
www.omilab.org

A New DEMO Modelling Tool that Facilitates Model

Transformations

Thomas Gray, Dominik Bork and Marne de Vries

Published in:

25th International Working Conference on Exploring Modeling

Methods for Systems Analysis and Development (EMMSAD)

© Springer Nature Switzerland AG 2020

S. Nurcan et al. (Eds.): BPMDS 2020/EMMSAD 2020, LNBIP 387,

pp. 359–374, 2020.

Final version via: https://doi.org/10.1007/978-3-030-49418-6_25

https://doi.org/10.1007/978-3-030-49418-6_25

A new DEMO modelling tool that facilitates model

transformations

Thomas Gray1, Dominik Bork[20000-0001-8259-2297], Marné De Vries3[0000-0002-1715-0430]

1, 3 University of Pretoria, Department of Industrial and Systems Engineering, South Africa

2 University of Vienna, Faculty of Computer Science, Vienna, Austria
Thomas.Gray@up.ac.za; Dominik.Bork@univie.ac.at;

Marne.DeVries@up.ac.za

Abstract. The age of digitization requires rapid design and re-design of

enterprises. Rapid changes can be realized using conceptual modelling. The

design and engineering methodology for organizations (DEMO) is an established

modelling method for representing the organization domain of an enterprise.

However, heterogeneity in enterprise design stakeholders generally demand for

transformations between conceptual modelling languages. Specifically, in the

case of DEMO, a transformation into business process modelling and notation

(BPMN) models is desirable to account to both, the semantic sound foundation

of the DEMO models, and the wide adoption of the de-facto industry standard

BPMN. Model transformation can only be efficiently applied if tool support is

available. Our research starts with a state-of-the-art analysis, comparing existing

DEMO modelling tools. Using a design science research approach, our main

contribution is the development of a DEMO modelling tool on the ADOxx

platform. One of the main features of our tool is that it addresses stakeholder

heterogeneity by enabling transformation of a DEMO organization construction

diagram (OCD) into a BPMN collaboration diagram. A demonstration case

shows the feasibility of our newly developed tool.

Keywords: DEMO, BPMN, ADOxx, model transformation, model consistency,

modelling tool.

1. Introduction

The age of digitization requires rapid design and re-design of enterprises. In addition,

the agile design paradigm embraces the use of multiple modelling languages to

represent design knowledge. Unfortunately, this paradigm also has challenges

regarding inconsistencies between model types that represent knowledge from the same

knowledge domain. Modelling researchers should ensure to create models, languages,

and methods that can be adapted to changing requirements in the future [1, p 3].

Domain-specific languages are created to provide insight and understanding within

a particular domain context and stakeholder group [2]. As an example, the design and

engineering methodology for organizations (DEMO) provides models that represent

the organization domain of an enterprise [3]. DEMO offers a unique design perspective,

since its four aspect models have the ability to represent organization design domain

knowledge in a concise and consistent way, removing technological realization and

mailto:Thomas.Gray@up.ac.za
mailto:Dominik.Bbork@univie.ac.at

implementation details [3]. One of DEMO’s aspect models, the construction model,

incorporates an organization construction diagram (OCD) that provides a concise

representation of enterprise operations. Managers value the OCD, since it becomes a

blueprint that enables discussions on enterprise (re-)design and strategic alignment [3;

4]. Recker et al. [5] and Van Nuffel et al. [6] indicated that unguided use of the Business

Process Modeling Notation (BPMN) constructs often leads to inconsistent models. It is

thus our goal to combine the strengths of DEMO and BPMN by proposing a model

transformation and modelling tool support.

Due to its characteristics of being consistent and concise, various authors

experimented with transformations between modelling languages, as discussed in the

remaining paragraph. De Kinderen, Gaaloul and Proper [7] indicated that “ArchiMate

lacks specificity on how to model different perspectives in-depth” while [8; 9] add that

ArchiMate lacks in expressing value exchange. As a solution to these deficiencies, [7]

conducted a study to map concepts from DEMO to concepts contained within the

business layer of the ArchiMate meta-model with the purpose of modelling the essential

aspects of an enterprise first in DEMO, followed by a transformation into an ArchiMate

model, adding technological realization and implementation details. Based on the work

of Ceatano et al. [10] and Heller [11], Mraz et al. [12] presented transformation

specifications to generate BPMN models from DEMO models. Yet, the specifications

did not consider the complexity of hierarchical structures in DEMO models. In addition,

their transformation specifications were not supported by tooling to automate DEMO-

BPMN transformations.

This study starts with an evaluation of existing DEMO modelling tools. We conclude

that existing modelling tools do not support all of DEMO’s four aspect models. In

addition, the tools do not facilitate transformations to other languages, such as BPMN.

The main objective of this article is to address stakeholder heterogeneity by developing

a DEMO modelling tool on the ADOxx platform. We demonstrate one of the main

features of our tool, namely to transform a DEMO organization construction diagram

(OCD) into a corresponding BPMN collaboration diagram.

The article is structured as follows. Section 2 provides background on multi-view

modelling, as well as the existing knowledge on DEMO concepts that are explained via

a demonstration case. Using design science research, as presented in section 3, we

present the requirements for a new DEMO tool in section 4 and the DEMO

constructional components that form part of the OMiLAB ecosystem, in section 5. We

also demonstrate the key functionality of the new DEMO tool, i.e. semi-automatic

OCD-BPMN transformations for one out of four identified transformation scenarios.

Section 6 ends with conclusions and suggestions for future research.

2. Background

Model-based development (MBD) approaches suggest separation of concerns, using

multiple views, to manage the complexity of modern software systems [13]. Yet, one

of the challenges of multi-view modelling is the lack of consistency management [14].

Bork [15] emphasised the need to develop consistent and concise conceptual models

for domain-specific languages. Prior to developing tool support and model

transformation, language specifications should at least consider to provide syntax,

semantics, and notation for the different viewpoints [16].

Mulder [17] also acknowledged the need to validate the existing DEMO

specification language (DEMOSL) prior to developing tool support. Using the meta-

model definition presented by [18], metamodels should be sufficiently complete to

describe all set of models (i.e. multiple viewpoints) that are allowed, rejecting models

that are not valid. In addition, the metamodel should enable partial transformation of

the model (e.g. from ontological to implementation level). With respect to the DEMO

metamodels, Mulder [17] already suggested improvements regarding the multiple

viewpoints evident in four aspect models. Since our first version of the DEMO-ADOxx

tool only includes the construction model (CM), we elaborate within the next section

on the updated metamodel for the CM.

2.1. DEMO Models and Metamodels

DEMO uses four linguistically based aspect models to represent the ontological model

of the organisation domain of the enterprise, namely the construction model (CM),

process model (PM), action model (AM), and fact model (FM) that exclude technology

implementation details [19]. Each model is represented by different diagrams and

tables, as illustrated in Fig. 1.

Fig. 1. DEMO aspect models with diagram types and tables, based on [19] and [20]

The ontological model is based on a key discovery that forms the basis of the aspect

models, namely the identification of a complete transaction pattern that involves two

actor roles, a production act (and fact), and multiple coordination acts (and facts) that

are performed in a particular order [19]. Although it is possible to identify three

different sorts of a transaction kind (TK), i.e. original, informational and documental,

the four aspect models primarily focus on the original sort. A TK can also be classified

as an elementary TK when it is executed by only one actor role, or an aggregate TK

Construction Model

Fact Model

Action Model

Process Model

Action Rule Specifications (ARS)

Work Instruction Specifications (WIS)

Process Structure Diagram (PSD)

Transaction Process Diagram (TPD)

Object Fact Diagram (OFD)

Derived Fact Specifications (DFS)

Existence Law Specifications (ELS)

Organisation Construction Diagram (OCD)

Transaction Product Table (TPT)

Bank Contents Table (BCT)

(ATK) when it is executed by multiple actor roles. Also, an actor role can be classified

as either an elementary actor role (EAR) when s/he executes one TK and a composite

actor role (CAR) when s/he is the executor of more than one TK [19; 20].

The concepts that were discussed so far, as well as the relationships between concepts,

are described via a metamodel presented in [19]. Mulder [17] identified several

inconsistencies with regards to the CM, addressing the issues in [21]. Fig. 2 presents an

updated metamodel that incorporates the extensions suggested by Mulder [21]. Note

that the Scope of Interest (SoI) is not modelled as a separate concept, since Mulder [21]

argues that the SoI is equivalent to the CAR. The relationships and cardinalities in Fig. 2

signify modelling constraints when a modeller composes a CM. The constraints should

also be incorporated in the modelling tool. As an example, a single relationship exists

between Transaction Kind (TK) and Aggregate Transaction Kind (ATK) in Fig. 2. The

relationship can be interpreted in a forward direction as: “One TK is contained in zero

or many ATKs”. The relationship interpretation of the reverse direction is: “One ATK

contains one or many TKs”.

Fig. 2. DEMO Construction Model Metamodel Version 3.7 [19] with extensions of [21]

2.2. The Demonstration Case

The demonstration case had to include the necessary complexity to ensure that a

modeler would be able to construct a TPT (illustrated in Fig. 3) and an OCD (illustrated

in Fig. 4) with all the relationships and cardinalities depicted in Fig. 2. Selecting a

fictitious college as the universe of discourse, some operations of the college regarding

the presentation of a new project-based module at the college, are incorporated, listed

as transaction kinds in Fig. 3.

FACT KIND TRANSACTION KIND

transaction sort [SORT]

INDEPENDENT
P-FACT KIND

ELEMENTARY
ACTOR ROLE

COMPOSITE
ACTOR ROLE

AGGREGATE
TRANSACTION

KIND

facts with fact kind FK are

contained in the bank of TK

1..* 0..*

the product kind of TK is IFK

1..1 1..1

EAR is an initiator role of TK

1..* 0..*

EAR is the executor role of TK

1..1 1..1

EAR may inspect the
contents of bank TK

0..* 0..*

EAR is contained in CAR

1..* 0..*

TK is contained
in ATK

1..* 0..*

TK is contained in CAR

EAR has access to the bank of ATK

0..*

0..*

CAR is a specialisation of EAR

CAR is a part of CAR

Legend
ATK: aggregate transaction kind
CAR: composite actor role
EAR: elementary actor role
FK: fact kind
IFK: independent P-fact kind
TK: transaction kind

Fig. 3. The TPT for a college, based on [19]

The reader is referred to [19] for a comprehensive introduction to the OCD and legend

for concepts included in Fig. 2 and Fig. 4. In our demonstrating OCD, portrayed in Fig.

4, we assume that we only include TKs that are of the original transaction sort, in

accordance with the guidelines presented by Dietz [20] to focus on the essential TKs.

Based on the concepts declared in [19], we use bold style to indicate the type of

construct and italics when referring to an instance of the construct (see Fig. 4).

Scope of Interest (SoI) indicates that the modeler analyses a particular scope of

operations, namely some operations at a college. Given the SoI, Fig. 4 indicates that

three environmental actor roles are defined, see the grey-shaded constructs student,

project sponsor and HR of project sponsor that form part of the environment. Within

the SoI, multiple transaction kinds (TKs) are linked to different types of actor roles

via initiation links or executor links. As an example, supervisor allocation (T01) is a

TK that is initiated (via an initiation link) by the environmental actor role student

(CA01). In accordance with [20], the student (CA01) is by default also regarded to be a

composite actor role “of which one does not know (or want to know) the details”.

Since T01 is linked to an environmental actor role, it is also called a border

transaction kind. T01 is executed (via the executor link) by the elementary actor

role named supervisor allocator (A01).

All the other actor roles in Fig. 4 within the SoI are elementary actor roles, since

each of them is only responsible for executing one transaction kind. A special case of

is where an elementary actor role is both the initiator and executor of a transaction

kind, also called a self-activating actor role. Fig. 4 exemplifies the self-activating

actor role with module reviser (A04) and project controller (A05). Since actor roles

need to use facts created and stored in transaction banks, an information link is used

to indicate access to facts. As an example, Fig. 4 indicates that project controller (A05)

has an information link to transaction kind module revision (T04), indicating that the

project controller (A05) uses facts in the transaction bank of module revision (T04). It

is also possible that actor roles within the SoI need to use facts that are created via

transaction kinds that are outside the SoI. As an example, Fig. 4 indicates that actor

roles within the SoI (called, some operations at a college) need to use facts that are

created outside the SoI and stored in the transaction banks of aggregate transaction

kinds, namely person facts of AT01, college facts of AT02, accreditation facts of AT03,

timetable facts of AT04 and student enrollment facts of AT05. According to Fig. 4, the

student enrollment facts of aggregate transaction kind AT05 are not accessed by any

actor roles, which should be possible (according to the meta-model depicted in Fig. 2).

Even though Fig. 4 only includes elementary actor roles within the SoI, it is

possible to consolidate elementary actor roles within a composite actor role, where

a composite actor role “is a network of transaction kinds and (elementary) actor roles”

[20]. Fig. 4 illustrates two composite actor roles within the SoI, namely College (CA0)

and Controller (CA01). Both CA00 and CA01 encapsulate a number of transaction kinds

and elementary actor roles.

Fig. 4. The OCD for a college, based on [19]

3. Research Method

Applying design science research (DSR), we developed the DEMO-ADOxx modelling

tool. According to Gregor & Hevner’s [22] knowledge contribution framework, the

modelling tool can be considered as an improvement, since the tool will be used for

solving a known problem. Referring to the DSR steps of Peffers et al. [23], this article

addresses the five steps of the DSR cycle in the following way:

Identify a problem: In section 4.1 we present minimal requirements for a useful

DEMO modelling tool. Based on the requirements, we assess in section 4.2 that existing

DEMO modelling tools are inadequate.

Define objectives of the solution: In sections 4.3 and 4.4 we specify a new DEMO-

ADOxx tool to address the requirements. We highlight that the DEMO-ADOxx tool

only supports one of the four aspect models, namely the CM. Furthermore, the tool only

incorporates two of the three CM representations, namely the OCD and TPT.

Design and development: In accordance with the specification, we developed a

DEMO-ADOxx tool, whose constructional components are presented in section 5.

Demonstration: In accordance with the demonstration case, discussed in section 2.2,

we demonstrate the tool, highlighting its key feature, i.e. the transformation of a user-

selected transaction kind of an OCD into a corresponding BPMN diagram.

Evaluation: Evaluation was restricted to internal testing, using the DEMO-ADOxx

tool to model a more extensive case (than the demonstration case in section 2.2).

Individual test scenarios were created to validate each of the relationships and

cardinalities illustrated in Fig. 2. The study excluded further evaluation, but section 6

provides suggestions on further evaluating and extending the DEMO-ADOxx tool.

4. Requirements Elicitation and DEMO Tool Specification

A number of tools exist that support, to a limited extent, the creation of DEMO models.

Before we compare these tools, the next section presents three categories of tool

requirements from the perspective of a DEMO modeller.

4.1. DEMO Requirements

During the development of new software application systems, the analyst needs to

consider three main categories of requirements, namely functional requirements, non-

functional requirements, and design constraints [24]. In terms of the DEMO modelling

tool, functional requirements regard the inputs, outputs, functions and features that are

needed [24] (see R1 to R3 below). The non-functional requirements (see R4 and R5

below) incorporate the qualities of a system, such as performance, cost, security, and

usability. The design constraints pose restrictions on the design of the system to meet

technical, business, or contractual obligations. Next, we present initial requirements for

a DEMO tool, structured according to the first two categories. The purpose is to

compare and evaluate the existing DEMO tools in terms of the following minimum

requirements defined from the perspective of a lecturer teaching DEMO:

• R1: The DEMO tool should be comprehensive in supporting all of the DEMO aspect

models, namely the CM, PM, AM and FM (refer to Fig. 1).

• R2: The DEMO tool should support the most recent published language

specification, i.e. DEMOSL 3.7 (see [19]) and the extensions that have been

published (see [21]). The tool should be ready to accommodate future upgrades of

the DEMO language.

• R3: The DEMO tool should facilitate model transformations to other modelling

languages such as BPMN.

• R4: The DEMO tool should be available at low cost, especially for educational

purposes.

• R5: The DEMO tool should be usable, i.e. user-friendly.

We used Nassar’s usability requirements [25] to perform initial usability tests on some

of the available DEMO tools:

• U1 Consistency: The system needs to be consistent in its actions, so that the

modeller can get used to the system without constantly having to adapt to a new

way of doing things. Consistency should apply to the way icons and commands are

displayed and used.

• U2 User Control: The system should offer the user control in the way the model is

built and run. This could include cancelling/pausing operations, undoing or redoing

steps. The modeller should be able to foresee or undo errors.

• U3 Ease of learning: The system should be easy to learn for a new modeller. This is

achieved by avoiding icons, layouts and terms that are unfamiliar to the modeller.

• U4 Flexibility: The system is expected to offer different ways to accomplish the

same task so that the user experiences maximum freedom. Examples include

shortcut keys, different icon options or even layout customisation.

• U5 Error Management: The system is expected to have built-in counter-measures to

prevent mistakes by displaying error messages, warning icons or simply preventing

incorrect placement of model elements.

• U6 Reduction of Excess: The system should avoid displaying unnecessary

information or adding unnecessary functionality to the tool. The program should be

functional and easy to understand.

• U7 Visibility of System Status: The user of the system should be aware of the status

of the system at all times. For example, if a command does not occur

instantaneously, then the system should inform the user of the delay.

4.2. Evaluating existing DEMO tools

In this section, we provide an overview of the existing tools, starting with a list

presented in [26], adding Abacus and our ADOxx tool. In a first phase, we evaluated

existing tools in terms of requirements R1 to R4 (see Table 1) using the following

methods in order of preference: (1) experimenting with the tools that were available;

(2) contacting the tool owners for information about their tools; and (3) using the tool

evaluation results of Mulder [26]. During a second phase, we tested the usability (R5)

of four tools that were openly available (see Table 2).

Table 1. Evaluation results for functional and meta-model requirements

Requirement No -> R1 R2 R3 R4 Legend

Aspect model CM PM AM FM ● Fully

supports Aris ● ○ ○ ○ ○ ○ ◐

CaseWise Modeler ● ● ○ ● ○ ○ ◐ Partially

supports Connexio Knowledge

System
● ○ ● ● ○ ○ ○

DemoWorld ● ● ○ ● ○ ○ ◐ ○ Does not

support EC-Mod ● ◐ ○ ○ ○ ○ ○

Plena ● ● ◐ ◐ ★ ○ ◐ ★ Does not

support,

but vision

for future

ModelWorld ● ● ○ ● ○ ○ ●

uSoft Studio ● ○ ○ ○ ○ ○

Visio ● ○ ○ ● ○ ○ ◐ ? Level of

support is

unclear
Xemod ● ● ○ ● ○ ○ ○

Abacus ● ◐ ○ ○ ○ ○ ◐

DEMO-ADOxx ● ○ ○ ○ ● ● ●

Phase 1 evaluation: In Table 1, we present evaluation results of existing DEMO tools

with respect to R1 to R4, indicating the extent to which a specific tool meets a

requirement, as explained in the legend of Table 1. R1, R2 and R4 were evaluated by

Mulder [26] already. In his study he found that only Plena (of the studied tools)

complies with R1 (i.e. support all four DEMO aspect models), none of the tools comply

with R2 (i.e. supports the DEMOSL 3.7 specification language with extensions), and

only ModelWorld complies with R4 (i.e. is available free of charge for academics and

students).

Our ADOxx tool does not comply with R1, since the initial focus of the tool is to

support the CM. For R2, the ADOxx tool supports DEMOSL 3.7 and the extensions.

For R3 only the ADOxx tool supports transformations from DEMO models to other

model types. Regarding R4, the ADOxx tool is free of cost for education purposes.

Phase 2 evaluation: We had access to three of the existing DEMO modelling tools

listed in Table 1, namely Abacus, ModelWorld and Plena. Using Nassar’s usability

requirements [25] listed in section 4.1, we evaluated each of the three tools, also adding

the DEMO-ADOxx tool, to gain some insights regarding their usability. The results are

summarised in Table 2, indicating that three of the tools have usability drawbacks:

• Modelworld scored very low on U2 (User Control), U4 (Flexibility) and U7

(Visibility on System Status). Regarding U2 and U4, the modeller is unable to

cancel any steps, undo any actions or navigate forwards and backwards. Basic

keyboard shortcuts are not available to the user, such as the delete key. With

reference to U7, ModelWorld offers no indication regarding the status of the system.

• Plena scored low on U3 (Ease of Learning), and U6 (Reduction of Excess). Plena

is initially a challenge to use as it needs to be installed separately from Enterprise

Architect and then imported as a plugin. Since Plena is a plugin to Enterprise

Architect, some functionality is not applicable to DEMO.

• DEMO-ADOxx scored low on U4 (Flexibility), since the tool deviates from the

standard drag-and-drop behaviour of other modelling tools. For this tool, a modeller

needs to “left-click” on the construct in the template, dropping the construct by “left-

clicking” within the modelling area on the right. It is possible to reason that the

drag-and-drop behaviour is merely a behaviour-preference of one modeller and that

other modellers will not highlight this as a usability deficiency.

Table 2. Evaluation of usability requirements

 U1 U2 U3 U4 U5 U6 U7

Abacus ● ● ● ● ● ● ●

ModelWorld ● ○ ● ○ ● ● ○

Plena ● ● ◐ ● ● ◐ ●

DEMO-ADOxx ● ● ● ◐ ● ● ●

The purpose of the evaluation was to provide an overview of the existing DEMO

modelling tools to establish whether a new DEMO tool was needed. Even though

existing tools are available, our main concern is that existing tools do not address

requirements R2, R3 and R4. The new DEMO-ADOxx tool has been developed as a

main deliverable for this study to address these three requirements. In terms of R1, the

next section motivates the decision to initially set the scope to the DEMO CM.

4.3. DEMO Tool Specifications for the OCD and TPT

A qualitative analysis on DEMO aspect models, indicate that the CM, detailed by the

PM, are useful for assigning responsibilities and duties to individuals [4]. The AM and

FM “are necessary if you are going to develop or select applications” [4]. Since the

conceptual knowledge embedded in the PM is similar to the BPMN collaboration

diagram [12] and BPMN is widely adopted by industry [27; 28], the initial DEMO-

ADOxx tool focuses on the CM. We exclude the PM, since the PM logic can be also

represented by the industry-accepted notation BPMN. Our tool ensures consistent

OCD-derived BPMN collaboration diagrams that incorporate the logic embedded in the

DEMO standard transaction pattern as defined in [19].

We incorporated recent specifications regarding the OCD and TPT, as stated in in

[19] and [21], as well as BPMN 2.0 [29] for the first version of the DEMO-ADOxx

tool. All of the existence rules, shown in Fig. 2 were implemented, except for one. The

rule “facts with fact kind FK are contained in the bank of TK”, indicated on Fig. 2, has

not been incorporated in the DEMO-ADOxx tool, since it relates to the bank contents

table (BCT), and the BCT relates to concepts that are used as part of the FM.

4.4. OCD-BPMN Transformations Specification

We identified four transformation scenarios that should be addressed by the DEMO

tool. The specifications are excluded for the purpose of this article. Although the

ADOxx-DEMO tool incorporates all four scenarios, we only include the second

scenario, since this scenario already includes complexity of parent-and-part TKs.

Referring back to the OCD depicted in Fig. 4, the four scenarios are as follows:

• Scenario 1: Customer-initiated TK with no parts. For this scenario, an actor role

that is outside the scope-of-interest, initiates a TK. Also, the TK does not have any

parts, i.e., the executor of the TK, is not initiating other TKs. Referring to Fig. 4,

the TK labelled T01 (supervisor allocation) is an example of this scenario. T01 is

initiated by the actor role student. The executor of T01 is the supervisor allocator.

Yet, the supervisor allocator does not initiate any other TKs as parts.

• Scenario 2: TK is part of another TK. For this scenario, the selected TK forms part

of another TK. Referring to Fig. 4 the TK labelled T07 (project involvement) is

initiated by an actor role A06 (internal project sponsor). Since the internal project

sponsor is both the executor of T06 (internal project sponsoring) and the initiator

of T07 (project involvement), T07 is a part of T06.

• Scenario 3: TK is self-initiating. For this scenario, the selected TK is initiated and

executed by the same actor role. Referring to Fig. 4, the TK labelled T04 (module

revision) is initiated and executed by A04 (module reviser).

• Scenario 4: TK has one or more parts. For this scenario, the selected TK has one

or more parts, i.e. the actor role that executes the TK, is also initiating one or more

other TKs. Referring to Fig. 4 the TK labelled T5 (project control) is executed by

actor role A05 (project controller). The same actor role A05 (project controller)

also initiates multiple other TKs, namely T02 (project sponsoring), T03 (IP

clearance), and T06 (internal project sponsoring).

5. Demonstration of the DEMO-ADOxx Tool in Use

The ADOxx platform, part the Open Models Laboratory (OMiLAB) digital ecosystem,

is designed to support conceptualization and operationalization of conceptual modelling

methods [30]. ADOxx allows a developer to create new modelling tools, or to extend

existing ones to cater for any number of user requirements and customizations. The

DEMO-ADOxx tool is realized as an OMiLAB project which enables free download1.

5.1. Modelling and Validation Features

Fig. 5 illustrates two main tool sections: (1) Explorer section - models (created before)

are listed far left; and (2) Modelling section - OCD constructs are selected by “left-

clicking” on the construct in the template, dropping the construct by “left-clicking”

within the modelling area on the right. The relationships can be created either from

dragging and dropping, or by using the model assistant which allows one to create a

relationship directly from an existing construct in the model.

Fig. 5. The modelling interface for the DEMO-ADOxx tool

1 DEMO-ADOxx download: https://austria.omilab.org/psm/content/demo, last

accessed: 09.04.2020

https://austria.omilab.org/psm/content/demo

At the top of the screen are the menu options depicted. We implemented a Model

Analysis menu that provides the option to either generate a TPT such as the one in

Fig. 3, or to validate a model.

The Validation feature implemented each of the existence rules (relationships and

cardinalities) presented in Fig. 2, except for one, as indicated before in section 4.3.

Fig. 6 illustrates a validation table that communicates to the modeller: (1) The nature of

a mistake in the model; and (2) The model constructs involved.

Fig. 6. Validation feature of the DEMO-ADOxx tool

Based on the demonstration case discussed in section 2.2, we used the new tool to

generate an OCD (see Fig. 4) as well as a TPT (see Fig. 3) by utilizing the implemented

semi-automatic model transformations of the DEMO-ADOxx tool.

5.2. Transformation Features

Selecting the Model Transformation menu option, the modeller can select one of the

transaction kinds in the current OCD model. In our example the modeller selected T07

(project involvement) that represents a Scenario 2 transformation. The modeller also

needs to specify the detail of interaction between parent-and-part TK’s. In addition,

cardinalities that exist between relevant parent-part structures, have to be specified by

the modeller. As an example, Fig. 4 indicates that T07 is initiated by A06 (internal

project sponsor). Yet, A06 is also the executor of T06 (internal project sponsoring).

Therefore, T06 can only be requested when a T07 has made some progress through the

sequence of coordination acts associated with the universal transaction pattern.

As indicated in Fig. 7, the modeller needs to indicate how T07 (project involvement)

is initiated as a-part-of-T06 (internal project sponsoring), i.e. which one of the four

basic coordination facts for T06 (requested, promised, stated or accepted) is a

prerequisite for initiating T07. In addition, the modeller needs to indicate the

cardinalities involved between one instance of the parent (T06) that generates a number

of instances of the part (T07). For our demonstration (see Fig. 7), the modeller indicated

that an instance of T06 has to be stated before T07 is requested. Also, one instance of

T06 initiates zero-to-many (0..*) instances of T07. Since the transaction-progress of the

parts may also regulate the transaction-progress of the parent, the modeller also has to

indicate how the zero-to-many (0..*) part-instances (T06 instances) should all be

accepted before the parent instance (T07 instance) can be accepted.

Fig. 7. User-interface to specify cardinalities for Parent-Part structures

Based on the modeller selections illustrated in Fig. 7, the DEMO-ADOxx tool

automatically generates the corresponding BPMN collaboration diagram (see Fig. 8).

The BPMN diagram (Fig. 8) presents the initiating actor role (internal project sponsor)

as a BPMN pool and the executing actor role (student) as a BPMN pool. In accordance

with transformation specifications (not detailed in this article), transaction pattern detail

for the standard pattern, is depicted via BPMN concepts.

Fig. 8. BPMN Collaboration Diagram generated for T07 (project involvement)

6. Conclusions and Future Research

Our research indicated that existing DEMO modelling tools do not meet the minimum

requirements. One of the key requirements is that the modelling tool needs to allow for

model transformations, specifically transformations from a DEMO OCD to a BPMN

collaboration diagram.

We have used two sets of specifications, (1) recent DEMO specifications from [19]

and [21], and (2) OCD-BPMN transformation specifications, to develop a new DEMO-

ADOxx tool to demonstrate the modelling and validation features, as well as the OCD-

BPMN transformation feature.

The meta-model provided a good baseline for the DEMO-ADOxx tool. Yet, we

accept that the meta-model will change in the future and these changes need to be

accommodated by our tool in future. We still wait for feedback on the OCD-DEMO

transformation specifications that will require further work on the DEMO-ADOxx tool.

Realizing the tool as an open source project within the OMiLAB ensures that a

community can take over future tool enhancements.

The demonstration case was useful in presenting the key features of the new DEMO-

ADOxx tool. In terms of the usability requirements, additional evaluation is required.

For future work, DEMO modellers will be involved during usability tests to inform

further tool enhancements. In addition, a new version of DEMOSL will be released

during 2020 and need to be incorporated within the DEMO-ADOxx tool.

References

1 Frank, U., Strecker, S., Fettke, P., Vom Brocke, J., Becker, J., Sinz, E. J.: The research field:

Modelling business information systems. Bus. & Inf. Syst. Eng., 6(1), 1-5 (2014).

2 Karagiannis, D., Mayr, H. C., Mylopoulos, J.: Domain-specific Conceptual Modeling:

Concepts, Methods and Tools. Springer, Switzerland (2016).

3 Dietz, J. L. G.: Enterprise ontology. Springer, Berlin (2006).

4 Decosse, C., Molnar, W. A., Proper, H. A.: What does DEMO do? A qualitative analysis

about DEMO in practice: Founders, modellers and beneficiearies. In: Aveiro, D., Tribolet, J.,

Gouveia, D. (eds.) Advances in Enterprise Engineering VIII. Springer, Portugal (2014).

5 Recker, J., Indulska, M., Rosemann, M., Green, P.: How good is BPMN really? Insights from

theory and practice. In: Ljungberg, J., Andersson, M. (eds.) Proceedings 14th European

Conference on Information Systems. pp. 1582-1593. ECIS (2006).

6 Van Nuffel, D., Mulder, H., Van Kervel, S.: Enhancing the formal foundations of BPMN by

enterprise ontology. In: Albani, A., Barjis, J., Dietz, J. L. G. (eds.) LNBIP. Vol. 34, pp. 115-

129. Springer-Verlag, Berlin Heidelberg (2009).

7 De Kinderen, S., Gaaloul, K., Proper, E.: On transforming DEMO models to ArchiMate. In:

al., B. e. (ed.) BPMDS 2012 and EMMSAD 2012, LNBIB. Vol. 113, pp. 270-284. Springer-

Verlag, Heidelberg (2012).

8 Pijpers, V., Gordijn, G., Akkermans, H.: E3alignment: Exploring inter-organizational

alignment in networked value constellations. Int. J. of Comput. Sci. & Appl., 6(5), 59-88

(2009).

9 Ettema, R., Dietz, J. L. G.: ArchiMate and DEMO - Mates to Date? In: Albani, A., Barjis, J.,

Dietz, J. L. G. (eds.) CIAO!/EOMAS 2009, LNBIP. Vol. 34, pp. 172-186. Springer,

Heidelberg (2009).

10 Caetano, A., Assis, A., Tribolet, J.: Using DEMO to analyse the consistency of business

process models. In: Moller, C., Chaudhry, S. (eds.) Advances in Enterprise Information

Systems II. pp. 133-146. Taylor & Francis Group, London (2012).

11 Heller, S. (2016). Usage of DEMO methods for BPMN models creation. Czech Technical

University in Prague.

12 Mraz, O., Náplava P, Pergl R, Skotnica, M.: Converting DEMO PSI transaction pattern into

BPMN: A complete method. In: Aveiro, D., Pergl, R., Guizzardi, G., Almeida, J. P.,

Magalhães, R., Lekkerkerk, H. (eds.) LNBIP 284. pp. 85-98. Springer International

Publishing, Cham, Switzerland (2017).

13 France, R., Rumpe, B.: Model-based development. Softw. Syst. Model, 7(1), 1-2 (2008).

14 Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches for software and system

modelling: a systematic literature review. Softw. and Syst. Model., 18(6), 3207-3233 (2019).

15 Bork, D. (2016). A development method for conceptual design of multi-view modeling tools

with an emphasis on consistency requirements. University of Bamberg.

16 Grundy, J., Hosking, J., Li, K. N., Ali, N. M., Huh, J., Li, R. L.: Generating domain-specific

visual language tools from abstract visual specifications. IEEE Transactions on Softw. Eng.,

39(4), 487-515 (2013).

17 Mulder, M. A. T.: Validating the DEMO Specification Language. In: Aveiro, D. e. a. (ed.)

EEWC 2018, LNBIP. Vol. 334, pp. 131-143. Springer Nature, Switzerland (2019).

18 Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model driven

paradigm. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering

and Software Technology. Springer, Heidelberg (2006).

19 Dietz, J. L. G., Mulder, M. A. T.: DEMOSL-3: DEMO specification language version 3.7.

SAPIO (2017).

20 Perinforma, A. P. C.: The essence of organisation (3rd ed.). Sapio, www.sapio.nl (2017).

21 Mulder, M. A. T.: Towards a complete metamodel for DEMO CM. In: al., D. e. (ed.) OTM

2018 Workshops, LNCS 11231. pp. 97-106. (2019).

22 Gregor, S., Hevner, A.: Positioning and presenting design science research for maximum

impact. MIS Q., 37(2), 337-355 (2013).

23 Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research

methodology for information systems research. J. of MIS, 24(3), 45-77 (2008).

24 Leffingwell, D.: Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley, New Jersey (2011).

25 Nassar, V.: Common criteria for usability review. Work, 41(Supplement 1), 1053-1057

(2012).

26 Mulder, M. A. T. (n.d.). Enabling the automatic verification and exchange of DEMO models.

In PhD Thesis.

27 Grigorova, K., Mironov, K.: Comparison of business process modeling standards. Int. J. of

Eng. Sci. & Manag. Res., 1-8 (2014).

28 Recker, J., Wohed, P., Roseman, M.: Representation theory versus workflow patterns - the

case of BPMN. In: Embley, D., Olive, A., Ram, S. (eds.) Conceptual Modeling - ER 2006,

LNCS. Vol. 4215, pp. 68-83. Springer, Heidelberg, Berlin (2006).

29 Object Management Group: Business process model & notation,

https://www.omg.org/bpmn/, last accessed 2019/30 May.

30 Bork, D., Buchmann, R. A., Karagiannis, D., Lee, M., Miron, E.-T.: An open platform for

modeling method conceptualisation: The OMiLAB digital ecosystem. Commun. of the AIS,

44(32), 673-697 (2019).

file:///C:/Users/borkd4cs/Dropbox/DEMO_ADOxx/ToolDemonstration%20paper/www.sapio.nl
https://www.omg.org/bpmn/

	DKE-OMiLAB_FrontMatter
	EMMSAD2020_03

