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Abstract. Pattern formation is one of the most fundamental problems
in distributed computing, which has recently received much attention. In
this paper, we initiate the study of distributed pattern formation in situa-
tions when some robots can be faulty. In particular, we consider the well-
established look-compute-move model with oblivious, anonymous robots.
We first present lower bounds and show that any deterministic algorithm
takes at least two rounds to form simple patterns in the presence of faulty
robots. We then present distributed algorithms for our problem which
match this bound, for conic sections: in at most two rounds, robots form
lines, circles and parabola tolerating f = 2, 3 and 4 faults, respectively.
For f = 5, the target patterns are parabola, hyperbola and ellipse. We
show that the resulting pattern includes the f faulty robots in the pat-
tern of n robots, where n ≥ 2f + 1, and that f < n < 2f + 1 robots
cannot form such patterns. We conclude by discussing several relaxations
and extensions.
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Fault Tolerance · Oblivious Mobile Robots

1 Introduction

Self-organizing systems have fascinated researchers for many decades already.
These systems are capable of forming an overall order from an initially disordered
configuration, using local interactions between its parts only. Self-organization
arises in many forms, including physical, chemical, and biological systems, and
can be based on various processes, from crystallization, over chemical oscillation,
to neural circuits [7]. Due to their decentralized and self-healing properties, self-
organizing systems are often very robust.

We, in this paper, consider self-organizing systems in the context of robotics.
In particular, we are interested in the fundamental question of how most simple
robots can self-organize into basic patterns. This pattern formation problem has
already received much attention in the literature [6, 18,23,24].
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ship, 2018 Award No. ODF/2018/001055 by the Science and Engineering Research
Board (SERB), Government of India.
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A particularly well-studied and challenging model is the look-compute-move
model, in which each robot, in each round, first observes its environment and
then decides on its next move. In the most basic setting, the robots do not have
any persistent memory and hence cannot remember information from previous
rounds, and they can also not distinguish between the other robots they see: the
robots are oblivious and anonymous. Furthermore, robots cannot communicate.
Over the last years, several research lines investigated when robots can and
cannot form different patterns [6,13,18,19,23,24,26,27]. However, existing work
on pattern formation shares the assumption that robots are non-faulty.

This paper initiates the study of distributed pattern formation algorithms for
scenarios where some robots can be faulty : the faulty robots do not move nor act
according to a specified protocol or algorithm. The setting with faulty robots is
particularly challenging, as the non-faulty robots cannot directly observe which
robots are faulty. However, even indirect observations seem challenging: since all
robots are oblivious, a robot cannot remember patterns from previous rounds,
and hence, has no information which robots moved recently. In fact, a robot
per se does not even know whether the current pattern it observes is the initial
configuration or whether some rounds of movements already occurred. What’s
more, the ability to self-organize into a specific pattern seems to require some
coordination or even consensus, which is notoriously hard in faulty environments.

Contributions. This paper considers the design of distributed algorithms for
pattern formation of most simple oblivious and potentially faulty robots. Our
main result is an algorithmic framework that allows robots to form patterns
which include faulty robots, in a decentralized and efficient manner. In particular,
we do not require robots to identify faulty robots explicitly or to remember
previous configurations, but require knowledge of the exact number of faults.

For f faults, we show how to form conic patterns in just two rounds, for at
least 2f + 1 robots. We form conic patterns such as line, circle and parabola
for f = 2, 3 and 4, respectively. For f = 5, the target pattern are parabola,
hyperbola and ellipse. We also prove that this is optimal: no deterministic algo-
rithm can solve this problem in just one round or with less than 2f + 1 robots.
We further discuss several relaxations of our model and extensions of our re-
sults, e.g., considering initial symmetric configurations, having at most f faulty
robots, or the impossibility of forming the pattern corresponding to f faults. We
also discuss an extension where the robots form a line (a circle) for f = 3, 4, 5
(f = 4, 5).

Organization. After discussing related work in §1.1, we first provide a formal
model in §2, followed by a study of the special case of f = 1 faulty robot in
§3 to provide some intuition. We then give tight runtime and cardinality lower
bounds in §4, and match them for the remaining conic patterns in §5. In §6,
we show the algorithmic framework and prove the correctness of our algorithm.
After discussing further model variations in §7, we conclude in §8.
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1.1 Related Work

Pattern formation is an active area of research [13, 19, 27], however, to the best
of our knowledge, we are the first to consider pattern formation in the pres-
ence of faults: a fundamental extension. In general, pattern formation allows
for exploring the limits of what oblivious robots can compute. A “weak robot”
model was introduced by Flocchini et al. [18], where the objective is to deter-
mine the minimum capabilities a set of robots need to achieve certain tasks. In
general, the tasks include Gathering [8,9,15], Convergence [10,11], Pattern For-
mation [6,19,23], etc. Gathering is a special case of pattern formation, where the
target pattern is a point. Gathering has been achieved for robots with multiplic-
ity detection [9,17]. Most gathering algorithms use the capability of multiplicity
detection to form a unique multiplicity point starting from a scattered config-
uration. In the absence of this capability, it has been proved that gathering is
impossible in the semi-synchronous model without any agreement on the coor-
dinate system [22].

The objective of gathering algorithms is only to gather the non-faulty robots,
not to form general patterns. Moreover, for the specific case of gathering, some
interesting first fault-tolerance studies exist. Agmon and Peleg [1] solve the gath-
ering problem for a single crash-fault. Gathering has been solved with multiple
faults [4, 5] with strong multiplicity detection. Next, gathering has also been
addressed for robots with weak multiplicity detection tolerating multiple crash
faults [3,21]. For byzantine faults, Auger et al. [2] show impossibility results, and
Defago et al. [14] present a self-stabilizing algorithm for gathering. The gathering
algorithms only gather non-faulty robots. Since oblivious robots cannot differen-
tiate a faulty robot from a non-faulty one, all the algorithms can be considered
to be non-terminating algorithms. In contrast in our paper, we include the faulty
robots in the pattern, and as a result, we achieve termination.

Flocchini et al. [18] characterize the role of common knowledge, like agree-
ment on the coordinate system as a requisite for the pattern formation problem,
and Yamashita and Suzuki [25] characterize the patterns formable by oblivious
robots. Fujinaga et al. [19] present an algorithm using bipartite matching for
asynchronous robots. Yamauchi and Yamashita [27] propose a pattern forma-
tion algorithm for robots with limited visibility. Das et al. [13] characterize the
sequence of patterns that are formable, starting from an arbitrary configuration.
Das et al. [12] further extend the sequence of pattern formation problem for
luminous robots (robots with visible external persistent memory). As a special
pattern formation problem, uniform circle formation has also been considered
in the literature [16]. Formation of a plane starting from a three-dimensional
configuration has also been solved for synchronous robots [24, 26]. The authors
characterize configurations for which plane formation is possible. The existing
pattern formation algorithms consider the sequential movement of robots. Since
we consider faulty robots in our paper, all the existing algorithms are not adapt-
able to our cause. A fault-tolerant algorithm has to consider the simultaneous
movement of robots and should satisfy the wait-free property to avoid cyclic
dependency.
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2 Preliminaries

We follow standard model assumptions, inspired by existing work, e.g., [1,3,21].

2.1 Model

Each robot is a dimensionless point robot. The robots are homogeneous: they
execute the same deterministic algorithm, are indistinguishable and anonymous
(no identifiers), oblivious (no persistent memories), and silent (no communica-
tion). The robots do not share a common coordinate system and observe others
in their own local coordinate system. The robots have unlimited visibility, and
the determined locations of other robots are precise.

Each robot follows the look-compute-move cycle. A robot obtains a snapshot
of relative positions of other robots with respect to its position in the look state.
Based on the snapshot of other robot positions, it decides a destination in the
compute state. In the move state, it moves to the destination and reaches the des-
tination in the same round. This is known as rigid robot movement. The sched-
uler, which activates the robots, follows a fully-synchronous (FSYNC ) model,
i.e., all the robots look at the same time and finish movement in the same round,
i.e., each completion of look-compute-move cycle is one round. We consider that
the robots are susceptible to crash-faults, i.e., they stop moving after the crash
and never recover. Moreover, the number of f faulty robots is known beforehand,
and as such, the robots know which types of pattern to form. In particular, we
assume that the following four initial conditions hold:

1. All f faulty robots have already crashed initially.
2. All initial configurations are asymmetric.3

3. All robots occupy distinct positions initially.4

4. The faulty robots form a convex polygon.

The last assumption needs the faulty robots to be at corners of a convex polygon;
the non-faulty robots can lie at any position. The rationale behind the assump-
tion is that four robots forming a triangle with a robot inside the triangle do
not correspond to any conic section in R2, similarly, for five robots. For three
or more robots, a collinear configuration is addressed in §7. For two robots, the
assumption trivially holds.

2.2 Notations

A configuration C = {p1, p2, · · · , pn} is a set of n points on the plane R2, where
pi = (xi, yi) is a tuple representing the x- and y-coordinates of the robots. Since
each robot is initially located at distinct points, it then holds that pi 6= pj for
any pair of i and j such that i 6= j. f is the number of faulty robots. We will

3 This assumption allows us to have a unique ordering of the robots [8].
4 As any set of non-faulty robots that share a position will always perform the same

actions from then on and be indistinguishable from each other.
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always uphold this condition in our algorithms, except for the case of f = 1,
where the target pattern is a point. The target patterns are conic sections that
satisfy the second degree general equation

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0 .

Depending on the values of ai for i ∈ {1, 2, . . . , 6}, the equation represents line,
circle, parabola, hyperbola or ellipse. We say a set of points form a conic pattern
when they lie on the same conic section. Now, we say the conic pattern passes
through the set of points. We denote P as the length of the pattern and u as
the uniform distance.

3 Problem Statement and Intuition

Objective. Given a set of robots on the plane as defined in the model (§2.1), we
want the robots to form a conic pattern corresponding to the number of faults.5

Point Formation (f = 1). To provide some intuition, we start with the case
of f = 1. For a single faulty robot, we move all the robots to the center of their
smallest enclosing circle. If there is a faulty robot in the center, then point forma-
tion is achieved. If the faulty robot is somewhere else, we arrive at a configuration
with two robot positions. For a configuration with two robot positions, all robots
move to the other robot’s position. From Assumption 3, we have all the robots
at distinct initial positions. Hence the faulty robot is at a different position from
the gathered robots. Moving all gathered robots to the faulty robot’s position
achieves our objective of point formation, as the faulty robot cannot move.

4 Lower Bound

We saw above that there could be situations where only one round suffices,
namely, for the case of exactly n = 2 and f = 1. However, we can show that for
f ≥ 2, at least two rounds are required. For conic patterns (with f ∈ {2, 3, 4, 5}),
this bound is tight: we will later provide algorithms that terminate in two rounds.

Theorem 1. For every f ≥ 2 and every n ≥ f + 3 holds: Any deterministic
algorithm needs more than one round to make a pattern passing through all f
faulty robots.

Proof. Let ϕ be a deterministic algorithm that forms the pattern with faulty
robots. Suppose ϕ solves the pattern in one step. Two patterns can have at most
f common points6. Let C = {p1, p2, · · · , pf+3} be an initial configuration with
f + 3 robots such that no f + 1 robots are in the same pattern.

5 That is a point for f = 1, a line for f = 2, a circle for f = 3, a parabola for f = 4,
and an ellipse or parabola or hyperbola for f = 5.

6 Two parabolas intersect at 4 points, which can be the common points between two
parabola patterns.
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Without loss of generality, consider two sets of f faulty robots at positions
{p1, p2, · · · , pf} and {p2, p3, · · · , pf+1} and the corresponding pattern be ℘′ and
℘′′, respectively. The f faulty robots do not move. Let ℘′ = {p′1, p′2, · · · , p′f+3}
and ℘′′ = {p′′1 , p′′2 , · · · , p′′f+3}. As ϕ achieves pattern formation in one round, both
℘′ and ℘′′ should be final. We have pf+1 6= p′f+1, pf+2 6= p′f+2 and pf+3 6= p′f+3,
since all robots in ℘′ are in the pattern. Similarly, we also have p1 6= p′′1 , pf+2 6=
p′′f+2 and pf+3 6= p′′f+3 for ℘′′. Since the robots at {p2, · · · , pf} did not move
to form ℘′ and ℘′′, these f − 1 points are common between ℘′ and ℘′′. Since,
pf+1 6= p′f+1 and pf+1 = p′′f+1, so pf+1 cannot be a common point between ℘′

and ℘′′. Out of pf+2 and pf+3, at most one can be a common point in the pattern,
since there are at most f common points. Since ϕ is deterministic, the destination
for robots at pf+2 and pf+3 remains the same regardless of the destination
pattern being ℘′ or ℘′′. If {p′f+2, p

′
f+3} = {p′′f+2, p

′′
f+3}, then ℘′ and ℘′′ have

f + 1 common points. This is a contradiction since the patterns are different.
Hence no deterministic algorithm can solve the pattern formation problem with
faults in one round. The arguments hold analogously for n ≥ f + 3 robots. ut

Next, we show a lower bound on the number of robots required to solve the
pattern formation problem. A configuration with exactly f robots is trivially
solvable since the f robots are already in the pattern. Note that for f ≥ 2,
2f + 1 ≥ f + 3 holds.

Theorem 2. At least 2f+1 robots are required to form a pattern passing through
f faulty robots for f ≥ 2.

Proof. Consider the number of robots to be f < n < 2f + 1. Assume that
the configuration of these n robots is such that no f + 1 robots are in the same
pattern. Let ϕ be a deterministic algorithm, which decides the destination of the
robots given a configuration. Since the robots are oblivious, it is impossible to
determine which robots are faulty given a configuration. As we consider patterns
from the conic section, a pattern corresponding to f can be uniquely determined
through f robots.

Let ϕ decide the target pattern corresponding to a set of f robots for the
given configuration C. So the other n − f robots have to move to the pattern.
Since the algorithm cannot determine which robots are faulty, the adversary can
always choose the 0 < n − f robots to be faulty. Since n − f ≤ f , none of the
robots move. This leads to a stagnated configuration, and the algorithm does
not proceed further.

If the algorithm decides a pattern that passes through less than or equal to f
points in the configuration, then we choose faulty robots out of the points which
are not on the pattern, and we arrive at a configuration where not all the robots
are in the same pattern. Now there are at most n−f ≤ f robots on the pattern,
which is the same as the previous configuration. ut
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5 Detailed Algorithms

In this section, we provide the promised two round algorithms for the different
configurations. To this end, we first provide algorithmic preliminaries in §5.1.

5.1 Algorithmic Preliminaries

In our algorithms, we will perform case distinctions according to the following
three types of configurations:

Definition 1 (Terminal Configuration). A configuration is a terminal con-
figuration if all the robots form the target pattern corresponding to f faulty robots.

Definition 2 (Type I Configuration). If exactly n−f robots are in the target
pattern corresponding to f faulty robots, then it is a Type I configuration.

A Type I configuration can be symmetric or asymmetric.

Definition 3 (Type O Configuration). If a configuration is not Terminal or
Type I, then it is a Type O configuration.

Note that an initial asymmetric configuration can be a Type I or Type O or
Terminal configuration. In the following, we also distinguish the configurations
based on the uniform spacing between the robots. We use the uniform positions
of the robots as a differentiating factor between faulty and non-faulty.

Definition 4 (Uniform Configuration). A configuration is a uniform con-
figuration if the distance between all consecutive pairs of robots in the configura-
tion along the pattern is the same.

Definition 5 (Quasi-Uniform Configuration). If a uniform configuration
with m uniform positions is occupied by n robots, where n ≤ m ≤ 2n, then it is
a quasi-uniform configuration.

With the assumption (§2.1) that the initial configuration is asymmetric, we can
obtain an ordering of the robots using the algorithm by Chaudhuri et al. [8].

Lemma 1. An asymmetric configuration is orderable. [8]

Using Lemma 1, we can thus always obtain an ordering among the robots. We use
this ordering to determine the target pattern in case of a Type O configuration.
In general, having an ordering allows us to have complete agreement on the
coordinate system, i.e., the robots agree on the direction and orientation.

Let O be an ordering of the robots that maps the set of robots to a set of
integers {1, 2, . . . , n} such that each robot corresponds to an integer. This is the
rank of the robot in the ordering. In case of symmetry, two robots can have dif-
ferent orderings. Note that locally, the ordering is unique for a particular robot,
but that from a global perspective, different robots can have different orderings.
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We use the ordering to determine a target pattern only in cases where there
are multiple potential target patterns. We always choose the target pattern pass-
ing through the smaller ranked robot in the ordering.

Since the algorithm takes at most two steps to reach a pattern containing all
faulty robots, we denote the initial, transitional and final configurations as C0,
C1 and C2, respectively.

5.2 Algorithm

We first present a general algorithm with two different strategies for the open
pattern and closed pattern. Among the conic patterns, line, parabola and hyper-
bola are open patterns, while circle and ellipse are closed patterns. The target
position of the robots depend on this since open conics have two end points,
while closed do not have any. The length of the pattern, P is determined with
respect to the pattern being formed. For line, P is the distance between the two
endpoints. For parabola (hyperbola), P is the length of the parabola (hyperbola)
between the points where the latus rectum7 of parabola (hyperbola) intersects
the parabola (hyperbola). In case of circle and ellipse, P is the perimeter. We
denote u as the uniform distance at which the points on the target pattern
are determined. The length u is computed along the pattern. We differentiate
between two types of configurations:

Type O Configuration. In this case, we form the target pattern outside the
smallest enclosing circle of the configuration. The target pattern can be uniquely
determined using the asymmetricity of the configuration, since a Type O config-
uration can only appear in the initial state. The target pattern size is dependent
on the diameter of smallest enclosing circle.

– Compute the smallest enclosing circle of the configuration where O is the
center and d is the diameter.

– Let A be the location of the robot with the smallest rank in the ordering. If
A is O, then we choose the robot with second smallest rank.

– Find point B such that B lies on
−→
OA and |OB| = d.

– The target pattern corresponding to f passes through B.

Now, we show how we determine the target pattern corresponding to the number
of faults (see Fig. 1).

f = 2: The target line is perpendicular to OB and has its midpoint at B with
length d (ref. Fig. 1a).

f = 3: The target circle passing through B has radius d and center at O (ref.
Fig. 1b).

f = 4 and f = 5: The target parabola has its vertex at B and focus at O. The
latus rectum of parabola is perpendicular to OB and length of latus rectum
is 2d (ref. Fig. 1c).

7 The latus rectum is the line that passes through the focus of the parabola and
parallel to the directrix.
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A

B

O

u u/2

(a) f = 2

AB
O

u

(b) f = 3

O

A

B

u/2

u

(c) f = 4 and f = 5

Fig. 1. Target patterns (dashed) for Type O configuration

For an open pattern, we choose the first point at a distance u/2 from one end
point and place subsequent n− 1 points at distance u = P/n (ref. Fig. 1a, 1c).

Type I Configuration. The target pattern is determined as passing through
the robots which are not part of the pattern in the existing configuration. The
destinations for robots are at points uniformly positioned at distance u corre-
sponding to the length of the pattern. However, there is a possibility that the
existing pattern and target pattern intersect. We hence avoid using the intersec-
tion points as target points. If an intersection point is a target point for a value
of u, then we choose u′ depending on the configuration.

A

B

(a) f = 2 (b) f = 3 (c) f = 4 (d) f = 5

Fig. 2. Target patterns (dashed) for Asymmetric Type I configurations

Asymmetric Type I: The robots are assigned target points according to their
rank in the ordering with u = P/n (ref. Fig. 2). If the target point cor-
responding to u overlaps with intersection points, then we choose u′ =
P/(n + 1). The number of target points with respect to u′ is n + 1, so
we assign two destinations to the robot with highest rank, which can be
chosen arbitrarily (ref. Fig. 5). For f = 5, the intermediate configuration
can be a parabola, hyperbola or an ellipse. Thus, it can also appear as an
initial configuration. We show all the transition between ellipse, parabola
and hyperbola in the Appendix.

Reflective Symmetric Type I: Let k be the number of robots which lie on
the line of symmetry. In this case, we choose, u = P/(n+k). We get k extra
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target points so that we can assign two target points to the robots on the line
of symmetry. A robot on one side (say left) of the line of symmetry finds its
destination on the same side. Since the robots on the line of symmetry may
not have a common left or right, they can choose one of the two symmetric
destinations as their target. This also ensures that the next configuration
is not completely symmetric (ref. Fig. 3), since only one of the symmetric
points would be occupied. On overlap of target pattern points with existing
points, we choose u′ similar to asymmetric Type I configuration. We refer
the reader to the full version of the paper for more details [20].

A B

C

(a) f = 2 (b) f = 3 (c) f = 4 (d) f = 5

Fig. 3. Target patterns (dashed) for Reflective Symmetric Type I configurations

Rotational Symmetric Type I: This can occur only in the case of lines and
circles. In case of a line, the robots move to the side with smaller angle
between the target line m and existing pattern l (ref. Fig. 4a). In case of a
circle, the configuration is two concentric circles. We assign two destinations
for each robot already on the target circle by choosing u = P/(n+k), where
k = 3 (ref. Fig. 4b).

θl

m

(a) f = 2 (b) f = 3

Fig. 4. Target patterns (dashed) for Rotational Symmetric Type I configurations

Choosing Non-overlapping Uniform Points. In case of an asymmetric
Type I configuration, we obtain an ordering O. For f = 2, the target line passes
through A and B. Let A be the robot with smaller rank among A and B. We
choose the set of uniform points at a distance u/2 from A towards B. Let D be
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A

B

D

A

B

D

u = P
n

u′ = P
(n+1)

(a) (b)

Fig. 5. Choosing Non-overlapping uniform points in the target pattern (dashed)

the intersection point of the existing line in the current configuration and the
line through A and B (D is marked as a cross in Fig. 5b). If the uniform points
overlap with D (ref. Fig. 5a), then we choose another set of points at uniform
distance u′ = P/(n + 1). Since, |AD| = 3u/2, the uniform points overlap with
D. We have to choose a set of uniform points corresponding to u′ as shown in
Fig. 5b. With u′, there are n+ 1 uniform points, the robot B has two potential
destinations, one of which can be chosen arbitrarily. We refer the reader to the
full version of the paper for the cases of f = 3, 4, 5 [20].

6 General Algorithmic Framework

The algorithm broadly has two steps, based on the current robot configuration.

Step 1: Determine the faulty robots.
Step 2: Move to a pattern passing through the faulty robots.

Since the robots are oblivious, they cannot distinguish between Step 1 and Step 2.
Hence the properties required for Step 1 have to be applicable to Step 2 and vice
versa. For Step 1, a simple process to determine all the faulty robots in a single
round is to move all the robots, such that the robots which do not move, will
not lie on the pattern points. We determine the pattern points uniformly so that
all pattern points are consecutively equidistant along the pattern. This helps us
in determining the faulty robots since they would not lie on a pattern point.
For Step 2, the pattern determined from the faulty robot positions has to be
unique, so that all the robots agree on the pattern. Overall, the algorithm needs
to determine a unique pattern such that all robots agree on the pattern, and
all robots are required to move to achieve the pattern. We present a transition
diagram for configurations in our algorithm in Fig. 6.

Lemma 2. The destinations of all robots are distinct.

Proof. We always follow the ordering to determine the destinations for each
robot. In the asymmetric cases, we have the ordering, which creates a one-to-one
map from the current position of a robot to its destination. In case of symmet-
ric configurations, the robots which are present on the line of symmetry have
two potential destinations (from a global perspective) and choose one of them
according to their local orientation. Hence the destinations are distinct. ut
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C0 Type O

C1 TerminalC1 Type I AsymmetricC1 Type I Symmetric

C0 Type I Asymmetric

C2 Terminal

C0 Terminal

Fig. 6. Transition diagram of configurations

Next, we show that there are no overlapping points between the current con-
figuration and the set of destinations. The set of destinations is the set of all
potential destination points for the robots in the current configuration. Since
some robots are faulty, two consecutive configurations may have those points as
common points. Had the robots been non-faulty, then they would have moved to
a point that is not in the current configuration. The proof is in the full version
of the paper [20].

Lemma 3. Given configuration C and a destination set C′, we have C ∩ C′ = φ.

6.1 Determining Faulty Robots and a Pattern

There are two types of initial configurations where we need to determine the
faulty robots, i.e., arbitrary configurations and intermediate configurations. The
destinations for the robots are such that no point in C0 overlaps with any point
in C1. For an arbitrary initial configuration, the target pattern is scaled such
that no point in the target pattern lies on or inside the smallest enclosing circle
of C0. Since C0 is asymmetric, we can always uniquely scale the pattern. We can
moreover show that a unique pattern exists that passes through all the faulty
robots, and obtain the following three lemmas, with proofs of Lemma 4 and 5
in the full version of the paper [20].

Lemma 4. It takes one round to determine all the faulty robots for a Type O
configuration for f ∈ {2, 3, 4, 5}.

Lemma 5. It takes one round to determine all the faulty robots for an asym-
metric Type I configuration for f ∈ {2, 3, 4, 5}.

Lemma 6. The target pattern passing through the faulty robots in C1 can be
uniquely determined.

Proof. The pattern is determined uniquely for a given value of f . For f = 2 and 3,
the line and circle passing through the points are unique. For f = 4, there can be
two conjugate parabolas passing through four points. In this case, the parabola
with the larger latus rectum is chosen as the target pattern. For f = 5, the target
pattern is uniquely determined by the five points to be a parabola, hyperbola or
an ellipse. Since we assume the faulty robots to form a convex polygon, they can
only occupy positions on one side of the hyperbola. From Lemma 3, we know
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that the destination points do not have a common point with the points in the
previous configuration. From the quasi-uniform configuration, we can determine
the robots which are not present at a uniform point. Hence we can determine
the faulty robots in C1 and the corresponding pattern. ut

6.2 Termination

We can now show that the algorithm terminates, and we can determine the
faulty robots in the terminal configuration. Combining Lemma 4, 5 and 6 yields:

Theorem 3. Starting from any initial asymmetric configuration, the algorithm
terminates in at most two rounds.

Since the algorithm does not do anything for a terminal configuration, we cannot
determine the faulty robots if the initial configuration is a terminal configura-
tion. Moreover, in a terminal configuration, our algorithm designs result in the
following distribution of robots on the plane starting from a configuration other
than the terminal configuration.

Corollary 1. Starting from a configuration other than the terminal configura-
tion, the non-faulty robots are at uniform pattern points in the terminal config-
uration.

Proof. The destinations are always at uniform points spread over the target
pattern. So whenever a non-faulty robot moves, it ends up at a uniform pattern
point. Note that the resulting configuration may not be uniform due to the faulty
robots. The non-faulty robots occupy the uniform points in a quasi-uniform
configuration. ut

From Lemma 3 and Corollary 1, we have the following Corollary.

Corollary 2. The faulty robots can be determined from a terminal configuration
unless it is the initial configuration.

7 Discussion

In the following, we show how to relax our model and extend the previous results
in several directions. In particular, we extend the behavior of the algorithm
in the absence of the assumption considered in §2. We show that with small
modifications to the algorithm, we can subvert some assumptions.
Knowing the number of faults. We extend the definition of Type I configu-
ration to include configurations where at most f robots are not in the pattern in
the current configuration. As we need exactly f robots to determine the target
pattern, if f ′ < f are not in the pattern, we choose a target pattern passing
through those f ′ and the first f − f ′ robots in the ordering to set the pattern.
Initial configuration with reflective symmetry. For a configuration with a
single line of symmetry, we can always follow the strategies described for Type
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I symmetric configurations in the algorithms from §5. The robots on the line of
symmetry have two destinations on either side of the line of symmetry. According
to their local orientation, they choose one of the destinations.
Lower order patterns for higher number of faults. We add special cases
if the robots are collinear (resp. co-circular) for f ∈ {3, 4, 5} (resp. f ∈ {4, 5}).
In this case, the robots form a line (resp. circle). If the initial configuration is
this situation, then it is impossible to determine the faulty robots. Hence the
configuration in the next step becomes an arbitrary configuration. We thus need
three steps to achieve pattern formation instead of two.

8 Conclusion

This paper initiated the study of distributed algorithms for pattern formation
with faulty robots. In particular, we presented an algorithmic framework that
allows solving many basic formation problems in at most two rounds, which is
optimal given the lower bound also presented in this paper. We regard our work
as a first step and believe it opens several interesting avenues for future research.
In particular, it will be interesting to study pattern formation problems for more
advanced robots under failures, as well as randomized algorithms. It will also be
interesting to generalize our failure model, e.g., to support transient crash faults
and byzantine faults.
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