
Domain Specific Language for Smart Contract
Development

Maximilian Wöhrer, Uwe Zdun
Faculty of Computer Science, Research Group Software Architecture

University of Vienna, Vienna, Austria
{maximilian.woehrer,uwe.zdun}@univie.ac.at

Abstract—The notion to digitally articulate, execute, and en-
force agreements with smart contracts has become a feasible
reality today. Smart contracts have the potential to vastly
improve the efficiency and security of traditional contracts
through their self-executing autonomy. To realize smart contracts
several blockchain-based ecosystems exist. Today a prominent
representative is Ethereum. Its programming language Solidity
is used to capture and express contractual clauses in the form
of code. However, due to the conceptual discrepancy between
contractual clauses and corresponding code, it is hard for domain
stakeholders to easily understand contracts, and for developers
to write code efficiently without errors. Our research addresses
these issues by the design and study of a domain-specific smart
contract language based on higher level of abstraction that can be
automatically transformed to an implementation. In particular,
we propose a clause grammar close to natural language, helpful
coding abstractions, and the automatic integration of commonly
occurring design patterns during code generation. Through these
measures, our approach can reduce the design complexity leading
to an increased comprehensibility and reduced error suscep-
tibility. Several implementations of exemplary smart contract
scenarios, mostly taken from the Solidity documentation, are used
to demonstrate the applicability of our approach.

I. INTRODUCTION

A contract is a “promise or a set of promises, for the breach
of which the law gives a remedy, or the performance of which
the law in some way recognizes as a duty” [1]. Contracts
are common in almost every facet of the business world.
Like in many other areas, the trend towards digitization has
also taken hold in this field and led to the concept of smart
contracts [2], [3]. Smart contracts are a means to digitally
facilitate, verify, and enforce the negotiation or execution of
contracts and “represent a new era of contracting” [4]. This
evolution is grounded on several technological advancements
and transformations. Blockchain technology, with its under-
lying consensus mechanism (implemented through different
protocols), allows various parties to reach agreements without
requiring any trusted participants among them. This feature
paved the way for a decentralized exchange of digital assets
(cryptocurrencies), and the subsequent inclusion of general
scripting languages enabled the evolution towards distributed
computing platforms. Both features, the build-in exchange
of digital assets (as a means of payment) and the dispersed
code execution (supporting distributed applications), are the
prerequisites for an ecosystem that makes the notion of

smart contracts feasible. Today’s predominant ecosystem in
this regard is Ethereum [5], a blockchain based distributed
computing platform, that allows to formulate smart contracts
in the platform’s leading programming language Solidity.

The formalization of contracts in a machine-readable and
executable form is a challenging task. Mapping the broad
articulation space of contracts written in natural language to
a conclusive and unambiguous digital representation requires
a formalization approach to deduce a proper digital mani-
festation. In the context of Ethereum, this means translat-
ing contract statements from natural (legalese) language into
equivalent Solidity code. There is therefore a high likelihood
of translation loss. To make matters worse, the blockchain
runtime environment and missing high-level abstractions com-
plicate writing correct and secure smart contracts for Ethereum
and other blockchain technologies even further.

Our work investigates how productivity can be increased in
smart contract development and how to address the aforemen-
tioned issues with a domain specific language for smart con-
tract formulation called Contract Modeling Language (CML).
A domain specific language (DSL) is a programming language
of limited expressiveness focused on a particular domain [6].
When used properly DSLs can improve productivity by simpli-
fying complex code, promoting communication between do-
main stakeholders, and eliminating development bottlenecks.

The objective of CML is to investigate how unstructured
legal contracts can be uniformly modeled and specified (cov-
ering a variety of common contract situations) in order to
improve their interpretation and the automatic generation
of smart contract implementations. In particular we focus
on a declarative and imperative formalization, since we are
interested in the conceptual representation of contracts in a
programming language. In this context our work seeks to
address the following research questions (RQs):
RQ1 How and in how far is it possible to bring the abstraction

level of smart contracts closer to the contract domain?
RQ2 Can higher abstraction levels in combination with code

generation (considering platform-specific programming
idioms) reduce the risk of smart contract errors?

The paper is organised in the following way: First, we pro-
vide a short background on contracts and their building blocks
in Section II and our research methodology in Section III.
Then, we present our domain specific language in Section IV,
before we illustrate its practicality in Section V, and evaluate978-1-7281-6680-3/20/$31.00 © 2020 IEEE

and discuss our findings in Sections VI and VII respectively.
Finally, we compare to related work in Section VIII, and then
draw conclusions in Section IX.

II. BACKGROUND

Although contracts cover a wide range of subject areas, most
will share many common features, as exemplified by the sale
of goods contract excerpt in Fig. 1. Regarding their form, con-
tracts usually build on structuring techniques such as sectional
delimitation and paragraph division. Typically contracts are
split into articles, sections, subsections and paragraphs which
are numbered to support referencing and grouping of particular
provisions. This organization can be interpreted as macro and
micro structure that eases the legibility and comprehensibility
of contracts.

Regardless of the subject matter and contract type, contracts
share basic building blocks that serve the same function in
all contracts [7]. First, there are (A) definitions which isolate
and specify important key terms and concepts that are usually
repeated in the agreement. Definitions make the contract more
consistent and easier to read as unnecessary repetitions are
avoided (e.g., §1.). Second, there are (B) covenants, which are
promises made by a party to undertake or refrain from certain
actions in the future (e.g., §3. to §5. and §7.). These are the
most important provisions of any contract and constitute the
obligations of the involved parties to certain performances.
Covenants are typically reciprocal, e.g., one party is obligated
to pay, while the other is obligated to perform. Covenants
are often scattered throughout the contract and are organized
by subject matter (e.g., payment obligations, performance
obligations). A party’s failure to satisfy covenants typically
entitles the other party to certain remedies. Third, there are
(C) representations and warranties, which are statements of
fact made by the parties to each other as of a particular point
in time (e.g., §9., §10.). These statements assert the truth
about assumptions that are important for the decision to enter
the contract and are implicitly coupled with indemnification
obligations when untruthful. Fourth, there are (D) conditions,
which specify certain requirements that must exist so that a
party is obligated to perform under the contract (e.g., §8.).
Theses conditions can be classified by type into conditions
precedent and conditions subsequent. Conditions precedent
specify the events that must occur to start one’s duties to
perform under the contract, likewise conditions subsequent
specify the events that must occur to end one’s duties to per-
form under the contract. Table I gives an overview of essential
building blocks regarded important for contract construction.

III. RESEARCH METHODOLOGY

Our approach to design a DSL is guided by the design
science methodology where “knowledge and understanding
of a problem domain and its solution are achieved in the
building and application of the designed artifact” [8]. In
particular, we employed an approach described by Wieringa
[9], where the design process iterates multiple times over two
activities: first designing an artifact that improves something

CONTRACT FOR THE SALE OF GOODS
Paragraph 1. [], hereinafter referred to as Seller, and [], hereinafter referred to as
Buyer, hereby agree on this [] day of [], in the year [], to the following terms.

A. Identities of the Parties
Paragraph 2. Seller, whose business address is [], in the city of [], state of [], is
in the business of []. Buyer, whose business address is [], in the city of [], state of
[], is in the business of [].

B. Description of the Goods
Paragraph 3. Seller agrees to transfer and deliver to Buyer, on or before 2019-09-01,
the following goods: 1 x production line machinery at the price of $7,500.

C. Buyer’s Rights and Obligations
Paragraph 4. Buyer agrees to accept the goods and pay for them according to the terms
further set out below.
Paragraph 5. Buyer agrees to pay for the goods half upon receipt, with the remainder
due within 30 days of delivery. If Buyer fails to pay second half within 30 days, an
additional fine of 10% has to be paid within 14 days.
Paragraph 6. Goods are deemed received by Buyer upon delivery to Buyer’s address
as set forth above.
Paragraph 7. Buyer has the right to examine the goods upon receipt and has 14 days
in which to notify seller of any claim for damages based on the condition, grade, or
quality of the goods.
Paragraph 8. The Buyer’s obligation to complete the purchase of the goods is subject
to the Buyer obtaining a financing commitment of at least $5,000.

D. Seller’s Obligations
Paragraph 9. Until received by Buyer, all risk of loss to the above-described goods is
borne by Seller.
Paragraph 10. Seller warrants that the goods are free from any and all security interests,
liens, and encumbrances.

Fig. 1. An exemplary contract for the sale of goods.

TABLE I
BASIC CONTRACTUAL BUILDING BLOCKS

Covenant Representation Warranty Condition

is a promise statement statement or promise statement

of action or inaction fact fact or condition condition

applies to future past or present present and future future

purpose
define activities
that will (not)
be carried out

make assurances
to induce parties
to enter contract

assure that
facts and conditions

are/will be true

define conditions
affecting the party’s

contractual duty

for stakeholders (design cycle) and subsequently empirically
investigating the performance of that artifact in its context
(empirical cycle). Our focus was on the design cycles, where
an improvement problem is investigated, alternative treatment
designs are generated and validated, a design is selected
and implemented, and experience with the implementation
is evaluated. In our context, this meant to investigate smart
contract implementation issues, to come up with possible
abstract language constructs, implement these constructs in a
DSL development framework, and subsequently evaluate and
asses the suitability of the implementation. For the empirical
cycles, we performed an analysis of multiple scenario cases to
evaluate the improvements in the design cycles (Section VI).

IV. CONTRACT MODELING LANGUAGE (CML)

CML is a high-level DSL using object-oriented abstractions
for implementing smart contracts. It is designed with several
intentions in mind. First, it should allow for the specification
of common relevant contractual elements. Second, it should be
easy to read and understand through a clause grammar close
to natural language that resembles real-world contracts. Third,
it should improve productivity and simplify complex code.
Fourth, the defined contract logic should serve as basis for

code generation, backed possibly by a variety of distributed
ledger technologies. Regarding the last intention, for proof-of-
concept, we focus on the generation of Solidity code, being
the predominant language for smart contracts today.

The CML language is developed in Xtext [10], a framework
for the development of programming languages and DSLs. For
reproducibility of our research, the CML language implemen-
tation source code is available on GitHub [11]. Further a CML
web editor [12] for demonstration purposes exists.

A. Language Characteristics

The basic structure of a CML contract is similar to a class in
object orientation. It consists of state variables and functions
(actions), which read and modify these. In addition, a contract
contains clauses, which mimic and capture covenants in a
standardized way, close to natural language syntax. These
indicate the context under which the actions are to be called,
meaning they combine different aspects that influence action
execution. In its most simplistic form a clause specifies the
obligation or permission of a party to execute a specific action.

B. Type System

The simplest of types are primitive types which describe
the various kinds of atomic values allowed in CML. These in-
clude Boolean, String, Integer, Real, DateTime, and Duration.
The last two types represent the basic temporal concepts of
absolute and relative time, needed to express temporal con-
straints and relationships typically encountered in contracts.
Regarding temporal constrains and their verification in the
context of contracts we refer interested readers to [13]. Beyond
the aforementioned primitives, CML includes predefined and
easily extensible structural composite types that are derived
from literature on smart contract ontologies [14], [15], to em-
body common contract-specific concepts. These include Party,
Asset, Transaction, and Event. Party denotes an individual
or organization with an unique identifier that participates in
a contract. Asset describes a resource (long-lived identifiable
item) with a certain economic value. Transaction is used to
describe a message that is submitted by a party along contract
interaction. Event characterizes anything that happens, being
either important or unusual. In addition, a few special variables
(caller, anyone, now, contractStart, contractEnd) are defined
which are always present and often needed during contract
definition.

C. Clause Structure

CML introduces clauses as syntactical elements which are
based on the covenants discussed in Section II. Covenants
are most relevant for smart contracts, since they enclose the
expected actions to be performed. In view of the dynamics
of the natural language, in which they are represented, their
composition cannot be precisely defined. However, there are
structural components that can be singled out. Most clauses
consist of (at least) three parts: an actor, an action, and a
modality for that action. A very basic covenant reflecting
these components is: “The buyer must pay.” Moreover, other

commonly occurring components can be extracted, which
specify the context of a covenant more precisely, such as
trigger events, conditions, and involved objects. Trigger events
stipulate under which circumstances a clause must be taken
into account and refer to either internal or external events.
Internal events can be controlled by the contract parties
(e.g., satisfied action, fulfilled clause), whereas external events
cannot be controlled by the parties themselves (e.g., price
feed). Clause conditions define time and state restrictions
that must be subsequently met after a trigger event. Involved
objects specify the people, places, things receiving an action or
having an action done to them. Fig. 2 shows a representation
of fundamental covenant clause components discussed in this
paragraph.

Trigger Condition Actor Modality Action Object

Covenant Clause

Fig. 2. Conceptual breakdown of covenant clause components.

Based on the above insights we propose a clause syntax,
illustrated in Fig. 3, for the transformation of covenants.
Each clause has an unique identifier for referencing and must
contain at least an actor, an action, and the deontic modality
of this action (i.e., “may” or “must”). Optional elements
include temporal or general constraints. Temporal constrains
are indicated by the keyword “due” followed by a temporal
precedence statement (i.e., “after” or “before”) and a trigger
expression. The trigger expression refers to an absolute time
or a construct from which an absolute time can be deduced.
This includes the performance of a clause, the execution of an
action, or the occurrence of an external event. Additionally,
the “due” statement can be enriched by a duration statement
(“within”) to further specify the considered time-frame, as well
as a repeat statement (“every”) to model the recurring nature
of a covenant. General constraints can be defined after the
keyword “given” by multiple linked conditions that evaluate
to true or false. These conditions usually refer to the contract
state, conditions regarding the transaction input are handled
within the functions. It is worth noting that the deontic “must”
requires the specification of a terminating temporal constraint
(declared by “within”) to evaluate the fulfillment of a covenant,
since without it, a covenant can always be met in the future.

clause ID
[due [within RT] [every RT from AT to AT] (after|before) TRIGGER]
[given CONDITION]
party ACTOR
(may|must) ACTION {(and|or|xor) ACTION}

Trigger: AT | ClauseTrigger | EventTrigger | ActionTrigger
ClauseTrigger: clause ID (fulfilled|failed)
ActionTrigger: ACTOR did ACTION
EventTrigger: event ID

RT...Relative Time, AT...Absolute Time

Fig. 3. Structure of a CML clause declaration.

D. CML by Example: Simple Open Auction

The application of clause constructs, predefined types, and
type operations is shown by example. Listing 1 contains a
CML contract specification for a simple auction in which
anyone can bid during a bidding period. If the highest bid is
raised, the previously highest bidder gets her bid back. After
the end of the bidding period, the beneficiary can withdraw
the highest bid.
namespace cml.examples

import cml.generator.annotation.solidity.*

@PullPayment
contract SimpleAuction

Integer highestBid
Party currentLeader
Party beneficiary
Duration biddingTime

clause Bid
due within biddingTime after contractStart
party anyone
may bid

clause AuctionEnd
due after contractStart.addDuration(biddingTime)
party beneficiary
may endAuction

action init(Duration _biddingTime, Party _beneficiary)
biddingTime = _biddingTime
beneficiary = _beneficiary

action bid(TokenTransaction t)
ensure(t.amount > highestBid, "There already is a higher bid.")
caller.deposit(t.amount)
if (highestBid != 0)

transfer(currentLeader, highestBid)
currentLeader = caller
highestBid = t.amount

action endAuction()
transfer(beneficiary, highestBid)

Listing 1. CML contract for a simple open auction.

V. SOLIDITY CODE GENERATION

The concrete syntax (grammar) of the CML is defined
in Xtext, which generates the language infrastructure and
derives a corresponding meta-model. Once a CML text input
file is processed, the parser creates an in-memory instance
of that meta-model, called abstract syntax tree (AST). This
representation is then traversed by the generator, which is
written in Xtend, to produce Solidity code that further relies
on static and dynamically created support libraries. These
libraries either contain the implementation of declared CML
type operations, or relate to libraries for secure smart contract
development. Fig. 4 illustrates this process.

CML Program
.cml

Generator
.xtend

Solidity Code
.sol

CML Libraries
.cml

Support Libraries
.sol

Declaration Implementation

Fig. 4. The CML code generation process.

A. CML to Solidity Mapping

Having specified essential domain-specific constructs in
CML through predefined types, we propose a mapping that
allows an automated generation of Solidity contracts. The

conceptual equivalent of CML domain model definitions
(Party, Asset, Transaction) is Solidity’s struct, in which the
entire hierarchy of a given type is assembled. CML functions
and enumerations are mapped to their respective conceptual
equivalents in Solidity. Events that are contained in CML
reflect external events and are mapped to functions in Solidity,
since outside information can only enter the Solidity platform
through interaction (passing data to a method). Regarding the
constraints of clause constructs, these are reflected in a single
function modifier that is added to clause functions and contains
declarative checks that preempt improper execution. Table II
summarizes the proposed CML-Solidity mapping.

To illustrate the mapping process, we are transferring the
simple auction CML contract from Listing 1 to Solidity code
presented in Listing 2. Beyond the generation of functional
contract code, supportive code is generated to evaluate the
execution context, which is required to apply any restrictions
(e.g. time, caller, state) defined in the clause statements.
pragma solidity >=0.4.22 <0.7.0;
pragma experimental ABIEncoderV2;
import "./lib/cml/ConditionalContract.sol";
import "./lib/cml/DateTime.sol";
...

contract SimpleAuction is ConditionalContract, PullPayment {

struct Party {
address payable id;

}

uint highestBid;
Party highestBidder;
Party beneficiary;
uint biddingTime;
uint _contractStart;

constructor(uint _biddingTime, Party memory _beneficiary) public {
biddingTime = _biddingTime;
beneficiary = _beneficiary;
_contractStart = now;

}

function bid() public payable checkAllowed("Bid") {
require(msg.value > highestBid, "There already is a higher bid.");
if (highestBid != 0) {
_asyncTransfer(highestBidder.id , highestBid);

}
highestBidder = Party(msg.sender);
highestBid = msg.value;

}

function endAuction() public checkAllowed("AuctionEnd") {
_asyncTransfer(beneficiary.id , highestBid);

}
...

function clauseAllowed(bytes32 _clauseId) internal returns (bool) {
if (_clauseId == "Bid") {
require(onlyAfter(_contractStart, biddingTime, true), "Function not called

within expected timeframe");
return true;

}
if (_clauseId == "AuctionEnd") {
require(onlyBy(beneficiary.id), "Caller not authorized");
require(onlyAfter(DateTime.addDuration(_contractStart, biddingTime), 0, false

), "Function called too early");
return true;

}
return false;

}

function clauseFulfilledTime(bytes32 _clauseId) internal returns (uint) {
uint max = 0;
if (_clauseId == "Bid" && (callSuccess(this.bid.selector))) {
if (max < callTime(this.bid.selector)) {
max = callTime(this.bid.selector);

}
return max;

}
if (_clauseId == "AuctionEnd" && (callSuccess(this.endAuction.selector))) {
if (max < callTime(this.endAuction.selector)) {
max = callTime(this.endAuction.selector);

}
return max;

}
return max;

}
...

}

Listing 2. Generated Solidity contract from CML defintion in Listing 1.

Support Libraries

CML Domain Model
Transformation

State Variables

Constraint Check

Derived Clause
Constraints

Derived Clause
Constraints

TABLE II
MAPPING OF CML CONSTRUCTS TO SOLIDITY CONSTRUCTS

CML Construct Solidity Construct

Party Struct
Asset Struct
Transaction Struct
Enumeration Enumeration
Event Function
Function Function
Top level function Function with pure/view declaration
Clause constraints Function modifier with conditional checks

B. Code Generation Idioms
1) Design Patterns: Design patterns [16], [17] are a com-

monly used technique to encode design guidelines or best
practices. In previous work [18], [19] we have gathered design
patterns for smart contracts in the Ethereum ecosystem along
with corresponding code building blocks for Solidity, which
can be directly integrated in the automatic code generation
process. This procedure is exemplified with the “Ownership”
and “PullPayment” pattern. The “Ownership” pattern satisfies
a contract has an owner (by default the creator of a contract)
and is used to limit access to sensitive functions to only that
owner. The “PullPayment” pattern is used to mitigate security
risks when sending funds by switching from a push to a pull
payment, meaning that funds must be proactively withdrawn
by the recipient. Listing 3 illustrates the application of patterns
in CML and Listing 4 shows the generated code output.
namespace cml.examples

import cml.generator.annotation.solidity.*

@Ownership @PullPayment
contract BecomeRichest

Party richest
Integer mostSent

clause BecomeRichest
party anyone
may becomeRichest

action Boolean becomeRichest(TokenTransaction t)
caller.deposit(t.amount)
if(t.amount > mostSent)

transfer(richest, token.quantity)
richest = caller
mostSent = t.amount
return true

return false

Listing 3. CML contract with design pattern annotation for the “Ownership”
and “Pullpayment” pattern.

pragma solidity >=0.4.22 <0.7.0;
...

import "./lib/openzeppelin/Ownable.sol";
import "./lib/openzeppelin/PullPayment.sol";
...

contract BecomeRichest is ConditionalContract, Ownable, PullPayment {
...

function becomeRichest() public payable
checkAllowed("BecomeRichest")
returns (bool)

{
if (msg.value > mostSent)
{
_asyncTransfer(richest.id , address(this).balance);
richest = Party(msg.sender);
mostSent = msg.value;
return (true);

}
return (false);

...

}

Listing 4. An excerpt of the generated Solidity contract from Listing 3
utilizing design patterns.

Pattern
Integration

Asynchronous
Payment

2) Avoiding Overflows/Underflows: Signed and unsigned
integers in Solidity are restricted in size to a range of values.
For example, an unsigned 8-bit integer (uint8) may incarnate
values between 0 and 255− (28 − 1). If the result of an
operation is outside of this supportd range an overflow or
underflow occurs and the result is truncated. To illustrate this
behavior, when using 8-bit unsigned integers, 255 + 1 = 0.
This result is more apparent in binary representation, where
1111 11112 + 0000 00012 should result in 1 0000 00002.
However, since only 8 bits are available, the leftmost bit is
lost, resulting in a value of 0000 00002. These overflows can
have serious consequences that one should mitigate against.
One approach is to use require to limit the size of inputs to
a reasonable range, or use a library for secure smart contract
development like OpenZeppelin’s [20] “SafeMath”, to cause a
revert for all overflows. The annotation @SafeMath on top of
a CML contract adheres to the latter approach and automat-
ically replaces all occurrences of arithmetic operations with
equivalent “SafeMath” library calls, as shown in Listings 5
and 6.
namespace cml.examples

import cml.generator.annotation.solidity.*

@SafeMath
contract Counter

Integer counter = 0

clause ChangeCounter
party anyone
may increaseCounter or decreaseCounter

action increaseCounter()
counter = counter + 1

action decreaseCounter()
counter = counter - 1

Listing 5. CML contract with “SafeMath” annotation to indicate that
arithmetic operations should be checked for overflows and underflows.

pragma solidity >=0.4.22 <0.7.0;
...

import "./lib/openzeppelin/SafeMath.sol";
...

contract Counter is ConditionalContract {
...

uint counter = 0;
...

function decreaseCounter() public
checkAllowed("ChangeCounter")

{
counter = SafeMath.sub(counter, 1);

}
...

}

Listing 6. An excerpt of the generated Solidity contract from Listing 5,
containing wrapper calls for safe arithmetic operations.

Safe Arithmetics

3) Fixed Point Arithmetic: Solidity supports integer num-
bers, but decimal numbers are not yet supported. Although it
is possible to declare fixed point number types, they cannot be
assigned to or from. When dealing with decimals on systems
that support only integers, fixed point arithmetic can be used.
This is a technique for performing operations on numbers with
fractional parts using integers. The approach builds on scaling
an integer so that a certain (fixed) number of decimals are
included, e.g. the value 1.23 can be represented as 123 with
a scaling factor of 1/100. In other words, the decimal values
are “normalized” to integer values. Arithmetic operations are
then executed on the underlying integers with the overhead
of taking the scaling factors into account. The approach is

demonstrated in Listings 7 and 8. It should be noted that during
the interaction with the Solidity contract, the input and output
number values are of fixed-point type and require conversion
in respect to the choosen scaling value.
namespace cml.examples

import cml.generator.annotation.solidity.*

def Integer equation()
return 8 / 2 * (2 + 2)

@FixedPointArithmetic(decimals=2)
contract FixedPointArithmetic

clause Clause
party anyone
may calc1 or calc2

action Integer calc1()
return equation() / 2

action Real calc2()
return equation().toReal() * 2.5

Listing 7. CML contract containing arithmetic operations and
“FixedPointArithmetic” annotation.

pragma solidity >=0.4.22 <0.7.0;
...

import "./lib/cml/FPMath.sol";
...

contract FixedPointArithmetic is ConditionalContract {
...

function calc2() public
checkAllowed("Clause")
returns (uint)

{
return (FPMath.fpmul(IntLib.toReal(equation()), 2.5E2, 2));

}
...

function equation() public pure
returns (uint)

{
return (FPMath.fpmul(FPMath.fpdiv(8E2, 2E2, 2), (FPMath.add(2E2, 2E2)), 2));

}
...

}

Listing 8. An excerpt of the generated Solidity contract from Listing 7, with
applied fixed point conversion and fixed point arithmetic wrapper calls.

Fixed Point
Conversion

Fixed Point Arithmetic

4) Type Collections: Solidity supports the concept of arrays
and mappings (dictionaries). Mappings can be seen as hash
tables which are virtually initialized such that every possible
key exists and is mapped to a value whose byte-representation
is all zeros: a type’s default value [21]. This has the drawback
that mappings cannot be directly iterated over since there is
no way to know how many keys exist, because they all exist.
A common pattern is therefore to use an auxiliary array in
combination with mappings to hold the keys that exist.

Collections of values in CML are denoted with [] after a
type declaration and are transformed to a Solidity mapping,
where the type identifier is used as key. Library code is gen-
erated for each collection containing a mapping and keystore
to provide basic editing and iteration functionality for the
collection. Due to missing generics in Solidity, this code must
be dynamically created for each mapping to accommodate
for different types. In order to minimize the operational
complexity of key lookups, a circular linked list is used instead
of an array to track mappings that exist. Key existence is
checked by verifying that a key node has a valid pointer to
the previous and next node, thus iterating all key entries can
be avoided. The usage of a circular linked list has also the
advantage to support collection implementation variations, e.g.
key ordering, a FILO stack, or a FIFO ring buffer. Listings 9
to 11 illustrate the described approach.

namespace cml.examples

asset Asset identified by inventoryNumber
Integer inventoryNumber
Integer aquisitionCost

contract Mapping
Asset[] assets

clause AssetInteraction
party anyone
may addAsset or removeAsset or countAssets or countValuableAssets

action addAsset(Asset a)
if (!assets.contains(a.inventoryNumber))

assets.add(a)

action removeAsset(Integer inventoryNumber)
assets.rmv(inventoryNumber)

action Integer countAssets()
return assets.size()

action Integer countValuableAssets()
var Integer count = 0
for (a in assets)

if (a.aquisitionCost > 100)
count++

return count

Listing 9. CML contract using a collection.

pragma solidity >=0.4.22 <0.7.0;
...

import "./lib/cml/Model.sol";
import "./lib/cml/MapUintAsset.sol";
...

contract Mapping is ConditionalContract {
...

using MapUintAsset for MapUintAsset.Data;
MapUintAsset.Data internal assets;
...

function addAsset(Model.Asset memory a) public
checkAllowed("AssetInteraction")

{
if (!assets.contains(a.inventoryNumber))
{
assets.add(a.inventoryNumber, a);

}
}
...

function countValuableAssets() public
checkAllowed("AssetInteraction")
returns (uint)

{
uint count = 0;
for (uint i = 0; i < assets.size(); i++)
{
Model.Asset storage a = assets.getEntry(i);
if (a.aquisitionCost > 100)
{
count++;

}
}
return (count);

}

Listing 10. An excerpt of the generated Solidity contract from Listing 9.

Library Usage

Streamlined
Type & Operations

Operation Usage

pragma solidity >=0.4.22 <0.7.0;
...

import "./CLLUint.sol";
import "./Model.sol";
...

library MapUintAsset {
...

struct Data {
mapping(uint => Model.Asset) map;
CLLUint.CLL mapIdList;

}
...

using CLLUint for CLLUint.CLL;
...

function size(Data storage self) public view returns (uint) {
return self.mapIdList.sizeOf();

}
...

}

Listing 11. An excerpt of the generated Solidity collection library code.

Mapping Circular Linked List
Key Storage

CLL Library Usage

Provided Operation

VI. EVALUATION

In this section, we provide arguments to support the claim
that our proposed language concepts lead, through a reduction
of complexity, to an increased comprehensibility, and reduced
error susceptibility. For this purpose we compare several
contract use case scenarios (partly taken from the Solidity
documentation) specified in CML with their respective Solidity
implementations generated by our framework.

Solidity is a Turing complete language, which gives ex-
pressiveness and power, but can lead to less comprehensible
code and a more difficult assessment of correctness. As a
general rule, the more expressive a language is, the higher its
complexity, and the more it is prone to include bugs and errors.
In comparison with Solidity, our DSL contains abstraction
much closer to the target domain, with the aim to promote
clarity and comprehensibility.

In our context, to measure the complexity, we follow the
characterization of complexity as detail complexity, defined
by Senge [22] as “the sort of complexity in which there
are many variables.” We relate this definition to measuring
the logical lines of code and syntactic elements (AST nodes)
that are contained in respective representations. The number
of AST nodes is determined for Solidity with the help of
an ANTLR parser [23] (taking into account all “ASTNode”
expressions), whilst for CML it is regarded as the elements
contained in the generated AST (parse tree). Please note that
this is not intended as a precise and generalizable measure-
ment, but rather to give a rough comparison of our approach
compared to contracts encoded directly in Solidity. Looking
at the results, which are summarized in Table III, we can
see that both metrics for the CML representation are always
lower. On average CML performs 840% better in terms of
LLOC and 610% better in terms of syntactic elements. Our
results indicate that, in our examples, evidence for the higher
abstraction level of CML can be found, which leads to lower
complexity and in turn should lead to less susceptibility to
errors.

TABLE III
COMPLEXITY COMPARISON BETWEEN CML REPRESENTATION AND

GENERATED SOLIDITY IMPLEMENTATION

CML Solidity ∆%
Use Case LLOC1 SE2 LLOC SE LLOC SE

Become Richest 18 43 208 502 1056 1067
Purchase 39 116 216 584 454 403

Simple Auction 28 75 402 558 1336 644
Time Lock 27 70 344 475 1174 579

Voting 64 227 485 1655 658 629

AVG 35,2 106,2 331,0 754,8 840,3 610,7

1Logical Lines of Code 2Syntactic Element: AST Node

VII. DISCUSSION

There are several challenges regarding the formalization
of contracts as discussed by Pace and Schneider [24]. A

survey of formal languages for contracts performed by Hvitved
[25] gives an overview of possible approaches. With regard
to contract formalization, one of the main problems is the
succinct, consistent, and sufficient representation of contrac-
tual statements. Finding the right abstractions for frequently
recurring components in legal contracts that are relevant for
the description of smart contracts is crucial. On this basis, a
generic description covering a wide range of contract scenarios
can be worked out. To our best knowledge no literature exists
that deals with the conceptual analysis of relevant components.
It rather seems that each work in the contract formalization
field has its own assumptions about an optimal description.

Our approach of having clause statements, in addition to
the imperative declaration of actions, is based on the idea
of providing an abstract level of description that is closer to
conventional contract clauses and provides a general overview
of contract behavior. This has the advantage of better isolating
execution context requirements for actions, which promotes
comprehensibility and leaner actions, as only requirements
depending on input parameters need to be checked within
respective actions. To further extend the abstraction efforts,
language constituents are used that are more closely related
to application domain concepts, which helps to make their
intended purpose more explicit. As an example, the Party and
Duration type specifiers have a natural language meaning that
is also accessible to non-programmers, as opposed to their
corresponding representation as address and uint type in
Solidity. CML builds a generic framework for contract formal-
ization without an exuberant syntax leaking implementation
details. The code generation process allows to alter abstracted
contract specifics to an desired implementation form. Hence,
a contract representation that is very compact can translate
into a more verbose implementation language, in which the
generator helps to construct the needed bulk.

Assuming that experts create the code generator, less ex-
perienced users can rely on a correct implementation. No
manual coding effort is required, therefore accelerating the
development time while decreasing the chance of errors
when compared to manual coding from requirements. This
is an important aspect, as there are many potential causes
of programming errors in Solidity, like integer overflow and
underflow, reentrancy, or timestamp dependence, to just name
a few [26]. Further, in case of a required adaption to new best
practices, the code generator routines must only be updated in
one place and can be reused to generate adapted code.

On the negative side, since abstraction is always connected
to information loss, a code generator can hardly cover all cases
and it might be required to alter the generated output to inject
some custom code. Another problem is that code is generated
with the goal of being generally applicable, which entails
increased complexity. This might result in generated code that
is more elaborate and less comprehensible. In the context of
Solidity this may mean that the code efficiency in terms of
transaction costs is not on par with use case optimized code.
As the financial aspect is an important concern in Solidity, this
might hinder the adoption of this approach, but could be out

weight by the gained advantages concerning productivity and
code quality.

Overall, if applied correctly, abstraction and code generation
can increase the efficiency, clarity, and flexibility of code
whilst reducing the susceptibility to errors.

VIII. RELATED WORK

Several works pursue the approach to utilize a domain
specific language and the concept of abstraction to facilitate
the creation process of smart contracts.

Regnath and Steinhorst [27] have derived several language
design concepts to approach a unified contract language
demonstrated by a prototype implementation called Sma-
CoNat. The proposed concepts include the reliance on a
small set of predefined operations and data types, an enforced
sectioned code structure, limited aliasing, and building on
natural language identifiers. Hence, approaching a unified
contract language that enables a common understanding of
code semantics on higher abstraction layers. In comparison
to our work, the abstraction is put on a relatively high-
level, which can pose limitations on the expressiveness of the
language (as being too generic).

Another approach by Frantz and Nowostawski [28] proposes
a semi-automated method for the translation of institutional
constructs in a human readable behaviour specification to
Solidity smart contracts. The applied conceptual approach is
closely related to our work, in the sense that the institutional
constructs describe the parties stipulations in a structured man-
ner, similar to our clause formalization. Another commonality
is the generation of Solidity code from an abstract representa-
tion, but unlike our work, the generated smart contracts contain
only skeleton code and require considerable manual input to
make them executable.

Yet another paper by He, Qin, Zhu, et al. [29] proposes
a specification language for smart contracts called SPESC,
which can define the specification of smart contracts for the
purpose of collaborative design. The SPESC language contains
term constructs that are akin to the clause constructs in our
work, but the details of actions cannot be adequately specified
and code generation is missing.

In general, the above mentioned publications contain inter-
esting approaches and findings, but the proposed domain spe-
cific languages lack a model transformation to an executable
smart contract implementation, which is demonstrated in this
work. To our best knowledge, apart from our and the already
mentioned work by Frantz and Nowostawski [28], there is
only one further work by [30] that deals with the generation
of Solidity code from an abstract representation. Regarding
the clause formalization itself, our approach can be compared
with works by Prisacariu and Schneider [31] and Martı́nez,
Dı́az, Cambronero, et al. [32] in which contract specification
is based on the deontic notions of obligation, permission, and
prohibition applied to actions. This approach is often used in
the formalization of contracts.

In order to also point out efforts from the legal tech industry
in regards to contract specific DSLs, the Accord Project [33]

is to be mentioned. It is an open source, non-profit initiative
developing specifications and open-source software tools for
future smart legal contracting. The project aims to provide
an open, standardized format for smart legal contracts that
binds legally enforceable text in natural language to executable
business logic. The proposed toolchain contains Ergo [34], a
DSL with which the execution logic of legal contracts can
be specified. The language features programming constructs
specifically designed for legal contracts, thus it is also com-
parable to CML.

IX. CONCLUSION

In this paper we have analysed important contract building
blocks and proposed a high level smart contract language
called Contract Modeling Language (CML). CML incorpo-
rates a fluently readable, clause like formalization concept to
describe the individual operational intents (commitments) of
contract participants. This approach enables a representation
that is conceptually and syntactically easier to grasp and thus
also improves reasoning about a contract. Another key point
is that CML describes contract semantics on an higher level
and transfers the specifics of an implementation to lower
levels. Consequently, the specification of a contract with its
underlying model and defined behavior can be decoupled
from the actual implementation. This aspect is demonstrated
by transforming contracts from CML to Solidity code. It is
possible to automate platform specific implementation steps,
for example the inclusion of design patterns or coding abstrac-
tions. Thus, contract creators can be shielded from low level
implementation specific tasks.

For future work, we plan to evaluate the efficiency of our
approach in an experiment. Further, we plan to enhance the So-
lidity code generation process, with other commonly occurring
design patterns, coding abstractions, and more powerful code
inference mechanisms. Beyond that, code generation support
for another smart contract platform can be incorporated. This
could give more insights about the general applicability of the
proposed smart contract abstraction mechanisms, leading to
future improvements and extensions.

REFERENCES

[1] H. E. Willis, “Restatement of the Law of Contracts of the American
Law Institute,” Ind. LJ, vol. 7, p. 429, 1931.

[2] N. Szabo. (1994). Smart Contracts, [Online]. Available: http://www.
fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html (visited
on 09/10/2019).

[3] ——, (1997). The idea of smart contracts, [Online]. Available: http:
/ / www . fon . hum . uva . nl / rob / Courses / InformationInSpeech /
CDROM / Literature / LOTwinterschool2006 / szabo . best . vwh . net /
smart contracts idea.html (visited on 09/10/2019).

[4] M. K. Woebbeking, “The Impact of Smart Contracts on Traditional
Concepts of Contract Law,” no. 1988, pp. 106–113, 2019.

[5] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” Ethereum Proj. Yellow Pap., vol. 151, pp. 1–32, 2014.

[6] M. Fowler and R. Parsons, Domain-Specific Languages. 2010.
[7] L. Johnson, “Effective Contract Drafting: Indentifying the Building

Blocks of Contracts,” Sch. Work., Jan. 2013.
[8] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in

information systems research,” MIS Q. Manag. Inf. Syst., 2004.

[9] R. J. Wieringa, Design science methodology: For information systems
and software engineering. 2014.

[10] Xtext framework, [Online]. Available: https://www.eclipse.org/Xtext/
(visited on 07/10/2019).

[11] Contract Modeling Language, [Online]. Available: https://github.com/
maxwoe/cml.

[12] CML Web Editor, [Online]. Available: http://cml.swa.univie.ac.at/.
[13] O. Marjanovic and Z. Milosevic, “Towards Formal Modeling of e-

Contracts,” Proc. Fifth IEEE Int. Enterp. Distrib. Object Comput.
Conf., pp. 59–68,

[14] J. D. Kruijff and H. Weigand, “On the Move to Meaningful Internet
Systems. OTM 2017 Conferences,” vol. 10573, pp. 383–398, 2017.

[15] D. McAdams, “An Ontology for Smart Contracts,” IOHK Pap., p. 3,
2017.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1996, p. 395.

[17] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and
Networked Objects. Chichester, UK: Wiley, 2000.

[18] M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the
ethereum ecosystem and solidity,” 2018 IEEE 1st Int. Work. Blockchain
Oriented Softw. Eng. IWBOSE 2018 - Proc., vol. 2018-Janua, pp. 2–8,
2018.

[19] ——, “Design Patterns for Smart Contracts in the Ethereum Ecosys-
tem,” in 2018 IEEE Int. Conf. Internet Things, 2018, pp. 1513–1520.

[20] OpenZeppelin. OpenZeppelin/zeppelin-solidity: OpenZeppelin, a
framework to build secure smart contracts on Ethereum, [Online].
Available: https://github.com/OpenZeppelin/zeppelin-solidity (visited
on 12/05/2017).

[21] Solidity 0.5.13 documentation, [Online]. Available: https : / / solidity.
readthedocs.io/en/v0.5.13/ (visited on 11/25/2019).

[22] P. M. Senge, The fifth discipline: The art and practice of the learning
organization. Broadway Business, 2006.

[23] GitHub - federicobond/solidity-parser-antlr: A Solidity parser for JS
built on top of a robust ANTLR4 grammar, [Online]. Available: https://
github.com/federicobond/solidity-parser-antlr (visited on 02/20/2020).

[24] G. J. Pace and G. Schneider, “Challenges in the Specification of Full
Contracts,” in, Springer, Berlin, Heidelberg, 2009, pp. 292–306.

[25] T. Hvitved, “Contract Formalisation and Modular Implementation of
Domain-Specific Languages,”

[26] Known Attacks - Ethereum Smart Contract Best Practices, [Online].
Available: https://consensys.github.io/smart- contract- best- practices/
known attacks/ (visited on 12/03/2019).

[27] E. Regnath and S. Steinhorst, “SmaCoNat: Smart Contracts in Natural
Language,” Forum Specif. Des. Lang., vol. 2018-Septe, 2018.

[28] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” Proc. - IEEE 1st Int. Work.
Found. Appl. Self-Systems, FAS-W 2016, pp. 210–215, 2016.

[29] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, “SPESC: A Specification
Language for Smart Contracts,” Proc. - Int. Comput. Softw. Appl. Conf.,
vol. 1, pp. 132–137, Jul. 2018.

[30] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart
Contracts: A Finite State Machine Based Approach,” arXiv Prepr.
arXiv1711.09327, 2017.

[31] C. Prisacariu and G. Schneider, “A Formal Language for Electronic
Contracts,” Lect. Notes Comput. Sci., vol. 4468, pp. 174–189, 2007.

[32] E. Martı́nez, G. Dı́az, E. Cambronero, and G. Schneider, “A model for
visual specification of e-contracts,” Proc. - 2010 IEEE 7th Int. Conf.
Serv. Comput. SCC 2010, vol. 8625 LNAI, no. section 3, pp. 1–8, Jul.
2010.

[33] Accord Project, [Online]. Available: https:/ /www.accordproject .org/
(visited on 02/20/2020).

[34] Ergo - Accord Project, [Online]. Available: https://www.accordproject.
org/projects/ergo/ (visited on 02/20/2020).

