
LoGo: Combining Local and Global Techniques
for Predictive Business Process Monitoring

Kristof Böhmer and Stefanie Rinderle-Ma

University of Vienna, Faculty of Computer Science
{kristof.boehmer,stefanie.rinderle-ma}@univie.ac.at

Abstract. Predicting process behavior in terms of the next activity
to be executed and/or its timestamp can be crucial, e.g., to avoid im-
peding compliance violations or performance problems. Basically, two
prediction techniques are conceivable, i.e., global and local techniques.
Global techniques consider all process behavior at once, but might suffer
from noise. Local techniques consider a certain subset of the behavior,
but might loose the “big picture”. A combination of both techniques is
promising to balance out each others drawbacks, but exists so far only
in an implicit and unsystematic way. We propose LoGo as a systematic
combined approach based on a novel global technique and an extended
local one. LoGo is evaluated based on real life execution logs from multi-
ple domains, outperforming nine comparison approaches. Overall, LoGo
results in explainable prediction models and high prediction quality.

Keywords: Predictive Process Monitoring, Sequential Rule Mining, Lo-
cal Prediction, Global Prediction, Explainable Prediction Models

1 Introduction

Predictive process monitoring provides insights into the future of ongoing pro-
cess executions, i.e., process instances that are currently executed. For this his-
toric process executions are analyzed to, for example, predict the next execution
event’s activity and timestamp. With this, resource utilization can be optimized
or impending Service-Level Agreement violations can be averted, cf. [23, 22].

Related work typically applies a fuzzy and implicit mixture of global and local
prediction techniques. Global techniques take all historic process behaviour into
account at once [23]. On the one side, they exploit significant global behaviour,
but on the other side require to handle possibly large noisy data collections. In
comparison, local prediction techniques focus on a certain subset of the historic
process behaviour, for example, those traces that are most similar to a ongoing
trace which is predicted upon [5]. Local techniques, on the one side, enable data
and noise reduction in early stages of the prediction by taking only a subset of the
data into account. But on the other side hinder the identification of significant
global behaviour reflecting the “big picture” of the process execution behavior.

Hence, it seems promising to combine local and global techniques as they
compensate each others drawbacks. However, the currently applied unsystematic

“The final authenticated version is available online at https://doi.org/10.1007/978-3-030-49435-3_18.”

or implicit combination of local and global techniques forces the applied machine
learning techniques (e.g., recurrent neural networks, cf. [19]) into covering both
(local and global) in a single prediction model at once, and determining if local
or global prediction and data should be preferred for each prediction task. Given,
such learning techniques are not aware of any logical separation between local
and global prediction, they struggle to “learn” and represent this separation
during their prediction model training phase; with varying success, cf. [2, 19, 23].

Overall, this might result in complex prediction models, high model train-
ing times, reduced flexibility, and diminished prediction results, cf. [19, 5, 23].
Accordingly, we propose an explicit combination of specialized local and global
prediction techniques instead of an unsystematic or implicit one. Here, both
techniques are shallow ones [2] as they are designed for either local or global
prediction and yield explainable prediction models. In detail, we propose a novel
global prediction technique which could be applied in a stand-alone fashion. To
demonstrate and exploit the outlined advantages of combining global and lo-
cal techniques, the global technique is complemented with a local one that is
extended based on previous work in [5].

Specifically, the combined approach works as follows: first, the global tech-
nique is applied to exploit global significant process execution behaviour if pos-
sible. If no significant behaviour can be exploited the local technique is applied
as a fallback, cf. [5], as it is less affected by noise.

Formally: Let p be an execution trace of process P for which the next activity
execution should be predicted. Further let L hold all historic execution traces t of
P . The key idea is to mine Sequential Prediction Rules (SPR) from L to identify
significant global behaviour in the historic data (global prediction). Behaviour
is assumed as significant if the related SPRs have a high confidence. Rules have
been used in existing data analysis formalisms and mining approaches [26]. This
work extends them into SPRs in order to become capable of predicting future
behaviour, i.e., upcoming activities and their execution timestamps. Such SPRs
form the prediction model M , enabling to predict the next activity in a majority
of prediction scenarios, i.e. in about 60% of all predictions as shown in Sect. 4.

The proposed global prediction technique is not able to yield any predictions
based on M if none of the SPRs contained in M match to p’s behaviour. In
other words, if no significant execution behaviour was identified in L by the
global prediction technique which is relevant for p’s current execution state. In
this case, the proposed combined approach LoGo employs a local prediction
technique, i.e., extended based on [5], as a fallback. The work in [5] relies on the
similarity between p and t ∈ L to identify the most relevant behaviour (traces,
resp.) to form a probability based prediction model. Accordingly, even if the
similarity between p and t ∈ L is low there will always be some traces which are
the “most” similar ones. These most similar traces serve as a basis to predict
future behaviour even if a global, e.g., SPR based, technique is unable to do so.

This paper is organized as follows: Prerequisites and the proposed approach
are introduced in Section 2. Details on prediction model generation and its ap-
plication are given in Section 2 and 3. Section 4 covers the evaluation (real life

data, multiple comparison approaches) while Section 5 discusses related work.
Finally, conclusions, discussions, and future work are outlined in Section 6.

2 Prerequisites and General Approach

The presented approach enables to predict process instance execution behaviour
(e.g., in the form of an process execution event) to be observed next, based on
a given ongoing process instance trace p. However, this section, for the sake of
simplicity, focuses on the prediction of next event activities. Details on temporal
behaviour prediction (execution event timestamps, resp.) are given in Sect. 3.

Overall, the prediction is based on a prediction model M which is generated
from a bag of historic process execution traces L, i.e., an execution log. The
latter is beneficial as L can be a) automatically generated by process engines;
b) represents real behaviour (including noise and ad-hoc changes); and c) it is
independent of outdated documentation, cf. [18, 5]. Formally, log L is defined as:

Definition 1 (Execution Log). Let L be a finite bag of execution traces

t ∈ L. Let further t := 〈e1, · · · , en〉 be an ordered list of execution events ei :=
(ea, et). Hereby, ei represents the execution of activity ei.ea which was started
at timestamp ei.et ∈ R>0. The order of ei ∈ t is determined by ei.et.

Definition 1 enables the identification of global activity orders and related
temporal information. Hence, it it is sufficient for next event prediction. Further
Def. 1 is generic. Thus it enables the representation of standardized log data for-
mats, such as, the eXtensible Event Stream1 or custom organization dependent
formats (cf. Sect. 4). In the running example provided in Tab. 4, the event e2

for trace t2 (i.e., t2.e2) represents the execution of activity E at timestamp 54.

Table 1. Running example log L as excerpt of the Helpdesk-Log used in Sect. 4

Event ei := (ea, et) where ea=activity, et=timestamp
Process P Trace t e1 e2 e3 e4 e5 e6

P1 t1 (A,23) → (E,32) → (E,37) → (F,40) → (C,47) → (W,53)
P1 t2 (A,49) → (E,54) → (F,61) → (F,68) → (C,69) → (R,78)
P1 t3 (A,40) → (F,45) → (E,49) → (F,51) → (C,57) → (W,63)
P1 t4 (E,17) → (F,21) → (D,22) → (F,25) → (C,30) → (R,38)

Further, similar to [5], the following auxiliary functions are applied:

– {S}0 returns the element in the set/bag S, given that S is a singleton.
– C := A⊕ b appends b to a copy C of the collection given by A.
– 〈·〉l retains the last element of a list.
– 〈·〉i retains the list item with index i ∈ N>0.

1 http://xes-standard.org/ – IEEE 1849-2016 XES Standard

Fig. 1. Proposed SPR based prediction approach – overview

Figure 1 gives an overview on the proposed prediction approach. Its expected
input data 1 comprises historic execution traces t ∈ L (log, resp.) of a process P
to create a prediction model M ; and an ongoing execution p /∈ L of P for which
the next event should be predicted. Hereby, M can be created, even before p’s
execution starts. Further, the same M can be reused for different traces of P .

Here the prediction model M consists of a set of Sequential Prediction Rules
(SPR). SPRs expand upon sequential rules which have been proposed in sequen-
tial rule mining approaches, e.g., [25]. There, a sequential rule s is defined as
s := 〈E, F, F〉 where E and F refer to process activity executions. The order of the
“entries” in s expresses in which order the activities must be observed in a trace
t to conclude that s matches t. Regarding activity execution orders, existing
work names the following patterns that are of interest for this: “A followed by B”
means that if A is executed eventually B must be executed [21]. “A immediately
followed by B” requires that as soon A has been executed B must follow next [21].

This work extends existing sequential rule formalisms, in order to increase
their predictive capabilities, into SPRs. In the following a SPR r is defined as

r := (pas = 〈pas1, · · · , pasm〉, pre, fut) (1)

where pas1, . . . , pasm, pre, and fut refer to activity executions. The order
of these “entries” in r imposes requirements on the expected activity execution
order over a corresponding execution trace t. These are, in detail, pasm followed
by pre; pre immediately followed by fut while for the activities in pas a followed
by order is expected (similar to sequential rules). Obviously, this constitutes an
extension when compared to existing sequential rules which commonly utilize
only a single relation pattern. Further, the rule “entries” pas (historic execution
behaviour), pre (most recently executed activity), and fut (the activity to be
executed next) become assigned a specific semantic meaning. This is another
difference to existing sequential rules as they treat each of the “entries” equally.

Overall these extensions give SPRs their prediction capabilities, increases
their flexibility and reduce over- and underfitting. For example, pas enables to
consider global behaviour when creating M or predicting – reducing underfitting.
In comparison, overfitting is reduced based on the relaxed followed by relation
implied on pas (and its “entries”) and pre. The latter, combined with the imme-

diately followed by relation between pre and fut enables to represent in M and
subsequently exploit while predicting that, given, pas and pre was observed for
p the to be predicted next (i.e., immediately following) activity is, likely, fut.

Hereby, all SPR entries combined with the expected activity orders provide a
foundation to predict p’s next activity based on SPRs. For the running example
in Table 1, the SPR r := (〈E〉, F, F) matches to t3 while a similar sequential rule
s := (〈E, F, F〉) matches to t2 and t3; illustrating that the made extensions in-
crease the focus of SPRs over sequential rules. In the following we will also denote
SPRs as pas | pre⇒ fut in order to be more illustrative – when appropriate.

How to mine SPRs as defined in Eq. 1 from an execution log L? As depicted
in Fig. 1, the mining approach comprises three interconnected steps. First, the
prediction model M is initialized 2 with the set of all minimal SPRs over a log
L. Here, a SPR r := (pas, pre, fut) is called minimal if pas = ∅. Formally, the
initial prediction model Minit is defined and generated as follows:

Minit := {(∅, e.ea, e′.ea)|e, e′ ∈ t, t ∈ L} (2)

Assuming that L solely holds t1, see Tab. 1, then Minit := {(〈〉, A, A), (〈〉, A, E),
(〈〉, A, F), (〈〉, A, C), (〈〉, A, W), (〈〉, E, A), · · · }, i.e., all possible pre/fut combinations
(similar to a Cartesian product). For the sake of brevity, Minit is given in parts.

Subsequently, iterative SPR extension 3 and evaluation 4 steps are per-
formed (cf. Fig. 1). Extension: For each SPR r := (pas, pre, fut) ∈ Minit all
possible extensions of r.pas are explored (i.e., by adding one activity in L’s ac-
tivities to it) as potential SPRs for an extended prediction model Mext. For
this, the first iteration exploits Minit while later utilize the most recent Mext.
Formally: ∀r ∈Minit, a ∈ A := {e.ea|e ∈ t, t ∈ L} an extended SPR set is built:

Mext := {(r.pas⊕ a, r.pre, r.fut)|a ∈ A} (3)

Mext := {(r.pas⊕ a, r.pre, r.fut)|a ∈ A}.
Evaluation: All rules in Mext are then evaluated based on their confidence

(cf. Def. 2) [26]. The confidence reflects the “likelihood” that a given combina-
tion of activity observations, as defined in r.pas, results in the future behaviour
represented in r to be observed. In other words, the most recently executed ac-
tivity r.pre will be directly succeeded by r.fut. Here we exploit the common
confidence metric [26] to measure global behaviour (and thus SPR) significance.

Definition 2 (SPR Confidence). Let SPR r := (pas, pre, fut) be a sequential
rule and L be a log. The confidence conf(L, r) ∈ [0, 1] of r is defined as:

conf(L, r) :=
count(pas | pre⇒ fut, L)

count(pas | pre⇒ ·, L)

where count determines the number of traces in L which r matches to. The
numerator considers all “entries” of r (full match) while the denominator ig-
nores r.fut (partial match), cf. Sect. 3.1. This follows commonly applied as-
sociation rule confidence calculation techniques, as described in [25].

An example for the confidence calculation is given in Section 3.1. We found
alternatives to the confidence metric such as lift or support [26] to have no or
even a negative impact as the use of even low support values (e.g., a minimal
support of 0.001) frequently results in generating underfitted prediction models.

The evaluation of each rule is performed based on a user configurable mini-
mal confidence threshold minc ∈ [0, 1]. Accordingly, only SPRs with a confidence
above minc, i.e., conf(L, r) > minc, will be retained from Mext to form this it-
erations version of M . The assumption behind that is: the higher the confidence,
the higher the significance of a given rule and, in return, the global execution
behaviour it represents. Finally, the resulting prediction model M turns out as:

M := {r ∈
⋃

Mext

| conf(r) > minc} (4)

Rule extension 3 and evaluation 4 cycles (cf., Fig. 1) are repeated until no
additional novel SPRs can be identified. Altogether, the repeated extension and
evaluation of rules in M aims at identifying and extracting global significant
execution behaviour. For this work this means that a specific unique combina-
tion of activity observations (see pas) results in a high likelihood that the next
occurrence of pre will directly be followed by the activity fut, cf. Sect. 3.

Finally, the SPRs in prediction model M are exploited to predict the activity
to be executed next for an ongoing process execution trace p /∈ L. For this, it must
first be determined if appropriate SPRs are available in M for the prediction task
at hand (5 , Fig. 1). A SPR r := (pas, pre, fut) is appropriate if pas matches
p and r.pre = pl.ea, i.e., the present activity r.pre is equal to the most recently
executed process activity in p. Out of these rules r, the appropriate SPR with
the highest confidence is assumed as the most relevant one such that its r.fut
becomes the expected (predicted, resp.) activity to be executed next for p 6 .

If appropriate SPRs (global behaviour, resp.) cannot be identified we propose
to fall back to a local prediction technique (7 , Fig. 1). Such techniques, typically,
are not solely relying on matching specific global behaviour and hence can be
applied in a more flexible manner. Throughout the evaluation, a local prediction
technique [5] was chosen and extended for this. Further details on the outlined
prediction algorithms, their application and SPR matching are given in Sect. 3.

3 SPR based Predictive Monitoring

This section discusses details on SPR mining including the exploitation of exist-
ing sequential rule mining optimization strategies and the relation between and
prediction of control and temporal execution behaviour.

3.1 SPR Mining & Optimizations

Creating the prediction model and mining the related SPRs requires to apply
the proposed extension and evaluation cycle, cf. Fig 1. The latter requires to

determine if and how recorded execution traces t ∈ L match to a given SPR r.
We assume that a SPR can be matched to t either partly and/or fully, specifically:

Full match: Given a trace t, it is fully matched by r if all activity executions
specified by r (i.e., past r.pas, present r.pre, and future r.fut behaviour) can be
observed in t in the specified order. Hereby, the activities in r.pas must occur in
the orders specified by their indexes r.pasi (i.e., activity r.pas2 must occur after
activity r.pas1 was observed, i.e., a followed by relation is used). To increase
the flexibility of this matching technique arbitrary gaps, i.e., n ∈ N0 activity
executions, in t are permitted between each matching occurrence of r.pasi. The
latter results in less strict prediction models which are less prone to overfitting.

For example, an assumed r.pas := 〈A, E〉 would match to t1, t2, and t3 in the
running example, cf. Table 1. Hereby, A and E are only direct successors in t1 and
t2. In comparison an unrelated activity execution (i.e., F) takes place between A

and E in t3. In future work more complex SPR representations will be explored
which, inter alia, restrict the maximum gap between matches for r.pas.

In addition, each SPR r consists of r.pre and r.fut, cf. Def. 1. Hereby, r.fut
is required to be a direct successor to r.pre in a given trace t to conclude that r
matches to t (i.e., an immediately followed by relation is used). This is because
here we are interested in predicting the direct successive activity execution (i.e.,
r.fut) for a given most recently executed activity (i.e., r.pre).

Partial match: In comparison a partial match is already given when r.pas and
r.pre can be observed in a given trace t (i.e., r.fut is ignored). Similarly to a
full match gaps of arbitrary length are permitted between activity observations
(followed by relation, resp.). Overall, the described full and partial match concept
pave the ground for the SPR confidence calculation outlined previously in Def. 2.
Hereby, the full match is implemented accordingly for count(pas | pre⇒ fut, L)
while a partial match is utilized for count(pas | pre⇒ ·, L) on the traces in L.

For example, given SPRs r1 := (〈E〉 | C ⇒ R) and r2 := (〈E, F, F〉 | C ⇒ R)
along with the traces in the running example Table 1 following matching results
would be observed. While r1 results in a full match for t1, t4 and a partial
match for t1, t2, t3, t4; r2 fully matches t1, t4 and partially also matches t1, t4.
Accordingly the confidence of r1 is 2/4 = 0.5 while for r2 it becomes 2/2 = 1
such that r2 is assumed as representing more significant behaviour/predictions.

Finally, the outlined SPR matching (evaluation, resp.) and expansion steps
are combined to mine SPRs and create the prediction model M , cf. Algorithm
1. For this, first an initial preliminary prediction model with minimal SPRs is
created. Subsequently, the preliminary rules in M are expanded in an iterative
manner to increase, iteration by iteration, their respective confidence. Finally,
all identified potential SPRs are evaluated based on a final confidence evaluation
step. The latter ensures that each r ∈ M complies to the minimal user chosen
confidence threshold minc ∈ [0, 1]. Hereby, a prediction model M is created
which can in return be utilized to predict upcoming activity executions for novel
ongoing execution traces p of P based on significant historic behaviour in L.

Optimization: For the sake of understandability and simplicity the outlined
Algorithm 1 and concepts, cf. Sect. 2, do not reflect a number of optimization

Algorithm sprMine(historic traces t ∈ L, minimum SPR confidence minc ∈ [0, 1])
Result: final prediction model M (SPR collection, resp.)
A := {e.ea|e ∈ t; t ∈ L} // all activities in L

Minit := {(∅, a, a′)|a, a′ ∈ A} // initial set of minimal SPRs to expand, Fig. 1 2
Mext := Minit // SPR set for the expansion process, start with Minit

M := ∅ // the prediction model, a set of SPRs; initially empty
do

// create all possible SPR expansions, exploit previous iteration, Fig. 1 3
Mext := {(r.pre⊕ a, r.pre, r.fut)|r ∈Mext, a ∈ A}
// stop condition, Mext’s SPRs shall full match to at least a single t ∈ L
Mext := {r ∈Mext|count(r, L) > 0}
M := M ∪ {r ∈Mext|conf(r, L) > minc} // evaluating Mext to enforce the

min. confidence requirement, Fig. 1 4 , cf. Def. 2

while |Mext| > 0 // expand SPRs till no new behaviour can be learned
return M

Algorithm 1: Mines SPRs for a given log L of historic executions.

strategies which were applied by its public prototypical implementation used
throughout the evaluation, cf. Sect. 4. For example, instead of iterating over
all traces in L throughout each iterative step the implementation holds a list
of relevant (i.e., fully matching traces) for each rule. When extending a rule
solely this list is analyzed and updated. Further optimizations are applied when
generation the initial (Minit) and extended (Mext) version of the SPRs. For
example, instead of generating all possible (potential) rules only direct successors
in L taken into consideration to restrict the generated rules to behaviour which
is at least once observed in L – reducing the SPR evaluation efforts. Hereby, this
work builds upon optimization strategies proposed for association rules by [25],
enabling to reduce the impact of a potential state explosions.

3.2 SPR based Predictions & Fallbacks

After finalizing the prediction model M the activity to be executed next can be
predicted for novel ongoing execution traces p where p 6∈ L, cf. Algorithm 2. For
this the most recently executed activity (pl.ea) is utilized to identify all relevant
SPRs in M based on a rough and a fine filter. The rough filter assumes a SPR
as relevant if its present activity value (i.e., r.pre) is equal to the most recently
executed activity in p (i.e., pl.ea) and if r.pas could be observed beforehand (i.e.,
before pl) in p’s execution events. We assume that under this circumstances a
rule is most likely related to the current execution state of p and its direct future.

Finally, the confidence of each SPR in the roughly filtered representation
of M is determined to identify the SPR (rule resp.) with maximum confidence,
resulting in a fine filter. Hereby, the assumption is that the most confident appli-
cable rule has the highest probability to represent global significant behaviour
relevant for p’s current execution state and its to be predicted future. If the
rough filter removes all rules from M the proposed technique is found to be not
applicable for p’s current state. The latter can occur if the behaviour in p is too
novel, unique, or varying (concept drift) and such could not be mined from L.

Throughout the evaluation we found that about 40% of all activity predic-
tions were affected by this, see Section 4 for a detailed discussion. Accordingly,

we propose to apply an alternative local prediction technique in such cases which
is not or less affected by such execution behaviour, such as, the technique pre-
sented in [5]. Given such a unique execution behaviour the latter technique can
still be applied as it solely relies on trace similarities and probability distribu-
tions. Such similarities might become low or the probability distributions become
less significant but nevertheless some future can and will still be predictable.

Algorithm sprPredictAct(ongoing trace p, SPR prediction model M, historic traces L)
Result: predicted activity to be executed next a for the ongoing trace p
a := ∅ // by default no activity could be predicted

M ′ := {r ∈M |r.pre = pl.ea} // filter for relevance by recently executed activity

if M ′ 6= ∅ // only if relevant SPRs are available then
mcr := {r ∈M ′|conf(r, L) > conf(r′, L), r′ ∈M}0 // filter, max confidence
a := mcr.fut // r.fut is the most probable activity

else
// get a by applying a fallback technique, such as, [5]

return a // the activity to be predicted next (SPR or fallback)

Algorithm 2: Prediction for trace p and prediction model M .

For example, imagine that L consists of the traces t1 to t3 given in the
running example, cf. Table 1. When assuming t4 as the currently ongoing trace
p which should be predicted upon and that p’s most recently observed execution
event is t4.e5 (i.e., the execution of activity C). Firstly, a number of rules will be
generated and stored in M . Hereby, M will, inter alia, contain, r1 := (〈A〉 | E⇒ E)
with a confidence c of 0.3̇, r2 := (〈E, F〉 | C ⇒ W) with c := 0.6̇ and r3 :=
(〈E, F, F〉 | C ⇒ R) with c := 1. Secondly, the rules in M are roughly filtered
based on r.pre (which should be equal to p’s most recent activity C) and r.pas
which should be observed in p’s execution events before pl. Accordingly, only r2

and r3 will be taken into consideration for the next fine granular filtering step.

Fine granular filtering identifies the SPR in M with the highest confidence.
Given that r2 has a confidence of c := 0.6̇ while r3 has a confidence of c := 1 it is
determined that r3 should be applied for the final prediction step. That final step
exploits the information given in r3 on the related future behaviour (i.e., r3.fut)
to predict the direct successor activity for pl (cf., t4.e5) correctly as R, cf. Table 1.
Demonstrating an advantage of the proposed significant global behaviour based
prediction technique over local techniques. Hence, a local prediction technique,
such as, [5], could come to the conclusion that, based on L, C is followed by W

with a likelihood of 0.6̇ while R follows on C with a likelihood of 0.3̇. In return
incorrectly predicting W as t4.e5’s most likely direct successor, cf. Table 1.

The proposed global technique predicts based on the SPR with the highest
confidence. Alternatives, which were inspired by bagging and boosting were also
explored, cf. [3]. These include, for example, to take the activity with has, on av-
erage, the highest relative confidence based on all appropriate SPRs or to choose
the future activity which is backed up by the most SPRs. However, throughout
the evaluation no consistent tendencies towards one of the explored alternatives
were recognized. Hence, the described most simple approach was applied.

3.3 Prediction of Temporal Behaviour

The proposed prediction technique is capable of predicting upcoming activities
based on unique global execution behaviour. This also paves a foundation to
improve the temporal behaviour prediction technique presented in [5]. The latter
is capable of predicting the occurrence timestamp of the next activity execution.

For this, [5] is extended by adding a preliminary filtering step. It filters the
traces in L such that LC ⊆ L only retains traces t ∈ L for which an immediately
followed by relation between the most recently executed activity in the ongoing
trace p, i.e., pl, and its predicted successive activity, cf. Algorithm 3, can be
observed. Overall, this reduces the noise in LC ⊆ L which the local prediction
technique has to cope with – improving the achieved temporal behaviour (i.e.,
next execution event timestamp) prediction quality, as shown in Section 4.

Algorithm tempHistFilter(ongoing trace p, predicted activity a, historic traces L)
Result: LC, a less noisy representation of L, cleaned based on the predicted activity a
LC := ∅ // cleaned representation of L
foreach t ∈ L // each trace is independently analyzed do

for histTraceIndex = 0 to |t| − 1 // check each activity do
// t’s events to evaluate for their direct successive activity relation
a1 := thistTraceIndex.ea, a2 := thistTraceIndex+1.ea
// between the most recent activity in p and its predicted next activity

if a1 = pl.ea ∧ a2 = a then
LC := LC ∪ {t} break // preserve t ∈ L only if deemed relevant

return LC

Algorithm 3: Preparing L for temporal behaviour prediction.

This is achieved by the proposed flexible combination of two specialized tech-
niques. Enabling that improvements and advantages gained in one technique can
be integrated into existing alternative solutions to improve their prediction qual-
ity as well. For example, assume the first three traces in the running example,
cf. Table 1, as L and also assume the most recently executed activity as C for the
ongoing trace p (t4.e5, resp.). Without the proposed noise reduction approach
the next activity execution timespan between t4.e5 and t4.e6 would be predicted
based on all three traces in L as 6 (resulting in a timestamp of 36) by [5].

This is because 6 is the most frequently observed timespan for C and an ar-
bitrary successive activity execution based on the non filtered L. When applying
the proposed filtering approach, cf. Algorithm 3, LC ⊆ L is reduced to only hold
trace t2 as it is the only trace for which C is directly followed by R. Hereby, the
predicted timestamp becomes 39 as the timespan between C and R based on t2
is 9; reducing the timestamp prediction error for this example from 2 to 1.

4 Evaluation

The evaluation utilizes real life process execution logs from multiple domains in
order to assess the prediction quality and feasibility of the proposed approach

LoGo, namely: BPI Challenge 20122 (BPIC) and Helpdesk3. Both were chosen
as they are the primary evaluation data source for a range of existing state-
of-the-art approaches: [1, 7, 13, 6, 23, 5, 2]. This enables to compare the proposed
approach4 with diverse alternative techniques, such as, neural network or proba-
bility based prediction approaches with varying focus on local/global behaviour.
BPIC 2012 log: The BPIC 2012 log is provided by the Business Process In-
telligence Challenge (BPIC) 2012. It contains traces generated by the execution
of a finance product application process. This process consists of one manually
and two automatically executed subprocesses: 1) application state tracking (au-
tomatic); 2) handling of application related work items (manual); and 3) offer
state tracking (automatic). The comparison approaches, such as, [7, 23, 5], are
only interested in the prediction of manually performed events. Accordingly, this
and the comparison work narrow down the events in the log to become compa-
rable. Overall 9,657 traces with 72,410 execution events were retained.
Helpdesk log: This log is provided by a software company and contains exe-
cution traces generated by a support-ticket management process. The log holds
3,804 traces which consist of 13,710 execution events. We assume the helpdesk
log as being more challenging than the BPIC log. This is because the structural
and temporal fluctuation along with the number of activities is higher while the
amount of traces, from which behaviour can be learned, is lower.
Comparison approaches: The proposed approach is compared with nine al-
ternative process execution behaviour prediction approaches, see [1, 7, 13, 6, 23,
5]. These apply a number of techniques, such as, finite state automata, histogram
like prediction models or neural networks. The latter, either use Recurrent Neu-
ral Networks (RNN) – which incorporate feedback channels between the neurons
a network is composed of – or Long Short-Term Memory (LSTM) based neural
networks. LSTM based neural networks were found to deliver consistent high
quality results by adding the capability to “memorize” previous states, cf. [23].

4.1 Metrics and Evaluation

This work applies the same metrics and evaluation concepts as previous work,
such as, [23, 5], to archive comparability. First, the Mean Absolute Error (MAE)
measure enables to analyze the temporal behaviour prediction quality. For this,
the difference between the real observed temporal behaviour in the logs and
the predicted timestamps is aggregated. Here, MAE was chosen as it is less af-
fected by unusual short/large inter event timespans (outliers), than alternatives,
such as, Mean Square Error, cf. [23]. Secondly, we apply the activity prediction
accuracy ; using the percentage of correctly predicted next activity executions.

Before each evaluation run the log traces were chronologically ordered based
on their first event’s timestamp (ascending). Enabling to separate them into
training (first 2/3 of the traces) and test data (remaining 1/3). Subsequently,

2 DOI: 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3 DOI: 10.17632/39bp3vv62t.1
4 Public prototypical implementation: https://github.com/KristofGit/LoGo

all possible sub traces, t[1,n] where 2 ≤ n < |t| − 1, are generated from the test
data and the (n+1)th event (activity and timestamp) is predicted. The minimal
sub traces length of ≥ 2 provides a sufficient behaviour base for each prediction
task. We are aware that this can potentially result in using information from the
future, if the training data contains long running traces. However, for the sake
of comparability with existing work the described approach was applied.

4.2 Evaluation Results

Primary tests were applied to identify an appropriate minimum SPR confidence
minc value for each log and prediction task. For this, potential confidence values,
ranging between 0.7 to 0.9, were analyzed. Lower/higher values were not taken
into consideration as significant overfitting/underfitting was observed for them.

The achieved evaluation results are summarized in Table 2 (event timestamp
prediction) and 3 (activity prediction) – the best result is marked in bold. Over-
all, the proposed SPR based prediction approach outperforms the state-of-the-art
comparison approaches. Throughout the evaluation 64% (BPIC 2012) and 58%
(Helpdesk) of the events could be predicted based on SPRs alone, without the
need of applying the proposed fallback mechanism. In addition, we compared the
correctness of the local prediction approach (fallback, resp. [5]) when the SPR
based prediction was applicable. In such cases the SPR based approach predicted
84% of all activities correctly while the fallback approach only achieved 77%.

Accordingly, it can be concluded that the exploitation of global behaviour
improves the quality of the prediction results compared to approaches which
mainly focus on local behaviour. Nevertheless, given that the proposed fallback
mechanism was required regularly it can be assumed that the recorded execution
behaviour fluctuates significantly, e.g., because of process drift, cf. [7]. A manual
and process mining based inspection of the logs confirmed this observations –
which are likely intensified by the long time spans recorded in each log. Future
work will explore advanced means to represent global behaviour to address this
situation based on clustering, filtering techniques, and extended rule formalisms.

Table 2. Evaluation Results: Execution Event Timestamp Prediction MAE

Timestamp, Mean Absolute Error (MAE) in Days

Proposed
SPR

Similarity
Histogram
Probability

[5]

Set
abstraction
Probability

[1]

Bag
abstraction
Probability

[1]

Sequence
abstraction
Probability

[1]

LSTM
Neural

Network
[23]

Recurring
Neural

Network
[23]

Helpdesk 3.37 3.54 5.83 5.74 5.67 3.75 3.98
BPIC 2012 1.53 1.54 1.97 1.97 1.91 1.56 N.A.5

The evaluation shows that the proposed approach is feasible and outperforms
a range of comparison approaches. In addition, we found that the generated
prediction model can easily be updated if new traces become available or the

Table 3. Evaluation Results: Execution Event Activity Prediction Accuracy

Activity, Prediction Accuracy

Proposed
SPR

LSTM
Neural

Network
[7]

Similarity
Histogram
Probability

[5]

LSTM
Neural

Network
[13]

Finite
automaton
Probability

[6]

LSTM
Neural

Network
[23]

Recurring
Neural

Network
[23]

Helpdesk 0.80 0.78 0.77 N.A.5 N.A.5 0.71 0.66
BPIC 2012 0.78 0.77 0.77 0.62 0.72 0.76 N.A.5

process model is changed. This is because the prediction model is composed
of independent rules which have no relation to each other, such that, existing
(e.g., outdated) rules can easily be removed while new rules can be added. This
property also results in M becoming more transparent and explainable.
Baseline: An additional baseline approach was evaluated. For activity predic-
tion it determines and predicts the most frequent activity for each trace index.
Event timestamps are predicted based on the average execution duration be-
tween two successive activity executions. The baseline approach achieved an
activity accuracy of 0.49 along with a MAE of 1.61 for the BPIC 2012 log.

5 Related Work

Existing prediction work can be assigned into four main categories: a) predicting
the next event [23]; b) estimating remaining execution times [23]; c) classifying
and predicting instance outcomes [9]; and d) predicting risks which could hinder
successful instance completions [4]. For this work, we assume a) as most relevant.

Related work seems not to take the differences between local vs. global predic-
tion techniques into account explicitly. When analyzing the applied fundamental
techniques, such as, neural networks, (hidden) markov models, support vector
machines, and state automata they, by design, apply a fuzzy mixture of local/
global prediction techniques/models [24, 14, 15, 8, 15, 23, 16, 12]. Hence, they ag-
gregate all behaviour in L into a single prediction model using a single technique
which is neither specifically optimized for local nor global prediction. This re-
sults in requiring the underling core technology to determine which kind of local/
global execution behaviour is relevant for each individual event prediction task.

For this, recent work [7, 23], seems to apply a distinct focus on neural net-
work based techniques. Hereby, commonly advanced LSTM networks with mul-
tiple hidden layers and up to hundreds of neurons are applied. Such approaches
achieve top end prediction quality, see Section 4, but imply significant hardware
and computation time requirements throughout the prediction model genera-
tion/learning phase. For example, [19] used servers with 128GB of memory and
multiple high end GPUs. While [23] stated the individual timespan required for
a single training iteration as between “15 and 90 seconds per training iteration”
[23, p. 483] – while frequently hundreds to thousands of iterations are required.

Such lengthy and computation intense training cycles can harden a prediction
approaches’ application. Especially for flexible, changing (concept drift), and non

centralized application scenarios, cf. [27, 11]. Such are, for example, observed
throughout the application of processes in the Internet of Things [27] or during
process executions in the Cloud [11]. Given that each change can result in the
need to update all prediction models such volatile scenarios can trigger frequent
and lengthy training phases for the neural network based approaches.

Accordingly, we assume LoGos capability to train explainable prediction
models within minutes on single-core processors, as advantageous. LoGo gains
these advantages by being highly specialized on the data (process execution
traces) and the task at hand (activity and temporal prediction). In comparison
alternative techniques, such as, neural networks have broader applications (e.g.,
they support also failure prediction) while these flexibility seems to be connected
with higher computational requirements and less explainable models, cf. [17, 2].

6 Discussion and Outlook

This paper focuses on two challenges a) to provide a global prediction approach;
b) which can be combined with existing local prediction approaches. We conclude
that the proposed approach LoGo was able to meet both challenges. Further, this
work evaluates the impact of global behaviour on predictions and compares with
and even outperforms a number of related state-of-the-art prediction approaches.

Applying the proposed separation of local and global prediction capabilities
into two distinct mixable techniques/models enables to choose the most ap-
propriate one for each upcoming prediction task (similar to ensemble learning,
cf. [10]). Compared to alternative prediction approaches these separation also
results in simpler prediction models, enabling to gain explainable model capa-
bilities, cf. [20]. As prediction models can have a significant impact on an orga-
nization we see this as a significant aspect to leverage a decision maker’s trust
into such predictions and prediction results, cf. [17]. Finally, the task specializa-
tion (i.e., process instance activity and timestamp prediction) of the proposed
techniques reduces its hardware requirements and complexity in comparison to
general purpose techniques, such as, neural networks [2]. Overall, we assume that
this eases the proposed approaches’ application on today’s fluctuating processes.

Future work will a) explore advanced representations of global behaviour; and
b) widen the global behaviour which is taken into account. Hereby, especially the
representation of the past behaviour is of relevance as it can become more or
less precise. In this work we applied sequential rules for this, as they are well
known and generic such that SPRs will less likely struggle with overfitting.

References

1. Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information systems 36(2), 450–475 (2011)

2. Appice, A., Mauro, N.D., Malerba, D.: Leveraging shallow machine learning to
predict business process behavior. In: Services Computing, SCC 2019, Milan, Italy,
July 8-13, 2019. pp. 184–188 (2019)

3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine learning 36(1-2), 105–139 (1999)

4. van Beest, N.R., Weber, I.: Behavioral classification of business process executions
at runtime. In: Business Process Management. pp. 339–353. Springer (2016)

5. Böhmer, K., Rinderle-Ma, S.: Probability based heuristic for predictive business
process monitoring. In: OTM COOPIS. pp. 78–96. Springer (2018)

6. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive
models for business processes. MIS Quarterly 40(4), 1009–1034 (2016)

7. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate lstm models of
business processes. In: Business Process Management. pp. 286–302. Springer (2019)

8. Ceci, M., et al.: Completion time and next activity prediction of processes using
sequential pattern mining. In: Discovery Science. pp. 49–61. Springer (2014)

9. Conforti, R., et al.: Prism–a predictive risk monitoring approach for business pro-
cesses. In: Business Process Management. pp. 383–400. Springer (2016)

10. Dietterich, T.G.: Ensemble methods in machine learning. In: International work-
shop on multiple classifier systems. pp. 1–15. Springer (2000)

11. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable business process
execution in the cloud. In: Cloud Engineering. pp. 175–184. IEEE (2014)

12. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems 100, 129–140 (2017)

13. Evermann, J., et al.: A deep learning approach for predicting process behaviour at
runtime. In: Business Process Management. pp. 327–338. Springerg (2016)

14. Ferilli, S., et al.: Extenaded process models for activity prediction. In: Methodolo-
gies for Intelligent Systems. pp. 368–377. Springer (2017)

15. Francescomarino, C.D., et al.: Predictive process monitoring methods: Which one
suits me best? In: Business Process Management. pp. 77–93 (2018)

16. Francescomarino, D., et al.: An eye into the future: Leveraging a-priori knowledge
in predictive business process monitoring. In: BPM. pp. 252–268. Springer (2017)

17. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In:
Artificial Intelligence. vol. 33, pp. 3681–3688 (2019)

18. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data &
Knowledge Engineering 67(1), 74–102 (2008)

19. Lin, L., Wen, L., Wang, J.: Mm-pred: A deep predictive model for multi-attribute
event sequence. In: Data Mining. pp. 118–126. SIAM (2019)

20. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 30:31–30:57
(2018)

21. Ly, L.T., Maggi, F.M., et al.: Compliance monitoring in business processes: Func-
tionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)

22. Mehdiyev, N., et al.: A multi-stage deep learning approach for business process
event prediction. In: Business Informatics. vol. 1, pp. 119–128. IEEE (2017)

23. Niek, T., et al.: Predictive business process monitoring with lstm neural networks.
In: Advanced Information Systems Engineering. pp. 477–492. Springer (2017)

24. Pandey, S., Nepal, S., Chen, S.: A test-bed for the evaluation of business process
prediction techniques. In: Collaborative Computing. pp. 382–391. IEEE (2011)

25. Pei, J., et al.: Mining sequential patterns by pattern-growth: The prefixspan ap-
proach. Knowledge and data engineering 16(11), 1424–1440 (2004)

26. Sheikh, L.M., Tanveer, B., Hamdani, M.: Interesting measures for mining associa-
tion rules. In: Multitopic Conference. pp. 641–644. IEEE (2004)

27. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications.
In: Big data analysis: new algorithms for a new society, pp. 91–114. Springer (2016)

