodes having

labels (x1, . . . , xd) ∈ {0, 1}d and edges (x1, . . . , xd)→ (j, x1, . . . , xd−1) for all j ∈ {0, 1}.

One can route from a source node to a destination node in O(log n) hops via bitshifting if the network

consists of n nodes.

In order to construct a self-stabilizing protocol for a de Bruijn graph, one can use the linearized

de Bruijn network (first introduced in [43]) to emulate the classical de Bruijn graph. The idea is to let

each real process v emulate 2 additional virtual processes v0, v1, resulting in the process v representing

3 nodes v, v0 and v1. Using a uniform pseudorandom hash function h : N → [0, 1), we project the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

identifiers of each real process v onto the [0, 1)-interval. Afterwards we define the identifiers of the

virtual nodes by assigning h(v)
2 to v0 and h(v)+1

2 to v1. A legitimate state of the system is then defined

as the sorted list consisting of all real and virtual nodes ordered by their identifiers in [0, 1). It has

been shown in [43] that such a topology is able to emulate the standard de Bruijn graph, i.e., routing

paths in the linearized de Bruijn network are of length O(log n) w.h.p.

In order to construct a self-stabilizing protocol BUILDDEBRUIJN for the linearized de Bruijn network

we let each real and virtual process run the BUILDLIST protocol from Section 4.1. It is easy to see that

BUILDLIST converts the graph G′ = (V ′, E′) with V ′ = {v, v0, v1 | v ∈ V } into a sorted list if G′ is weakly

connected initially. Unfortunately this is not necessarily the case for initial states, even if G = (V,E)

is weakly connected as shown in Figure 1.3.

v w

G=(V,E): G‘=(V‘,E‘):

v0 v1v w0 w1w

Fig. 1.3. Possible initial state for G′ leaving the node w isolated.

In order to eventually reach a state where G′ is weakly connected, the authors of [51] introduced

the probing technique. The idea is to let each node v periodically check if it is in the same connected

component as its virtual nodes v0 and v1. If this is not the case, then v generates a connection to

v0 and v1 respectively by locally calling LINEARIZE(v0) and LINEARIZE(v1) respectively. To check if a

connection to v0 has to be established, each real process v does the following: It periodically sends out

a probe along the sorted list to the left. That probe is forwarded along virtual nodes in the sorted list,

until it reaches a real node w. w then forwards the probe to its virtual node w0. From this point on

we forward the probe to the right in the sorted list until it reaches v0 or it gets stuck or overruns v0.

In the first case we know that v and v0 are in the same connected component. If one of the other two

cases arises, v initiates a LINEARIZE(v0) call. The same approach is used in order to check if v and

v1 are in the same component. Note that the number of hops for each probe is expected to be O(1) in

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

legitimate states. When combining the BUILDLIST protocol with the probing approach, one can show

the following theorem:

THEOREM 4.3. BUILDDEBRUIJN is self-stabilizing, i.e.,

(i) BUILDDEBRUIJN transforms any weakly connected graph G = (V,E) into a linearized de Bruijn

network after O(n) rounds (Convergence) and

(ii) if the explicit edges in G already form a linearized de Bruijn network, then they are preserved at any

point in time (Closure).

Following a probing approach similar to the one described above, one can realize a self-stabilizing

protocol for the general de Bruijn graph (the q-ary, d-dimensional de Bruijn graph), as it has been

shown in [16]. Compared to the standard (d-dimensional) de Bruijn graph (Definition 4.2), the label of

a node may now consist of sequences of values j ∈ {0, . . . , q} instead of bits.

5. SELF-STABILIZING METRICAL GRAPHS

Linearization is not only a building block for more general and scalable self-stabilizing networks, as

we will discuss them later in this paper, it is also a a good basis for building another important family

of graph topologies: metric graphs.

Definition 5.1. Given a set M , a distance function d : M2 → R is a metric if for all x, y, z ∈M

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x) and

(iv) d(x, z) ≤ d(x, y) + d(y, z).

In the following, we explore graphs that can efficiently be described by a metric, with the focus on

networks for geometrical scenarios. Such networks are relevant for example in the area of wireless

ad-hoc networks. In particular, in this section we will show that the linearization technique discussed

in the previous section can serve as a basis for graphs based on 1-dimensional as well as circular

metrics (cf Section 5.1), as well as tree metrics (cf Section 5.4). However, we will also show that when

assuming that nodes only know the metric function but not the topology (line, ring, etc.) that should

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

be formed, it is not possible to design self-stabilizing algorithms solely based on local information at

nodes (cf Section 5.2). We therefore introduce another technique in order to build arbitrary graphs for

arbitrary metrics (cf Section 5.3).

5.1. Line and Circular Metrics

Consider a line metric as an embedding of the nodes into the one-dimensional space, i.e., we can define

d by d(u, v) = |u.id− v.id| for any two nodes u, v ∈ V . It is easy to see that one can use the BUILDLIST

protocol from Section 4.1 to converge to a graph that satisfies the line metric.

A simple extension of BUILDLIST would be to let processes form a sorted cycle. For this to work, we

have to establish an additional connection between the process with minimal identifier and the process

with maximal identifier. We distinguish between list edges and cycle edges. List edges are treated by

the BUILDLIST protocol, for cycle edges we introduce the following additional actions:

(i) Upon activation, if a node v does not have a left (or right) list neighbor, it creates a cycle edge to

itself and delegates it to v.left (or v.right).

(ii) If a node v has a cycle edge to a node w with v < w (or w < v) and v.left 6=⊥ (or v.right 6=⊥), then v

delegates the cycle edge to v.left (or v.right).

(iii) If node v has a cycle edge to node w that cannot be delegated via action (ii), then upon activation v

introduces itself to w, generating the implicit cycle edge (w, v).

(iv) If node v has a (explicit) cycle edge to node w and receives another (implicit) cycle edge to some node

w′ 6= w, then v keeps the edge for which covers the larger distance w.r.t. to the metric function. The

other edge, say (w, v′), is removed and replaced by two implicit list edges (v, v′) and (w, v′).

Consider Figure 1.4 for a visualization of these rules.

One can show that this extension of BUILDLIST (call it BUILDCYCLE) is self-stabilizing:

THEOREM 5.2. BUILDCYCLE is self-stabilizing, i.e.,

(i) BUILDCYCLE transforms any weakly connected graph G = (V,E) into a sorted cycle after O(n) rounds

(Convergence) and

(ii) if the explicit edges in G already form a sorted cycle, then they are preserved at any point in time

(Closure).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

v v

(i)

v‘ w v‘ w

(ii)

vv

(iii)

w
...

v w
...

v

(iv)

v vw‘ w‘ ww
...

Fig. 1.4. Illustration for the actions of BUILDCYCLE. Red edges denote cycle edges, black edges denote list edges.

Self-stabilizing protocols that make use of a sorted cycle can be found for example in [20; 32; 30].

5.2. Challenges of Local Probing

Although the local probing approach proves useful for many scenarios, it has its limits as we will

outline in this section. Consider nodes v1, . . . , vn and imagine we are given a cycle metric dC : V 2 → R+

with dC(vi, vj) = 1 with j = i+ 1 mod n for all i ∈ {1, . . . , n} (cf Figure 1.5(a)). A cycle graph reflects the

metric dC , which would be a 1-spanner.

1

1

1

1
1

1 1

1

1

1

1

(a) (b)

v w

Fig. 1.5. (a) Illustration of the cycle metric. (b) Initial graph for which we cannot locally distinguish between a line and a

circular metric.

If nodes only know the metric function dC and we are given a sorted list initially, then it is impossible

using only local probing to reach a sorted cycle. This is because any implicit edge generated by any node

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

has minimum distance regarding dC and thus is immediately merged with the corresponding explicit

edge. Therefore we cannot generate an implicit edge (v, w) (cf. Figure 1.5(b)) which would be necessary

to establish the cycle.

As a consequence it follows that any protocol must be either non-oblivious (in the sense that the

protocol knows something about the graph topology) or non-local (in the sense that requests are pro-

cessed without local evidence of a violation of the metric) in order to stabilize a k-spanner of the desired

topology for any constant k.

An example for a non-oblivious strategy would be the BUILDCYCLE protocol from Section 5.1. An

example for a non-local strategy is the probing approach from Section 4.2 that is used to stabilize the

linearized de Bruijn graph. We generalize this approach in the next section.

5.3. General Metrics with Global Probing

We next discuss non-local strategies that can be used in order to stabilize any arbitrary given metric

given via a distance function dM : V 2 → R. The first strategy makes use of probing: At each node u we

periodically generate a probing request that is handled in two phases:

(1) Follow a random sequence of nodes v1, v2, . . . that lie on a shortest path to u (i.e., dM (vi, i) +

dM (vi, vi+1) = d(vi+1, u)) up to a node vk, for which we cannot delegate the request any further.

(2) From vk we delegate the request to a random neighbor wk and follow a random shortest path back

to u. If a node w is encountered that does not have a neighbor lying on the shortest path to u, create

the edge (w, u).

This strategy suffices to detect edges that are contained in the desired topology, but are still missing

in the overlay.

A different approach has been discussed in [20]: The idea is to let nodes form a sorted cycle via the

previously presented BUILDCYCLE protocol. Furthermore each node v maintains a pointer v.test to

some node in V . Via delegation these pointers constantly traverse the cycle in a common direction. The

actual construction of the metric is then done by each node v periodically: Using dM , v checks if the

edge (v, v.test) should be added to the graph. Also v checks, for each of its outgoing edges, whether it

can be removed from the graph. One can show that this algorithm is able to stabilize any arbitrary

metric.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

5.4. Special Metrics with Local Probing

There exist special metrics for which we can construct self-stabilizing protocols based on local probing

only. Consider a tree metric dT : V 2 → R+ that assigns a weight to each possible edge in the overlay. The

following protocol BUILDMST from [22] is able to maintain a minimum spanning tree, i.e., a connected

graph MST = (V,E), for which the sum of the edge weights
∑

e∈E dT (e) is minimum. For nodes u, v, w

define u ≺ (v, w) as a shorthand for (dT (i, v) < dT (v, w)) ∧ (dT (u,w) < dT (v, w)). This means that u is

closer to both v and w with respect to dT , and hence that the MST should not contain the edge (v, w) in

order to connect u, v and w. BUILDMST works as follows: Let each node v maintain a set Nv ⊆ V that

stores the neighboring nodes of v in the MST . Upon activation a node v ∈ V performs the following

actions for each of its current neighbors w ∈ Nv: It checks whether there is a node u ∈ Nv for which

u ≺ (v, w) holds. If such a node exists then v delegates w to u and removes w from Nv. Otherwise v

introduces itself to w by sending its reference to w. Consider Figure 1.6 for a visualization of these

rules.

u v

w

(a)

7

6

11 11

6

u v

w

(b)

7

6

11
7

6
6

Fig. 1.6. An exmaple of the protocol’s execution. The black edges indicate the distances between the nodes with respect to dT .

Red edges denote the overlay’s edges. In this example, v first delegates w to u and then introduces itself to u

Using a potential function, one can show that BUILDMST satisfies convergence and closure, i.e.,

BUILDMST is self-stabilizing:

THEOREM 5.3. Given a weakly connected graph G = (V,E) and a tree metric dT : V 2 → R+.

BUILDMST is self-stabilizing, i.e.:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

(i) BUILDMST eventually transforms G into a minimum spanning tree after O(n2) rounds (Conver-

gence) and

(ii) if the explicit edges in G already form a minimum spanning tree, then they are preserved at any point

in time (Closure).

The proof works similar to the one for the line metric: Let Gs be the directed graph containing all

explicit and implicit edges when the system is in state s. Then we define the potential of Gs to be the

weight of the minimum spanning tree that can be constructed from all edges in Gs when ignoring their

direction. It can be shown that this potential decreases monotonically throughout time. As the weight

of the (globally) optimal minimum spanning tree, i.e., the minimum spanning tree that considers all

possible edges between nodes, is a lower bound for the potential function, it is clear that the potential

cannot decrease indefinitely.

5.5. Euclidean Metrics

Instead of identifying processes via their identifier, we identify processes v via their geographical posi-

tion in this section, i.e., v = (vx, vy) ∈ R2. We first define the Delaunay graph:

Definition 5.4. The Delaunay graph G = (V,E) consists of nodes V ∈ R2 and edges E, where (v, w) ∈

E if there exists a circle C through v and w such that no other node is within C.

Note that if (v, w) ∈ E, then other nodes are allowed to lie on the border of the circle C going through

v and w (see Figure 1.7).

Denote the Euclidean distance between v and w by ||v, w|| =
√

(vx − wx)2 + (vy − wy)2. One can

easily verify that the Euclidean distance is a metric. The underlying metric for the Delaunay graph is

the Delaunay triangulation, which is an approximation of the Euclidean metric with the advantage of

being locally checkable. In more details, the length of any shortest path between any two nodes u, v ∈ V

in the Delaunay graph is at most 1.998 · ||u, v|| as it has been shown in [61].

Each node u has a variable u.N ⊆ V that consists of u’s current neighbors. Similar to BUILDLIST,

BUILDDELAUNAY consists of two actions TIMEOUT and INTRODUCE, where TIMEOUT is executed pe-

riodically at each node and INTRODUCE can be called locally or remotely. INTRODUCE is used in the

same manner as LINEARIZE in BUILDLIST, i.e., we use INTRODUCE to forward nodes in the Delaunay

graph until they reach their correct neighbor.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

u

v

u

v

(a) (b)

Fig. 1.7. (a) Example scenario, where (u, v) 6∈ E due to the fact that any cycle going through u and v contains at least one of

the two inner nodes inside of it. (b) Scenario where (u, v) ∈ E.

In TIMEOUT node u performs the following three actions:

(i) u checks for each of its neighbors v ∈ u.N , if (u, v) belongs to the Delaunay graph from u’s local point

of view, i.e., if there exists a circle C going through u and v that does not contain any other node out

of u.N . If not, then u removes v from u.N and locally calls INTRODUCE(v).

(ii) u introduces itself to its neighbors in u.N by calling INTRODUCE(u) on them.

(iii) Let v1, . . . , vk ∈ N be u’s neighbors ordered in clockwise direction. Node u introduces vi to vi+1 and

vice versa, if the angle ^viuvi+1 is smaller 180 ◦.

Consider Figure 1.8(a) for a visualization of the actions (ii) and (iii) of TIMEOUT.

Upon receipt of an INTRODUCE(v) message, node u does the following: It first checks whether the

edge (u, v) is contained in the Delaunay graph with node set u.N ∪{u, v} and adds v to u.N if that is the

case. If not, then u determines a node out of u.N to forward v to in the following way: u first determines

the nodes w,w′ ∈ u.N with minimal angle to v in clockwise direction and counterclockwise direction

respectively (see Figure 1.8(b)). Then u forwards v to the node w′′ ∈ {w,w′} that minimizes ||w′′, v|| by

calling INTRODUCE(v) on w′′.

One can show that BUILDDELAUNAY satisfies convergence and closure, i.e., BUILDDELAUNAY is

self-stabilizing:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

u

v

w

u

w

w‘

v

(a) (b)

Fig. 1.8. (a) Visualization of the actions (ii) and (iii) of TIMEOUT. Observe that u does not introduce v and w to each other,

as the angle ^vuw > 180 ◦. (b) Example for node u determining the node w ∈ u.N to forward v to. The implicit edge (w, v) is

generated as u calls INTRODUCE(v) on w.

THEOREM 5.5. Given a weakly connected graph G = (V,E) with a set of processes V ∈ R2. BUILD-

DELAUNAY is self-stabilizing, i.e.,

(i) BUILDDELAUNAY eventually transforms G into a Delaunay graph after O(n3) rounds (Convergence)

and

(ii) if the explicit edges in G already form a Delaunay graph, then they are preserved at any point in time

(Closure).

To show convergence, one can use a potential function. Observe that an implicit edge (u, v) is either

transformed into an explicit edge at u, or is forwarded to a node w ∈ u.N such that the edge gets

shorted w.r.t. the Euclidean distance. Now consider the potential Φ that counts the number of nodes

w 6∈ u.N that should be contained in u.N in legitimate states. One can show that Φ monotonically

decreases until Φ = 0, which yields convergence.

Closure can be shown by arguing that each implicit edge is being merged with an explicit one in

legitimate states, because an implicit edge cannot be transformed into an explicit edge that does not

belong to the Delaunay graph.

BUILDDELAUNAY can be applied in higher-dimensional scenarios as well, i.e., in a d-dimensional

scenario we consider balls of dimension d instead of two-dimensional circles.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

A protocol for self-stabilizing quadtrees has been proposed in [15]. The protocol makes use of a space-

filling curve to obtain an ordering ≺ of all processes. Given this ordering ≺, we can apply BUILDLIST to

let all processes form a sorted list. Using the established list edges, we use a probing approach similar

to the one presented in Section 4.2 to generate additional edges that guarantee that the diameter of

the quadtree is O(log n), given that Euclidean distance between any two processes is large enough.

Same as for the Delaunay graph, the protocol can be generalized to higher dimensions, such that self-

stabilizing octtrees can be realized.

6. SELF-STABILIZING EXPANDERS

A most attractive family of networks are networks based on expander graph topologies. Expander

graphs are sparse graphs with strong connectivity properties that protect the network from discon-

necting when nodes shut down. More formally, if k nodes got shut down (for example by an adversarial

attack), then at most O(k) nodes get disconnected from the network. Expander graphs are known to

enable efficient communication at low cost, and can be highly scalable. They hence come with many ap-

plications, from overlays [2] to datacenter interconnects [60]. In the following, we review the design of

a self-stabilizing network based on skip graphs. Subsequently, we discuss the design of self-stabilizing

random graphs. We conclude by discussing a powerful and general framework to design self-stabilizing

networks.

6.1. Self-Stabilizing Skip Graphs

The first self-stabilizing and scalable overlay network was SKIP+ [25], a self-stabilizing variant of

the skip graph family [2; 23]. Similarly to the original skip graphs, SKIP+ features a polylogarithmic

degree and diameter. However, in constrast to the original skip graph versions, SKIP+ contains addi-

tional edges which enable local detectability: only with these edges it can be ensured that at least one

node will always notice, locally, if the overall network is not in the desired state yet.

SKIP+ distinguishes between stable edges and temporary edges. Similarly to the linearization ex-

ample above, temporary edges will travel through the topology (i.e., they are forwarded), and eventu-

ally merge or stabilize. Node v considers an edge (v, w) to be temporary if from v’s point of view (v, w)

does not belong to SKIP+ and so v will try to forward it to some of its neighbors for which the edge

would be more relevant. If on the other hand (v, w) belongs to SKIP+ from v’s point of view, then v

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

considers (v, w) to be a stable edge and will make sure that the connection is bidirected, i.e., it will

propose (w, v) to w.

As many self-stabilizing algorithms, the self-stabilizing protocol for SKIP+ is very simple: the nodes

in SKIP+ continuously must execute three rules.

(1) Rule 1: Create Reverse Edges and Introduce Stable Edges. This rule makes sure that a di-

rected edge becomes a bidirected edge, introducing the nodes to each other. Also, stable edges are

created where needed.

(2) Rule 2: Forward Temporary Edges. This rule is used for forwarding temporary edges to neigh-

boring nodes. Eventually, the edges will stabilize or merge.

(3) Rule 3: Introduce All and Linearize. The rule has two parts. It performs some kind of local

transitive closure, where nodes introduce all their neighbors to each other. Moreover, the rule is

responsible for sorting neighboring nodes according to their identifiers. (In a skip graph, nodes are

ordered on each level, facilitating search operations.)

The three rules are continuously checked and executed in parallel by all nodes. However, while the

algorithm itself is simple, its analysis is non-trivial. In a nutshell, the stabilization proof is based on the

observation that the execution of the algorithm can be divided into phases in which certain properties

(milestones) are achieved. In particular, the execution can be thought of being divided into a bottom-up

and a top-down phase. The bottom-up phase (i.e., from skip graph level 0 upwards), connected com-

ponents for increasingly larger prefixes are formed in the identifier space. This will be accomplished

by Rule 1 (where new nodes in the range of a node are discovered and where ranges may be refined)

and Rule 3 (where an efficient variation of a local transitive closure is performed). Once the connected

components are formed, in the second phase of the algorithm (the division into phases is a purely an-

alytical one) will form a sorted list out of each prefix component. This is accomplished in a top-down

fashion by merging the two already sorted subcomponents into a sorted larger component until all

nodes in the bottom level form a sorted list.

Jacob et al. [25] show the following result.

THEOREM 6.1. SKIP+ is self-stabilizing, i.e.,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

(i) SKIP+ transforms any weakly connected graph G = (V,E) into a skip graph after O(log2 n) rounds

(Convergence) and

(ii) if the explicit edges in G already form a skip graph, then they are preserved at any point in time

(Closure).

A single join event (i.e., a new node connects to an arbitrary node in the system) or leave event (i.e., a

node just leaves without prior notice) can be handled with polylogarithmic work.

An improved version of the self-stabilizing SKIP+ graph is HSKIP+ [17] which reduces the stabiliza-

tion time in practice and needs less work for single join or leave events.

6.2. Self-Stabilizing Random Graphs

Another attractive family of overlay topologies are random graphs. Random graphs are known to en-

able efficient communication, and are also used in other contexts, such as datacenter networks [58] and

also serve as models for social networks and in particular small-world networks [29]. A self-stabilizing

small-world network has been proposed in [30]. The topology consist of a sorted ring with additional

shortcuts, i.e., each node has a long-range link to a random node in the system.2 Similar to the probing

approach for the linearized de Bruijn graph, in this algorithm, each node periodically sends out probes

to ensure that the network is connected through non-long-range links. Long-range links are main-

tained through a technique called Move and Forget adapted from [11]: As time proceeds, a node v may

forget its long-range link with a certain probability that is increasing over time. Node v periodically

asks its long-range link v.lrl for its direct ring neighbors l and r. Once v forgets the long-range link, it

sets v.lrl to either l or r, each with probability 1/2.

A special technique to let a topology converge to some random graph that is an expander has been

proposed in [39; 40]. Expander graphs can be constructed by a series of edge flips in regular undi-

rected graphs. The authors introduce the k-Flipper transformation rule, which considers a given path

of length k + 2 and interchanges the end vertices of the path. It can be shown that the continuous

use of the 1-Flipper transformation on a d-regular graph G0 constructs all connected d-regular graphs

with the same probability. For d ∈ ω(1) a random connected d-regular graph is a Θ(d)-expander graph

asymptotically almost surely, i.e., with probability p ≥ 1− o(1).

2Note that depending on the probability distribution of these long-range links, the random graph may or may not be an expander.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

A generalization of the 1-Flipper rule achieves the following result, which informally states that

within a polynomial number of edge flips one is able to construct a random d-regular connected graph

that is a Θ(d)-expander.

THEOREM 6.2 ([39]). If we choose d ∈ Ω(log n) applying O(dn) random Θ(d2n2 log 1/ε)-Flipper oper-

ations transforms any given d-regular connected graph into a connected d-regular graph with expansion

Θ(d) with high probability.

A different rule called “Flip” for edge flipping has been introduced in [27]: one such operation replaces

the edges (i, j) and (k, l) by edges (i, k) and (j, l), if and only if i and l are adjacent to each other.

Starting from a connected graph, it has been shown that this Flip operation defines a Markov chain on

all connected graphs, i.e., we can construct any connected graph G′ when starting with the connected

graph G by a series of Flip operations. Finally, it has been shown in [14] that the Flip Markov chain is

rapidly mixing for regular graphs.

6.3. Transitive Closure Framework

A framework to derive self-stabilizing algorithms for any desired topology is the Transitive Closure

Framework (TCF) [9]. The idea of the framework is as follows: Each node periodically receives its 2-

neighborhood and locally checks if it is in a legitimate state. If there exists a node in the network,

for which this is not the case, then it becomes a detector and spreads the event that the system is in

an illegitimate state through the network. This leads to every node eventually becoming a detector.

Detectors expand their neighborhood to eventually contain all nodes in V . Thus the system eventually

reaches a clique. Once the clique has been generated, each node is able to compute its correct set of

neighbors within one round, using the FORWARD primitive to delegate edges not needed by a node

until the edge is merged at some node (recall that we are not allowed to simply delete an edge as

connectivity may be lost this way).

The following bound on the runtime of TCF has been shown in [9]:

THEOREM 6.3 ([9]). The Transitive Closure Framework is self-stabilizing, i.e.,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

(i) it transforms any weakly connected graph G = (V,E) into any locally-checkable family of overlay

networks in at most D(n) + log n + 1 rounds, where D(n) is the maximum distance between a non-

detector node and its closest detector (Convergence) and

(ii) if the explicit edges in G already form the desired topology, then they are preserved at any point in

time (Closure).

One may confer that D(n) may become quite large when considering any initial state. However, the

authors of [9] showed for a wide variety of overlay networks that D(n) and the diameter of the net-

work in a legitimate state are asymptotically identical. For example, this leads to a O(log n)-time self-

stabilizing algorithm for the SKIP+ graph, which is optimal, as any self-stabilizing algorithm needs

time of at least the diameter of the network in legitimate states.

Another framework for generating different families of graphs is AVATAR [8], which also has the

advantage that the degree of nodes increases only by a polylogarithmic factor in expectation during

stabilization.

7. OTHER ASPECTS

There are several specific aspects in topological self-stabilization which have received special attention.

For example, besides supporting joins and leaves, overlay networks also need to provide fast search.

Another important aspect is how to support special leave operations, beyond simple crashes. In the

following, we discuss these two aspects in more detail.

7.1. Monotonic Searchability

Consider the sorted list from Section 4.1 and assume a node v wants to send a packet P to the node

with identifier id ∈ N. Before it can do that, v first has to search for the reference of the node with id

t in the sorted list. This is done by v generating a SEARCH(v, id) request that is forwarded along the

list until it terminates, i.e., it either arrives at the desired node, or the underlying routing algorithm

concludes that the request cannot be forwarded anymore. Upon termination the result of the request is

directly sent back to v (this is why the request has to contain v’s reference). A trivial routing algorithm

would be to just forward SEARCH(v, id) at each node u via either u.left or u.right, depending on which

of these node’s ids are closer to id (Algorithm 1).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Algorithm 1 Routing Algorithm for the Sorted List
1: procedure SEARCH(v, sid) . Executed by node u

2: if u.id = sid then

3: “Success”, terminate

4: if u.left < sid < u.id or u.id < sid < u.right then

5: “Failure”, terminate . Guarantees liveness

6: if sid < u.id then

7: u.left← SEARCH(v, sid)

8: else

9: u.right← SEARCH(v, sid)

A desired property for SEARCH requests is to guarantee liveness, i.e., to guarantee that each SEARCH

request eventually terminates. One can easily see that the above algorithm for the sorted list trivially

satisfies liveness. More involved strategies have to be considered if we also want to guarantee safety

properties. Regarding SEARCH requests, monotonic searchability is considered as an important prop-

erty:

Definition 7.1 ([57]). A self-stabilizing protocol satisfies monotonic searchability according to some

routing protocol R, if it holds for any pair of nodes v, w that once a SEARCH(v, w.id) request (that is

routed according to R) initiated at time t succeeds, any SEARCH(v, w.id) request initiated at time t′ > t

will succeed.

Protocols that satisfy monotonic searchability have the advantage to be able to provide guarantees

on SEARCH requests even while the recovery process is going on. Due to the modification of edges by

the self-stabilizing protocol, realizing monotonic searchability is a non-trivial problem: One can see

that the above routing algorithm for the sorted list does not satisfy monotonic searchability. Consider

Figure 1.9 for an example.

Research on monotonic searchability was initated in [56] where the authors came up with a protocol

for the sorted list that satisfies monotonic searchability. The idea is that nodes are allowed to have

multiple left and right neighbors while the system recovers. An edge (u,w) that should be forwarded to

some node v is not directly forwarded but only removed from u’s local storage after v has acknowledged

the implicit edge to w. The authors showed that this extension still leads to the system converging to

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

u w

u.right
Time t:

xv

u w

u.right

Time t‘>t:

xv

Search(u,x.id)

Search(u,x.id)

???

Fig. 1.9. Example illustrating why the trivial routing algorithm for the sorted list fails to guarantee monotonic searchability. At

time t the search request is able to reach the target node x, but this cannot be guaranteed anymore after u performed LINEARIZE

at time t′ > t and the search request arrives at v before the reference of w indicated by the implicit edge (v, w).

a sorted list. Furthermore, when using a appropriate routing protocol, monotonic searchability can be

shown as well.

Research on monotonic searchability culminated in a generic approach that can be applied to a wide

range of self-stabilizing protocols such that monotonic searchability is guaranteed [57]. Along with

a generic search protocol, the approach introduces a new set of primitives for manipulating edges

that allow the safer delegation of edges than the primitives described in Section 3.1, while still being

provably universal. The cost that one pays when applying that protocol is that SEARCH requests may

traverse up to Ω(n) hops until termination when searching for non-existent nodes in the system.

In order to avoid the above costs, one can still ask if there are protocols for specific topologies that

satisfy monotonic searchability. Recently the authors of [38] presented a specialized protocol in order

to guarantee monotonic searchability in the perfect skip graph. The perfect skip graph is the determin-

istic version of the skip graph and has the advantage over the SKIP+ graph that it can be built in a

self-stabilizing manner using a probing approach, without having to rely on additional edges to enable

local checkability.

Last but not least we note that the protocol for the self-stabilizing quadtree from [15] has been

constructed in a way such that monotonic searchability can be guaranteed trivially.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

Whether there are even more efficient topology-specific protocols remains an open problem.

7.2. Node Departures

Another challenging task arises when studying node departures, i.e., when nodes are allowed to leave

the system. In an ideal scenario nodes may just leave the system, as we then rely on the self-stabilizing

protocol to stabilize the system again. This approach however is flawed for two reasons: First, if the

expansion of the topology is not high enough (consider for example the sorted list), then a leaving

node may disconnect the overlay, implying that stabilization to a sorted list is not possible. The second

reason is that even if the expansion of the topology is high, it is still not guaranteed to be high in

illegitimate states, but only in legitimate states. Thus, leaving nodes may still be able to disconnect

the overlay.

In topological self-stabilization, node departures have been first studied in [18], where nodes are

either staying (the process wants to remain in the system) or leaving (the process wants to be excluded

from the system). Leaving nodes are allowed to enter the state exit or sleep. A process that is in

state exit is gone, i.e., it does not execute any actions anymore. If a process is in state sleep, it does

not execute any action until another process invokes an action on it via a message. Processes that are

neither in states exit or sleep are called awake. The challenge is to stabilize the system to a legitimate

state with the following properties:

(i) Every staying process is awake.

(ii) Every leaving process is either in state exit or permanently in state sleep.

(iii) All staying processes form a weakly connected component.

The authors of [18] introduced the following problems:

— Finite Departure Problem (FDP): Eventually reach a legitimate state in case that only the state

exit is available.

— Finite Sleep Problem (FSP): Eventually reach a legitimate state in case that only the state sleep is

available.

An important (negative) result is that the FDP cannot be solved by local control protocols. Instead

one has to make use of oracles:

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

THEOREM 7.2. Any self-stabilizing solution for the FDP has to rely on an oracle.

On the positive side however, the FSP can actually be solved by local control protocols.

Research on node departures culminated in an universal protocol for the FDP [33] that can be

applied to a wide range of self-stabilizing protocols. As already mentioned above, this is of great im-

portance even if the expansion of the topology in legitimate states is high.

Recently it has been shown that when considering a new interconnection model based on relays, the

FDP can be solved even without relying on an oracle [55].

8. CONCLUSION AND OPEN QUESTIONS

This paper presented an overview of the state-of-the-art techniques to design self-stabilizing over-

lay networks: overlays which are highly fault-tolerant in the sense that they reconfigure to reach a

desirable state, in a distributed manner, from arbitrary initial states. In particular, we proceeded in a

bottom-up manner, starting with basic connectivity primitives, then studying algorithms for the funda-

mental linearization problem, moving to more general geometric graphs, and finally reaching scalable

networks based on skip graphs and random graphs.

While today we have a fairly good understanding of the design of algorithms for self-stabilizing

networks, a number of important problems remain open. In the following, we discuss some of them.

— Upper and Lower Bounds on Work: The main focus in existing literature on the design of self-

stabilizing topologies is on the feasibility and correctness of distributed algorithms. While we have

presented some results on the runtime of self-stabilizing algorithms in this paper, particularly lit-

tle is known today (with some exceptions [25],[31]) about the work required for topological self-

stabilization. Results on upper and lower bounds on the work of self-stabilizing algorithms for dif-

ferent overlay topologies, will be very interesting.

— Transient Behavior: We also lack a good understanding of the achievable transient properties,

during convergence. For example, while self-stabilizing networks such as SKIP+ are scalable in

the sense that they rely on graphs providing a polylogarithmic degree and diameter, scalability

may not be ensured during convergence: during convergence, the degree of a node may temporarily

raise significantly, far beyond the maximum initial or final node degree. A major open question

hence regards the design of algorithms which also provide scalability during convergence. To give

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

another example, consider the diameter: it may be desirable that the diameter never significantly

increases during convergence. At the same time, we also note that for some specific problems, such as

linearization, achieving, e.g., convergence without increasing degrees, is simple, and an interesting

avenue for future research is to investigate to which extent such results can be generalized.

— Locality: While a self-stabilizing algorithm by definition will re-establish a desired property from

any initial configuration, it is desirable that the parallel convergence time as well as the overall work

is proportional to “how far” the initial topology is from the desired one. We currently lack a general

theoretical understanding of what can and cannot be achieved in terms of such local properties. We

also lack a deep understanding of how the “distance” between initial and desired topology can be

defined generally; it may also depend on the application.

— Churn Tolerance: We currently lack insights into the rate of joins and leaves an overlay network

can tolerate. Indeed, while there exists work on overlays which are “churn-tolerant” [34; 49; 21], this

line of research has been largely independent of research on self-stabilizing algorithms. Bringing

these two fields together may lead to very interesting and relevant research insights.

REFERENCES

[1] Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construction of overlay networks. In Proceed-

ings of the seventeenth annual ACM symposium on Parallelism in algorithms and architectures, pages 145–154. ACM,

2005.

[2] James Aspnes and Gauri Shah. Skip graphs. Acm transactions on algorithms (talg), 3(4):37, 2007.

[3] James Aspnes and Yinghua Wu. O (logn)-time overlay network construction from graphs with out-degree 1. In International

Conference On Principles Of Distributed Systems, pages 286–300. Springer, 2007.

[4] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust dht. Theory of Computing Systems, 45(2):234–

260, 2009.

[5] Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast as static networks. In Proc. 29th Annual Symposium

on Foundations of Computer Science (FOCS), pages 206–219. IEEE, 1988.

[6] Baruch Awerbuch and George Varghese. Distributed program checking: a paradigm for building self-stabilizing distributed

protocols. In Proceedings 32nd Annual Symposium of Foundations of Computer Science (FOCS), pages 258–267. IEEE,

1991.

[7] Markus Benter, Mohammad Divband, Sebastian Kniesburges, Andreas Koutsopoulos, and Kalman Graffi. Ca-re-chord:

A churn resistant self-stabilizing chord overlay network. In 2013 Conference on Networked Systems, NetSys 2013,

Stuttgart, Germany, March 11-15, 2013, pages 27–34, 2013.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

[8] Andrew Berns. Avatar: A time- and space-efficient self-stabilizing overlay network. In Stabilization, Safety, and Security of

Distributed Systems - 17th International Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceed-

ings, pages 233–247, 2015.

[9] Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building self-stabilizing overlay networks with the transitive

closure framework. In Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium, SSS

2011, Grenoble, France, October 10-12, 2011. Proceedings, pages 62–76, 2011.

[10] Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid. Renaissance: A self-stabilizing distributed

SDN control plane. In 38th IEEE International Conference on Distributed Computing Systems, ICDCS 2018, Vienna,

Austria, July 2-6, 2018, pages 233–243, 2018.

[11] Augustin Chaintreau, Pierre Fraigniaud, and Emmanuelle Lebhar. Networks become navigable as nodes move and forget.

In Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,

2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pages 133–144, 2008.

[12] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM, 17(11):643–644, 1974.

[13] Shlomi Dolev. Self-stabilization. MIT press, 2000.

[14] Tomás Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on given degree graphs with

application in connectivity of peer-to-peer networks. In 47th Annual IEEE Symposium on Foundations of Computer

Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 69–76, 2006.

[15] Michael Feldmann, Christina Kolb, and Christian Scheideler. Self-stabilizing overlays for high-dimensional monotonic

searchability. In Stabilization, Safety, and Security of Distributed Systems - 20th International Symposium, SSS 2018,

Tokyo, Japan, November 4-7, 2018, Proceedings, pages 16–31, 2018.

[16] Michael Feldmann and Christian Scheideler. A self-stabilizing general de bruijn graph. In Stabilization, Safety, and Security

of Distributed Systems - 19th International Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings,

pages 250–264, 2017.

[17] Matthias Feldotto, Christian Scheideler, and Kalman Graffi. Hskip+: A self-stabilizing overlay network for nodes with het-

erogeneous bandwidths. In 14th IEEE International Conference on Peer-to-Peer Computing, P2P 2014, London, United

Kingdom, September 9-11, 2014, Proceedings, pages 1–10, 2014.

[18] Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko, Christian Scheideler, and Thim Strothmann. On stabiliz-

ing departures in overlay networks. In Stabilization, Safety, and Security of Distributed Systems - 16th International

Symposium, SSS 2014, Paderborn, Germany, September 28 - October 1, 2014. Proceedings, pages 48–62, 2014.

[19] Dominik Gall, Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. A note on the parallel

runtime of self-stabilizing graph linearization. Theory Comput. Syst., 55(1):110–135, 2014.

[20] Robert Gmyr, Jonas Lefèvre, and Christian Scheideler. Self-stabilizing metric graphs. Theory Comput. Syst., 63(2):177–199,

2019.

[21] P. Brighten Godfrey, Scott Shenker, and Ion Stoica. Minimizing churn in distributed systems. SIGCOMM Comput. Commun.

Rev., 36(4):147–158, August 2006.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

[22] Thorsten Götte, Christian Scheideler, and Alexander Setzer. On underlay-aware self-stabilizing overlay networks. In Stabi-

lization, Safety, and Security of Distributed Systems - 20th International Symposium, SSS 2018, Tokyo, Japan, November

4-7, 2018, Proceedings, pages 50–64, 2018.

[23] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skipnet: A scalable overlay

network with practical locality properties. In Proceedings of the 4th Conference on USENIX Symposium on Internet

Technologies and Systems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003. USENIX Association.

[24] Cheng Huang, Angela Wang, Jin Li, and Keith W Ross. Understanding hybrid cdn-p2p: why limelight needs its own red

swoosh. In Proc. 18th International Workshop on Network and Operating Systems Support for Digital Audio and Video,

pages 75–80. ACM, 2008.

[25] Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. Skip+: A self-stabilizing skip graph.

J. ACM, 61(6):36:1–36:26, 2014.

[26] Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. Towards higher-dimensional topological self-

stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci., 457:137–148, 2012.

[27] Thomas Janson, Peter Mahlmann, and Christian Schindelhauer. A self-stabilizing locality-aware peer-to-peer network com-

bining random networks, search trees, and dhts. In 16th IEEE International Conference on Parallel and Distributed

Systems, ICPADS 2010, Shanghai, China, December 8-10, 2010, pages 123–130, 2010.

[28] M Frans Kaashoek and David R Karger. Koorde: A simple degree-optimal distributed hash table. In International Workshop

on Peer-to-Peer Systems, pages 98–107. Springer, 2003.

[29] Jon M Kleinberg. Navigation in a small world. Nature, 406(6798):845, 2000.

[30] Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. A self-stabilization process for small-world net-

works. In 26th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China,

May 21-25, 2012, pages 1261–1271, 2012.

[31] Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. A deterministic worst-case message complexity

optimal solution for resource discovery. In Structural Information and Communication Complexity - 20th International

Colloquium, SIROCCO 2013, Ischia, Italy, July 1-3, 2013, Revised Selected Papers, pages 165–176, 2013.

[32] Sebastian Kniesburges, Andreas Koutsopoulos, and Christian Scheideler. Re-chord: A self-stabilizing chord overlay network.

Theory Comput. Syst., 55(3):591–612, 2014.

[33] Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann. Towards a universal approach for the finite departure

problem in overlay networks. In Stabilization, Safety, and Security of Distributed Systems - 17th International Sympo-

sium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings, pages 201–216, 2015.

[34] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A self-repairing peer-to-peer system resilient to dynamic adversarial

churn. In International Workshop on Peer-to-Peer Systems, pages 13–23. Springer, 2005.

[35] Leslie Lamport. Solved problems, unsolved problems and non-problems in concurrency. ACM SIGOPS Operating Systems

Review, 19(4):34–44, 1985.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

[36] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local algorithms: Self-stabilization on speed. In Symposium on

Self-Stabilizing Systems, pages 17–34. Springer, 2009.

[37] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, Steven Lim, et al. A survey and comparison of peer-to-peer

overlay network schemes. IEEE Communications Surveys and tutorials, 7(1-4):72–93, 2005.

[38] Linghui Luo, Christian Scheideler, and Thim Strothmann. MULTISKIPGRAPH: A self-stabilizing overlay network that

maintains monotonic searchability. In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS

2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 845–854, 2019.

[39] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer networks based on random transformations of connected regular

undirected graphs. In SPAA 2005: Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and

Architectures, July 18-20, 2005, Las Vegas, Nevada, USA, pages 155–164, 2005.

[40] Peter Mahlmann and Christian Schindelhauer. Distributed random digraph transformations for peer-to-peer networks. In

SPAA 2006: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Cam-

bridge, Massachusetts, USA, July 30 - August 2, 2006, pages 308–317, 2006.

[41] Peter Mahlmann and Christian Schindelhauer. Peer-to-peer-netzwerke: Algorithmen und Methoden. Springer-Verlag, 2007.

[42] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based on the xor metric. In Interna-

tional Workshop on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[43] Moni Naor and Udi Wieder. Novel architectures for P2P applications: the continuous-discrete approach. In SPAA 2003:

Proceedings of the Fifteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, June 7-9, 2003,

San Diego, California, USA (part of FCRC 2003), pages 50–59, 2003.

[44] Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler. Corona: A stabilizing deterministic message-passing skip

list. Theor. Comput. Sci., 512:119–129, 2013.

[45] Melih Onus, Andrea Richa, and Christian Scheideler. Linearization: Locally self-stabilizing sorting in graphs. In Proceedings

of the Meeting on Algorithm Engineering & Expermiments, pages 99–108, Philadelphia, PA, USA, 2007. Society for

Industrial and Applied Mathematics.

[46] Radia J. Perlman. An algorithm for distributed computation of a spanningtree in an extended LAN. In SIGCOMM ’85,

Proceedings of the Ninth Symposium on Data Communications, British Columbia, Canada, September 10-12, 1985,

pages 44–53, 1985.

[47] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant payments. See https://lightning.

network/lightning-network-paper.pdf , 2016.

[48] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott Shenker. A scalable content-addressable net-

work. In Proceedings of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communication, August 27-31, 2001, San Diego, CA, USA, pages 161–172, 2001.

[49] Sean Rhea, Dennis Geels, Timothy Roscoe, John Kubiatowicz, et al. Handling churn in a dht. In Proceedings of the USENIX

Annual Technical Conference, volume 6, pages 127–140. Boston, MA, USA, 2004.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

[50] Andréa W. Richa and Christian Scheideler. Overlay networks for peer-to-peer networks. In Handbook of Approximation

Algorithms and Metaheuristics, Second Edition, Volume 2: Contemporary and Emerging Applications. 2018.

[51] Andréa W. Richa, Christian Scheideler, and Phillip Stevens. Self-stabilizing de bruijn networks. In Stabilization, Safety,

and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011.

Proceedings, pages 416–430, 2011.

[52] Christina Rickmann, Christoph Wagner, Uwe Nestmann, and Stefan Schmid. Topological self-stabilization with name-

passing process calculi. In 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,

Québec City, Canada, pages 19:1–19:15, 2016.

[53] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer

systems. In IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing,

pages 329–350. Springer, 2001.

[54] Christian Scheideler. How to spread adversarial nodes?: rotate! In Proceedings of the thirty-seventh annual ACM symposium

on Theory of computing, pages 704–713. ACM, 2005.

[55] Christian Scheideler and Alexander Setzer. Relays: A new approach for the finite departure problem in overlay networks.

In Stabilization, Safety, and Security of Distributed Systems - 20th International Symposium, SSS 2018, Tokyo, Japan,

November 4-7, 2018, Proceedings, pages 239–253, 2018.

[56] Christian Scheideler, Alexander Setzer, and Thim Strothmann. Towards establishing monotonic searchability in self-

stabilizing data structures. In 19th International Conference on Principles of Distributed Systems, OPODIS 2015, De-

cember 14-17, 2015, Rennes, France, pages 24:1–24:17, 2015.

[57] Christian Scheideler, Alexander Setzer, and Thim Strothmann. Towards a universal approach for monotonic searchability in

self-stabilizing overlay networks. In Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,

September 27-29, 2016. Proceedings, pages 71–84, 2016.

[58] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P Brighten Godfrey. Jellyfish: Networking data centers randomly. In Presented

as part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), pages 225–

238, 2012.

[59] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan.

Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking (TON),

11(1):17–32, 2003.

[60] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander: Towards optimal-performance datacenters.

In Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies, pages

205–219. ACM, 2016.

[61] Ge Xia. The stretch factor of the delaunay triangulation is less than 1.998. SIAM J. Comput., 42(4):1620–1659, 2013.

[62] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and John D Kubiatowicz. Tapestry: A resilient

global-scale overlay for service deployment. IEEE Journal on selected areas in communications, 22(1):41–53, 2004.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

