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Abstract. Path selection by selfish agents has traditionally been stud-
ied by comparing social optima and equilibria in the Wardrop model, i.e.,
by investigating the Price of Anarchy in selfish routing. In this work, we
refine and extend the traditional selfish-routing model in order to an-
swer questions that arise in emerging path-aware Internet architectures.
The model enables us to characterize the impact of different degrees of
congestion information that users possess. Furthermore, it allows us to
analytically quantify the impact of selfish routing, not only on users,
but also on network operators. Based on our model, we show that the
cost of selfish routing depends on the network topology, the perspective
(users versus network operators), and the information that users have.
Surprisingly, we show analytically and empirically that less information
tends to lower the Price of Anarchy, almost to the optimum. Our results
hence suggest that selfish routing has modest social cost even without
the dissemination of path-load information.
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1 Introduction

If selfish agents are free to select communication paths in a network, their in-
teractions can produce sub-optimal traffic allocations. A long line of research
relating to selfish routing [26, 27, 29] has quantified many effects of distributed,
uncoordinated path selection by selfish individuals in networks. While seminal
work on such game-theoretic analyses dates back to Wardrop [35], especially
the notion of Price of Anarchy, coined by Koutsoupias and Papadmitriou [17],
has received much attention: the Price of Anarchy compares the worst possible
outcome of individual decision making, i.e., the worst Nash equilibrium, to the
global optimum, by taking the corresponding cost ratio. The Price of Anarchy
in data-network path selection is typically measured in terms of latency.

In this paper, we revisit these concepts to investigate two key aspects which
have been less explored in the literature so far and are highly relevant for newly
emerging path-aware network architectures (cf. §1.1):

– Impact of information: A fundamental design question of network ar-
chitectures concerns which information about the network state should be
shared with end-hosts, beyond the latency information that can be observed
by the end-hosts directly.
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– Impact on network operators: While game-theoretic analyses usually re-
volve around the cost experienced by users, it is also important to understand
the impact of selfish routing on the network operators’ cost.

1.1 Practical Motivation

The traditional question studied in the selfish-routing literature, namely the
efficiency of uncoordinated path selection by selfish agents, has recently received
new relevance in the context of emerging Internet architectures relying on source-
based path selection [2, 3, 9, 24,36].

Today’s Internet infrastructure is based on a forwarding mechanism that
grants almost exclusive control to the network and almost no control to users (or
end-hosts). In fact, all communication from a given end-host to another end-host
takes place over the single AS-level path that BGP (Border Gateway Protocol)
converged on. In the alternative paradigm of source-based path selection, network
operators supply end-hosts with a pre-selected set of paths to a destination,
enabling end-hosts to select a forwarding path themselves.

Source-based path selection allows end-hosts to select paths with superior
performance to the BGP-generated path [12,16,31] or to quickly switch to an al-
ternative path upon link failures. However, a widely shared concern about source-
based path selection regards the loss of control by network operators, which fear
that the traffic distribution resulting from individual user decisions might impose
considerable cost on both themselves and their customers. Another concern is
that end-hosts require path-load information in order to perform path selection
effectively, necessitating complex systems for the dissemination of network-state
information. We refine and extend concepts from the selfish-routing literature to
investigate the validity of these concerns.

1.2 Our Contributions

We present a game-theoretic model (§2) which allows us to quantify not only the
Price of Anarchy experienced by end-hosts, but also to account for the network
operators. Furthermore, we use our model to explore how end-host information
about the network state affects the Price of Anarchy.

We find that different levels of information indeed lead to different Nash
equilibria and thus also to different Prices of Anarchy. Intriguingly, we find that
while a higher degree of information can improve the efficiency of selfish routing
in networks with few end-hosts (§3), a higher degree of information tends to
induce a higher Price of Anarchy in more general settings (§4). Indeed, near-
optimal outcomes are typically achieved if end-hosts select paths based on simple
latency measurements of different paths. These theoretical results suggest that
source-based path selection cannot only achieve a good network performance in
selfish contexts, but can be realized in a fairly light-weight manner, avoiding the
need to distribute much information about the network state. This insight is
validated with a case study on the Abilene topology (cf. Appendix B).
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2 Model and First Insights

2.1 Model

As in previous work on selfish routing [10, 29], our model is inspired by the
classic Wardrop model [35]. In this model, the network is abstracted as a graph
G = (A,L), where the edges ` ∈ L between the nodes Ai ∈ A represent links.
Every link ` ∈ L is described by a link-cost function c`(f`), where f` is the
amount of load on link `, i.e., a link flow. Typically, link-cost functions are seen
as describing the latency behavior of a link. To reflect queuing dynamics, link
cost functions are convex and non-decreasing. For every node pair (Ai, Aj), there
is a set of paths P (Ai, Aj) that contains all non-circular paths between Ai and
Aj . Between any node pair (Ai, Aj), there is a demand d shared by infinitely
many agents, where each agent is controlling an infinitesimal share of traffic.

However, the traditional Wardrop model is not suitable to analyze traffic
dynamics in an Internet context. We thus adapt the Wardrop model into a
more realistic model as follows. First, we introduce the concept of ASes and
end-hosts, which allows us to perform a more fine-grained analysis of traffic
in an inter-domain network. An AS Ai ∈ A is represented by a node in the
network graph G. The AS contains a set of end-hosts, which are the players
in the path-selection game. Differently than in the Wardrop model, we allow
for non-negligible, heterogeneous demand between end-host pairs in order to
accommodate the variance of demand in the Internet. For example in origin-
destination pair od = (es, et) ∈ OD (short: (s, t)), an end-host es ∈ Ai can have
a demand ds,t ≥ 0 towards another end-host et ∈ Aj . We also deviate from the
Wardrop model by considering a multi-path setting, where the demand ds,t of
one agent can be arbitrarily distributed over all paths p ∈ P (Ai, Aj). The amount
of flow from end-host es to end-host et on path p ∈ P (Ai, Aj) is denoted as a
path flow F(s,t),p, which must be non-negative, with

∑
p∈P (Ai,Aj)

F(s,t),p = ds,t.

The set Π(es, et) ⊆ Π contains all end-host paths of the form π =
[
(s, t), p

]
,

where es, et are end-hosts connected by the AS-level path p. All path flows
F(s,t),p for an origin-destination pair (es, et) are collected in a path-flow vector

Fs,t ∈ R|Π(es,et)|. All such path-flow vectors Fs,t are collected in the global path-
flow pattern F ∈ R|Π|. A link flow f` for link ` ∈ L is the sum of the path flows
in F that refer to end-host paths π containing link `, i.e., f` =

∑
π∈Π:`∈π Fπ.

The cost of an end-host path Cπ given a certain path-flow pattern F is the
sum of the cost of all links in the path: Cπ(F) =

∑
`∈π c`(f`). The cost to

end-hosts C∗(F) from a path-flow pattern F is the latency experienced by all
end-hosts on all the paths to all of their destinations, weighted by the amount
of traffic that goes over a given path. This term can be simplified as follows:

C∗(F) =
∑

(s,t)∈OD

∑
π∈Π(s,t)

Fπ · Cπ(F) =
∑
π∈Π

Fπ ·
∑
`∈π

c`(f`) =
∑
`∈L

f` · c`(f`)

Existing work on selfish routing [27,29] usually defines total cost in the above
sense. However, when analyzing source-based path selection architectures, the
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network-operator perspective on social cost is essential. Therefore, we also in-
troduce a social cost function relating to the perspective of network operators.

The basic idea of the network-operator cost function C# is to treat links
as investment assets. Thus, the business performance of a link ` is given by a
function p#` (f`) = b#` (f`) − c#` (f`), where b#` and c#` are the benefits and costs
of a link, respectively. As we investigate effects on the aggregate of network
operators, we model the network-operator cost function as follows:

C#(F) =
∑
`∈L
−p#` (f`) =

∑
`∈L

c#` (f`)− b#` (f`) =
∑
`∈L

c`(f`)

We justify this formulation as follows. Concerning link costs c#` , a central in-
sight is that network-operator costs mostly stem from heavily used links. In
volume-based interconnection agreements, excessive usage of a link induces high
charges, whereas in peering agreements, excessive usage violates the agreement
and triggers expensive renegotiation. Moreover, heavy usage necessitates expen-
sive capacity upgrades. As the latency function c`(f`) indicates the congestion

level on link `, we approximate c#` ≈ c`. The link benefit b#` captures the link
revenue, both revenue from customer ASes and customer end-hosts. In the ag-
gregate, the monetary transfers between ASes (charges paid and received) sum
up to zero. Given a fixed market size, the revenue from end-hosts sums up to
a constant in the aggregate. Hence, the global benefit

∑
`∈L b

#
` is constant and

can be dropped, as the absolute level of the network-operator cost is irrelevant
for our purposes. This convex formulation of C# allows theoretical analysis.

2.2 Social Optima

According to Wardrop [6,35], a socially optimal traffic distribution is reached iff
the total cost cannot be reduced by moving traffic from one path to another. In
the optimum, the cost increase on the additionally loaded path at least outweighs
the cost reduction from the relieved path. Because the cost functions are convex
and non-decreasing, it suffices that this condition holds for an infinitesimal traffic
share. Adding an infinitesimal amount to the argument of a cost function imposes
a marginal cost, given by the derivative of the cost function. A socially optimal
traffic distribution is thus reached iff the marginal cost of every alternative path
is not smaller than the marginal cost of the currently used paths [6]:

Social optimum. A path-flow pattern F represents a social optimum w.r.t.
cost function C if and only if for every origin-destination pair od ∈ OD , the
paths π1, ..., πi, πi+1, ..., π|Π(od)| ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C(F) = ... =
∂

∂Fπi
C(F) ≤ ∂

∂Fπi+1

C(F) ≤ ... ≤ ∂

∂Fπ|Π(od)|

C(F)

Fπ > 0 for π = π1, ..., πi, Fπ = 0 for π = πi+1, ..., π|Π(od)|.
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In this work, we refine the conventional notion of the social optimum by dis-
tinguishing two different perspectives on social cost: The end-host optimum F∗

satisfies the above conditions with respect to the function C∗, whereas the
network-operator optimum F# satisfies the above conditions with respect to
function C#.

A1 A3

A2

α : cα(fα) = 1 β : cβ(fβ) = f2
β

γ : cγ(fγ) = fγ

[
(1, 4), α

][
(1, 4), γβ

]
e1

e2

e3

e4

Fig. 1: Example network illustrating the source-based path selection model.

Interestingly, the end-host optimum F∗ and the network-operator optimum F#

can differ substantially. Assume that end-host e1 in Figure 1 has a demand of
d1,4 = 1 towards end-host e4 and that there is no other traffic in the network.
The network-operator cost function C#(F) is 1 + F 2

γβ + Fγβ and is minimized

by F# = (1, 0)>, i.e., by sending all traffic over link α. In contrast, the end-host
cost function is Fα + F 3

γβ + F 2
γβ and is minimized by F∗ = (2/3, 1/3)>, i.e., by

sending two thirds of traffic over link α and the remaining third over path γβ.

2.3 Degrees of Information

In this paper, we consider the following two assumptions on the network infor-
mation possessed by end-hosts:

– Latency-only information (LI): End-hosts know the latency of every
path to a destination.

– Perfect information (PI): End-hosts know not only the latency of dif-
ferent paths, but also how the latency of the network links depends on the
current load, i.e., the latency functions. Moreover, the end-hosts know the
current link utilization, i.e., the background traffic.

The LI assumption hence reflects a scenario where end-hosts have to rely
solely on latency measurements of paths, i.e., through RTT measurements from
their own device. The LI assumption is the standard model traditionally consid-
ered in the selfish routing literature [11,17,29].

In this work, we extend the standard model by introducing the concept of
perfect information (PI). The PI assumption reflects a scenario where end-hosts
can always take the best traffic-allocation decision in selfish terms. More specifi-
cally, the PI assumption allows end-hosts to compute the marginal cost of a path.
In path-aware networking, supplying end-hosts with perfect information is possi-
ble, as such information is known by network operators and can be disseminated
along with path information.

Figure 2 illustrates the difference between the LI assumption and the PI
assumption. Assume that end-host e, residing in AS A, has a demand of d = 1
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O De

α: cα(fα) = fα + 1
2

β: cβ(fβ) = 2

fα − Fα = 1

fβ − Fβ = 1

Fig. 2: Example illustrating the different degrees of end-host information.

to a destination in AS D. End-host e can split its traffic between two paths α
and β, both consisting of a single link with the cost functions cα (linear) and
cβ (constant). The background traffic (traffic not from end-host e) is 1 on both
paths. Assuming the traffic allocation of end-host e is (Fα, Fβ) = (0.5, 0.5), the
path-latency values are given by cα(0.5+1) = 2 and cβ(0.5+1) = 2. Given the LI
assumption, end-host e performs no traffic reallocation, as there is no lower-cost
alternative path which traffic could be shifted to. Moreover, there is no method
for predicting the path costs for a different traffic allocation. However, such a
prediction is possible with perfect information (PI): under the PI assumption,
end-host e knows the cost functions and the background traffic such that it can
optimize the objective Fα · (Fα + 1 + 1

2 ) + (1 − Fα) · 2. As a result, end-host
e discovers the optimal traffic assignment (0.25, 0.75). Intriguingly, the more
detailed perfect information (PI) enables end-host e to detect an optimization
that it cannot directly observe when confronted with latency values only (LI).

2.4 Nash Equilibria

In general, uncoordinated actions of selfish end-hosts do not result in socially
optimal traffic allocations. Instead, the only stable states that arise in selfish path
selection are Nash equilibria, i.e., situations in which no end-host perceives an
opportunity to reduce its selfish cost by unilaterally reallocating traffic. However,
as shown in §2.3, the degree of available information (LI or PI) strongly influences
the optimization opportunities that an end-host perceives. Therefore, different
information assumptions induce different types of Nash equlibria:

LI equilibrium. An end-host restricted to latency measurements will shift
traffic from high-cost paths to low-cost paths whenever there is a cost discrepancy
between paths, and will stop reallocating traffic whenever there is no lower-cost
path anymore which the traffic could be shifted to. In the latter situation, an
end-host under the LI assumption cannot perceive any way of reducing its selfish
cost. A Nash equilibrium under the LI assumption (short: LI equilibrium) can
thus be defined as follows:

LI equilibrium. A path-flow pattern F represents an LI equilibrium F0 if
and only if for every origin-destination pair od ∈ OD , the paths
π1, ..., πi, πi+1, ..., π|Π(od)| ∈ Π(od) have the following relationship:

Cπ1
(F) = ... = Cπi(F) ≤ Cπi+1

(F) ≤ ... ≤ Cπ|Π(od)|(F)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|



The Value of Information in Selfish Routing 7

Traditionally, selfish-routing literature [11, 26, 29] considers a Nash equilib-
rium in the sense of the LI equilibrium, namely an equilibrium defined by the
cost equality of all used paths to a destination. Under this classical definition,
selfish routing is an instance of a potential game [30].

PI Equilibrium. We contrast the classical equilibrium (LI equilibrium) with
a different equilibrium definition that builds on our new concept of perfect in-
formation (PI). As explained in §2.3, the PI assumption states that end-hosts
do not only possess cost information of available paths to a destination, but are
informed about the cost functions of all links in the available paths, as well as
the background traffic on these links, i.e., the arguments to the cost functions.
An end-host can thus calculate the selfish cost of a specific traffic reallocation
and find the path-flow pattern that minimizes the end-host’s selfish cost.

The selfish cost C∗(e)(F) of end-host e is given by the cost of all paths to all
desired destinations, weighted by the amount of flow relevant to end-host e:

C∗(e)(F) =
∑
`∈L

f`,(e) · c`(f`)

where f`,(e) is the flow volume on link ` for which e is origin or destination.
Similar to the end-host social cost function C∗ of which it is a partial term,

C∗(e) has a minimum that is characterized by a marginal-cost equality. An equi-
librium under the PI assumption is thus given if and only if all end-hosts are
at the minimum of their respective selfish cost functions, given the traffic by all
other end-hosts:

PI equilibrium. A path-flow pattern F represents a PI equilibrium F+ if
and only if for every origin-destination pair od = (e, ) ∈ OD , the paths
π1, ..., πi, πi+1, ..., πP ∈ Π(od) stand in the following relationship:

∂

∂Fπ1

C∗(e)(F) = ... =
∂

∂Fπi
C∗(e) ≤

∂

∂Fπi+1

C∗(e)(F) ≤ ... ≤ ∂

∂Fπ|Π(od)|

C∗(e)(F)

Fπ > 0 for π = π1, ..., πi Fπ = 0 for π = πi+1, ..., π|Π(od)|

2.5 Price of Anarchy

A natural way of analyzing the efficiency of selfish routing is to compare the social
optima and the equilibria in a network. Typically, such a comparison involves
computing the Price of Anarchy (PoA), i.e., the ratio of the equilibrium cost and
the optimal cost. By definition of the optimal cost, this ratio is always larger or
equal to 1.

In our model, the classical Price of Anarchy from the existing literature
reflects a comparison of the end-host cost C∗ of the LI equilibrium F0 and the
end-host cost C∗ of the end-host optimum F∗. With the additional versions of
social optima and equilibria established in the preceding sections, a total of four
different variants of the Price of Anarchy are possible, one for each combination
of equilibrium (LI or PI) and perspective (end-hosts or network operators):
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LI equilibrium PI equilibrium

End-host perspective PoA∗0 = C∗(F0)
C∗(F∗) PoA∗+ = C∗(F+)

C∗(F∗)

Network-operator perspective PoA#0 = C#(F0)

C#(F#)
PoA#+ = C#(F+)

C#(F#)

Table 1: Different versions of the Price of Anarchy.

2.6 Value of Information

To compare different equilibria for different information assumptions, we in-
troduce the Value of Information (VoI). For a given perspective, the Value of
Information is the difference between the Prices of Anarchy under the LI and PI
assumptions, denominated by the Price of Anarchy under the LI assumption:

VoI ∗ =
PoA∗0 − PoA∗+

PoA∗0
VoI # =

PoA#0 − PoA#+

PoA#0

A positive Value of Information reflects a situation where the equilibrium un-
der the PI assumption is closer to the social optimum than the equilibrium under
the LI assumption. We identify and analyze scenarios with a positive impact of
information in §3. A negative Value of Information reflects the counter-intuitive
scenario where additional information makes the equilibrium more costly (cf. §4).

3 The Benefits of Information

In this section, we will show that information is beneficial in the artificial network
settings traditionally considered in the literature [26]. More precisely, we show
that in this setting, the PI equilibrium induces a lower Price of Anarchy than the
LI equilibrium such that the Value of Information is positive. This is intuitive: if
end-hosts possess more information, source-based path selection is more efficient.

In the network of Figure 3, K end-hosts e1, ..., eK reside in AS O. Each
end-host has a demand of d/K towards a destination in AS D. ASes O and D
are connected by m links α1, ..., αm with a constant cost function cαi(fαi) = dp

and one link β with a load-dependent cost function cβ(fβ) = fpβ , where p ≥ 1.

O D

e1

eK

α1: cα1(fα1) = dp

αm: cαm(fαm) = dp
...

β: cβ(fβ) = fpβ

...

Fig. 3: Example network with beneficial impact of end-host information.

Such networks of parallel links are of special importance in the theoretical
selfish-routing literature. In particular, Roughgarden [26] proved that the net-
work in Figure 3 reveals the worst-case Price of Anarchy for any network with
link cost functions limited to polynomials of degree p. The intuition behind this
result is that the Price of Anarchy relates to a difference of steepness between
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cost functions of competing links: the link β allows to reduce the cost of traffic
from AS O to AS D if used modestly, but loses its advantage over the links αi
if fully used. However, in selfish routing, end-hosts will use link β until the
link is fully used, as it is always a lower-cost alternative path if not fully used.
Therefore, the end-hosts overuse link β compared to the optimum. Intuitively,
the parallel-links network represents a network where end-hosts have a choice
between paths with different latency behavior.

Roughgarden’s result refers to the classical Price of Anarchy, i.e., the Price
of Anarchy PoA∗0 to end-hosts under the LI assumption. In this section, we
will show how this result is affected by additionally introducing the network-
operator perspective and the PI assumption. In particular, we will prove the
following theorem:

Theorem 1. In a network of parallel links, a higher degree of information (PI
assumption) is always more socially beneficial compared to a lower degree of
information (LI assumption), both from the perspective of end-hosts and network
operators:

PoA∗+ ≤ PoA∗0 PoA#+ ≤ PoA#0

3.1 Social Optima

The end-host optimum in the network of parallel links can be shown to have
social cost C∗(F∗) = dp+1[1 − p/(p + 1)(p+1)/p]. As the derivation is relatively
similar to Roughgarden [26], it has been moved to Appendix A.1.

The network-operator optimum F# is simple to derive: Since the cost of the
links αi is independent of the flow on these links in contrast to the cost of link
β, any flow on link β increases the cost C# to network operators. The minimal
cost to network operators is thus simply C#(F#) = m · dp.

3.2 LI Equilibrium

Under the LI assumption, a network is in equilibrium if for every end-host pair,
all used paths have the same cost and all unused paths do not have a lower
cost. Applied to the simple network in Figure 3, this condition is satisfied if
and only if f0β = d and f0αi = 0 ∀fαi , implying cβ(f0β) = dp = cαi(f

0
αi). The

path-flow pattern F0 with F(k,D),β = d/K and F(k,D),αi = 0 represents the
LI equilibrium. The cost C∗ of the LI equilibrium F0 to end-hosts is simply
C∗(F0) = dp+1. The Price of Anarchy to end-hosts under the LI assumption is
thus PoA∗0 = C∗(F0)/C∗(F∗) = [1− p/(p+ 1)(p+1)/p]−1.

The cost C# of the LI equilibrium F0 to network operators is given by
C#(F0) = dp+

∑
αi
dp = (m+1) ·dp. The Price of Anarchy to network operators

under the LI assumption is thus PoA#0 = C#(F0)/C#(F#) = (m+1)/m, which
is maximal for the number m = 1 of links αi. The Price of Anarchy to network
operators in networks of parallel links is thus upper-bounded by PoA#0

m=1 = 2
whereas the Price of Anarchy to end-hosts is unbounded for arbitrary p.
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3.3 PI Equilibrium

If the end-hosts e1,..., eK are equipped with perfect information, they are in
equilibrium if and only if the selfish marginal cost of every path to AS D is the
same for every end-host. Under this condition, the cost term C∗ of the PI equi-
librium F+ to end-hosts can be derived to be C∗(F+) = dp+1

(
1−(p/K)/(p/K+

1)(p+1)/p
)

(cf. Appendix A.2). The Price of Anarchy to end-hosts under the PI
assumption is

PoA∗+ =
(

1− p/K

(p/K + 1)(p+1)/p

)
· PoA∗0 ≤ PoA∗0.

The cost C# of the PI equilibrium F+ to network operators is C#(F+) =
(m + 1/(p/K + 1)) · dp and the corresponding Price of Anarchy to network
operators is

PoA#+ =
m+ 1/(p/K + 1)

m
≤ m+ 1

m
= PoA#0.

Based on the Prices of Anarchy in Table 2, Theorem 1 holds. However, the
Prices of Anarchy PoA∗+ and PoA#+ under the PI assumption are dependent
on K, which is the number of end-hosts in the network. If K is very high, as
it is in an Internet context, the Prices of Anarchy under the PI assumption
approximate the Prices of Anarchy under the LI assumption. Thus, for scenarios
of heterogeneous parallel paths to a destination, the benefit provided by perfect
information is undone in an Internet context. In fact, the effect of additional
information can even turn negative when considering more general networks, as
we will show in the next section.

LI equilibrium PI equilibrium

End-host perspective 1

1−p/(p+1)(p+1)/p

1−(p/K)/(p/K+1)(p+1)/p

1−p/(p+1)(p+1)/p

Network-operator perspective m+1
m

m+1/(p/K+1)
m

Table 2: Price of Anarchy for different perspectives and different equilibrium
definitions in the network of parallel links (Figure 3).

4 The Drawbacks of Information

We will now show that in more general settings, more information for end-hosts
can deteriorate outcomes of selfish routing. Such a case is given by the gen-
eral ladder network in Figure 4, a natural generalization of the simple topology
considered above and a traditional ISP topology [19].

A ladder network of height H contains H horizontal links h1,..., hH , which
represent the rungs of a ladder and have the cost function chi(fhi) = fphi . Each
horizontal link hi connects an AS Ai1 to AS Ai2, which accommodate the end-
hosts ei1 and ei2, respectively. Every end-host ei1 has the same demand d towards
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the corresponding end-host ei2. Neighboring rungs of a ladder are connected by
vertical links vij , i ∈ {1, ..., V = H − 1}, j ∈ {1, 2}, where the vertical link vij
connects the ASes Aij and Ai+1,j and has the linear cost function cvij (fvij ) =
t · fvij with t ≥ 0. We denote a ladder network with this structure and a choice
of parameters H, p, d, and t by L(H, p, d, t).

By comparing optima and equilibria, we will prove the following theorem in
the following subsections:

Theorem 2. For any ladder network L(H, p, d, t), the Value of Information for
both end-hosts and network operators is negative, i.e., VoI ∗ < 0 and VoI # < 0.

A11 A12

A21 A22

AV 1 AV 2

AH1 AH2

e11

e21

eV 1

eH1

e12

e22

eV 2

eH2

h1 : ch1(fh1) = fph1

h2 : ch2(fh2) = fph2

v11 : cv11(fv11) = t · fv11 v12 : cv12(fv12) = t · fv12

... ...

hV : chV (fhV ) = fphV

hH : chH (fhH ) = fphH

vV 1 : cvV 1(fvV 1) = t · fvV 1 vV 2 : cvV 2(fvV 2) = t · fvV 2

Fig. 4: Example network illustrating the harmful impact of end-host information
(Read: V = H − 1).

4.1 Social Optima

Both the end-host optimum F∗ and F# are equal to the direct-only path-flow
pattern F∼ that is defined as follows: For every end-host ei1, F∼(i1,i2),hi = d and
F∼(i1,i2),q = 0 where q is any other path between Ai1 and Ai2 than the direct
path over link hi.

Simple intuition already confirms the optimality of this path-flow pattern.
The social cost from the horizontal links is minimized for an equitable distribu-
tion of the whole-network demand Hd onto the H horizontal links. In contrast,
the cost from vertical links vij can be minimized to 0 by simply abstaining from
using vertical links. In fact, every use of the vertical links is socially wasteful.

More formally, if fhi = dp for i ∈ {1, ...,H} and fvi1 = fvi2 = 0 for i ∈
{1, ..., V }, the marginal costs of the direct path and every indirect path can be
easily shown to equal (p + 1)dp, given end-host cost function C∗. Concerning
network-operator cost C#, the direct and indirect paths have marginal costs
p · dp−1 and p · dp−1 + 2yt ∀y ∈ N≥1, respectively. The used direct paths thus do
not have a higher marginal cost than the unused indirect paths.
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4.2 LI Equilibrium

Also the LI equilibrium path-flow pattern F0 is equal to the direct-only path-
flow pattern F∼. For F∼, the cost of a direct path π is Cπ(F∼) = F p(i1,i2),π = dp

and the cost of an indirect path π′ is fph′ +
∑
v∈Wπ′

fv = dp + 0 = dp, where π′

contains the remote horizontal link h′ and the vertical links v ∈Wπ′ . Thus, the
LI equilibrium conditions of cost equality are satisfied by F∼.

As the LI equilibrium is equal to the social optimum both from the end-host
perspective and the network-operator perspective, both variants of the Price of
Anarchy under the LI assumption are optimal, i.e., PoA∗0 = PoA#0 = 1.

4.3 PI Equilibrium

Differently than under the LI assumption, the direct-only flow distribution F∼

is not stable under the PI assumption. An end-host ei can improve its individual
cost by allocating some traffic to an indirect path πk (involving the horizontal
link hk) and interfering with another end-host ek. This reallocation decision
will increase the social cost for end-hosts and network operators. In particular,
the end-host ek that previously used the link hk exclusively will see its selfish
cost increase. In turn, the harmed end-host ek will reallocate some of its traffic
to an indirect path in order to reduce its selfish cost C(ek), leading to a process
where all end-hosts in the network interfere with each other until they reach a PI
equilibrium with a suboptimal social cost for end-hosts and network operators.

Similar to §3.3, we use the condition of marginal selfish cost equality in order
to derive the Price of Anarchy under the PI assumption for a ladder network
with H = 2. This derivation, as performed in Appendix A.3, yields the following
results for the Price of Anarchy to end-hosts and network operators:

PoA∗+H=2(p) = 1 + p/12 PoA#+
H=2(p) = 1 + p/3

Since the the LI equilibrium is optimal and the PI equilibrium is generally
suboptimal on the considered ladder networks, Theorem 2 holds. This finding
is confirmed by a case study of the Abilene network (cf. Appendix B), which
structurally resembles a ladder topology. The case study also reveals that the
negative impact of information is especially pronounced if path diversity is high.

Interestingly, there is an upper bound of the Price of Anarchy to network
operators for a general ladder network. This bound is given by the following
theorem and proven in Appendix A.4:

Theorem 3. For every ladder network L(H, p, d, t), the Price of Anarchy PoA#+

to network operators is lower than the following upper bound PoA#+
max:

PoA#+ ≤ PoA#+
H,max = 1 +

2(H − 1)

3H
p ≤ PoA#+

max = 1 +
2

3
p
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5 Related Work

Inefficiency arising from selfish behavior in networks is well-known to exist in
transportation networks and has been thoroughly analyzed with the framework
of the Wardrop model [6,35]. The most salient expressions of this inefficiency is
given by the Braess Paradox [4].

Literature on selfish routing is often concerned with the discrepancy between
optimum and Nash equilibrium: the Price of Anarchy [8,17]. The Price of Anar-
chy was initially studied for network models (see Nisan et al. [22] for an overview),
but literature now covers a wide spectrum, from health care to basketball [28].
Our work has a closer connection to more traditional research questions, such
as bounds on the Price of Anarchy for selfish routing. An early result has been
obtained by Koutsoupias and Papadimitriou [17], who formulated routing in a
network of parallel links as a multi-agent multi-machine scheduling problem.

A different model has been developed by Roughgarden and Tardos [29] who
adopted the Wardrop model [35] for routing in the context of computer net-
works. The Price of Anarchy in the proposed routing game is the ratio between
the latency experienced by all users in the Wardrop equilibrium and the mini-
mum latency experienced by all users. For different classes of latency functions,
the authors derive explicit high bounds on the resulting Price of Anarchy. In a
different work, they show that the worst-case Price of Anarchy for a function
class can always be revealed by a simple network of parallel links and that the
upper bound on the Price of Anarchy depends on the growth rate of the latency
functions [26].

The relatively loose upper bounds on the Price of Anarchy of previous works
[17, 29] have been qualified by subsequent research. It was found that problem
instances with high Prices of Anarchy are usually artificial. By introducing plau-
sible assumptions to make the routing model more realistic, upper bounds on
the Price of Anarchy can be reduced substantially. For instance, Friedman [11]
shows that the Price of Anarchy is lower than the mentioned worst-case derived
by Roughgarden and Tardos [29] if the Nash equilibrium cost is not sensitive
to changes in the demand of agents. By computing the Price of Anarchy for a
variety of different latency functions, topologies, and demand vectors, Qiu et
al. even show that selfish routing is nearly optimal in many cases [23].

Convergence to Nash equilibria has been studied in the context of congestion
games [25] and, in a more abstract form, in the context of potential games
[21, 30]. Sandholm [30] showed that selfish player behavior in potential games
leads to convergence to the Nash equilibrium and, under some conditions, even
to convergence to the social optimum. As the question of equilibrium convergence
is traditionally studied separately from the question of equilibrium cost, we do
not address convergence issues in this paper.

The study of the effect of incomplete information also has a long tradi-
tion [13], but still poses significant challenges [28]. Existing literature in this
area primarily focuses on scenarios where players are uncertain about each oth-
ers’ payoffs, studying alternative notions of equilibria such as Bayes-Nash equi-
libria [34], which also leads to alternative definitions of the price of anarchy such
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as the Bayes-Nash Price of Anarchy [18,28] or the price of stochastic anarchy [5].
A common observation of many papers in this area is that less information can
lead to significantly worse equilibria [28]. There is also literature on the impact
on the Price of Anarchy in scenarios where interacting players only have local
information, e.g., the evolutionary price of anarchy [32].

However, much less is known today about the role of information in games
related to routing. In this context, one line of existing literature is concerned with
the recentness of latency information. Most prominently, research on the damage
done by stale information in load-balancing problems [7,20] has been applied to
routing games by Fischer and Vöcking [10]. This work investigates whether and
how rerouting decisions converge onto a Wardrop equilibrium if these rerouting
decisions are based on obsolete latency information. Other recent work about the
role of information in routing games investigates how the amount of topology
information possessed by agents affects the equilibrium cost [1].

Existing work on the subject of source-routing efficiency differs from our
work in two important aspects. First, to the best of our knowledge, all exist-
ing work on the subject defines the social optimum as the traffic assignment
that minimizes the total cost experienced by users, which is indeed a reasonable
metric. However, our work additionally investigates the total cost experienced
by links, i.e., the network operators. Since cost considerations by network op-
erators are a decisive factor in the deployment of source-based path selection
architectures, the Price of Anarchy to network operators is an essential metric.
Second, although existing work on the topic has investigated the role played by
the recentness of congestion information or the degree of topology information,
it does not investigate the role played by the degree of congestion information
that agents possess. Indeed, a major contribution of our work is to highlight the
effects of perfect information, i.e., information that allows agents to perfectly
minimize their selfish cost. Latency-only information, which agents are assumed
to have in existing work, does not enable agents to perform perfect optimization.

6 Conclusion

Motivated by emerging path-aware network architectures, we refined and ex-
tended the Wardrop model. Building on this model, we analytically derived a
number of insights that are both theoretically interesting and practically rele-
vant. First, the cost of selfish routing to network operators differs from the cost
experienced by users. Since network operators are central players in the adoption
of path-aware networking, research on the effects of selfish routing thus needs to
address the network-operator perspective separately. However, we proved upper
bounds on the Price of Anarchy which suggest that selfish routing imposes a
low cost on network operators. Second, we found that basic latency information,
which can be measured by the end-hosts themselves, leads to near-optimal traffic
allocations in many cases. Selfish routing thus causes modest ineffiency even if
end-hosts have only imperfect path information and network operators do not
disseminate detailed path-load information.
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Our model and first results introduce several exciting avenues for future
research. First, we note that while we have focused on path-aware network ar-
chitectures, we hope to apply our model to other practical applications where
source routing has currently received much attention again, e.g., in the context
of segment routing [9] and multi-cast [33]. Furthermore, we aim to obtain a
more general understanding of the interactions between the network topology
structure and the Price of Anarchy in selfish routing. Moreover, our focus in
this paper was on rational players, and it is important to extend our model to
account for other behaviors, e.g., players combining altruistic, selfish and Byzan-
tine behaviors.
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Appendix A Proofs

A.1 Parallel Links: End-Host Optimum

In the end-host optimum F∗, it holds that for every end-host ek, k ∈ {1, ...,K},
the marginal cost of the path over the link β is equal to the marginal cost of any
path over a link αi, i ∈ {1, ...,m}. Using this insight, the end-host optimum can
be derived by the solution of the following equation:

∂

∂F(k,D),β
C∗ =

∂

∂F(k,D),αi

C∗

.
As it holds that

∂

∂F(k,D),`
C∗ =

∂

∂f`
C∗

the optimal link-flow pattern f∗ is obtained by solving:

∂

∂fβ
(fβ · fpβ) =

∂

∂fαi
(fαi · dp),

which yields f∗β = d/ p
√
p+ 1.

Any path-flow pattern F∗ that produces a link-flow pattern with fβ = f∗β
and

∑
αi
fα1

= d − f∗β is thus optimal from the perspective of end-hosts. The
total cost of such an optimal path-flow pattern F∗ is given by

C∗(F∗) = f∗β · f∗β
p + (d− f∗β) · dp = dp+1

(
1− p/(p+ 1)(p+1)/p

)
A.2 Parallel Links: PI Equilibrium

In the network from Figure 3, the selfish cost function of an end-host ek can be
simplified to

C∗(ek)(F) = F(k,D),β · fpβ +
∑
αi

F(k,D),αi · d
p

.
Since it holds that ∂/∂F(k,D),β fβ = 1, the marginal selfish costs for the

paths over link β and αi are given by

∂/∂F(k,D),β C∗(ek)(F) = fpβ + F(k,D),β · p · fp−1β

∂/∂F(k,D),αi C
∗
(ek)

(F) = dp.

An equilibrium under the PI assumption is characterized by the equality of
these selfish marginal costs.

Note that for every end-host ek, the marginal selfish cost of every path over
a link αi is the same, namely dp. By marginal selfish cost equality, the marginal
selfish costs ∂/∂F(k,D),β

(
C∗(ek)

)
must be equal to dp for every end-host ek and

thus also equal across all end-hosts. This condition is only satisfied if every end-
host ek has the same flow on the path over link β, i.e., F(m,D),β = F(n,D),β for
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all end-hosts em, en. As fβ =
∑
ek
F(k,D),β , the fact

∑
ek
F(k,D),β = K · F(k,D),β

implies F(k,D),β = fβ/K for every end-host ek.
This knowledge about F(k,D),β allows to simplify the selfish marginal cost

equation and to compute the PI equilibrium. By inserting fβ/K for F(k,D),β ,
the selfish marginal cost equality reads

fpβ + fβ/K · p · fp−1β = dp.

The solution of this equation yields the PI equilibrium link flow f+β =

d/ p
√
p/K + 1. The PI equilibrium F+ is thus given by every path-flow pattern

that satisfies the following conditions for every end-host ek:

F(k,D),β = f+β /K ∧
∑
αi

F(k,D),αi = (d− f+β )/K.

The cost term C∗ of the PI equilibrium F+ to end-hosts is thus

C∗(F+) = dp+1
(

1− (p/K)/(p/K + 1)(p+1)/p
)
.

A.3 Ladder Network: PI Equilibrium

In order to compute the Price of Anarchy under the PI assumption for a general
ladder network, we start by computing the Price of Anarchy for the simple ladder
network of H = 2. Conforming to the PI equilibrium conditions in §??, the PI
equilibrium is given by the solution of the following equilibrium equation system
E2 that formalizes the marginal cost equality:{

fph1
+ F ′1 p f

p−1
h1

= fph2
+ t(fv11 + fv12) + F1

(
p · fh2 + 2t

)
fph2

+ F ′2 p f
p−1
h2

= fph1
+ t(fv11 + fv12) + F2

(
p · fh1 + 2t

)
where F ′1 = F(11,12),h1

and F1 = F(11,12),v11h2v12 and the analogous abbreviations
have been made by F ′2 and F2 for the direct and indirect path flow of end-host
e21. Due to demand constraints, it holds that F ′1 = d−F1 and F ′2 = d−F2. Due
to the symmetry of the equation system, it is possible to conclude that F ′1 = F ′2
and F1 = F2. Since fh1

= F ′1 +F2 and fh2
= F ′2 +F1, using the symmetry yields

fh1 = fh2 = d−F1 +F1 = d. Furthermore, the flow on the vertical links v11 and
v12 can be expressed as follows: fv11 = fv22 = F1 + F2 = 2F1. The equilibrium
equation system can thus be reduced to the single equation:

dp + (d− F1) · λ = dp + 2t · (2F1) + F1 ·
(
λ+ 2t

)
⇐⇒ λd− (6t+ 2λ)F1 = 0 ⇐⇒ F1 = λd/(6t+ 2λ)

where λ = p · dp−1.
Based on this solution for the path flow F1 = F(11,12),v11h2v12 , all other path

flows can be derived, which yields the following terms for the two perspectives
on the Price of Anarchy:

PoA∗+H=2(d, t, p) =
(
2dp+1 + 2t(2λd/(6t+ 2λ))2

)
/
(
2 · dp+1

)
PoA#+

H=2(d, t, p) =
(
2dp + 4tλd/(6t+ 2λ)

)
/
(
2 · dp

)
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The Price of Anarchy for all ladder networks with H = 2 is obtained by
computing an upper bound on the Price of Anarchy in terms of demand d and
parameter t:

PoA∗+H=2(p) = 1 + p/12 PoA#+
H=2,max(p) = 1 + p/3

A.4 Ladder Network: Proof of Theorem 3

We start by observing that PoA#+
H,max is given by the limit in t and is only

dependent on the flows on vertical links v:

PoA#+
H,max = 1 + lim

t→∞
(t ·
∑
v

fv)/(H · dp),

where we used that limt→∞
∑
h f

p
h = H · dp as vertical links become infinitely

expensive. We need only characterize the sum of vertical link flows fV =
∑
v fv,

for which we use an argument based on the structure of the equilibrium equation
system EH .

Fig. 5: Traffic distribution over horizontal links of a ladder network in PI equi-
librium F+ (for p = 2, t = 1, H = 3, 4).

For setting up EH , we consider Figure 5 which illustrates numerically com-
puted equilibria for some H > 2. The figure shows the traffic distribution on the
horizontal links of a ladder network, where different-color flow shares correspond
to flows of different end-hosts. Figure 5 shows two insights that are relevant for
setting up EH . First, the path-flow pattern F+ only contains non-zero flows on
paths that deviate at most one ladder level from the originating end-host (for
high enough t). Second, the path-flow pattern is symmetric with respect to the
horizontal axis of the ladder network. The variables in EH can thus be assigned
to the indirect path flows as displayed in Figure 6. Variable assignments for
higher H work analogously to Figure 6a (for odd H) and Figure 6b (for even
H).

With these variables and the knowledge about the equilibrium traffic distri-
bution, the equation system EH can be set up for all values for H. Table 3 lists
the equation systems EH for all H. All equations in a system EH are of the form
Ea,b(Fc, Fd, Ff ) = 0, where

Ea,b(Fc, Fd, Ff ) = λd− (at+ bλ) · Fc − 2t · Fd − λ · Ff .

The set E(EH) contains all left-hand side terms Ea,b of the equations in EH . Let
the sum Σ(EH) of an equation system EH be the equation

∑
E(EH)Ea,b = 0. It

holds that for all H, Σ(EH) is the equation

(H − 1)λd− (6t+ 2λ) · F1 − (6t+ 3λ)
∑

2≤u≤H−1
Fu = 0.
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F2
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h3

F1

v11 v12

v21 v22

(a) H = 3

h1
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F2

F3

h3
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h4

F1

v11 v12

v21 v22

v31 v32

(b) H = 4

Fig. 6: Variable assignments to indirect path flows in a ladder network for com-
puting the PI equilibrium.

Solving equation Σ(EH) for FV =
∑

1≤u≤H−1 Fu, we obtain

FV =
(H − 1)λd

ρ(t) · (6t+ 3λ)

where limt→∞ ρ(t) = 1.
Due to the horizontal and vertical symmetry of the PI equilibrium on the

ladder network, it holds that fV = 4 · FV . Inserting fV into PoA#+
H,max yields

1 + lim
t→∞

t

H · dp
· 4(H − 1)λd

ρ(t)(6t+ 3λ)
= 1 +

2(H − 1)

3H
· p.

Taking the limit of this term for H →∞ results in

PoA#+
max = 1 + 2/3 · p.

Appendix B Case Study: Abilene Network

To verify and complement our theoretical insights, we conducted a case study
with a real network: we consider the well-known Abilene network, for which
topology and workload data is publicly available [14, 15]. We accommodate the
Abilene topology into our model as follows. For the demand d between the 11
points-of-presence, which we consider ASes, we rely on the empirical traffic ma-
trix from the dataset. Concerning the link-cost functions c`, we model the latency
behavior of a link by a function c`(f`) = f2` + δ`, where f2` captures the queue-
ing delay and δ` is a constant quantity depending on the geographical distance
between the two end-points of link `, approximating the link’s propagation delay.

In order to study the effect of both end-host information and multi-path rout-
ing on the Price of Anarchy, we perform the following simulation experiment.
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H EH

H = 2
{
E6,2(F1, 0, 0) = 0

H = 3

{
E4,2(F1, F2, 0) = 0

E4,3(F2, F1, 0) = 0

Even H ≥ 4
Odd j, 3 ≤ j ≤ H − 3



E4,2(F1, F2, 0) = 0

E4,2(F2, F1, F3) = 0

E4,2(Fj , Fj+1, Fj−1) = 0

E4,2(Fj+1, Fj , Fj+2) = 0

E6,2(FH−1, 0, FH−2) = 0

Odd H ≥ 5
Odd j, 3 ≤ j ≤ H − 4



E4,2(F1, F2, 0) = 0

E4,2(F2, F1, F3) = 0

E4,2(Fj , Fj+1, Fj−1) = 0

E4,2(Fj+1, Fj , Fj+2) = 0

E4,2(FH−2, FH−1, FH−3) = 0

E4,3(FH−1, FH−2, 0) = 0

Table 3: Equation systems EH characterizing PI equilibrium for all H.

First, we compute the social optima F∗ and F# for the Abilene network. Sec-
ond, we simulate the convergence to the Nash equilibria F0 and F+ for different
degrees of multi-path routing, represented by the maximum number of shortest
paths that end-hosts consider in their path selection. Once converged, we com-
pute the social cost of the equilibrium traffic distributions and the corresponding
Prices of Anarchy.

The experiment results in Figure 7 offer multiple interesting insights. Most
prominently, if simple shortest-path routing represents the baseline of network-
controlled path selection, source-based path selection with latency-only informa-
tion improves the performance of the network (up to a near-optimum), which
confirms findings of prior work [23]. In contrast, path selection with perfect in-
formation deteriorates performance, especially for a higher degree of multi-path
routing. Therefore, the potential performance benefits of source-based path se-
lection with multi-path routing are conditional on the degree of information
possessed by end-hosts, where a higher degree of information is associated with
lower performance. However, while an increasing degree of multi-path routing
is associated with worse performance under perfect information, the resulting
inefficiency is bounded at a modest level of less than 4 percent for both end-
hosts and network operators. The near-optimality of latency-only information in
terms of performance and the bounded character of the Price of Anarchy under
perfect information reflect the findings from §4 about ladder topologies, which
resemble the Abilene topology. Thus, the experiment results not only show that
source-based path selection can be a means to improve the performance of a
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Fig. 7: Abilene network results.

network but also confirm the practical relevance of our theoretical findings.


