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Tangent space spatial filters for interpretable and
efficient Riemannian classification

Jiachen Xu*, Moritz Grosse-Wentrup, and Vinay Jayaram

Abstract—Objective: Methods based on Riemannian geometry
have proven themselves to be good models for decoding in brain-
computer interfacing (BCI). However, these methods suffer from
the curse of dimensionality and are not possible to deploy in
high-density online BCI systems. In addition, the lack of inter-
pretability of Riemannian methods leaves open the possibility that
artifacts drive classification performance, which is problematic in
the areas where artifactual control is crucial, e.g., neurofeedback
and BCls in patient populations. Approach: We rigorously proved
the exact equivalence between any linear function on the tangent
space and corresponding derived spatial filters. Upon which,
we further proposed a set of dimension reduction solutions for
Riemannian methods without intensive optimization steps. The
proposed pipelines are validated against classic common spatial
patterns and tangent space classification using an open-access
BCI analysis framework, which contains over seven datasets and
200 subjects in total. At last, the robustness of our framework is
verified via visualizing the corresponding spatial patterns. Main
results: Proposed spatial filtering methods possess competitive,
sometimes even slightly better, performances comparing to classic
tangent space classification while reducing the time _cost up
to 97% in the testing stage. Importantly, the performances:of
proposed spatial filtering methods converge with using only four
to six filter components regardless of the number of channels
which is also cross validated by the visualized, spatial patterns.
These results reveal the possibility of underlying neuronal sources
within each recording session. Significance: Qur work promotes
the theoretical understanding about Riemannian geometry based
BCI classification and allows for more efficient classification as
well as the removal of artifact sources from classifiers built on
Riemannian methods.

Index Terms—Brain-computer interface, Spatial filters, Rie-
mannian geometry, Interpretability, Meta-analysis.

I. INTRODUCTION

Brain-computer interfaces, (BCIs), in particular imagery-
based BClIs, are well known, if.not{infamous, for their sen-
sitivity to noise and jtheir low signal-to-noise ratio. Over the
past decades, many methods have been invented in order to
derive features fromythe raw signal data that are predictive of
user intention. However, as the electroencephalogram (EEG)
is highly sensitive to both neural and non-neural signals,
optimizingssetups for_predictive accuracy was insufficient.
Rather, it was necessary to be able to confirm that any classifier
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was both predictive and based purely on brain-derived features.
These divergent requirements spurted the field to develop
in two different directions: spatial filtering and Riemannian
manifold techniques. ~

Spatial filters are lin€ar combinations of channel activity
that reconstruct‘a single (netral or non-neural) source with
certain desired propetties. Initially, these weightings were
computed viaphysical or neurophysiological models [1]. How-
ever, it was.quickly discovered that data-driven spatial filters
could lead to features that reflect robust differences in brain
activity. By optimizing for variance [2, 3] or independence [4,
5], ot even, searching for filters that maximize the difference
between multiple types of intention [6, 7], many different sorts
of spatial filters can be computed. In order to verify that the
reconstructed signal comes from the brain, the spatial patterns
can be plotted corresponding to those filters on the scalp.

Beginning with common spatial patterns (CSP), there has
beena large body of literature dedicated to finding algorithms
that optimally reconstruct source activity based on a given
criterion. For differences between two classes, CSP has proven
itself to be robust and easy to implement (for a more ex-
haustive review, see [8]). More recently, methods have been
developed to find sources that track a continuous variable of
interest [9]. One major difficulty that was recognized early on
is that, while it is relatively simple to generate appropriate
spatial filters for data that is already recorded, the application
of these filters to new data is often confounded by the highly
non-stationary nature of the EEG signal. Filters that persist
across multiple recording sessions, or filters that work on
multiple subjects, are both open areas of research. Some
groups look at different criteria to derive robust filters [10,
11], others use more probabilistic techniques [12, 13], and
still others consider options like sparsity [14, 15] or looking
at patches of channels [16]. Each of the aforementioned
techniques has shown its value in solving an aspect of the
spatial filtering problem, but they often require very different
approaches to solve the ensuing optimization problems, and it
is hard to decide which one may be most appropriate for a
given situation. A further issue is the inefficient use of data.
Using the same data to compute optimal spatial features and
then a classifier runs the risk of overfitting since the same data
is used in both steps. However, if the training data is split
into disjoint sets for spatial filtering computation and model
fitting, then the amount that can be used to fit either model is
necessarily reduced. Hence, in either case, the data cannot be
efficiently utilized.

Nevertheless, spatial filtering remains a crucial method in
applications where artifacts are of great concern. In particular,
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it is crucial for neurofeedback studies. When the goal is to give
feedback on neural activity, there must be a way of ensuring
that the model which reconstructs a source of interest from the
original signal only uses brain data to do so. This requirement
invalidates many black-box machine learning methods, such
as random forests [17].

Outside of this sphere, methods based on Riemannian geom-
etry have been gaining momentum as a model for robust clas-
sification for performance-optimized BCIs. Thanks to work
in differential geometry, metrics for computing the distance
between sensor covariance matrices have been discovered that
are invariant to many common sorts of noise found in the
electroencephalogram [18]. These methods can be translated
into algorithms for finding classifiers that are far more robust
to noise across a variety of contexts [19]. In particular, the
approaches that use tangent space projection [20] have been
shown to out-perform most other conventional methods in a
recent meta-analysis [21]. Two major downsides, however, are
their high computational complexity and their interpretation.
Because these methods work in the space of sensor covariance
matrices, their size scales quadratically with the number of
sensors. To tackle this problem, which impedes application
in high-density BCI systems, recent research has focused on
investigating dimension reduction techniques by leveraging
sparsity [22, 23], embedding adjacent samples [24, 25, 26];
measures of manifold linearity [27], measures of affinity-
weighted similarity [28], or based on an information criterion
[29]. A generic framework can be referred to/[30]:nThese
methods can significantly reduce the computation necessary
for online application, however they all require solving com-
plex optimization problems.

Further, the issue of interpretation is a significant, while
unsolvable problem. As of now, it is not possible to determine
what parts of a signal are being used to’buildsa tangent space
classifier, and therefore these can only be used in artifact-
sensitive contexts when paired with, an artifact detection
pipeline or other artifact cleaning methods:

In our paper, we show the following eontributions: that it
is possible to find sets of spatial filters that describe a linear
function in the Riemannian tangent space, and further that
this space has a fundamental relationship to common spatial
patterns. Via this approach,the full literature of linear machine
learning methods can befused for spatial filtering, instead of
requiring a different’ optimization for each regularization of
interest. Using/ this connéction, it is possible to visualize the
sources that a'tangent space classifier uses, and thereby to
identify artifact sources used for classification and remove
them via orthogonal projection. Finally, we show in offline
comparisomthat using spatial filters derived via this approach
significantly “out=performs common spatial patterns and can
evenyyin_low-data situations, out-perform the tangent space
function they are derived from. We improve upon the work
presented in [31] by introducing rigorous proofs for the
validity of the proposed techniques as well as an expanded
set of experiments.

2

II. BACKGROUND

Riemannian manifold-based classification methods (here-
after abbreviated Riemannian methods) canpoften seem dif-
ficult to understand. For convenience, we include this section
that reviews our notation and the basi¢'operations of Rieman-
nian methods, as well as a short review of.the amathematics
behind spatial filtering.

A. Preliminary and Notations

We notate the the raw sénsor data as, X € RE*NXT where

C, N and T represents the number of channels (electrodes),
samples (length of each trial) and trials respectively. We
represent the data of channele (with ¢ € {1,--- ,C}) as X,.
In addition, the data from the ¢-th trial (with ¢t € {1,--- ,T})
are expressed a8 X*. Similafly, we use (-)! to express the
variables derived from»X%. Moreover, the covariance matrices
computed from X, i.e.; the points lying on the manifold, are
denoted as C € RC*F*T. The Fréchet mean, a generaliza-
tion of /the standard arithmetic mean to other spaces, of the
manifold points set, C is expressed as C™. In the following
section, we use A to denote any symmetric positive definite
(SPD) matrixy for which the following property holds true:
vIAY > O,Ve #0.

We next describe some common operations for manipulating
points ‘on the symmetric positive definite (SPD) manifold.
Firstly, A (A) is used to express the vector of eigenvalues of
A Next, the logarithm and exponential as well as the power
of p for an SPD matrix are namely defined as:

Logm (A) = Vlog (D) V'
Expm (A) = Vexp (D) V' (I.1)
AP =VDPV', pe Rand p #0,

where D is the diagonal eigenvalue matrix of A, ie., A =
VDVT, log(-) and exp (-) as well as (-)” represent taking
the logarithm, exponential and power of p elementwise for a
matrix, and V is the orthogonal matrix of eigenvectors. Please
note that p can also be a fraction, e.g., p = % means the square
root and p = —% denotes the inverse square root.

At last, since the vectorization of an SPD matrix is also
frequently employed to reduce the computational complexity,
it is defined as below:

vec (A) = [04171A171, s

C(C+1)

eRXT 7 where 1 < j<i<C. (11.2)
a; ;= |1if 4 = j, V2 else

Jo A ac,cAc,cl

An overview of the frequent notations is shown in Table II.1.

B. Riemannian Manifold based Methods

The Riemannian classification framework emerged in the
BCI field around one decade ago [19]. Since then, it has
attracted increasing attention due to its state-of-the-art per-
formance [32, 33]. In this section, we briefly introduce the
Riemannian methods from the practical viewpoint. For a more
mathematically exhaustive treatment of Riemannian mani-
folds, please refer to [34].
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TABLE II.1: The List of Frequent Notations

Data Related Variables

X € REXNXT _Bandpass filtered trialwise data

C € REXCXT _ Covariance matrices on the manifold
S € REXCEXT _ points on the tangent space

F € REXC _ Spatial filters with full rank

Operators

(-)t — Variables from the data of ¢-th trial

(+)™ — Fréchet mean

(+) — Arithmetic mean

vec (-) — Vectorizing SPD matrices

A (-) — The eigenvalue vector of a matrix

log () — Taking logrithm elementwise

Logm (-) /Expm (-) — Logrithm/Exponential for a matrix based on I
Logma (-) /Expmp (-) — Logrithm/Exponential for a matrix based on A

1) Riemannian Metric and Distance: As the most common
proxy for measuring the discriminability of data points, dis-
tances between points are usually defined by a preselected
metric, normally the Euclidean one. While this metric can
also be used with SPD matrices, it is incapable of adequately
capturing the structure of SPD matrices, leading to certain
undesirable effects such as the swelling effect [35]. It means
that simply vectorizing covariance matrices and fitting them
into a linear classifier often work poorly.

In order to take advantage of the structure inherent to
covariance matrices, it is desirable to have a metric sthat
generalizes the properties of the Euclidean metric in standard
vector spaces to the SPD manifold. Therefore, the affine-
invariant Riemannian metric is proposed [36] and based on
this metric, the corresponding distance between two matrices
is defined as:

& ny (A, B) = Hlog (» (A—%BA—%)) Hz (IL3)

where ||-||, represents the L2 norm. Based on the chosen
metric, the expression for the mean of a‘set of matrices is
defined as:
T
C™ = arg minz darm (A, Ct) A (IL.4)
AeC 3
where A € RE*C and C = [Cl, ,CT] € ROXOXT,

If C™ is globally unique, then itiis named as the Fréchet
mean of the set of SPD matrices C.

2) Tangent Space: One.inconvenience introduced by the
Riemannian metric is(that the distance between two manifold
points cannot be derived’ via simple subtraction and norm
computation, as it.can with the Euclidean metric. In order to
treat SPD matrices in a manner identical to traditional feature
vectors, we adopt the tangent space mapping constructed at a
chosen reference point. After mapping onto the tangent space,
these points can be.treated as standard vectors.

To transform points from the manifold to the tangent space
at a point and,vice versa, the so-called logarithmic and expo-
nential maps are used. Under the affine-invariant Riemannian
metric, thelogarithm and exponential function pair at a point
A areformulated as following:

S' = Logmy, (C")

11.5
Ct = Expm (St) , (IL.5)

AUTHOR SUBMITTED MANUSCRIPT - JNE-103307.R1

where S? is the projected point lying on the tangent space, C?
is the original manifold point and the operation of Logmg (A)
and Expmg (A), i.e., the logarithm and_exponential ,of A
based on another SPD matrix B, is defined as [19, 36]:

Logmg (A) = B2Logm (B*%AB*%) B2
L . L 1 (IL.6)
Expmg (A) = B2Expm (B_iABff) B:

To further simplify operations on the tangent space, the pro-
jected points are usually vectorizeds Note that this procedure
does not alter the location or norm of the points, it simply
makes them easier to notate and use. We denote these vectors
as tangent vectors and formul\ate them as follows:

of Syed(s!) e RETE, (IL7)
where 57 is the tangent, vectors of ¢-th trial.

After obtaining the set of tangent vectors, standard machine
learning algorithms can be applied.

3) Pros and»Cons of Riemannian Methods: Riemannian
methods is famous for their rich feature space and robustness
to outliers: In particular, Jayaram et al. [21] have compared
Riemannian methods and standard processing pipelines over
more/than 200 subjects and showed that Riemannian methods
are, lon average, superior to many other conventional methods.

One major pitfall of these methods, however, is their sensi-
tivity to the number of channels. As shown in Eq. (IL.7), the
dimension of the tangent vectors increases quadratically with
the number of channels C'. In addition, the computational com-
plexity of the eigenvalue decomposition for matrices grows
cubically. Hence, it becomes infeasible to apply Riemannian
methods on data sets with a large number of channels.
In addition, since the full covariance matrix is utilized for
classification, interpreting the contribution from each channel
can be a challenge. Therefore, the application of Riemannian
methods is still restricted to low-channel situations where
interpretability and real-time are of lesser importance.

C. Spatial Filtering

Thanks to the novel metric function, Riemannian methods
present the-state-of-the-art performances in the BCI field. But,
the EEG signal is vulnerable to artifacts and noise which
highly affect the data quality. To remove these artifacts and
noise while reducing the computational complexity, spatial
filtering techniques are often used. Since the projection of
the underlying neuronal sources to the EEG electrodes can be
modeled as a linear transformation [37], with the appropriate
projection, it is possible to recover the activity of specific parts
of the brain. This both increases signal quality and provides a
convenient signal for neuro-feedback.

The various types of spatial filters has been intensively
reviewed in [38], among which we would notably mention
Common Spatial Patterns (CSP) [6, 7, 39], which are impactful
in the BClISs fields over the past decades. CSP aim at extracting
the signal sources by maximizing the variance ratio between
two conditions. Thus, the filter components are extracted via
the Generalized Eigenvalue Decomposition (GED) between
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the within-class arithmetic mean, i.e., C(+) and C(=). More-
over, Blankertz et al also pointed out in [40] that CSP can
also be interpreted as maxmizing the variance ratio between
common and discriminative activity of both conditions, which
are as defined below:

Cy4 = CHH) — C(=): discriminative activity aL8)

C. = CH) + C(): common activity .

Thus, the spatial filter matrix of CSP, i.e., Fcsp, can be
extracted via GED(C,4,C.), which means:

Fcsp = GED(C4,C.) (I1.9)

III. METHODS

Utilizing the smallest dimension to achieve the highest
discriminability is always the ideal when designing a feature
extraction algorithm. Although the features extracted from
standard Riemannian methods are of high quality, they are
hamstrung by the curse of dimensionality and a lack of inter-
pretability. It is striking that, when reviewing these two factors
which impede the application of Riemannian methods, spatial
filtering techniques seem to be the remedy. The arguments are
two-fold: First, reducing the dimensionality of the covariance
matrices decreases computation time drastically. Second, the
associated spatial patterns of spatial filtering enables us, to
verify what aspects of the recorded signal are being used by the
classifier. Hence, how to leverage the spatial filtering technique
in the standard Riemannian methods becomes an_ interesting
question.

Inspired by this idea, in this section, we first propose a.novel
spatial filter extraction algorithm in which,we approximate,a
linear function on the Riemannian tangent space by a set of
spatial filters, which render that function mueh less, computa-
tionally intensive and also more understandable. We support
the proposed algorithm by rigorous mathematical proofs (see
supplementary). Moreover, by adoptifig this approximation
idea, a simplified regression-like classification method is also
proposed. Subsequently, CSP is provento be a special case
of the proposed tangent space spatial filtering. We validate
our theoretical findings experimentally. via the validation setup
proposed in [21].

Mathematically-oriented readers are invited to begin below;
readers more interested in a practical understanding may refer
to Section III-D.

A. The Approximation of Standard Riemannian Methods via
Spatial Filtering

For the tangent space based Riemannian methods, the deci-
sion function'on the:tangent space determines the classification
accuracy/ To unifysspatial filtering and tangent space-based
methods, one option is to find filters that can preserve this
function. For simplicity, we consider linear functions in the

tangent space:
G— TS L be RV Vi —1,...T, (IL1)

where o is the weight vector on the tangent space, b is
the corresponding intercept and ¥, represents the predicted

4

label from the decision function for ¢-th, trial. Please note
that the intercept term b in Eq. (IIL.1) will be,omitted in the
subsequent proof, as if we can show the_equivalence ,©of the
projection, then we can simply use the same intercept as was
in the original function. In addition, ,we would also like to
emphasize that practically, thisdntercept can be safely ignored
in the prediction for binary labelshwhen using data set with
balanced training data and a linear classifier on the tangent
space, because b will be roughly equal to zero due to tangent
vectors being centered when_projecting to the AIRM tangent
space around the Fréchet mean. Henceybased on the definition
of the AIRM [36], the inner product on the tangent space can
be expressed as the function of manifold points as derived
below: ~

9 = Tr(Logmgy,, (C™) @ Logme.. (CY)), Vt = 1,..., T,
(I11.2)
where C" is the weighticovariance matrix re-projected onto
the manifold via.the exponential map Expmg,. (unvec ()).
Similarly, the approximated predicted labels from all the
manifold points spatially filtered by F' are as expressed below:

Y | = Tr(Logmprgmp (FTCVF)e

111.3
4 Logmgrgmp (FTC'F)), (IL.3)

where ;""" |p is denoted as y;™"* thereafter for the con-

venience of notation and based on the property of AIRM we
can easily know that the new Fréchet mean of filtered manifold
points is the filtered Fréchet mean, i.e., (C™),., = FTC™F.

The optimal scenario for extracting the spatial filter matrix
F is that this spatial filter matrix F' can perfectly reconstruct
the decision function. Hence, in the next subsection, we

provide the steps to find the optimal solution of F.

B. Optimal Spatial Filter Extraction from the Tangent Space

Naively, the goal of spatial filter extraction is to find a
filtering matrix that maximally reconstructs the tangent space
function, which is shown as follows:

T
Fj = argmin Y (§; — yi™ |r,)?, (I1.4)

F i eROXK
where F7, is the optimal filter matrix composed of K spatial
filter components from the full filter matrix F.

After substituting ; (Eq. (II1.2)) and 3" (Eq. (II1.3)) into
Eq. (IIL.4), the objective function of the optimization becomes
rather complicated. Considering that F - is a subset of F, we
first focus on the structure of ;""" to see whether it can be
simplified when F' i is full rank.

Assuming that C™ and C" can be jointly diagonalized by
a properly chosen F, the matrix multiplications in Eq. (IIL.3)
can be remarkably simplified. Without loss of generality, we
further assume that this properly chosen F diagonalizes one
of the two matrices. If we choose that matrix to be C™, the
approximation becomes much simpler:

yipprox _ Tr(Long (Dw) o Logm, (FTC"‘F))’ I1L1.5)

where D" is the filtered weight matrix.

Page 4 of 15
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From here, we make one major assumption that the filtering
matrix F approximately diagonalizes all C?. If this assumption
holds , i.e., FTC!F is a diagonally dominant matrix for all ¢,
based on the Gershgorin circle theorem [41] we know that

A (FTC'F) ~ diag (F'C'F) = D/, (I11.6)
where D? represents the diagonal matrix which only contains
the diagonal elements of FTC!'F. Moreover, since FTC'F
is diagonally dominant, then following approximation can be
inferred:

F'C'F ~ D' = Logm(F'C'F) ~ Logm(D?)  (IlL.7)
After applying the approximation in Eq. (IIL.7) into
Eq. (IIL5), 3" can be simplified as:

Y ~ Tr (Logm(D")Logm(D")) = log(dj)Tlog(?),
(I11.8)
where dTg represents the diagonal vector of D().

We reiterate that one primary assumption in the above
simplification is that all C? are roughly jointly diagonal,
which is a very strong assumption. However, there is evidence
for this in the fact that the projection of the physiological
sources in the EEG signal to the electrodes is linear: Since the
head moves very little with respect to the electrodes within\a
session, we can assume that the mixing (and hence unmixing)
matrices stay relatively constant, even if the actual variances
are non-stationary. In the supplementary materials, we also
provide a simulation analysis to show that for small numbers
of sources, approximate joint diagonalization,is a reasonable
assumption.

The key step that enables the simplification from Eq. (IIL.3)
to Eq. (II1.8) is the simultaneous diagonalization of C* and the
whitening of C™. The generalized eigenvalue, decomposition
(GED) conveniently solves both goals:

FIC"F =1

(111.9)
where the F is named as tangent space spatial filter (TSSF)
and D is the corresponding,eigenvalues: Importantly, to ensure
that Eq. (II.9) holds, the.order of C™ and C" in the GED
equation cannot be switched.

Now, since 3" cansbe drastically simplified as long as
F are extracted with,the GED./manner, when looking back to
the objective function for extracting optimal filters, i.e., Fj, =

argmax 3.7 (G —y"™" |r, )2, the last remaining obstacle is
FrxeROXK
the true predicted label'y;. We next assert that the equivalence
between [; and y;”* holds under mild conditions, as seen in
Theorem '1."The full proof can be found in the supplementary
materials.

Theorem 1: Equivalence between true and approximated

decision function

e =y, ", iff F is extacted via GED(C", C™)

. (II1.10)
and with full rank.

AUTHOR SUBMITTED MANUSCRIPT - JNE-103307.R1

By leveraging this equivalence, the objective function in
Eq. (Il.4) can be reformulated as:

T
Fj = argmin Y (5™ |p —yif" [p )2 (IL1D)

FrcROXK

Unfortunately, assuming no prior knowledge isknown about
F7, Eq. (I1.11) still seems to havemo closed-form solution,
as the operation Logm () is heayily involved in the expression
Y P |g,. Instead of adopting, sophisticated algorithms to
tackle this intricate problemsas in other related research, we
decide to leverage the power of Theorem 1 to solve this
problem with only slightly sacrificing the optimality. Our
solution is assuming that F' is,in the subspace of the extracted
full-rank spatial filter F such that the equivalence can persist.
Hence, this optimal'set of spatial filters, i.e., F7- will only be
a conditional optimal solution for the optimization problem
Eq. (III.11). Further, since the Fx is now known as the
subset of F which is extracted from the GED(C", C™), the
optimizationyproblem.<in Eq. (III.11) is then equivalent to the
problem of ordering the columns of F.

When observing the result in Eq. (IIL.8) which states that
asdong as the filtered input data FTC'F is roughly diagonal,
the linear»fumg¢tions in the Riemannian tangent space can
be approximated by linear functions of the log-variances of
the filtered data. More importantly, the coefficients of this
approximated linear function are simply the log-eigenvalues
after the GED is solved, i.e., log( d ™). Thus, standard tech-
niques for determining the most important variables in a linear
regression problem can be used. For simplicity’s sake, we use
the absolute values of the regression coefficients as markers
of their importance to the function.

a) Intuitive Explanation: One common and effective
technique across domains is whitening data. By decorrelating
the different channels, constructed features are often more
distinct and predictive. However, whitening has a fundamental
flaw, in that there are arbitrarily many whitening matrices
that are possible since the covariance of whitened data is
invariant to rotations. One explanation for the finding above is
that the GED can be decomposed into a whitening transform
and a subsequent rotation. The whitening is with respect to
the data, and the rotation is chosen based on the weight
matrix. Therefore this technique can be considered a particular
choice of data whitening that simultaneously preserves the
information of a function in the tangent space.

C. Classification based on the TSSF

As a feature extraction method, spatial filtering always
requires a classifier to deal with the processed features, which
often requires an extra optimization step. TSSF can also be
utilized with such a conventional manner but thanks to the
simplification as shown in Eq. (IIL.8), this secondary training
can also be skipped for TSSF, which further accelerates the
decoding.

From Eq. (III.8), we notice that this function is actually
a linear regressor using the log-eigenvalues of the GED as
the regression weights. Therefore, we can directly input the
filtered data into this regressor to obtain the predicted value.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-103307.R1

This method is named as one-step classification in our paper,
and the ordinary way to classify the data is named as two-steps
classification, i.e., filtering and classifying.

Example 1: Tangent Space Spatial Filter - The Generalization
of CSP

During the proof for the justification of TSSF, we also find
a strong relationship between TSSF and CSP, which is that
CSP is a simplified TSSF with using LDA as classifier on the
tangent space. First of all, TSSF are obtained via solving the
GED(CY,C™) as described in Section III-B. Moreover, the

equivalent solution of eigenvectors can also be extracted by
solving GED(S¥,C™), i.e
F,D = GED(C",C™)
F,Logm (D) = GED(S",C™),
where S* = Logmg.. (C") and the proof of Eq. (II1.12) can
be referred in the supplementary materials.
Furthermore, when the classifier on the tangent space is

specified as the Fisher linear LDA classifier [42], the weight
vector on the tangent space is as expressed in Eq.(II1.13) [42].

wLDA - wzthzn(lU‘(Jr) - :u(i))

Swithin = D, D (7 (a)) (? _uw))T’ (I1k:13)

ac{+,—} te(@)

(IIL.12)

where p(* a € {+,—} are the within class mean for the
tangent vectors and S,,;¢nin 1S the within scatter{matrix:

Under the special case that the S, iinin is equalito the
identity matrix I, the weight vector of LDA classifiernis
expressed as:

Wipa = p'™ —p e

Based on the reverse operation of vec (:
equivalent formulation of Eq. (IIl.14)4n mat

AGH (IIL.14)
(Eq. (IL2)), the
format is:

Swa — §(+) — §6 )4 (I11.15)
where S() is the arithmetic within-class mean for projected
points on the tangent space.Moreover,assuming the special
situation holds in which the between-class Euclidean mean
difference of the covariances is the exponential transform of
the between-class Euclidean mean difference of tangent space

points, i.e.,

CH — C)= Expmgs (s<+> - S<—>) (I1L.16)
Combining the special LDA classifier with the conclusion

drawn from Eq. (HI.12), the solution of TSSF becomes:

GED(C“’LDA7 Cm) Eq. (21.12) GED(SMLDA7 Cm)
Eq. (21.15) GED(W — m Cm)
Eq. (IIL12& TIL.16) GED(W c-) ,C™),

I11.17)
wheré GED(A,B) in above equations represents the corre-
sponding eigenvectors, i.e., V = GED(A,B) and AV =
BVT (T is the matrix of generalized eigenvalues).
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In addition, if we further replacLﬂle Fréchet mean C™ in
Eq. (II1.17) with arithmetic mean C™, we will have:

GED(C“)LDA7 Cm) Eq. (III 17) GED(C(+) C(_), Cm)
= GED(C(H) — G, C™)
chglg GED(C(+) — CEyeth) + C))
(IIL.18)

By combining the definition,of CSP fromythe discriminative
perspective as described in Eq. (IL.8) and the equivalence as
shown in Eq. (II.18), we are able to conclude the relationship
between CSP and TSSF as:

Frsse =5 GED(CHPA, G

~

Eq. <HI 18) GED(€™) —~C(-), CH) + C())

(I11.19)
529 GED(C, 0€0)

Eq. (IL9)
Fcsp

Namely, CSP is the representation of TSSF when LDA
is chosen as the,classifier on the tangent space, and the
within-class scatter matrix is assumed to be the identity.
One important caveat is the exponential relationship of class
mean Subtraction, as shown in the Eq. (III.17), which is not
necessarily true.

One related work is [43], in which Barachant et al replaced
the arithmetic mean with the Fréchet mean in CSP. Since the
Fréchet mean is a much better proxy of common activities
across trials, the proposed Riemannian CSP is a far better
approximation of LDA in the tangent space, and Barachant et
al also show increased performance and robustness with this
alteration [43].

D. Summary of the extraction and application of TSSF

For practitioners interested in using the proposed TSSF
framework, in this subsection, we summarize its procedures
which can be categorized as the extraction and application
of TSSF. To link each algorithm’s description with its pseu-
docode, we adopt the abbreviation that Al-1 denotes the Step-
1 of Algorithm 1.

1) Extraction of TSSF: To extract the TSSF, the input data
should be bandpass filtered and epoched into trials. Moreover,
the choice of the linear model on the tangent space should also
be defined beforehand. Subsequently, the covariance matrices
are estimated based on the input trialwise EEG signal and their
Fréchet mean is computed to use as the reference point for
the tangent space projection (Al-1). After finding the Fréchet
mean, all covariance matrices are projected onto the tangent
space and vectorized into tangent vectors (Al-2). Afterward,
the chosen linear model is fitted by them and the weight
vector can be obtained (A1-3). Furthermore, it is reshaped
into a symmetric matrix and mapped back onto the manifold
via the exponential transform (A1-4). Next, the full-rank filter
matrix of TSSF and the regression coefficients for one-step
classification are obtained by solving the GED problem (Al-
5) and both are sorted based on the absolute value of the
logarithm of the eigenvalues in the descending order (Al-6
and A1-7). At last, based on the predefined number of filter
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components, the first K components of the sorted filter matrix
with full-rank are extracted, and same applies to the regression
coefficients (A1-8).

Algorithm 1 Extraction of TSSF

Data: Bandpass filtered trialwise data X € RE*NXT Joss
function for linear model L
Result: TSSF and regression coefficients with K components:
FK c %CXK,FK c mkxl
begin
1. Compute the covariance matrices and the Fréchet mean:
Ct=X{(XH)T vte[l,---,T),
C™ = argmin Zthl diru (A, C)
AeC
2. Compute tangent vectors:
s' = vec(Logmgn (CY)),Vt € [1,---
S 1) e REGENT

3. Fit linear model: @ = argmin L(s, W) € R
un\g(-) g

,T] and s =
Cc(C+1)
—=—x1

4. Project weights onto manifold: w Bxpmgm ()

Cv € ROXC
5. Solve the Generalized Eigenvalue Decomposition
(GED) problem: d,V = GED (C¥, C™)
6. Get the sorted index based on the value of 7:
inds = sort ‘log(%)p
7. Obtain the sorted TSSF and regression coefficients:
F = V[, inds] € R“*C 3 =log(d [inds]) € RE*!
8. Extract the first K components:
Fi=F[: K], B = B[ K]

end

2) Application of TSSF: Once the TSSFrare extracted, the
next step is to apply these filters to the trialwise,data (A2-1).
Subsequently, there are three types of features which can be
generated from the filtered data: the log-variance of filtered
data (A2-2.a)), the diagonal vector of.the ‘anrithm of the
filtered covariance matrices (A2-2.b)) and the tangent vector
of the filtered covariance matrices (A2-2.c)). These three types
of features and their descriptions, as well as the/corresponding
abbreviations, are summarized in Table III.T.

Formulation Abbreviation

log <diag(étLF)>
diag <Logm1(6’iF)>

vec (Logmém (éﬂ_F))
Tr

Description

Log-variance Log-var

Diagonal of logarithm of
covariance matrices
Logarithm of covariance
matrices

Diag. log-cov

Log-cov

TABLE HI.1: Summary of classifiable features

After obtaining the features, as described in Section III-C,
two possible classification algorithms can be applied: one-
step classification and two-steps classification. One thing that
should be noted is that one-step classification is only applica-
ble for the diagonal elements based features, namely features
from:(A2-2.b)) and (A2-2.c)). For the one-step classification,
the inner prodiict between regression coefficients and features
are.computed, and the label is taken as the sign of the result in
binary classification problems (A2-2.a).i)). For the two-steps
classification, a second classifier is chosen and fitted with the
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features from the training set (A2-2.b).i)).,Asssuch, test data
can be classified by this second classifier.

Algorithm 2 Feature generation and classification

Data: Test trialwise data X € RE*NXT Second classifier
CIf, if needed
Result: TSSF  and regression

%CXK’EK c %le

coefficients: F g €

begin

1. Filter the test data: )AQ_FK = F}—(X € REXN

2. Compute features /(several options are provided, only
choose one):

a). @ = log (var ()NCQK)) € RpEx1
b). € = diag (Logm (Cov(iLFK)>) c pEx1

¢). € = vee <L0gm (COV(XLFK)>) € REx1
3. Return label (several options are provided, only choose
one):
a). One-steprelassificaiton (only applicaple for features
from 2.a) or2.b)):
i). § =sen(f L)
b). Two-steps classificaiton (applicaple for all features):
i). Use a set of € from training datasets to fit a
second classifier CIf;
i1). Use the fitted classifier to classify the testing
datasets and obtain the predicted label.
return predicted label

end

E. Experimental Setup

Now that we have shown the theoretical validity of TSSF,
we move on to our experimental results. We base our exper-
imental setup on an open-source benchmark — Mother of all
BCI Benchmark (MOABB) [21]. After that, we first fix the ex-
perimental paradigm as left- versus right-hand motor imagery
because the corresponding neurophysiological knowledge, as
well as the activated neuronal sources, are well studied.
Furthermore, the analysis is restricted to the «- and S-bands
(8Hz ~ 32Hz) based on neurophysiological knowledge. Also,
all channels are utilized except for the electrooculography
(EOG) channel. Based the chosen paradigm, we tried to adopt
all eight available datasets in the MOABB, as summarized in
Table II1.2; however, the dataset BNCI 2014-004 is excluded
from the analysis (marked in red in Table II1.2) due to having
only three electrodes.

After the bandpass filtering, the covariance matrices are first
estimated from the trial-wise data via the empirical covariance
estimator. Subsequently, three algorithms are employed to
generate feature: CSP, TSSF, and standard Riemannian tangent
space methods. TSSF based features are further subdivided
into three types depending on the degree of approximation as
summarized in Table III.1, and two methods, namely one-step
and two-steps classification as described in Section III-C. The
difference between them is the choice of the second classifier:
either fitting a new classifier after spatial filter generation
(two-steps) or employing the log-eigenvalues from the GED
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TABLE II1.2: Overview of all adopted datasets with left-
versus right-hand motor imagery (MI) paradigm. The dataset
marked in red color has only 3 channels and is hence
excluded from this analysis.

Dataset Name #Channels | #Subjects | #Sessions | Citations
BNCI 2014-001 22 9 2 [44]
BNCI 2014-004 3 9 5 [45]
Cho et al. 2017 64 49 1 [46]

Munich MI 128 10 1 [2]

Physionet MI 64 109 1 [47]
Shin et al. 2017 25 29 3 [48]
Weibo et al. 2014 60 10 1 [49]
Zhou et al. 2016 14 4 3 [50]

solution as linear regression coefficients. These classification
methods are summarized in Table III.3. For CSP and standard
Riemannian features, the L2-regularized SVM classifier is
adopted.

Name First classifier Second Classifier
One-step | L2 Regularized SVM N/A
Two-steps | L2 Regularized SVM | L2 Regularized SVM

TABLE II1.3: Summary of classifiers. For all regularized SVM
listed above, the parameters are found by grid search [51].

The motivation of selecting a regularized SVM as the first
classifier to generate weight vectors on the tangent space is
inspired by the results from [21], in which the combination of
regularized SVM and Riemannian methods has been validated
as the best among all benchmarked pipelines. Eornchoosing
hyperparameters, a grid search [51] is employed torfind the
optimal value within the range from 0.01 to 100.

‘ Trial-wise data after band-pass filtering ‘

I

‘ Computing covariance matrices: empirical covariance estlmator

/l\

\ TSSF TS AIRM |
‘ Log-var ‘ ‘ Log-var ‘ Diag. log- ‘ Log-cov ‘ ‘ Log-cov ‘
cov
Reg. One- Twe= One- Two- Reg.

SVM step steps step steps SVM

9] i i IR |E€ \;]

2] < < 0 a >

= © & < 15 =)
EA (N i z
| | | "~ =
a a a @
3 S 3 g

‘ Prediction ‘

Fig. TII. 1z All tested pipelines in this paper. The annotated text
above the line linked between classifiers and predictions is the
abbreviation of ithe corresponding pipeline and Reg. SVM is
therabbreviation of L2 regularized SVM.

For better understanding the difference among the mul-
tiple variants of TSSF based methods, CSP, and standard
Riemannian methods, we summarize all the above steps into
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a flowchart (Fig. III.1). After the prediction, the scoring
metric chosen by us is the ROC-AUC (receiver operating
characteristic - area under the curve) metric, and these scores
are computed via five-fold cross-validation withineach session
of every data set.

After obtaining scores from/different pipelines, we analyze
their statistical performance. In our'work, two statistics, the p-
value and the effect size, are adopted torcompare the, proposed
TSSF against CSP as well assthe full Riemannian approach.
The p-value for the one-sided test is. computed across sessions
and subjects but within @ach data set, the null hypothesis
of which is that the median accufracy of using one pipeline
is not larger than usingranother pipeline. The effect size is
measured by the standardized'mean difference (SMD) between
the accuracies of the,two compared methods. Further details
about these statistical tests can be found in [21].

IV. RESULTS

To comprehensively assess the performance of the proposed
TSSF, three aspects are considered in this paper: the quality
of the filtered feature, the interpretability revealed from asso-
ciated spatial patterns, and the computational time.

Of theserthree perspectives, feature quality is the only indi-
cator which can be analyzed in a purely quantitative manner
through the classification accuracy. Therefore, in this section,
we exclusively analyze the performance of feature quality.
Although it can be argued that the results of computational
time 'can be analyzed in a quantitive way, i.e., by exhaustively
comparing the simulation results of computational time, we
more concerned with the theoretical, computational complex-
ity analysis since the latter is more general than the simulation
results. Therefore, interpretability and computational time are
both left until the discussion, as the results are more qualitative
and require more context to be properly interpreted.

As a typical indicator of feature quality, the classifica-
tion accuracies are chosen to be compared as a way of
assessing which features are most informative. In subsequent
subsections, we begin with a comparison of all proposed
classification pipelines over all the datasets, to see whether
any of them consistently outperform the rest. The results are
shown in Figure IV.1.

A. Statistical performance across datasets

We select three typical cases of applying spatial filters: two,
six, or twelve spatial filters. By observing Fig. IV.1a we can
notice that even when only applying two filters, the p-value
of the comparison between all TSSF-based pipelines and CSP
are highly significant, and the effect sizes are moderate. More-
over, in the comparisons with the full Riemannian method,
the TSSF_Cov_2_step even significantly outperforms the full
Riemannian method, albeit with a small effect size (0.23).

When increasing the filter number to 6, as shown in
Fig. IV.1b, the performance of all TSSF-based pipelines con-
tinues to surpass CSP. Surprisingly, TSSF_Var_2_step also
shows significantly better results than the full Riemannian
method 7S_AIRM, though again with a tiny effect size (0.08).
In addition, performance begins to differ among the various
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Number of filters: 2

t=-0.69 t=-0.68 1=0.63 t=-0.64 t=-0.51
L‘S p=1¢+00 (0.0%) = p=1¢+00 (0.0%) p=1e+00 (0.0%) p=1e+00 (0.0%) p=1e+00 (0.0%)
1=0.69 t=0.05 1=0.06 t=0.05 t=0.23
o p=3e-13 (85.7%) p=3¢-01 (0.0%)  p=4e-01 (14.3%)  p=2e-01 (0.0%)  p=2¢-02 (28.6%)
%
& =068 =005 =0.01 =004 =0.06
&7 pled3 (714%)  p=Te-01 (0.0%) p=5e-01(0.0%)  p=6e-01 (0.0%) p=2¢-01 (14.3%)
&
8 N/
(}'ﬁ 4 1=0.63 t=-0.06 t=-0.01 t=-0.04 t=0.06
& S\qﬂ p=3e-13 (71.4%) p=6e-01 (14.3%)  p=5e-01 (0.0%) p=5e-01 (0.0%)  p=le-01(14.3%)
B
o =0.64 t=-0.05 t=0.04 =0.04 =0.08
7o pHeIBLA%) pBe0l (00%) | 40l (00%)  p=6e-01 (00%) p=2¢-01 (14.3%)
& N7
4"’( 4 t=0.51 t=-0.23 t=-0.06 1=-0.06 t=-0.08
& &v\ p=3¢-07 (71.4%)  p=1¢+00 (0.0%) p=9¢-01 (14.3%) p=9¢-01 (14.3%) p=8e-01 (14.3%)
P
&7 csp TSSF_Cov_2_step TSSF_Cov_1_step TSSF_Var_2_step TSSF_Var_1_step  TS_AIRM

(a) Applying the first two filters
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Number of filters: 6
t=-0.76 =-0.64 =-0.69 =-0.60 =-0.44
S p=1¢+00 (0.0%)  p=1¢+00 (0.0%) p=1¢+00 (0.0%) p=1e+00.(0.0%) p=1¢+00 (0.0%)

=0.76 =0.19 =0.05 =0.36 5020
p=2e-18 (85.7%) P=5¢-03 (42.9%)  p=3¢-01 (14.3%)7 1 p=5e-04 (42.9%) hp=9¢-04)(28.6%)

=0.64 t=0.19 0.07 =0.16 =0.10
p=2¢-13 (71.4%)  p=1¢+00 (0.0%) p=9¢-01 (0.0%)  p=2¢-01 (14.3%) p=Te-02 (0.0%)

t=0.69 1=-0.05 t=0.07 t=0.21 t=0.08
Pp=6e-15(57.1%) p=8e-01 (14.3%) p=8e-02 (143%) p=9¢-03 (14.3%) p=9¢-03 (28.6%)

t=0.60 =-0.36 =0.16 t=-0.21 =0.00
p=9¢-13 (57.1%)  p=1¢+00 (0.0%)  p=8e-01 (0.0%) « p=1e+00 (0.0%) p=2¢-01 (0.0%)
t=0.44 =-0.20 t=-0.10 =-0.08 t=-0.00
p=2¢-05(57.1%) p=1e+00 (0.0%) p=9¢-01 (0.0%) p=1e+00 (14.3%), p=8e-01 (14.3%)
csp TSSF_Cov_2_step TSSF_Cof_Iistep TSSF_Var_2_step TSSF_Var_1_step  TS_AIRM

(b) Applying the first six filters

Number of filters: 12

=-0.83 =-0.68
S p=1¢+00 (0.0%) ~ p=1¢+00 (0.0%) = p=1c+00 (0.0%)  p=1¢+00 (0.0%)  p=1¢+00 (0.0%)

=0.83
p=8e-21 (85.7%)

=0.68 =0.26
p=le-13 (71.4%)  p=1¢+00 (0.0%)

=075 0.19 =0.08
p=1e-17 (57.1%)  p=1¢+00 (0.0%) ~ p=Te-02 (14.3%)

t=-0.75 t=-0.54 1=-0.42

1=0.26 =0.19 =0.58 t=0.25
P=9¢-05 (28.6%) p=4e-03 (28.6%) p=5e-10 (71.4%)/ p=3e-05 (42.9%)

=0.08 =0.36 =0.12
p=9¢-01 (0.0%)  p=Sc-04 (42.9%) | p=2e-02 (14.3%)

=0.37" =0.13
Pp=2e-06 (42.9%)  p=2e-03 (28.6%)

=0.54 =058 =-0.36 =-0.37 =-0.01
p=1¢-10 (57.1%)  p=1e+00 (0.0%)  p=1¢+00 (0.0%)  p=1e+00 (0.0%) p=2¢:01(0.0%)
=0.42 =025 =-0.12 =0.13 =0.01
P=6¢-05 (57.1%)  p=1¢+00 (0.0%)  p=1e+00 (0.0%)  p=1¢+00 (0.0%) I p=8e-01 (0.0%)
csp TSSF_Cov_2_step TSSF_Cov_1_step TSSF_Var/2 step TSSF_Var_1_step  TS_AIRM

(c) Applying the first twelve filters

Fig. IV.1: Statistical comparison of the classification accuracies from different pipelines. Parameters: effect size ¢ (standardized
mean difference) and p-value p are computed within each dataset. In each block, the statistics are computed based on the
null-hypothesis that the median accuracy of row method,is not larger than the column method. The green block means there
exists an overall significant result across all datasets. The red block means there exist contradictory results, i.e., the overall
one-tailed results show significance, but the effect size is not pesitive. Furthermore, the number in parentheses next to the
p-values represents that the percentage of datasets in which significance is reported. The meaning of each label can be referred

from Table. III.1 and Fig. III.1

TSSF-based pipelines. After increasing the. number to 12
(Fig. IV.1c), although one more TSSF-based pipeline sig-
nificantly outperforms 7'S_AIRM, the differences among the
TSSF-based pipelines also further enlarge.

Observing and comparing these figures, from a macro
perspective, we can discover several trends: First, CSP is
constantly outperformed by all Riemannian based methods.
Second, the performances of¢TSSF-based methods tend to
differ from each other, only at large.numbers of filters. Third,
the difference in performance-between onestep and two-steps
methods also enlarges as the filter number increases.

B. Performance w.r.t. thenumber of applied filters in a single
data set

In addition, we look at how the performance changes as a
function of the number ofrapplied filters. As a meta-analysis
here results in/an enormous number of statistical tests on not
very much data, we focus on this section of the analysis
on a single datasetsgFor better reflecting the relationship
between |accuracy @nd number of applied filters, we choose
the data ‘set. Munich Motor Imagery, which has the highest
channels numbers (128). From Fig. IV.2 we first notice that
thevaccuracies of all TSSF-based features converge to the
performance of the standard Riemannian method with merely
four Ailters while CSP needs around 20 filters to reach a
stable plateau. Second, except for TSSF_Var_I_step, all other
TSSE-based methods significantly outperform CSP whatever

number of filters is used, as shown in Fig. IV.3. Lastly, for
all log-variance based TSSF pipelines, their accuracy usually
decreases when the number of filters continues to increase.
Moreover, this fact can also be observed in all rest datasets,
as shown in the supplementary materials.

In this section, we have comprehensively compared the
quality of the features extracted from various ways, and
confirmed two things: that Riemannian methods reliably out-
perform CSP, and that TSSF can approximate and sometimes
even outperform standard Riemannian methods. As a spatial
filtering method, however, the interpretability is always of the
highest significance, especially for online purposes, because it
is the only way that we can know whether reasonable signal
sources are utilized. Moreover, the computational efficiency of
the spatial filtering method is also vital because the online BCI
system usually has a strict real-time requirement. Therefore,
in the next section, we further discuss these two aspects.

V. DISCUSSION

We have shown that spatial filters can be extracted from
linear functions in the Riemannian tangent space, rendering
Riemannian methods suitable for online use even in cases
of over 100 channels. Moreover, we validate our approaches
using over 220 subjects via an open-access toolkit [21] and
show that our method is statistically indistinguishable from
the full tangent space approach on average, and in some
cases can significantly improve on it. Lastly, the idea of using
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Fig. IV.2: Classification accuracy w.r.t. the number of applied filters within Munich Motor/Imagery datasset and the accuracies
are computed across all subjects. The central line is the mean accuracy and the error band shows 68% confidence interval.
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Fig. IV.3: The p-values from the statistical test between all
TSSF-based pipelines and CSP w.r.t. to the number of applied
filters. The chosen data set is Munich Motor Imagery and the
null-hypothesis is that the median accuracy of TSSF-based
methods is not larger than CSP. Significance threshold is set
as 0.05, as indicated by the black straight line:

approximation to generate spatial filters eliminates<the need
for complicated optimization frameworks.

Another notable contribution of this,paper is the proposal
of one-step classification, which/further reduces the compu-
tational time in the testing stage significantly. Subsequently,
we analyze the associated spatial patterns’of CSP and TSSF.
Afterward, we discuss the signal ‘sources as well as the
robustness reflected from these patterns. We end our discussion
with several suggestion$ regarding:its usage and finally, a look
towards the future work this result implies.

A. One-step classification

While one-step. classification relies strongly on the assump-
tion that the input points are roughly jointly diagonalizable,
and hence that the proposed approximation holds, we have
shown in practice /that this appears to be the case for suf-
ficiently small numbers of filters. What this suggests is that
certain. underlying sources can be extracted by static gener-
alized spatial filters, while others do not correspond to static
eigenvectors of the covariance matrices. If few enough filters
are chosen, the resulting classifier is very close to the tangent
space function, but as more are added, the approximation

~
quality degrades. This.explains/the results in Fig. IV.2 in which
the only classifier whose quality degraded as a function of filter
number was the single=step log-variance classifier.

Another major benefit to using one-step classification is that
it is a better,use of training data. Current spatial filtering-based
approaches to classifications need to either re-use data for both
spatiabfilter and classifier fitting, or partition training data into
disjoint sets, which reduces the quality of both solutions. When
the approximgtion holds, one-step classification is a much
more/data-efficient solution.

B. One-step classification: Computational complexity analysis

TSSF_Var_1_step (One-step) ‘ TS_AIRM (Two-steps)
‘ Computational complexity ‘

Procedure Procedure

Preprocessing

ED(CY)

X ¢

~ o(c?) VIDH(VHT = ¢t
Clp =FxC'(Fi)" , where V! eRC*C D! € ROXC

e o(xc?)

, where Fg €

o(C) Logm(D")

o(c?) S' = V'Logm(D")(VH)"
, where S' € RE*C

Features

fi = diag (Logml(élF)) ‘ O(K?)
or o

f: = log (ding(€1p)) | O(K)
Feature matrix for all trials

‘ [fis foreoo s fr) €R T

cery

M fi = vec(St) e R =

)

Uisfore s fr] € REXT ‘ ‘

Classification

Linear regression (testing)
yo =diag(D)[: K] x f;
, where diag(D)[: K] € RF

Regularized SVM (testing)

C(C+1) Y =wdyy X fe

2 , where wgyy € R

oK) |o(

ot
1

Fig. V.1: Theorectical computational complexity analysis and
comparison between one-step and two-step classification in
the testing stage. Note: the practical complexity are usually
smaller than the listed value due to the adoption of efficient
algorithm. For instance, the matrix multiplication complexity
is theoretically equal to O(C?) but usually between O(C?%376)
[52] and O(C?®) in practice.

Considering that one major critique of Riemannian methods
is their inability to scale to high numbers of channels, the
computational complexity comparisons between the one-step
classification framework and the full Riemannian tangent

Page 10 of 15
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space method are provided from both theoretical and experi-
mental aspects

Number of Applied Filters
Data set Method 4 6 #Channels
Time (s) [Accuracy| Time (s) |Accuracy
BNCL CSp 0.0083+0.0013 [ 0.83+0.18 |0.0088+0.0016| 0.85+0.15
2014001 TSSF_Var_1_step [0.0036+0.0021| 0.85+0.17 [0.0038+0.0003 [ 0.85+0.15 22
TS_AIRM 0.0435+0.0091 [ 0.86+0.15 |0.0435+0.0091| 0.86+0.15
CSp 0.0189+0.0032( 0.68+0.19 [0.0217£0.0033| 0.70+0.17
Cho TSSF_Var_1_step |0.0120+0.0022| 0.73+0.16 |0.0159+0.0037| 0.73+0.15 64
TS_AIRM 0.1353+0.0162( 0.72+0.16 [0.1353+0.0162| 0.72+0.16
CSP 0.0938+0.0119( 0.72+0.23 |0.0881+0.0139| 0.75+0.24
Munich | TSSF_Var_l_step |0.1335+0.0215| 0.87+0.13 [0.1235:0.0094 | 0.88+0.13 128
TS_AIRM 3.15030.8547| 0.86+0.16 |3.1503+0.8547 | 0.86+0.16
CSp 0.0201::0.0097 | 0.65+0.23 |0.015240.0070 | 0.65+0.24
Phy. TSSF_Var_l_step [0.0020+£0.0015| 0.68+0.24 |0.0016+0.0002 [ 0.67+0.24 64
TS_AIRM 0.0517+0.0121| 0.65+0.26 | 0.0517+0.0121 | 0.65+0.26
CSP 0.0155:£0.0054| 0.68+0.32 | 0.018440.0072| 0.68+0.33
Shin TSSF_Var_1_step |0.0017+£0.0007| 0.67+0.34 |0.0021::0.0002| 0.66+0.35 25
TS_AIRM 0.0168+0.0085 [ 0.65+0.35 |0.0168+0.0085| 0.65+0.35
CSP 0.0101+0.0018 | 0.81+0.16 |0.0100+0.0008| 0.82+0.18
Weibo | TSSF_Var_l_step |0.0054+0.0014| 0.82+0.16 |0.0056+0.0007| 0.82+0.17 60
TS_AIRM 0.0696+0.0092  0.83+0.17 [0.0696+0.0092| 0.83+0.17
CSP 0.0096+0.0020 0.91£0.11 [0.01010.0017| 0.92+0.10
Zhou TSSF_Var_1_step [0.0040+0.0009 | 0.91+0.09 [0.0044+0.0005 [ 0.90:+0.10 14
TS_AIRM 0.0116+0.0011 | 0.92+0.09 [0.0116+0.0011| 0.92+0.09

Fig. V.2: Comparison of classification accuracy and run-
ning time in the testing stage for three pipelines: CSP,
TSSF_Var_I_step and TS_AIRM. The values for both accuracy
and time are with the format of the mean + the standard
deviation, which is computed across all sessions within each
data set. The comparisons with the largest contrast are noted
as bold. The above numbers are obtained from computers with
64GB RAM and an 8-core CPU.

For a better understanding of experimental results,»we first
start with the theoretical analysis. As seen from Fig. V.1,
standard Riemannian methods require operations with a com-
putational complexity of either O(C?) or O(%) For high
numbers of channels, this can be difficult to do for real-time
feedback. To verify that we ran a runtime, analysis for all
datasets including the Munich Motor Imagery, data set which
has over 100 channels. The results/are shown. in Fig. V.2
which indicates that standard Riemannian‘methods are slower
than both CSP and TSSF based/ methods. In{particular, the
full Riemannian methods is 25 times, slower than TSSF based
methods with similar performance,when observing the results
from the data set with 128 channels. As for the accuracy
comparison, the superiority of TSSF based methods is already
validated in Fig. IV.3, in'which TSSE_ Var_1_step significantly
outperforms CSP when using four or six filters.

In summary, by adopting the one-classification, it is no
longer impossiblertorenjoy,thefobustness and excellent perfor-
mance of Riemannian methods in an online BCI system with
high-dimensional data. One additional advantage is: by using
fewer features, the model suffers less risk from overfitting.

C. How robust is spatial filter order to artifacts?

Another important aspect of our work is the observation that
thissprocedure allows one to easily validate the relevance of the
features that a’Riemannian classifier is using. By visualizing
the spatial filters, it is easy to ensure that artifactual sources are
not included in the classifier, which is of crucial importance
when a BCI is used for neurofeedback.

AUTHOR SUBMITTED MANUSCRIPT - JNE-103307.R1

As shown in Fig. V.3, in which only two filters are applied,
the accuracies of TSSF based methods are clearly better than
CSP based, especially for S1, S2, S7, S8, S9 and. S10.
Correspondingly, the CSP based patterns seem more patchy
than TSSF based. As for the subjects that both methods have
tied performance, i.e., S4 andyS6, their spatial patterns are
almost identical to each other.

We would, however, like to/better understand where and
how components that are not,brain-related, enter the spatial
filters in these two methods. Therefore, we increase the filter
number to ten and compare the spatial patterns from two
contrasting subjects in order to verify how the methods are
robust to artifacts, i.e§?S2»and S4 who are with 55% and
6.3% contaminated Arials respectively.

Observing the Figa. V4, S2 Comp 0 and S2 Comp 1 of the
spatial pattern of TSSF seems similar to S2 Comp 4 and S2
Comp 6 of CSP. As for the rest CSP patterns of S2, most
of them appear. to be artifacts while for TSSF patterns of S2,
only Comp,8 and:Comp 9 look slightly patchy while the rest
of the patterns show strong activity around the sensorimotor
cortexs Moreover, in S4’s patterns, from Comp 0 to Comp 6,
the resultshof CSP and TSSF reflect similar neuronal sources
with a slightlydifferent order. However, when looking at the
last three ‘patterns of both filters, artifactual sources appear.
Overall, the ordering in TSSF is much more informative than
in CSP, although in very low artifact scenarios they are similar.

Therefore, our conclusion is that the associated spatial
patterns reflect more neurophysiologically explainable neural
sources in TSSF. In contrast, CSP often gets distracted by
artifacts when processing highly contaminated data. Moreover,
when considering the patterns from the low-artifact subject
S4, the patterns from both spatial filtering methods are almost
identical, in particular for the first several patterns.

D. How many filters lead to optimal performance?

By enlarging the feature space, classification accuracy only
increases when useful information is encoded within the
additional features. For the case of spatial filtering, the most
informative features are usually from the first several spatial
filters and afterward, the features are no longer as informative
as before, as indicated by the spatial patterns shown in
Fig. V.4. Therefore, when applying only a few spatial filters,
there always exists a positive relationship between the perfor-
mance and number of applied filters. However, this positive
relationship turns into a plateau when further increasing the
filter numbers because the additional features are no longer as
informative as before, and can even turn negative in cases of
overfitting.

This initial positive relationship and the subsequent plateau
always raises the question of the optimal number of spatial
filters i.e., using the least number of filters to achieve a given
level of performance. We argue that TSSF reliably requires less
spatial filters than CSP in order to achieve the same level of
performance based on the observed seven datasets. Moreover,
the optimal filter number for TSSF seems independent from
the number of channels which reflects a true biological set of
sources conserved across all the data while it does not hold for
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Fig. V.3: The classification accuracy and the associated spatial patterns of data,set Munich Motor Imagery when applying the

first two spatial filters for all subjects.
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Fig. V.4: The associated spatial patterns of data set Munich Motor Imagery when applying the first ten spatial filters for S2 and

S4. The major conclusion drawnfrom these two figures is that

the TSSF based patterns present a better ordering comparing

to the CSP which means the CSP tends to be affected by artifacts.

CSP. In addition, these patterns also reflect the robustness of
TSSF against the influence from ocular or muscular artifacts
which CSP do not possess.

E. Suggestions forsthe usage of TSSF

After exhaustively benchmarking the TSSF based methods
against conventional algorithms, we provide several sugges-
tions to the'reader who«would like to use the TSSF method:

1) Use the empirical covariance estimator when possible:
Since,diagonal loading cannot be added during online
use (as thefiltered variances are used), high regulariza-
tion runs the risk of degrading the approximation.

2) Choose the Riemannian metric carefully: Theoretical
analysis is based on the assumption that the AIRM is
utilized. A similar property remains to be validated for
other Riemannian metrics.

3) Choice of features: Three types of features to be adopted
as seen in Table III.1. As there is a trade-off be-
tween computational complexity and feature quality, the
choice of features highly depends on the experimental
environment. Nonetheless, based on our experience,
diag (Logm(FTC'F)) is a good candidate when de-
manding high accuracy, while log (diag(FTC'F)) is a
better choice for a strict real-time requirement.

E Future Work

This paper covers the fundamental concept and proof of
spatial filtering via the tangent space. However, there are still
many interesting directions worthy of being explored later
on. We discuss these possible directions from two levels,
the extension of the scientific idea and of these proposed
algorithms:
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1) Unsupervised dimensionality reduction and multi-class
TSSF: The nice performance of TSSF based methods
with few components implies the existence of a low di-
mensional subspace where the brain projects. Therefore,
it will be interesting to know how to find this subspace
in an unsupervised fashion. Moreover, inspired by [53,
541, it will also be fascinating to investigate spatial filters
for multiclass classification based on the TSSF.

2) TSSF in comodulation manner: Since the proposed
TSSF is currently extracted in a regression-like manner,
it will also be very worthwhile to explore whether
we can also leverage continuous information encoded
within the target variables, just like the source power
comodulation (SPoC) method [9].

3) Other choices of the first classifier: The SVM based
TSSF methods achieved a satisfying performance in this
paper, but it will be very interesting to explore the
influence of the classifier on the tangent space.

4) Multiple frequency bands: In this paper, the features are
extracted from the joint p and S band. It remains a
mystery whether the ampler information induced by the
filter bank TSSF will outperform current methods.

VI. CONCLUSION

Thanks to its impressive performance, the Riemanniannan-
ifold classification framework has seen an upsurge in interest
in recent years. Historically, it has been hampered by various
issues, namely that Riemannian methods scale pootly to high-
density setups and are somewhat difficult to introspect.

To tackle these obstacles, we have proposed a set of meth-
ods based on the combination of spatial filtering techniques
with Riemannian methods, because the former possess nice
properties which Riemannian methods aredacking, such as
low dimensionality and the visualization/ of signal sources
(or associated spatial patterns). In order to further simplify
the computation of the proposed idea, we havesproved the
rationality behind several variants of Riemannian features
based on the approximation of the decision function on the
tangent space. Moreover, we have also put forward one-step
classification in order to simultaneously find a classifier and
spatial filters. In addition, /we would like to address again
that the optimal subset ofispatial filters that can be extracted
by leveraging the proposed framework is not necessarily the
globally optimal solution for the dimension reduction problem
on the manifold of SPD matrices. Nevertheless, it is striking
that these reduced spatial filters can converge to the perfor-
mance of classi¢ Riemannian methods robustly with using only
four to six filters. We hope that this work will allow for the
expansion of Riemannian geometry-based methods into more
BCI applications, and that it might spur further development
in both application and theory for this sort of interface.
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