
Faster Fully Dynamic Transitive Closure in
Practice

Kathrin Hanauer
University of Vienna, Faculty of Computer Science, Vienna, Austria

kathrin.hanauer@univie.ac.at

Monika Henzinger
University of Vienna, Faculty of Computer Science, Vienna, Austria

monika.henzinger@univie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Vienna, Austria

christian.schulz@univie.ac.at

Abstract
The fully dynamic transitive closure problem asks to maintain reachability information in
a directed graph between arbitrary pairs of vertices, while the graph undergoes a sequence
of edge insertions and deletions. The problem has been thoroughly investigated in theory
and many specialized algorithms for solving it have been proposed in the last decades. In
two large studies [Frigioni ea, 2001; Krommidas and Zaroliagis, 2008], a number of these
algorithms have been evaluated experimentally against simple static algorithms for graph
traversal, showing the competitiveness and even superiority of the simple algorithms in prac-
tice, except for very dense random graphs or very high ratios of queries. A major drawback
of those studies is that only small and mostly randomly generated graphs are considered.
In this paper, we engineer new algorithms to maintain all-pairs reachability information
which are simple and space-efficient. Moreover, we perform an extensive experimental eval-
uation on both generated and real-world instances that are several orders of magnitude
larger than those in the previous studies. Our results indicate that our new algorithms
outperform all state-of-the-art algorithms on all types of input considerably in practice.

Keywords
Dynamic Graph Algorithms, Reachability

Funding
The research leading to these results has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.

ar
X

iv
:2

00
2.

00
81

3v
1

 [
cs

.D
S]

 3
 F

eb
 2

02
0

https://orcid.org/0000-0002-5945-837X
mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at

Faster Fully Dynamic Transitive Closure in Practice

1 Introduction
Complex graphs are useful in a wide range of applications from technological networks to biological
systems like the human brain. These graphs can contain billions of vertices and edges. Analyzing
these networks aids us in gaining new insights about our surroundings. One of the most basic
questions that arises in this setting is whether one vertex can reach another vertex via a directed
path. This simple problem has a wide range of applications such program analysis [30], protein-
protein interaction networks [13], centrality measures, and is used as subproblem in a wide range of
more complex (dynamic) algorithms such as in the computation of (dynamic) maximum flows [11,
9, 14]. Often, the underlying graphs or input instances change over time, i.e., vertices or edges are
inserted or deleted as time is passing. In a social network, for example, users sign up or leave, and
relations between them may be created or removed over time. Terminology-wise, a problem is said
to be fully dynamic if the update operations include both insertions and deletions of edges, and
partially dynamic if only one type of update operations is allowed. In this context, a problem is
called incremental, if only edge insertions occur, but no deletions, and decremental vice versa.

Recently, we studied an extensive set of algorithms for the single-source reachability problem
in the fully dynamic setting [15]. The fully dynamic single-source reachability problem maintains
the set of vertices that are reachable from a given source vertex, subject to edge deletions and
insertions. In particular, we designed several fully dynamic variants of well-known approaches to
obtain and maintain reachability information with respect to a distinguished source.

This yields the starting point of this paper : our goal was to transfer recently engineered al-
gorithms for the fully dynamic single-source reachability problem [15] to the more general fully
dynamic transitive closure problem (also known as fully dynamic all-pairs reachability problem).
In contrast to the single-source problem, the fully dynamic transitive closure problem consists in
maintaining reachability information between arbitrary pairs of vertices s and t in a directed graph,
which in turn is subject to edge insertions and deletions. If the graph does not change, i.e., in the
static setting, the question whether an arbitrary vertex s can reach another arbitrary vertex t can
either be answered in linear time by starting a breadth-first or depth-first search from s, or it can
be answered in constant time after the transitive closure of the graph, i.e., reachability information
for all pairs of vertices, has been computed. The latter can be obtained in O(nω), where ω is the
exponent in the running time of the best-known fast matrix multiplication algorithm (currently,
ω < 2.38 [4]), or combinatorially in O(n ·m) or O(n3) time by either starting a breadth-first or
depth-first search from each vertex or using the Floyd-Warshall algorithm [10, 40, 5].

In the dynamic setting, the aim is to avoid such costly recomputations from scratch after the
graph has changed, especially if the update was small. Hence, the dynamic version of the problem
has been thoroughly studied in theory and many specialized algorithms for solving it have been
proposed in the last decades. However, even the insertion or deletion of a single edge may affect
the reachability between Ω(n2) vertex pairs, which is why one cannot hope for an algorithm with
constant query time that processes updates in less than O(n2) worst-case time if the transitive
closure is maintained explicitly. Furthermore, conditional lower bounds [17] suggest that no faster
solution than the naïve recomputation from scratch is possible after each change in the graph.

Whereas the static approach to compute the transitive closure beforehand via graph traversal
can be readily adapted to the incremental setting, yielding an amortized update time of O(n) [20], a
large number of randomized and deterministic algorithms [18, 19, 16, 22, 21, 23, 6, 7, 33, 31, 36, 29]
has been devised over the last years for the decremental and the fully dynamic version of the prob-
lem. The currently fastest algorithm in the deletions-only case is deterministic, has a total update
time of O(n · m), and answers queries in constant time [29]. In the fully dynamic setting, up-
dates can be processed deterministically in O(n2) amortized time with constant query time [7],
or, alternatively in O(m

√
n) amortized update time with O(

√
n) query time [33]. An almost

exhaustive set of these algorithms has been evaluated experimentally against simple static algo-

2

K. Hanauer, M. Henzinger, C. Schulz

rithms for graph traversal such as breadth-first or depth-first search in two large studies [12, 24].
Surprisingly, both have shown that the simple algorithms are competitive and even superior to
the specialized algorithms in practice, except for dense random graphs or, naturally, very high
ratios of queries. Only two genuinely dynamic algorithms could challenge the simple ones: an
algorithm developed by Frigioni et al. [12], which is based on Italiano’s algorithms [20, 19] as
well as an extension of a decremental Las Vegas algorithm proposed by Roditty and Zwick [33],
developed by Krommidas and Zaroliagis [24]. Both rely on the computation and maintenance
of strongly connected components, which evidently gives them an advantage on dense graphs.
Nevertheless, they appeared to be unable to achieve a speedup of a factor greater than ten in
comparison to breadth-first and depth-first search.

In this paper, we engineer a family of algorithms that build on recent experimental results
for the single-source reachability problem [15]. Our algorithms are very easy to implement and
benefit from strongly connected components likewise, although they do not (necessarily) compute
them explicitly. In an extensive experimental evaluation on various types of input instances,
we compare our algorithms to all simple-minded algorithms from [12, 24] as well as a modified,
bidirectional breadth-first search. The latter already achieves a speedup of multiple factors over
the standard version, and our new algorithms outperform the simple-minded algorithms on all
types of input by several orders of magnitude in practice.

2 Preliminaries
Basic Concepts. Let G = (V,E) be a directed graph with vertex set V and edge set E. Through-
out this paper, let n = |V | and m = |E|. The density of G is d = m

n . An edge (u, v) ∈ E has tail
u and head v and u and v are said to be adjacent. (u, v) is said to be an outgoing edge or out-edge
of u and an incoming edge or in-edge of v. The outdegree deg+(v)/indegree deg−(v)/degree deg(v)
of a vertex v is its number of (out-/in-) edges. The out-neighborhood (in-neighborhood) of a vertex
u is the set of all vertices v such that (u, v) ∈ E ((v, u) ∈ E). A sequence of vertices s → · · · → t

such that each pair of consecutive vertices is connected by an edge is called an s-t path and s can
reach t. A strongly connected component (SCC) is a maximal subset of vertices X ⊆ V such that
for each ordered pair of vertices s, t ∈ X, s can reach t. The condensation of a directed graph G
is a directed graph GC that is obtained by shrinking every SCC of G to a single vertex, thereby
preserving edges between different SCCs. A graph is strongly connected if it has only one SCC.
In case that each SCC is a singleton, i.e., G has n SCCs, G is said to be acyclic and also called
a DAG (directed acyclic graph). The reverse of a graph G is a graph with the same vertex set
as G, but contains for each edge (u, v) ∈ E the reverse edge (v, u).

A dynamic graph is a directed graph G along with an ordered sequence of updates, which
consist of edge insertions and deletions. In this paper, we consider the fully dynamic transitive
closure problem: Given a directed graph, answer reachability queries between arbitrary pairs of
vertices s and t, subject to edge insertions and deletions.
Related Work. Due to space limitations, we only give a brief overview over related work by listing
the currently best known results for fully dynamic algorithms on general graphs in Table 1. For
details and insertions-only as well as deletions-only algorithms, see Appendix A.1.

In large studies, Frigioni et al. [12] as well as Krommidas and Zaroliagis [24] have imple-
mented an extensive set of known algorithms for dynamic transitive closure and compared them
to each other as well as to static, “simple-minded” algorithms such as breadth-first and depth-first
search. The set comprises the original algorithms in [20, 19, 41, 16, 21, 23, 31, 33, 35, 6, 7] as
well as several modifications and improvements thereof. The experimental evaluations on random
Erdős-Renyí graphs, instances constructed to be difficult on purpose, as well as two instances
based on real-world graphs, showed that on all instances except for dense random graphs or a
query ratio of more than 65% dynamic ones distinctly and up to several factors. Their strongest

3

Faster Fully Dynamic Transitive Closure in Practice

Table 1: Currently best results for fully dynamic transitive closure. All running times are asymp-
totic (O-notation).

Query Time Update Time

m 1 naïve
1 n2 Demetrescu and Italiano [7], Roditty [31], Sankowski [36]
√
n m

√
n Roditty and Zwick [33]

m0.43 m0.58n Roditty and Zwick [33]
n0.58 n1.58, Sankowski [36]
n1.495 n1.495 Sankowski [36]
n m+ n logn Roditty and Zwick [35]

n1.407 n1.407 van den Brand et al. [39]

competitors were the fully dynamic extension [12] of the algorithms by Italiano [20, 19], as well
as the fully dynamic extension [24] of the decremental algorithm by Roditty and Zwick [33].
These two algorithms also were the only ones that were faster than static graph traversal on
dense random graphs, by a factor of at most ten.

3 Algorithms
We propose a new and very simple approach to maintain the transitive closure in a fully dynamic
setting. Inspired by a recent study on single-source reachability, it is based solely on single-source
and single-sink reachability (SSR) information. Unlike most algorithms for dynamic transitive clo-
sure, it does not explicitly need to compute or maintain strongly connected components—which can
be time-consuming—but, nevertheless, profits indirectly if the graph is strongly connected. Differ-
ent variants and parameterizations of this approach lead to a family of new algorithms, all of which
are easy to implement and—depending on the choice of parameters—extremely space-efficient.

In Section 4, we evaluate this approach experimentally against a set of algorithms that have
been shown to be among the fastest algorithms in practice so far. Curiously enough, this set
comprises the classic simple, static algorithms for graph traversal, breadth-first search and depth-
first search. For the sake of completeness, we will start by describing the practical state-of-the-
art algorithms, and then continue with our new approach. Each algorithm for fully dynamic
transitive closure can be described by means of four subroutines: initialize(), insertEdge((u, v)),
deleteEdge((u, v)), and query(s, t), which define the behavior during the initialization phase, in
case that an edge (u, v) is added or removed, and how it answers a query of whether a ver-
tex s can reach a vertex t, respectively.

Table 2 provides an overview of all algorithms in this section along with their abbreviations,
whereas Table A.3 subsumes their worst-case time and space complexities. All algorithms consid-
ered are combinatorial and either deterministic or Las Vegas-style randomized, i.e., their running
time, but not their correctness, may depend on random variables.

3.1 Static Algorithms
In the static setting or in case that a graph is given without further (reachability) information
besides its edges, breadth-first search (BFS) and depth-first search (DFS) are the two standard
algorithms to determine whether there is a path between a pair of vertices or not. Despite their
simple-mindedness and the fact that they typically have no persistent memory (such as a cache,

4

K. Hanauer, M. Henzinger, C. Schulz

e.g.), experimental studies [12, 24] have shown them to be at least competitive with both partially
and fully dynamic algorithms and even superior on various instances.

BFS, DFS: We consider both BFS and DFS in their pure versions: For each query(s, t),
a new BFS or DFS, respectively, is initiated from s until either t is encountered or the graph
is exhausted. The algorithms store or maintain no reachability information whatsoever and do
not perform any work in initialize(), insertEdge((u, v)), or deleteEdge((u, v)). We refer to these
algorithms simply as BFS and DFS, respectively.

In addition, we consider a hybridization of BFS and DFS, called DBFS, which was introduced
originally by Frigioni et al. [12] and is also part of the later study [24]. In case of a query(s, t),
the algorithm visits vertices in DFS order, starting from s, but additionally checks for each vertex
that is encountered whether t is in its out-neighborhood.

Bidirectional BFS: To speed up static reachability queries even further, we adapted a well-
established approach for the more general problem of finding shortest paths and perform two
breadth-first searches alternatingly: Upon a query(s, t), the algorithm initiates a customary BFS
starting from s, but pauses already after few steps, even if t has not been encountered yet. The al-
gorithm then initiates a BFS on the reverse graph, starting from t, and also pauses after few steps,
even if s has not been encountered yet. Afterwards, the first and the second BFS are resumed by
turns, always for a few steps only, until either one of them encounters a vertex v that has already en-
countered by the other, or the graph is exhausted. In the former case, there is a path from s via v to
t, hence the algorithm answers the query positively, and otherwise negatively. We refer to this algo-
rithm as BiBFS (Bidirectional BFS) and use the respective out-degree of the current vertex in each
BFS as step size, i.e., each BFS processes one vertex, examines all its out-neighbors, and then pauses
execution. Note that the previous experimental studies [12, 24] do not consider this algorithm.

3.2 A New Approach
General Overview. Let v be an arbitrary vertex of the graph and let R+(v) and R−(v) be the
sets of vertices reachable from v and that can reach v, respectively. To answer reachability queries
between two vertices s and t, we use the following simple observations (see also Figure A.5):

(O1) If s ∈ R−(v) and t ∈ R+(v), then s can reach t.

(O2) If v can reach s, but not t, i.e., s ∈ R+(v) and t 6∈ R+(v), then s cannot reach t.

(O3) If t can reach v, but s cannot, i.e., s 6∈ R−(v) and t ∈ R−(v), then s cannot reach t.

Whereas the first observation is widely used in several algorithms, we are not aware of any
algorithms making direct use of the others. Our new family of algorithms keeps a list LSV of length
k of so-called supportive vertices, which work similarly to cluster centers in decremental shortest
paths algorithms [34]. For each vertex v in LSV , there are two fully dynamic data structures
maintaining the sets R+(v) and R−(v), respectively. In other words, these data structures maintain
single-source as well as single-sink reachability for a vertex v. We give details on those data
structures at the end of this section. All updates to the graph, i.e., all notifications of insertEdge(·)
and deleteEdge(·), are simply passed on to these data structures. In case of a query(s, t), the
algorithms first check whether one of s or t is a supportive vertex itself. In this case, the query
can be answered decisively using the corresponding data structure. Otherwise, the vertices in LSV
are considered one by one and the algorithms try to apply one of the above observations. Finally,
if this also fails, a static algorithm serves as fallback to answer the reachability query.

Whereas this behavior is common to all algorithms of the family, they differ in their choice
of supportive vertices and the subalgorithms used to maintain SSR information as well as the
static fallback algorithm.

5

Faster Fully Dynamic Transitive Closure in Practice

Note that it suffices if an algorithm has exactly one vertex vi from each SCC Ci in LSV to
answer every reachability query in the same time as a query to a SSR data structure, e.g., O(1): If
s and t belong to the same SCC Ci, then the supportive vertex vi is reachable from s and can reach
t, so the algorithm answers the query positively in accordance with observation (O1). Otherwise,
s belongs to an SCC Ci and t belongs to an SCC Cj , j 6= i. If Ci can reach Cj in the condensation
of the graph, then also vi can reach t and vi is reachable from s, so the algorithm again answers the
query positively in accordance with observation (O1). If Ci cannot reach Cj in the condensation
of the graph, then vi can reach s, but not t so the algorithm answers the query negatively in
accordance with observation (O2). The supportive vertex representing the SCC that contains s or
t, respectively, may be found in constant time using a map; however, updating it requires in turn to
maintain the SCCs dynamically, which incurs additional costs during edge insertions and deletions.

Choosing Supportive Vertices. The simplest way to choose supportive vertices consists
in picking them uniformly at random from the set of all vertices in the initial graph and never
revisiting this decision. We refer to this algorithm as SV(k) (k-Supportive Vertices). During
initialize(), SV(k) creates LSV by drawing k non-isolated vertices uniformly at random from V .
For each v ∈ LSV , it initializes both a dynamic single-source as well as a dynamic single-sink
reachability data structure, each rooted at v. If less than k vertices have been picked during
initialization because of isolated vertices, LSV is extended as soon as possible.

Naturally, the initial choice of supportive vertices may be unlucky, which is why we also consider
a variation of the above algorithm that periodically clears the previously chosen list of supportive
vertices after c update operations and re-runs the selection process. We refer to this algorithm
as SVA(k, c) (k-Supportive Vertices with c-periodic Adjustments).

As shown above, the perfect choice of a set of supportive vertices consists of exactly one per
SCC. This is implemented by the third variant of our algorithm, SVC (Supportive Vertices with
SCC Cover). However, maintaining SCCs dynamically is itself a non-trivial task and has recently
been subject to extensive research [29, 32]. Here, we resolve this problem by waiving exactness, or,
more precisely, the reliability of the cover. Similar to above, the algorithm takes two parameters
z and c. During initialize(), it computes the SCCs of the input graph and arbitrarily chooses a
supportive vertex in each SCC as representative if the SCC’s size is at least z. In case that all
SCCs are smaller than z, an arbitrary vertex that is neither a source nor a sink, if existent, is made
supportive. The algorithm additionally maps each vertex to the representative of its SCC, where
possible. After c update operations, this process is re-run and the list of supportive vertices as well
as the vertex-to-representative map is updated suitably. However, we do not de-select supportive
vertices picked in a previous round if they represent an SCC of size less than z, which would mean
to also destroy their associated SSR data structures. Recall that computing the SCCs of a graph
can be accomplished in O(n + m) time [38]. For a query(s, t), the algorithm looks up the SCC
representative of s in its map and checks whether this information, if present, is still up-to-date by
querying their associated data structures. In case of success, the algorithm answers the query as
described in the ideal scenario by asking whether the representative of s can reach t. Otherwise,
the algorithm analogously tries to use the SCC representative of t. Outdated SCC representative
information for s or t is deleted to avoid further unsuccessful checks. In case that neither s nor t
have valid SCC representatives, the algorithm falls back to the operation mode of SV.

Algorithms for Maintaining Single-Source/Single-Sink Reachability. To access fully
dynamic SSR information, we consider the two single-source reachability algorithms that have
been shown to perform best in an extensive experimental evaluation on various types of input
instances [15]. In the following, we only provide a short description and refer the interested
reader to the original paper [15] for details.

The first algorithm, SI, is a fully dynamic extension of a simple incremental algorithm and
maintains a not necessarily height-minimal reachability tree. It starts initially with a BFS tree,

6

K. Hanauer, M. Henzinger, C. Schulz

Table 2: Algorithms and abbreviations overview.

Algorithm Long name Algorithm Long name

DFS / BFS static DFS / BFS SV Supportive Vertices
DBFS static DFS-BFS hybrid SVA Supportive Vertices with Adjustments
BiBFS static bidirectional BFS SVC Supportive Vertices with SCC Cover

which is also extended using BFS in insertEdge((u, v)) only if v and vertices reachable from v were
unreachable before. In case of deleteEdge((u, v)), the algorithm tries to reconstruct the reachability
tree, if necessary, by using a combination of backward and forward BFS. If the reconstruction is
expected to be costly because more than a configurable ratio ρ of vertices may be affected, the
algorithm instead recomputes the reachability tree entirely from scratch using BFS. The algorithm
has a worst-case insertion time ofO(n+m), and, unless ρ = 0, a worst-case deletion time ofO(n·m).

The second algorithm, SES, is a simplified, fully dynamic extension of Even-Shiloach trees [37]
and maintains a (height-minimal) BFS tree throughout all updates. Initially, it computes a
BFS tree for the input graph. In insertEdge((u, v)), the tree is updated where necessary using
a BFS starting from v. To implement deleteEdge((u, v)), the algorithm employs a simplified pro-
cedure in comparison to Even-Shiloach trees, where the BFS level of affected vertices increases
gradually until the tree has been fully adjusted to the new graph. Again, the algorithm may
abort the reconstruction and recompute the BFS tree entirely from scratch if the update cost
exceeds configurable thresholds ρ and β. For constant β, the worst-case time per update op-
eration (edge insertion or deletion) is in O(n + m).

Both algorithms have O(n+m) initialization time, support reachability queries in O(1) time,
and require O(n) space. We use the same algorithms to maintain single-sink reachability informa-
tion by running the single-source reachability algorithms on the reverse graph. Table A.3 shows
the resulting time and space complexities of our new fully dynamic algorithms for dynamic closure
in combination with these subalgorithms, where ρ > 0 and β ∈ O(1).

4 Experiments
Setup. For the experimental evaluation of our approach and the effects of its parameters, we
implemented1 it together with all four static approaches mentioned in Section 3 in C++17 and
compiled the code with GCC 7.4 using full optimization (-O3 -march=native -mtune=native).
We would have liked to include the two best non-static algorithms from the earlier study [24];
unfortunately, the released source code is based on a proprietary algorithm library. Neverthe-
less, we are able to compare our new algorithms indirectly to both by relating their performance
to DFS and BFS, as happened in the earlier study. All experiments were run sequentially un-
der Ubuntu 18.04 LTS with Linux kernel 4.15 on an Intel Xeon E5-2643 v4 processor clocked
at 3.4 GHz, where each experiment had exclusive access to one core and could use solely local
memory, i.e., in particular no swapping was allowed.

For each algorithm (variant) and instance, we separately measured the time spent by the al-
gorithm on updates as well as on queries. We specifically point out that the measured times
exclude the time spent on performing an edge insertion or deletion by the underlying graph data
structure. This is especially of importance if an algorithm’s update time itself is very small, but
the graph data structure has to perform non-trivial work. We use the dynamic graph data struc-
ture from the open-source library Algora[1], which is able to perform edge insertions and deletions

1We plan to release the source code publicly.

7

Faster Fully Dynamic Transitive Closure in Practice

in constant time. Our implementation is such that the algorithms are unable to look ahead in
time and have to process each operation individually. To keep the numbers easily readable, we
use k and m as abbreviations for ×103 and ×106, respectively.
Instances. We evaluate the algorithms on a diverse set of random and real-world instances, which
have also been used in [15] and are publicly available2.

ER Instances. The random dynamic instances generated according to the Erdős-Renyí model
G(n,m) consist of an initial graph with n = 100k or n = 10m vertices andm = d·n edges, where d ∈
[1.25 . . . 50]. In addition, they contain a random sequence of 100k operations σ consisting of edge
insertions, edge deletions, as well as reachability queries: For an insertion or a query, an ordered pair
of vertices was chosen uniformly at random from the set of all vertices. Likewise, an edge was chosen
uniformly at random from the set of all edges for a deletion. The resulting instances may contain
parallel edges as well as loops and each operation is contained in a batch of ten likewise operations.

Kronecker Instances. Our evaluation uses two sets of size 20 each: kronecker-csize contains
instances with n ≈ 130k, whereas those in kronecker-growing have n ≈ 30 initially and grow
to n ≈ 130k in the course of updates. As no generator for dynamic stochastic Kronecker graph
exists, the instances were obtained by computing the differences in edges in a series of so-called
snapshot graphs, where the edge insertions and deletions between two subsequent snapshot graphs
were shuffled randomly. The snapshot graphs where generated by the krongen tool that is part of
the SNAP software library [28], using the estimated initiator matrices given in [27] that correspond
to real-world networks. The instances in kronecker-csize originate from ten snapshot graphs
with 17 iterations each, which results in update sequences between 1.6m and 702m. As they are
constant in size, there are roughly equally many insertions and deletions. Their densities vary
between 0.7 and 16.4. The instances in kronecker-growing were created from thirteen snapshot
graphs with five up to 17 iterations, resulting in 282k to 82m update operations, 66 % to 75 %
of which are insertions. Their densities are between 0.9 and 16.4.

Real-World Instances. Our set of instances comprises all six directed, dynamic instances avail-
able from the Koblenz Network Collection KONECT [25], which correspond to the hyperlink net-
work of Wikipedia articles for six different languages. In case of dynamic graphs, the update se-
quence is part of the instance. However, the performance of algorithms may be affected greatly if an
originally real-world update sequence is permuted randomly [15]. For this reason, we also consider
five “shuffled” versions per real-world network, where the edge insertions and deletions have been
permuted randomly. We refer to the set of original instances as konect and to the modified ones as
konect-shuffled. Table A.4 lists the detailed numbers for all real-world instances and the respec-
tive average values for the shuffled instances. In each case, the updates are dominated by insertions.

Experimental Results
We ran the algorithms SV, SVA, and SVC with different parameters: For SV(k), we looked at
k = 1, k = 2, and k = 3, which pick one, two, and three supportive vertices during initialization,
respectively, and never reconsider this choice. We evaluate the variant that periodically picks new
supportive vertices, SVA(k, c), with k = 1 and c = 1k, c = 10k, and c = 100k. Preliminary tests for
SVC revealed z = 25 as a good threshold for the minimum SCC size on smaller instances and z = 50
on larger. The values considered for c were again 10k and 100k. BiBFS served as fallback for all
Supportive Vertices algorithms. Except for random ER instances with n = 10m, all experiments
also included BFS, DFS, and DBFS; to save space, the bar plots only show the result for the best of
these three. We used SES as subalgorithm on random instances, and SI on real-world instances,
in accordance with the experimental study for single-source reachability [15].
ER Instances. We start by assessing the average performance of all algorithms by looking at their
running times on random ER instances. For n = 100k and equally many insertions, deletions, and

2https://dyreach.taa.univie.ac.at

8

https://dyreach.taa.univie.ac.at

K. Hanauer, M. Henzinger, C. Schulz

1.25 2.5 5 10 20 40

0.1

1

10

Density d

M
ea

n
to

ta
lu

pd
at

e
tim

e
(s

)

1.25 2.5 5 10 20 40

0.1

1

10

100

1 000

Density d

M
ea

n
to

ta
lq

ue
ry

tim
e

(s
)

1.25 2.5 5 10 20 40
0.1

1

10

100

1 000

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40
1

10

100

1 000

10 000

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25

,∞
)

(a) (b) (c) (d)

BFS DFS SV(2) SVA(1,1k) SVC(25,10k)
Bi-BFS DBFS SV(1) SV(3) SVA(1,10k) SVC(25,∞)

Figure 1: Random instances: n = σ = 100k and equally many insertions, deletions, and queries.

queries, Figure 1 shows the mean running time needed to process all updates, all queries, and their
sum, all operations, absolutely as well as the relative performances for all operations, where the
mean is taken over 20 instances per density. Additional relative plots are given in Figure A.6.
As there are equally many insertions and deletions, the density remains constant. Note that all
plots for random ER instances use logarithmic axes in both dimensions.

It comes as no surprise that SV(2) and SV(3) are two and three times slower on updates, respec-
tively, than SV(1) (cf. Figure 1a). As their update time consists solely of the update times of their
SSR data structures, they inherit their behavior and become faster, the denser the instance [15].
The additional work performed by SVA(1, 1k) and SVA(1, 10k), which re-initialized their SSR data
structures 66 and six times, respectively, is plainly visible and increases also relatively with growing
number of edges, which fits the theoretical (re-)initialization time of O(n + m). Computing the
SCCs only initially, as SVC(25,∞) does, led to higher update times on very sparse instances due
to an increased number of supportive vertices, but matched the performance of SV(1) for d ≥ 2.5.
As expected, re-running the SCC computation negatively affects the update time. In contrast to
SVA(1, 10k), however, SVC(25, 10k) keeps a supportive vertex as long as it still represents an SCC,
and thereby saves the time to destroy the old SSR data structures and re-initialize the new ones.
Evidently, both SVA algorithms used a single supportive vertex for d ≥ 2.5.

Looking at queries (cf. Figure 1b), it becomes apparent that SVC(25, 10k) can make use of its
well-updated SCC representatives as supportive vertices and speed up queries up to a factor of 54
in comparison to SVA and SV. Up to d = 3, it also outperforms SVC(25,∞). For larger densities,
the query times among all dynamic algorithms level up progressively and reach at least equality
already at d = 2.5 in case of SV(2) and SV(3), at d = 5 in case of SV(1), and at d = 10 at
the latest for all others. This matches a well-known result from random graph theory that simple
ER graphs with m > n lnn are strongly connected with high probability [3]. The running times
also fit our investigations into the mean percentage of queries answered during the different stages
in query(·) by the algorithms (see also Figure A.7): For d = 2, SV(1) could answer 80 % of all
queries without falling back to BiBFS, which grew to almost 100 % for d = 5 and above. SV(2)
answered even more than 95 % queries without fallback for d = 2, and close to 100 % already for
d = 3. The same applied to SVC(25,∞), which could use SCC representatives in the majority
of these fast queries. SV(1) and SV(2) instead used mainly observation (O1), but also (O2) and
(O3) in up to 10 % of all queries. As all vertices are somewhat alike in ER graphs, periodically
picking new supportive vertices does not affect the mean query performance. In fact, SV and SVA
are up to 20 % faster than SVC on the medium and denser instances, which can be explained by the
missing overhead for maintaining the map of representatives. All Supportive Vertices algorithms
process queries considerably faster than BiBFS. The average speedup ranges between almost 7
on the sparsest graphs in relation to SVC(25, 10k) and more than 240 in relation to SV(1) on

9

Faster Fully Dynamic Transitive Closure in Practice

1.25 2.5 5 10 20 40

0.1

1

10

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40

1

10

100

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25
,∞

)

1.25 2.5 5 10 20 40

10

100

1 000

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40

1

10

100

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
50
,∞

)

(a) (b) (c) (d)
Bi-BFS SV(1) SV(2) SV(3) SVA(1, 1k) SVA(1, 10k) SVC(25/50(∗),∞) SVC(25/50(∗), 10k)

Figure 2: Random instances: n = σ = 100k and 50 % queries (a, b); n = 10m, σ = 100k, and
equally many insertions, deletions, and queries (c, d).
(∗) SVC parameter: 25 for n = 100k, 50 for n = 10m.

the densest ones. The traditional static algorithms BFS, DFS, as well as the hybrid DBFS were
distinctly slower by a factor of up to 31k (BFS) and almost 70k (DFS, DBFS) in comparison to
SV(1), and even 53 to 130 and 290 times slower than BiBFS.

In sum over all operations, if there are equally many insertions, deletions, and queries (cf. Fig-
ures 1c, d), SVC(25,∞) and SV(1) were the fastest algorithms on all instances, where SVC(25,∞)
won on the sparser and SV(1) won on the denser instances. For d = 1.25, BiBFS was almost as fast,
but up to 45 times slower on all denser instances. SV(2) and SV(3) could not compensate their
doubled and tripled update costs, respectively, by their speedup in query time, which also holds
for SVC(25, 10k). BFS, DFS, and DBFS were between 54 and 13k times slower than SVC(25,∞) and
SV(1), despite the high proportion of updates, and are therefore far from competitive.

We repeated our experiments with n = 100k and 50 % queries among the operations and
equally many insertions and deletions, as well as with n = 10m and equal ratios of insertions,
deletions, and queries. The results, shown in Figure 2, confirm our findings above. In case of
50 % queries, a second supportive vertex as in SV(2) additionally stabilized the mean running
time in comparison to SV(1), up to d = 5 (cf. Figures 2a, b), but none of them could beat
SVC(25,∞) on sparse instances. On denser graphs, SV(1) was again equally fast or even up to
20 % faster. As expected due to the higher ratio of queries, BiBFS lost in competitiveness in
comparison to the above results and is between 1.6 and almost 80 times slower than SVC(25,∞)
on dense instances. On the set of larger instances with n = 10m (cf. Figures 2c, d), SVA(1,1k)
reached the timeout set at 2 h on instances with d ≥ 20. The fastest algorithms on average
across all densities were again SV(1) and SVC(50,∞). BiBFS won for d = 1.25, where it was
about 20 % faster than SVC(50,∞) and 10 % faster than SV(1). Its relative performance then
deteriorated with increasing density up to a slowdown factor of 91. Except for d = 1.25, SVC(50,∞)
outperformed SV(1) on very sparse instances and was in general also more stable in performance,
as can be observed for d = 8: Here, SV(1) picked a bad supportive vertex on one of the instances,
which resulted in distinctly increased mean, median, and maximum query times. On instances
with density around lnn and above, SV(1) was slightly faster due to its simpler procedure to
answer queries and also more stable than on sparser graphs.

In summary, SVC with c =∞ clearly showed the best and most reliable performance on average,
closely followed by SV(1), which was slightly faster if the graphs were dense.
Kronecker Instances. In contrast to ER instances, stochastic Kronecker graphs were designed to
model real-world networks, where vertex degrees typically follow a power-law distribution and the
neighborhoods are more diverse. For this reason, the choice of supportive vertices might have more
effect on the algorithms’ performances than on ER instances. Figure 3 shows six selected results
for all dynamic algorithms as well as BiBFS on kronecker-csize instances with a query ratio of
33 % (see Figures A.8 and A.9 for the complete set): Each bar consists of two parts, the darker

10

K. Hanauer, M. Henzinger, C. Schulz

Timeout
(30min)

answers bio-proteins blog-nat05-6m ca-dblp email-inside gnutella-25

23
s

5m
in

42
s 13

m
in

50
s

9m
in

19
s

2m
in

34
s

4m
in

11
s

5m
in

34
s

4m
in

41
s

14
m

in
30

s

1m
in

46
s

41
s 1m

in
45

s

2m
in

34
s

3m
in

12
s

24
m

in
3s

1m
in

46
s

53
s

7m
in

59
s

22
m

in
19

s

9m
in

25
s

2m
in

48
s

31
s 3m

in
32

s

6m
in

41
s

4m
in

12
s

1m
in

55
s

1m
in

4s

5m
in

5s

13
m

in
35

s

5m
in

32
s

2m
in

20
s

32
s

1m
in

26
s

2m
in

40
s

1m
in

46
s

1m
in

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS

Figure 3: Total update (dark color) and query (light color) times on selected kronecker-csize
instances. All results are shown in Figures A.8 and A.9.

Timeout
(24h)

DE FR IT NL PL SIM

2h
31

m
in

6h
54

m
in

4h
44

m
in

1h
43

m
in

50
m

in
22

s

1h
1m

in

31
s

4h
44

m
in

2h
1m

in

37
m

in
43

s

53
m

in
29

s

28
m

in
22

s

14
s

4h
25

m
in

3h
46

m
in

59
m

in
36

s

17
m

in
46

s

22
m

in
26

s

23
s

21
h

41
m

in

13
h

9m
in

4h
42

m
in

1h
42

m
in

2h
16

m
in

37
s

7h
40

m
in

6h
57

m
in

1h
47

m
in

42
m

in
41

s

51
m

in
14

s

24
s

15
h

41
m

in

8h
29

m
in

3h
30

m
in

1h
18

m
in

2h
10

m
in

30
s

5h
24

m
in

3h
24

m
in

1h
12

m
in

30
m

in
50

s

46
m

in
52

s

11
s

SVC(50, 100k) SVC(50, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) Bi-BFS DFS

Figure 4: Total update (dark color) and query (light color) times on konect instances.

one depicts the total update time, the lighter one the total query time, which is comparatively
small for most dynamic algorithms and therefore sometimes hardly discernible. In case that an
algorithm reached the timeout, we only use the darker color for the bar. The description next to
each bar states the total operation time. By and large, the picture is very similar to that for ER
instances. On 13 and 14 out of the 20 instances, BFS/DBFS and DFS, respectively, did not finish
within six hours. As on the previous sets of instances, these algorithms are far from competitive.
The performance of BiBFS was ambivalent: it was the fastest on two instances, but lagged far
behind on others. SV(1) and SV(2) showed the best performance on the majority of instances and
were the only ones to finish within six hours on email-inside. On some graphs, the total operation
time of SV(1) was dominated by the query time, e.g., on bio-proteins, whereas SV(2) was able to
reduce the total operation time by more than half by picking a second supportive vertex. However,
SVC(25, 100k) was even able to outperform this slightly and was the fastest algorithm on half of
the instances. As above, recomputing the SCCs more often (SVC(25, 10k)) or periodically picking
new support vertices (SVA(1, 1k), SVA(1, 10k)) led to a slowdown in general.

On kronecker-growing, SV(1) was the fastest algorithm on all but one instance. The overall
picture is very similar, see Figures A.10 and A.11.
Real-World Instances. In the same style as above, Figure 4 shows the results on the six real-
world instances with real-world update sequences, konect, again with 33 % queries among the
operations. We set the timeout at 24 h, which was reached by BFS, DFS, and DBFS on all but the
smallest instance. On the largest instance, DE, they were able to process only around 6 % of all
updates and queries within this time. The fastest algorithms were SV(1) and SV(2). If SV(1)
chose the single support vertex well, as in case of FR, IT, and SIM, the query costs and the total
operation times were low; on the other instances, the second support vertex, as chosen by SV(2),
could speed up the queries further and even compensate the cost for maintaining a second pair of

11

Faster Fully Dynamic Transitive Closure in Practice

SSR data structures. Even though the instances are growing and most vertices were isolated and
therefore not eligible as supportive vertex during initialization, periodically picking new supportive
vertices, as SVA does, did not improve the running time. SVC(50,∞) performed well, but the extra
effort to compute the SCCs and use their representatives as supportive vertices did not pay off ;
only on SIM, SVC(50,∞) was able to outperform both SV(1) and SV(2) marginally.

Randomly permuting the sequence of update operations, as for the instance set
konect-shuffled, did not change the overall picture. The results are shown in Figure A.12.

5 Conclusion
Our extensive experiments on a diverse set of instances draw a somewhat surprisingly consistent
picture: The most simple algorithm from our family, SV(1), which picks a single supportive vertex,
performed extremely well and was the fastest on a large portion of the instances. On those
graphs where it was not the best, SV(2) could speed up the running time by picking a second
supportive vertex. Additional statistical evaluations showed that already for sparse graphs, SV(1)
and SV(2) answered a great majority of all queries in constant time using only its supportive
vertices. Recomputing the strongly connected components of the graph in very large intervals
and using them for the choice of supportive vertices yielded a comparatively good or marginally
better algorithm on random instances, but not on real-world graphs.

The classic static algorithms BFS and DFS, which were competitive or even superior to the
dynamic algorithms evaluated experimentally in previous studies, lagged far behind the new al-
gorithms and were outperformed by several orders of magnitude.

References

[1] Algora – a modular algorithms library. https://libalgora.gitlab.io.

[2] S. Baswana, R. Hariharan, and S. Sen. Improved decremental algorithms for maintaining transitive
closure and all-pairs shortest paths. In Proceedings of the Thirty-Fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, page 117–123, New York, NY, USA, 2002. Association for
Computing Machinery. doi:10.1145/509907.509928.

[3] B. Bollobás. Random graphs. Number 73. Cambridge university press, 2001.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9(3):251–280, 1990. URL: http://dx.doi.org/10.1016/S0747-7171(08)
80013-2, doi:10.1016/S0747-7171(08)80013-2.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, chapter
Elementary Data Structures. MIT Press, 3rd edition, 2009.

[6] C. Demetrescu and G. F. Italiano. Trade-offs for fully dynamic transitive closure on dags: Breaking
through the O(n2) barrier. J. ACM, 52(2):147–156, March 2005. doi:10.1145/1059513.1059514.

[7] C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices for fully dynamic transitive closure.
Algorithmica, 51(4):387–427, 2008.

[8] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on Comput-
ing, 29(5):1740–1759, 2000. arXiv:https://doi.org/10.1137/S0097539797327908, doi:10.1137/
S0097539797327908.

12

https://libalgora.gitlab.io
https://doi.org/10.1145/509907.509928
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1145/1059513.1059514
http://arxiv.org/abs/https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908

K. Hanauer, M. Henzinger, C. Schulz

[9] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the ACM, 19(2):248–264, April 1972. URL: http://doi.acm.org/10.1145/
321694.321699, doi:10.1145/321694.321699.

[10] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962. doi:10.1145/
367766.368168.

[11] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

[12] D. Frigioni, T. Miller, U. Nanni, and C. Zaroliagis. An experimental study of dynamic algorithms
for transitive closure. Journal of Experimental Algorithmics (JEA), 6:9, 2001.

[13] A. Gitter, A. Gupta, J. Klein-Seetharaman, and Z. Bar-Joseph. Discovering pathways by orienting
edges in protein interaction networks. Nucleic Acids Research, 39(4):e22–e22, 11 2010.

[14] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck. Maximum flows by incremental
breadth-first search. In European Symposium on Algorithms, pages 457–468. Springer, 2011.

[15] K. Hanauer, M. Henzinger, and C. Schulz. Fully dynamic single-source reachability in practice: An
experimental study. In Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2020, Salt Lake City, UT, USA, January 5-6, 2020, pages 106–119, 2020. doi:10.1137/
1.9781611976007.9.

[16] M. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure. In 36th Annual
Symposium on Foundations of Computer Science (FOCS), pages 664–672. IEEE, 1995.

[17] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening hard-
ness for dynamic problems via the online matrix-vector multiplication conjecture. In 47th ACM
Symposium on Theory of Computing, STOC’15, pages 21–30. ACM, 2015.

[18] T. Ibaraki and N. Katoh. On-line computation of transitive closures of graphs. Information Pro-
cessing Letters, 16(2):95 – 97, 1983. URL: http://www.sciencedirect.com/science/article/pii/
0020019083900339, doi:https://doi.org/10.1016/0020-0190(83)90033-9.

[19] G. F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Information Processing
Letters, 28(1):5–11, 1988.

[20] G. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical Computer
Science, 48:273 – 281, 1986. URL: http://www.sciencedirect.com/science/article/pii/
0304397586900988, doi:https://doi.org/10.1016/0304-3975(86)90098-8.

[21] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure
in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, page 81, USA, 1999. IEEE Computer Society.

[22] V. King and G. Sagert. A fully dynamic algorithm for maintaining the transitive closure. Journal
of Computer and System Sciences, 65(1):150–167, 2002. URL: http://www.sciencedirect.com/
science/article/pii/S0022000002918830, doi:https://doi.org/10.1006/jcss.2002.1883.

[23] V. King and M. Thorup. A space saving trick for directed dynamic transitive closure and shortest
path algorithms. In Proceedings of the 7th Annual International Conference on Computing and
Combinatorics, COCOON ’01, page 268–277, Berlin, Heidelberg, 2001. Springer-Verlag.

[24] I. Krommidas and C. D. Zaroliagis. An experimental study of algorithms for fully dynamic transitive
closure. ACM Journal of Experimental Algorithmics, 12:1.6:1–1.6:22, 2008.

[25] J. Kunegis. Konect: the Koblenz network collection. In 22nd International Conference on World
Wide Web, pages 1343–1350. ACM, 2013.

13

http://doi.acm.org/10.1145/321694.321699
http://doi.acm.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1137/1.9781611976007.9
http://www.sciencedirect.com/science/article/pii/0020019083900339
http://www.sciencedirect.com/science/article/pii/0020019083900339
https://doi.org/https://doi.org/10.1016/0020-0190(83)90033-9
http://www.sciencedirect.com/science/article/pii/0304397586900988
http://www.sciencedirect.com/science/article/pii/0304397586900988
https://doi.org/https://doi.org/10.1016/0304-3975(86)90098-8
http://www.sciencedirect.com/science/article/pii/S0022000002918830
http://www.sciencedirect.com/science/article/pii/S0022000002918830
https://doi.org/https://doi.org/10.1006/jcss.2002.1883

Faster Fully Dynamic Transitive Closure in Practice

[26] J. A. La Poutré and J. van Leeuwen. Maintenance of transitive closures and transitive reductions of
graphs. In H. Göttler and H.-J. Schneider, editors, Graph-Theoretic Concepts in Computer Science,
pages 106–120, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[27] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker graphs: An
approach to modeling networks. Journal of Machine Learning Research, 11:985–1042, March 2010.
URL: http://dl.acm.org/citation.cfm?id=1756006.1756039.

[28] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-mining library. ACM
Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

[29] J. Łącki. Improved deterministic algorithms for decremental transitive closure and strongly connected
components. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’11, page 1438–1445, USA, 2011. Society for Industrial and Applied Mathematics.

[30] T. Reps. Program analysis via graph reachability. Information and software technology, 40(11-
12):701–726, 1998.

[31] L. Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms, 4(1),
March 2008. doi:10.1145/1328911.1328917.

[32] L. Roditty. Decremental maintenance of strongly connected components. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, page 1143–1150,
USA, 2013. Society for Industrial and Applied Mathematics.

[33] L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed graphs. SIAM
Journal on Computing, 37(5):1455–1471, 2008. arXiv:https://doi.org/10.1137/060650271, doi:
10.1137/060650271.

[34] L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs. SIAM
J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

[35] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for directed graphs with an almost
linear update time. SIAM Journal on Computing, 45(3):712–733, 2016.

[36] P. Sankowski. Dynamic transitive closure via dynamic matrix inverse. In 45th Symposium on
Foundations of Computer Science (FOCS), pages 509–517. IEEE, 2004.

[37] Y. Shiloach and S. Even. An on-line edge-deletion problem. Journal of the ACM, 28(1):1–4, 1981.

[38] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972. arXiv:https://doi.org/10.1137/0201010, doi:10.1137/0201010.

[39] J. van den Brand, D. Nanongkai, and T. Saranurak. Dynamic matrix inverse: Improved algorithms
and matching conditional lower bounds. In 60th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 456–480, 2019.
doi:10.1109/FOCS.2019.00036.

[40] S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, January 1962. doi:10.1145/
321105.321107.

[41] D. M. Yellin. Speeding up dynamic transitive closure for bounded degree graphs. Acta Informatica,
30(4):369–384, 1993.

14

http://dl.acm.org/citation.cfm?id=1756006.1756039
https://doi.org/10.1145/1328911.1328917
http://arxiv.org/abs/https://doi.org/10.1137/060650271
https://doi.org/10.1137/060650271
https://doi.org/10.1137/060650271
https://doi.org/10.1137/090776573
http://arxiv.org/abs/https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107

K. Hanauer, M. Henzinger, C. Schulz

A Appendix
A.1 Related Work
Over the years, extensive research on the (fully) dynamic transitive closure problem has spawned
a large body of algorithms. They can be classified with respect to at least the following five
criteria: the dynamic setting (incremental, decremental, or fully), the supported input instances
(arbitrary or DAGs), their mode of operation (deterministic, Las Vegas-style randomized, or Monte
Carlo-style randomized), whether they are combinatorial or rely on fast matrix multiplication, and
whether they support queries in constant time or not. Note that Monte Carlo algorithms may
answer with one-sided error with some (small) probability, whereas Las Vegas algorithms always
answer correctly, but their running time may depend on random variables.

The insertions-only case was first considered in 1983 by Ibaraki and Katoh [18], whose algorithm
processes any number of insertions in O(n3) total time with O(1) query time. Independently from
each other, Italiano [20] as well as La Poutré and van Leeuwen [26] improved this result to O(n)
amortized insertion time. Yellin’s algorithm [41] can process a sequence of edge insertions on an
initially empty graph in O(m∗ ·∆+) total time, where m∗ is the number of edges in the transitive
closure and ∆+ the maximum outdegree of the final graph.

In the deletions-only case, Ibaraki and Katoh [18] gave the first algorithm in 1983 with con-
stant query time and O(n2(m + n)) time for any number of deletions, which was again improved
by La Poutré and van Leeuwen [26] to O(m) amortized deletion time. An algorithm by Frigioni et
al. [12] achieves the same and uses O(n · m) time for initialization. Demetrescu and Italiano’s
non-combinatorial algorithm [7] reduced the amortized deletion time further to O(n), but requires
O(n3) preprocessing time. Earlier, a Monte Carlo algorithm by Henzinger and King [16] was able
to reduce the amortized deletion time to O(n log2 n), however at the expense of O(n√

n
) query time.

Baswana et al. [2] showed with another Monte Carlo algorithm that the query time can be kept con-
stant with O(n 4

3 3
√

logn) amortized deletion time. A Las Vegas algorithm by Roditty and Zwick [33]
improved the total running time to O(n·m), and Ła̧cki [29] finally showed in 2011 that the same can
be achieved with a deterministic algorithm. On DAGs, Italiano [19] presented the first algorithm
with constant query time and an amortized deletion time of O(n) already in 1988, and Yellin [41]
gave an algorithm with a total deletion time of O(m∗ ·∆+), where m∗ and ∆+ are defined as above.

Henzinger and King [16] gave the first fully dynamic algorithms for transitive closure, which
are Monte Carlo-style randomized with O(n√

n
) query time and either O(m

√
n log2 n) or O(m0.58 ·

n) amortized update time. King and Sagert [22] improved upon these results using a Monte
Carlo algorithm with O(n2.26) amortized update time, constant query time, and O(n2) space.
Whereas the aforementioned results rely on fast matrix multiplication, a combinatorial algorithm
by King [21] reduced the amortized update time further to O(n2 logn). King and Thorup [23]
decreased the space complexity of King’s algorithm [21] from O(n3) to O(n2 logn). Using non-
combinatorial techniques, Demetrescu and Italiano [7] showed that the amortized update time can
be reduced further to O(n2). In the following, Roditty and Zwick [33] presented a deterministic,
combinatorial algorithm with O(

√
n) query time and O(m

√
n) amortized update time as well as

a non-combinatorial Monte Carlo algorithm with O(m0.43) query time and O(m0.58n) amortized
update time. Sankowski [36] gave three non-combinatorial Monte Carlo algorithms with constant,
O(n0.58), or O(n1.495) worst-case query time and O(n2), O(n1.58), or O(n1.495) worst-case update
time, respectively. For constant query time, Roditty [31] developed a deterministic, combinatorial
algorithm with O(n2) amortized update time, which in addition reduces the initialization time
from O(n3) [7] and above to O(n · m). Roditty and Zwick [35] showed with a deterministic,
combinatorial algorithm that the amortized update time can be reduced down to O(m + n logn)
at the expense of O(n) worst-case query time. Recently, van den Brand et al. [39] presented an
algorithm with O(n1.407) worst-case update and query time.

15

Faster Fully Dynamic Transitive Closure in Practice

For DAGs, King and Sagert [22] gave a Monte Carlo algorithm with constant query time and
O(n2) amortized update time. Another Monte Carlo algorithm by Demetrescu and Italiano [6]
reduced the update time to O(n1.575) even in worst case, however at the expense of a O(n0.575)
worst-case query time. Roditty and Zwick [33] presented a deterministic algorithm with O(n

logn)
query time andO(m) amortized update time. Roditty [31] showed that the transitive closure can be
maintained in the fully dynamic setting on DAGs using O(n2) space and with O(n·m) initialization
time, O(n2) amortized insertion time, constant amortized deletion time, and constant query time.

These results are counteracted by the fact that the insertion or deletion of a single edge may
affect the reachability between Ω(n2) pairs of vertices. If queries shall be answered in constant
time, the pairwise reachabilities have to be stored explicitly, which in turn implies that a worst-case
update time of O(n2) is the best one can hope for. So far, this time bound has only been reached in
the amortized cost model [31]. Also note that an incremental algorithm with O(n1−ε) query time
and O(n1−ε) insertion time per edge or O(n2−ε) insertion time per vertex along with its incident
edges would immediately yield an improved static algorithm for transitive closure. Moreover,
Henzinger et al. [17] have shown that unless the Online Matrix-Vector Multiplication problem
can be solved in O(n3−ε), ε > 0, no partially dynamic algorithm for transitive closure exists with
polynomial preprocessing time, O((mn)1−δ) update time, andO(mδ′−δ) query time simultaneously,
for δ′ ∈ (0, 1

2], m ∈ Θ(n
1

1−δ′), δ > 0. On condition of a variant of the OMv conjecture, van den
Brand et al. [39] improved the lower bounds for update and query time to Ω(n1.406). Slightly
weaker lower bounds, which are additionally restricted to combinatorial algorithms, can be achieved
based on the Boolean Matrix Multiplication conjecture [8].

In large studies, Frigioni et al. [12] as well as Krommidas and Zaroliagis [24] have implemented
an extensive set of the above mentioned algorithms and compared them to each other as well as to
static, “simple-minded” algorithms such as breadth-first and depth-first search. The set comprises
the algorithms by Italiano [20, 19], Yellin [41], Henzinger and King [16], King [21], King and
Thorup [23], Roditty [31], Roditty and Zwick [33, 35], Demetrescu and Italiano [6, 7], as well as
several modifications and improvements thereof. The experimental evaluations on random Erdős-
Renyí graphs, instances constructed to be difficult on purpose, as well as two instances based on
real-world graphs, showed that on all instances except for dense random graphs or a query ratio of
more than 65% dynamic ones distinctly and up to several factors. Their strongest competitors were
the fully dynamic extension [12] of the algorithms by Italiano [20, 19], as well as the fully dynamic
extension [24] of the decremental algorithm by Roditty and Zwick [33]. These two algorithms also
were the only ones that were faster than static graph traversal on dense random graphs.

16

K. Hanauer, M. Henzinger, C. Schulz

A.2 Additional Tables and Plots

 s

s ∈ R−(v)

t ∈ R+(v)

⇒ t ∈ R+(s)

v

s t

 s

s ∈ R+(v)

t 6∈ R+(v)

⇒ t 6∈ R+(s)

v

s t

 s

s 6∈ R−(v)

t ∈ R−(v)

⇒ t 6∈ R+(s)

v

s t

Figure A.5: Basic observations (O1), (O2), (O3) that help to decide reachability quickly.

Table A.3: Worst-case running times and space requirements.

Time Space
Algorithm Insertion Deletion Query Permanent Update

BFS, DFS,
DBFS, BiBFS

0 0 O(n+m) 0 O(n)

SV(k)/SVA(k, c)
x with SI
x with SES

O(k · (n+m)) O(k · n ·m)
O(k · (n+m)) O(k + (n+m)) O(k · n) O(n)

SVC(z, c)
x with SI
x with SES

O(n · (n+m)) O(n2 ·m)
O(n · (n+m)) O(n+m) O(n2) O(n)

17

Faster Fully Dynamic Transitive Closure in Practice

Table A.4: Number of vertices n, initial, average, and final number of edges m, m, and M , average
density d, total number of updates δ, and percentage of additions δ+ among updates, of real-world
instances.

Instance n m m M d δ δ+

FR 2.2m 3 13.0m 24.5m 5.9 59.0m 71 %
DE 2.2m 4 16.7m 31.3m 7.7 86.2m 68 %
IT 1.2m 1 9.3m 17.1m 7.8 34.8m 75 %
NL 1.0m 1 5.7m 10.6m 5.4 20.1m 76 %
PL 1.0m 1 6.6m 12.6m 6.4 25.0m 75 %
SIM 100k 2 401k 747k 5.9 1.6m 73 %

FR_SHUF 2.2m 4.0 16.4m 30.4m 7.4 53.1m 79 %
DE_SHUF 2.2m 3.8 22.6m 41.1m 10.4 76.4m 77 %
IT_SHUF 1.2m 3.8 10.9m 20.5m 9.1 31.4m 83 %
NL_SHUF 1.0m 3.8 6.7m 12.6m 6.4 18.1m 85 %
PL_SHUF 1.0m 3.6 7.9m 14.9m 7.7 22.7m 83 %
SIM_SHUF 100k 5.6 476k 892k 4.7 1.6m 80 %

1.25 2.5 5 10 20 40

0.1

1

10

Density d

M
ea

n
to

ta
lu

pd
at

e
tim

e
(s

)

1.25 2.5 5 10 20 40

0.1

1

10

100

1 000

Density d

M
ea

n
to

ta
lq

ue
ry

tim
e

(s
)

1.25 2.5 5 10 20 40
0.1

1

10

100

1 000

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40
1

10

100

1 000

Density d

M
ea

n
to

ta
lu

pd
at

e
tim

e,
re

la
tiv

e
to

SV
(1

)

1.25 2.5 5 10 20 40

1

10

100

1 000

10 000

Density d

M
ea

n
to

ta
lq

ue
ry

tim
e,

re
la

tiv
e

to
SV

C(
25

,1
0k
)

1.25 2.5 5 10 20 40
1

10

100

1 000

10 000

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25

,∞
)

(a) (b) (c)

(d) (e) (f)

BFS DFS SV(2) SVA(1,1k) SVC(25,10k)
Bi-BFS DBFS SV(1) SV(3) SVA(1,10k) SVC(25,∞)

Figure A.6: Random instances: n = σ = 100k and equally many insertions, deletions, and queries.

18

K. Hanauer, M. Henzinger, C. Schulz

1.25 2.5 5 10 20 40
0%

20%

40%

60%

80%

100%

Density d

Pe
rc

en
ta

ge
of

qu
er

ie
s

1.25 2.5 5 10 20 40
0%

20%

40%

60%

80%

100%

Density d

Pe
rc

en
ta

ge
of

qu
er

ie
s

1.25 2.5 5 10 20 40
0%

20%

40%

60%

80%

100%

Density d

Pe
rc

en
ta

ge
of

qu
er

ie
s

(a) (b)

(c)

Fallback to BiBFS
Observation (O3)
Observation (O2)
Observation (O1)
SCC representant of t
SCC representant of s
s = t|deg+(s) = 0|deg−(t) = 0

Figure A.7: Random instances with n = 100k: Average percentage of queries answered per stage
in case of SV(1) (a), SV(2) (b), and SVC(25,∞) (c).

19

Faster Fully Dynamic Transitive Closure in Practice

Timeout
(6h)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

1h 30min

7min 40s

4h 5min

3h 18min

5h 17min

2h 58min

4h 11min

23s

2min 1s

2min 27s

7s

5min 42s

13min 50s

18min 6s

9min 19s

12min 18s

42min 29s

4min 24s

30min 35s

32min 24s

48s

1min 33s

52s

2min

1min 15s

55s

34s

55s

52s

11s

4min 11s

5min 34s

1min 36s

4min 41s

3min 36s

2min 3s

4min 39s

1min 51s

1min 58s

1min 2s

14min 30s

1min 23s

1min 8s

1min 46s

1min 27s

57s

41s

1min 21s

1min 5s

17s

1min 45s

2min 34s

2min 57s

3min 12s

3min 28s

3min 48s

1min 50s

3min 33s

3min 39s

1min 25s

24min 3s

1min 7s

1min 5s

1min 46s

59s

1min 5s

53s

3min 30s

4min 17s

14s

7min 59s

22min 19s

29min 45s

9min 25s

9min 59s

53min 36s

5min 24s

33min 7s

34min 23s

1min 36s

2min 56s

1min 46s

2min 48s

1min 50s

1min 46s

31s

1min 47s

2min 9s

11s

3min 32s

6min 41s

7min 35s

4min 12s

3min 50s

7min 50s

3min 6s

6min 11s

5min 56s

59s

1min 33s

59s

1min 55s

1min 22s

1min

1min 4s

2min 51s

3min 26s

51s

5min 5s

13min 35s

18min 8s

5min 32s

5min 41s

32min 34s

3min 28s

20min 47s

21min 8s

1min 36s

2min 25s

1min 39s

2min 20s

1min 36s

1min 46s

32s

55s

1min 1s

35s

1min 26s

2min 40s

3min 13s

1min 46s

2min 5s

5min

1min 30s

3min 42s

3min 44s

47s

51s

46s

1min

52s

45s

Timeout
(6h)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

1h 30min

7min 40s

4h 5min

3h 18min

5h 17min

2h 58min

4h 11min

23s

2min 1s

2min 27s

7s

5min 42s

13min 50s

18min 6s

9min 19s

12min 18s

42min 29s

4min 24s

30min 35s

32min 24s

48s

1min 33s

52s

2min

1min 15s

55s

34s

55s

52s

11s

4min 11s

5min 34s

1min 36s

4min 41s

3min 36s

2min 3s

4min 39s

1min 51s

1min 58s

1min 2s

14min 30s

1min 23s

1min 8s

1min 46s

1min 27s

57s

41s

1min 21s

1min 5s

17s

1min 45s

2min 34s

2min 57s

3min 12s

3min 28s

3min 48s

1min 50s

3min 33s

3min 39s

1min 25s

24min 3s

1min 7s

1min 5s

1min 46s

59s

1min 5s

53s

3min 30s

4min 17s

14s

7min 59s

22min 19s

29min 45s

9min 25s

9min 59s

53min 36s

5min 24s

33min 7s

34min 23s

1min 36s

2min 56s

1min 46s

2min 48s

1min 50s

1min 46s

31s

1min 47s

2min 9s

11s

3min 32s

6min 41s

7min 35s

4min 12s

3min 50s

7min 50s

3min 6s

6min 11s

5min 56s

59s

1min 33s

59s

1min 55s

1min 22s

1min

1min 4s

2min 51s

3min 26s

51s

5min 5s

13min 35s

18min 8s

5min 32s

5min 41s

32min 34s

3min 28s

20min 47s

21min 8s

1min 36s

2min 25s

1min 39s

2min 20s

1min 36s

1min 46s

32s

55s

1min 1s

35s

1min 26s

2min 40s

3min 13s

1min 46s

2min 5s

5min

1min 30s

3min 42s

3min 44s

47s

51s

46s

1min

52s

45s

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS BFS

Figure A.8: Total update (dark color) and query (light color) times on kronecker-csize instances.

20

K. Hanauer, M. Henzinger, C. Schulz

Timeout
(30min)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

23s

2min 1s

2min 27s

7s

5min 42s

13min 50s

18min 6s

9min 19s

12min 18s

4min 24s

48s

1min 33s

52s

2min

1min 15s

55s

34s

55s

52s

11s

4min 11s

5min 34s

1min 36s

4min 41s

3min 36s

2min 3s

4min 39s

1min 51s

1min 58s

1min 2s

14min 30s

1min 23s

1min 8s

1min 46s

1min 27s

57s

41s

1min 21s

1min 5s

17s

1min 45s

2min 34s

2min 57s

3min 12s

3min 28s

3min 48s

1min 50s

3min 33s

3min 39s

1min 25s

24min 3s

1min 7s

1min 5s

1min 46s

59s

1min 5s

53s

3min 30s

4min 17s

14s

7min 59s

22min 19s

29min
45s

9min 25s

9min 59s

5min 24s

1min 36s

2min 56s

1min 46s

2min 48s

1min 50s

1min 46s

31s

1min 47s

2min 9s

11s

3min 32s

6min 41s

7min 35s

4min 12s

3min 50s

7min 50s

3min 6s

6min 11s

5min 56s

59s

1min 33s

59s

1min 55s

1min 22s

1min

1min 4s

2min 51s

3min 26s

51s

5min 5s

13min 35s

18min 8s

5min 32s

5min 41s

3min 28s

20min 47s

21min 8s

1min 36s

2min 25s

1min 39s

2min 20s

1min 36s

1min 46s

32s

55s

1min 1s

35s

1min 26s

2min 40s

3min 13s

1min 46s

2min 5s

5min

1min 30s

3min 42s

3min 44s

47s

51s

46s

1min

52s

45s

Timeout
(30min)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

23s

2min 1s

2min 27s

7s

5min 42s

13min 50s

18min 6s

9min 19s

12min 18s

4min 24s

48s

1min 33s

52s

2min

1min 15s

55s

34s

55s

52s

11s

4min 11s

5min 34s

1min 36s

4min 41s

3min 36s

2min 3s

4min 39s

1min 51s

1min 58s

1min 2s

14min 30s

1min 23s

1min 8s

1min 46s

1min 27s

57s

41s

1min 21s

1min 5s

17s

1min 45s

2min 34s

2min 57s

3min 12s

3min 28s

3min 48s

1min 50s

3min 33s

3min 39s

1min 25s

24min 3s

1min 7s

1min 5s

1min 46s

59s

1min 5s

53s

3min 30s

4min 17s

14s

7min 59s

22min 19s

29min
45s

9min 25s

9min 59s

5min 24s

1min 36s

2min 56s

1min 46s

2min 48s

1min 50s

1min 46s

31s

1min 47s

2min 9s

11s

3min 32s

6min 41s

7min 35s

4min 12s

3min 50s

7min 50s

3min 6s

6min 11s

5min 56s

59s

1min 33s

59s

1min 55s

1min 22s

1min

1min 4s

2min 51s

3min 26s

51s

5min 5s

13min 35s

18min 8s

5min 32s

5min 41s

3min 28s

20min 47s

21min 8s

1min 36s

2min 25s

1min 39s

2min 20s

1min 36s

1min 46s

32s

55s

1min 1s

35s

1min 26s

2min 40s

3min 13s

1min 46s

2min 5s

5min

1min 30s

3min 42s

3min 44s

47s

51s

46s

1min

52s

45s

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS

Figure A.9: Total update (dark color) and query (light color) times on kronecker-csize instances
with timeout at 30 min.

21

Faster Fully Dynamic Transitive Closure in Practice

Timeout
(2h)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

14min 32s

55min 56s

1h 14min

35s

1h 49min

29min 38s

54min 8s

31min 15s

33min 28s

21min 6s

34min 49s

4s

21s

24s

1s

45s

1min 30s

1min 56s

54s

1min 6s

4min 11s

27s

3min 3s

3min 14s

8s

1h 58min

16s

10s

16s

11s

10s

3s

4s

4s

3s

7s

10s

11s

11s

12s

15s

9s

14s

14s

5s

1min 30s

4s

3s

6s

5s

4s

5s

7s

8s

5s

13s

18s

20s

20s

25s

28s

18s

26s

27s

9s

2min 19s

7s

6s

12s

10s

7s

7s

26s

29s

2s

49s

1min 59s

2min 30s

56s

59s

4min 46s

33s

2min 50s

3min 1s

12s

21s

14s

20s

14s

13s

4s

16s

13s

2s

21s

28s

41s

28s

27s

50s

23s

49s

47s

8s

1h 24min

9s

7s

14s

10s

9s

6s

15s

19s

9s

33s

1min 26s

1min 51s

39s

40s

3min 22s

24s

2min 9s

2min 11s

10s

15s

10s

13s

10s

11s

3s

5s

6s

4s

10s

18s

21s

14s

16s

31s

11s

26s

26s

5s

53min 49s

5s

4s

7s

6s

5s

Timeout
(2h)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

14min 32s

55min 56s

1h 14min

35s

1h 49min

29min 38s

54min 8s

31min 15s

33min 28s

21min 6s

34min 49s

4s

21s

24s

1s

45s

1min 30s

1min 56s

54s

1min 6s

4min 11s

27s

3min 3s

3min 14s

8s

1h 58min

16s

10s

16s

11s

10s

3s

4s

4s

3s

7s

10s

11s

11s

12s

15s

9s

14s

14s

5s

1min 30s

4s

3s

6s

5s

4s

5s

7s

8s

5s

13s

18s

20s

20s

25s

28s

18s

26s

27s

9s

2min 19s

7s

6s

12s

10s

7s

7s

26s

29s

2s

49s

1min 59s

2min 30s

56s

59s

4min 46s

33s

2min 50s

3min 1s

12s

21s

14s

20s

14s

13s

4s

16s

13s

2s

21s

28s

41s

28s

27s

50s

23s

49s

47s

8s

1h 24min

9s

7s

14s

10s

9s

6s

15s

19s

9s

33s

1min 26s

1min 51s

39s

40s

3min 22s

24s

2min 9s

2min 11s

10s

15s

10s

13s

10s

11s

3s

5s

6s

4s

10s

18s

21s

14s

16s

31s

11s

26s

26s

5s

53min 49s

5s

4s

7s

6s

5s

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS BFS

Figure A.10: Total update (dark color) and query (light color) times on kronecker-growing
instances.

22

K. Hanauer, M. Henzinger, C. Schulz

Timeout
(5min)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

4s

21s

24s

1s

45s

1min 30s

1min 56s

54s

1min 6s

4min 11s

27s

3min 3s

3min 14s

8s

16s

10s

16s

11s

10s

3s

4s

4s

3s

7s

10s

11s

11s

12s

15s

9s

14s

14s

5s

1min 30s

4s

3s

6s

5s

4s

5s

7s

8s

5s

13s

18s

20s

20s

25s

28s

18s

26s

27s

9s

2min 19s

7s

6s

12s

10s

7s

7s

26s

29s

2s

49s

1min 59s

2min 30s

56s

59s

4min
46s

33s

2min 50s

3min 1s

12s

21s

14s

20s

14s

13s

4s

16s

13s

2s

21s

28s

41s

28s

27s

50s

23s

49s

47s

8s

9s

7s

14s

10s

9s

6s

15s

19s

9s

33s

1min 26s

1min 51s

39s

40s

3min 22s

24s

2min 9s

2min 11s

10s

15s

10s

13s

10s

11s

3s

5s

6s

4s

10s

18s

21s

14s

16s

31s

11s

26s

26s

5s

5s

4s

7s

6s

5s

Timeout
(5min)

answers

as-newman

as-routeviews

atp-gr-qc

bio-proteins

blog-nat05-6m

blog-nat06all

ca-dblp

ca-gr-qc

ca-hep-ph

ca-hep-th

cit-hep-ph

cit-hep-th

delicious

email-inside

epinions

flickr

gnutella-25

gnutella-30

web-notredame

4s

21s

24s

1s

45s

1min 30s

1min 56s

54s

1min 6s

4min 11s

27s

3min 3s

3min 14s

8s

16s

10s

16s

11s

10s

3s

4s

4s

3s

7s

10s

11s

11s

12s

15s

9s

14s

14s

5s

1min 30s

4s

3s

6s

5s

4s

5s

7s

8s

5s

13s

18s

20s

20s

25s

28s

18s

26s

27s

9s

2min 19s

7s

6s

12s

10s

7s

7s

26s

29s

2s

49s

1min 59s

2min 30s

56s

59s

4min
46s

33s

2min 50s

3min 1s

12s

21s

14s

20s

14s

13s

4s

16s

13s

2s

21s

28s

41s

28s

27s

50s

23s

49s

47s

8s

9s

7s

14s

10s

9s

6s

15s

19s

9s

33s

1min 26s

1min 51s

39s

40s

3min 22s

24s

2min 9s

2min 11s

10s

15s

10s

13s

10s

11s

3s

5s

6s

4s

10s

18s

21s

14s

16s

31s

11s

26s

26s

5s

5s

4s

7s

6s

5s

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS

Figure A.11: Total update (dark color) and query (light color) times on kronecker-growing
instances with 5 min timeout.

23

Faster Fully Dynamic Transitive Closure in Practice

Timeout
(12h)

DE_SHUF FR_SHUF IT_SHUF NL_SHUF PL_SHUF SIM_SHUF

1h
43

m
in

7h
35

m
in

2h
32

m
in

1h
12

m
in

1h
43

m
in

46
s

1h
58

m
in

1h
33

m
in

18
m

in
20

s

9m
in

14
s

11
m

in
15

s

10
s

3h
20

m
in

2h
37

m
in

28
m

in
45

s

13
m

in
15

s

15
m

in
53

s

15
s

5h
28

m
in

2h
2m

in

2h
57

m
in

47
s

9h
1m

in

6h
2m

in

1h
40

m
in

42
m

in
42

s

1h
5m

in

31
s

9h
48

m
in

3h
37

m
in

1h
28

m
in

1h
51

m
in

26
s

3h
15

m
in

2h
41

m
in

40
m

in
34

s

19
m

in
55

s

21
m

in
56

s

10
s

SVC(50, 100k) SVC(50, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS BFS

Figure A.12: Total mean update (dark color) and query (light color) times on konect-shuffled
instances.

24

	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Static Algorithms
	3.2 A New Approach

	4 Experiments
	5 Conclusion
	A Appendix
	A.1 Related Work
	A.2 Additional Tables and Plots

