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Abstract
Modeling distributed computing in a way enabling the use of formal methods is a challenge that
has been approached from different angles, among which two techniques emerged at the turn of
the century: protocol complexes, and directed algebraic topology. In both cases, the considered
computational model generally assumes communication via shared objects (typically a shared memory
consisting of a collection of read-write registers), or message-passing enabling direct communication
between any pair of processes. Our paper is concerned with network computing, where the processes
are located at the nodes of a network, and communicate by exchanging messages along the edges of
that network (only neighboring processes can communicate directly).

Applying the topological approach for verification in network computing is a considerable
challenge, mainly because the presence of identifiers assigned to the nodes yields protocol complexes
whose size grows exponentially with the size of the underlying network. However, many of the
problems studied in this context are of local nature, and their definitions do not depend on the
identifiers or on the size of the network. We leverage this independence in order to meet the above
challenge, and present local protocol complexes, whose sizes do not depend on the size of the network.
As an application of the design of “compacted” protocol complexes, we reformulate the celebrated
lower bound of Ω(log∗ n) rounds for 3-coloring the n-node ring, in the algebraic topology framework.
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1 Context and Objective

Several techniques for formalizing distributed computing based on algebraic topology have
emerged in the last decades, including the study of complexes capturing all possible global
states of the systems at a given time [11], and the study of the (di)homotopy classes of
directed paths representing the execution traces of concurrent programs [7]. We refer to [10]
for a recent attempt to reconcile the two approaches. This paper is focusing on the approach
based on the study of complexes.

A generic methodology for studying distributed computing through the lens of topology
has been set by Herlihy and Shavit [12]. This methodology has played an important role in
distributed computing, mostly for establishing lower bounds and impossibility results [5,12,18],
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128:2 The Topology of Local Computing in Networks

but also for the design of algorithms [6]. It is based on viewing distributed computation
as a topological deformation of an input space. More specifically, recall that a simplicial
complex K is a collection of non-empty subsets of a finite set V , downward closed under
inclusion, i.e., for every σ ∈ K, and every non-empty σ′ ⊂ σ, it holds that σ′ ∈ K. Every
σ ∈ K is called a simplex, and every v ∈ V is called a vertex. For instance, a graph G = (V,E)
with E ⊆

(
V
2
)
, can be viewed as the complex K = {{v} : v ∈ V } ∪E on the set V of vertices.

A sub-complex of a complex K is a subset of simplices of K forming a complex. The dimension
of a simplex is one less than the number of its elements. A facet of a complex K is a maximal
simplex of K, that is, a simplex not contained in any other simplex. E.g., the facets of a
graph with no isolated nodes are its edges. We note that a set of facets uniquely defines a
complex.

The set of all possible input (resp., output) configurations of a distributed system can be
viewed as a simplicial complex, called input complex (resp., output complex), and denoted
by I (resp., O). A vertex of I (resp., O) is a pair (p, x) where p is a process name, and x is
an input (resp., output) value. For instance, the input complex of binary consensus in an
n-process system with process names p1, . . . , pn is:

I‖ =
{{

(pi, xi) : i ∈ I, xi ∈ {0, 1} for every i ∈ I
}

: I ⊆ [n], I 6= ∅
}
,

with [n] = {1, . . . , n}, and the output complex is:

O‖ =
{{

(pi, y) : i ∈ I
}
, I ⊆ [n], I 6= ∅, y ∈ {0, 1}

}
.

One can check that I‖ and O‖ are indeed collections of non-empty subsets of a finite set,
downward closed under inclusion. A distributed computing task is then specified as a carrier
map ∆ : I → 2O, i.e., a function ∆ that maps every input simplex σ ∈ I to a sub-complex
∆(σ) of the output complex, satisfying that, for every σ, σ′ ∈ I, if σ ⊆ σ′ then ∆(σ) is a
sub-complex of ∆(σ′). The carrier map ∆ is describing the output configurations that are
legal with respect to the input configuration σ. For instance, the specification of consensus
is, for every σ = {(pi, xi) : i ∈ I, xi ∈ {0, 1}} ∈ I‖,

∆‖(σ) =
{ {
{(pi, 0) : i ∈ I}, {(pi, 1) : i ∈ I}

}
if ∃ i, j ∈ I, xi 6= xj ;{

{(pi, y) : i ∈ I}
}

if ∀ i ∈ I, xi = y.

Note that the specification of consensus given here is very general, i.e., ∆ is specified for
every simplex σ ∈ I‖. This enables, e.g., to handle crash failures. In absence of failures, the
specification of a task can be done just by specifying ∆ for the facets in the input complex.

In the topological framework, computation is modeled by a protocol complex that evolves
with time, where the notion of “time” depends on the computational model at hand. The
protocol complex at time t, denoted by P(t), captures all possible states of the system at
time t. Typically, a vertex of P(t) is a pair (p, s) where p is a process name, and s is a
possible state of p at time t. A set {(pi, si) : i ∈ I} of such vertices, for ∅ 6= I ⊆ [n], forms a
simplex of P(t) if the states si, i ∈ I, are mutually compatible, that is, if {si : i ∈ I} forms a
possible global state for the processes in the set {pi : i ∈ I} at time t.

A crucial point is that an algorithm that outputs in time t induces a mapping δ : P(t) → O.
Specifically, if the process pi with state si at time t outputs yi, then δ maps the vertex
(pi, si) ∈ P(t) to the vertex δ(pi, si) = (pi, yi) in O. For the task to be correctly solved, the
mapping δ must preserve the simplices of P(t), and must agree with the specification ∆ of the
task. That is, δ must map simplices to simplices, and if the configuration {(pi, si), i ∈ I} of a
distributed system is reachable at time t starting from the input configuration {(pi, xi), i ∈ I},
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then it must be the case that {δ(pi, si), i ∈ I} ∈ ∆({(pi, xi), i ∈ I}). The set of configurations
reachable in time t stating from an input configuration σ ∈ I is denoted by Ξt(σ). In
particular, Ξt : I → 2P(t) is a carrier map.

Fundamental Lemma. The framework defined by Herlihy and Shavit [12] enables to char-
acterize the power and limitation of distributed computing, thanks to the following generic
result, which can be viewed as the basis of distributed computing within the topological
framework. Let us consider some (deterministic) distributed computing model, assumed
to be full information, that is, every process communicates its entire history at each of its
communication step. The following result connects solvability of a task by an algorithm in
a given model with the existence of a mapping of a specific form between the topological
complexes corresponding to this task and this model (see [4, 11,12] for instantiations of this
result for different computational models).

I Lemma 1. A task (I,O,∆) is solvable in time t if and only if there exists a simplicial
map δ : P(t) → O such that, for every σ ∈ I, δ(Ξt(σ)) ⊆ ∆(σ).

Again, beware that the notion of time in the above lemma depends on the computational
model. The topology of the protocol complex P(t), and the nature of the carrier map
Ξt, depend on the input complex I, and on the computing model at hand. For instance,
wait-free computing in asynchronous shared memory systems induces protocol complexes by
a deformation of the input complex, called chromatic subdivisions [11]. Similarly, t-resilient
computing may introduce holes in the protocol complex, in addition to chromatic subdivisions.
More generally, the topological deformation Ξt of the input complex caused by the execution
of a full information protocol in the considered computing model entirely determines the
existence of a decision map δ : P(t) → O, which makes the task (I,O,∆) solvable or not in
that model.

Topological Invariants. The typical approach for determining whether a task (e.g., consen-
sus) is solvable in t rounds consists of identifying topological invariants, i.e., properties of
complexes that are preserved by simplicial maps. Specifically, the approach consists in:
1. Identifying a topological invariant, i.e., a property satisfied by the input complex I, and

preserved by Ξt;
2. Checking whether this invariant, which must be satisfied by the sub-complex δ(P(t)) of

the output complex O, does not contradict the specification ∆ of the task.
For instance, in the case of binary consensus, the input complex I‖ is a sphere. One
basic property of spheres is being path-connected (i.e., there is a path in I‖ between any
two vertices). As mentioned earlier, shared-memory wait-free computing corresponds to
subdividing the input complex [11]. Therefore, independently from the length t of the
execution, the protocol complex P(t) is a chromatic subdivision of the sphere I‖, and thus it
remains path-connected. On the other hand, the output complex O‖ of binary consensus is
the disjoint union of two complexes O0 and O1, where Oy =

{
{(i, y) : i ∈ I}, I ⊆ [n], I 6= ∅

}
for y ∈ {0, 1}. Since simplicial maps preserve connectivity, it follows that δ(P(t)) ⊆ O0 or
δ(P(t)) ⊆ O1. As a consequence, δ cannot agree with ∆‖, as the latter maps the simplex
{(i, 0), i ∈ [n]} to O0, and the simplex {(i, 1), i ∈ [n]} to O1. Therefore, consensus cannot be
achieved wait-free, regardless of the number t of rounds.

The fact that connectivity plays a significant role in the inability to solve consensus in
the presence of asynchrony and crash failures is known since the original proof of the FLP
theorem [8] in the early 1980s. However, the relation between k-set agreement and higher
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dimensional forms of connectivity (i.e., the ability to contract high dimensional spheres)
was only established ten years later [12,18]. We refer to [11] for numerous applications of
Lemma 1 to various models of distributed computing, including asynchronous crash-prone
shared-memory or fully-connected message passing models. In particular, for tasks such as
renaming, identifying the minimal number t of rounds enabling a simplicial map δ to exist is
currently the only known technique for upper bounding their time complexities [1].

Network Computing. Recently, Castañeda et al. [4] applied Lemma 1 to synchronous
fault-free computing in networks, that is, to the framework in which processes are located
at the vertices of a simple (no multiple edges, no loops) n-node undirected graph G, and
can exchange messages only along the edges of that graph. They mostly focus on input-
output tasks such as consensus and set-agreement, in a simplified computing model, called
KNOW-ALL, specifying that every process is initially aware of the name and the location of
all the other processes in the network. As observed in [4], synchronous fault-free computing
in the KNOW-ALL model preserves the facets of the input complex, and does not subdivide
them. However, scissor cuts may occur between adjacent facets during the course of the
computation, that is, the protocol complex P(t) is obtained from the input complex I by
partially separating facets that initially shared a simplex. Figure 1 illustrates two types of
scissor cuts applied to the sphere, corresponding to two different communication networks.
The positions of the cuts depend on the structure of the graph G in which the computation
takes place, and determining the precise impact of the structure of G on the topology of the
protocol complex is a nontrivial challenge, even in the KNOW-ALL model.

(a) (b) (c)

Figure 1 (a) The input complex of binary consensus for three processes; (b) The scissor cuts for
the consistently directed 3-process cycle C3 after one round; (c) The scissor cuts for the directed
3-process star S3, where edges are directed from the center to the leaves, after one round.

Instead, we aim at analyzing classical graph problems (e.g., coloring, independent set,
etc.) in the standard LOCAL model [17] of network computing, which is weaker than the
KNOW-ALL model, and thus allows for more complicated topological deformations. In the
LOCAL model, every node is initially aware of solely its identifier (which is unique in the
network), and its input (e.g., for minimum weight vertex cover or for list-coloring), all nodes
wake up synchronously, and compute in locksteps. The LOCAL model is an ideal model for
studying locality in the context of network computing [17].

In addition to the fact that the topological deformations of the protocol complexes
strongly depend on the structure of the network, another obstacle that makes applying the
topological approach to the LOCAL model even more challenging is the presence of process
identifiers. Indeed, the model typically assumes that the node IDs are taken in a range
[N ] where N = poly(n). As a consequence, independently from the potential presence of
other input values, the size of the complexes (i.e., their number of vertices) may become
as large as

(
N
n

)
n!, since there are

(
N
n

)
ways of choosing n IDs, and n! ways of assigning the

n chosen IDs to the n nodes of G (unless G presents symmetries). For instance, Figure 1
assumes the KNOW-ALL model, hence fixed IDs. Redrawing these complexes assuming that
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the three processes can pick arbitrary distinct IDs as in the LOCAL model, even in the small
domain {1, 2, 3, 4}, would yield a cumbersome figure with 24 nodes. Note that the presence
of IDs also results in input complexes that may be topologically more complicated than
pseudospheres, even for tasks such as consensus.

Importantly, the fact that the IDs are not fixed a priori, and may even be taken in a
range exceeding [n], is inherent to distributed network computing. Indeed, this framework
aims at understanding the power and limitation of computing in large networks, from LANs
to the whole Internet, where the processing nodes are assigned arbitrary IDs taken from a
range of values which may significantly exceed the number of nodes in the network.

Objective. To sum up, while the study of protocol complexes has found numerous applica-
tions in the context of fault-tolerant message-passing or shared-memory computing, extending
this theory to network computing faces a difficulty caused by the presence of arbitrary IDs,
which are often the only inputs to the processes [17]. The objective of this paper is to show
how the combinatorial blowup caused by the presence of IDs in network computing can be
bypassed, at least as far as local computing is concerned.

2 Our Results

We show how to bypass the aforementioned exponential blowup in the size of the complexes,
that would result from a straightforward application of Lemma 1 for analyzing the com-
plexity of tasks in networks. Our result holds for a variety of problems, including classical
graph problems such as vertex and edge-coloring, maximal independent set (MIS), maximal
matching, etc. More specifically, it holds for the large class of locally checkable labeling
(LCL) tasks [16] on bounded-degree graphs. These are tasks for which it is possible to verify
locally the correctness of a solution, and thus they are sometimes viewed as the analog of
NP in the context of computing in networks. An LCL task is described by a finite set of
labels, and a local description of how these labels can be legally assigned to the nodes of a
network. Our local characterization theorem is strongly based on a seminal result by Naor
and Stockmeyer [16] who showed that the values of the IDs do not actually matter much for
solving LCL tasks in networks, but only their relative order matters.

We prove an analog of Lemma 1, but where the size of the complexes involved in the
statement is independent of the size of the networks. Specifically, the size of the complexes
in our characterization theorem depends solely on the maximum degree d of the network,
the number of labels used for the description of the task, and the number of rounds of
the considered algorithm for solving that task. In particular, the identifiers are taken from
a bounded-size set, even if the theorem applies to tasks defined on n-node networks with
arbitrarily large n, and for identifiers taken in an arbitrarily large range [N ]. We denote
by Kx,[y] the fact that the facets of K have dimension x, and that the IDs are taken in
the set {1, . . . , y}, and we let Kx = Kx,∅. Also π : Kx,[y] → Kx denotes the mapping that
removes the IDs of the vertices. Every LCL task in networks with maximum degree d can be
expressed topologically as a task (Id,Od,∆) where Id and Od are complexes of dimension d.
Our main result is the following.

I Theorem 2 (A simplified version of Theorem 3). For every LCL task T = (Id,Od,∆) on
graphs of maximum degree d, and for every t ≥ 0, there exists R ∈ N such that the following
holds. The task T is solvable in t rounds in the LOCAL model if and only if there is a
simplicial map δ : P(t)

d,[R] → Od such that, for every facet σ ∈ Id,[R], δ(Ξt(σ)) ⊆ ∆(π(σ)).
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Figure 2 provides a rough description of the commutative diagram corresponding to
the brute force application of Lemma 1 to LCL tasks, and of the commutative diagram
corresponding to Theorem 2. Note that Lemma 1, which corresponds to the left diagram
in Figure 2, involves global complexes with (n− 1)-dimensional facets, whose vertices are
labeled by IDs in an arbitrarily large set [N ]. In contrast, the complexes corresponding
to Theorem 2, which correspond to the right diagram, are local complexes, with facets of
constant dimension, and vertices labeled with IDs in a finite set whose size is constant w.r.t.
the number of nodes n in the network.

In−1,[N ] P(t)
n−1,[N ]

On−1,[N ]

Ξt

∆ δ

Id,[R] P(t)
d,[R]

Id Od

Ξt

∆

π δ

Figure 2 The commutative diagrams of Lemma 1 (left), and Theorem 2 (right).

As an application of Theorem 2, we reformulate the celebrated lower bound Ω(log∗ n)
rounds for 3-coloring the n-node ring by Linial [15], in the algebraic topology framework (see
Corollary 4).

3 Models and Definitions

The LOCAL model. The LOCAL model was introduced more than a quarter of a century
ago (see, e.g., [15, 16]) for studying which tasks can be solved locally in networks, that is,
which tasks can be solved when every node is bounded to collect information only from nodes
in its vicinity. Specifically, the LOCAL model [17] states that the processors are located at the
nodes of a simple connected graph G = (V,E) modeling a network. All nodes are fault-free,
they wake up simultaneously, and they execute the same algorithm. Computation proceeds
in synchronous rounds, where a round consists of the following three steps performed by
every node: (1) sending a message to each neighbor in G, (2) receiving the messages sent
by the neighbors, and (3) performing local computation. There are no bounds on the size
of the messages exchanged at every round between neighbors, and there are no limits on
the individual computational power or memory of the nodes. These assumptions enable the
design of unconditional lower bounds on the number of rounds required for performing some
task (e.g., for providing the nodes with a proper coloring), while the vast majority of the
algorithms solving these tasks do not abuse of these assumptions [19], that is, they exchange
small (i.e., polylogarithmic size) messages, and perform efficient (i.e., poly-time) individual
computations.

Every node in the network has an identifier (ID) which is supposed to be unique in
the network. In n-node networks, the IDs are supposed to be in a range 1, . . . , N where
N � n typically holds (most often, N = poly(n)). The absence of limits on the amount of
communication and computation that can be performed at every round implies that the
LOCAL model enables full-information protocols, that is, protocols in which, at every round,
every node sends all the information it acquired during the previous rounds to its neighbors.
Therefore, for every t ≥ 0, and every graph G, a t-round algorithm allows every node in G to
acquires a local view of G, which is a ball in G centered at that node, and of radius t. A
view includes the inputs and the IDs of the nodes in the corresponding ball. It follows that a
t-round algorithm in the LOCAL model can be considered as a function from the set of views
of radius t to the set of output values.
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Locally Checkable Labelings (LCL). Let d ≥ 2, and let Gd be the class of connected simple
undirected d-regular graphs (all nodes have degree d). Recall that, for a positive integer c,
c-coloring is the task consisting in providing each node with a color in {1, . . . , c} in such a
way that no two adjacent nodes are given the same color. Maximal independent set (MIS) is
the closely related task consisting in providing each node with a boolean value (0 or 1) such
that no two adjacent nodes are given the value 1, and every node with value 0 is adjacent
to at least one node with value 1. Proper c-coloring in Gd can actually be described by the
collection of good stars of degree d, and with nodes colored by labels in {1, . . . , c}, such
that the center node has a color different from the color of each leaf. Similarly, maximal
independent set (MIS) in Gd can be described by the collection of stars with degree d, and
with each node colored by a label in {0, 1}, such that if the center node is labeled 1 then all
the leaves are colored 0, and if the center node is labeled 0 then at least one leaf is colored 1.
Other tasks such as variants of coloring, or (2, 1)-ruling set1 can be described similarly, by a
finite number of legal labeled stars.

More generally, given a finite set L of labels, we denote by SLd the set of all labeled stars
resulting from labeling each node of the (d + 1)-node star by some label in L. A locally
checkable labeling (LCL) [16] is then defined by a finite set L of labels, and a set S ⊆ SLd .
Every star in S is called a good star, and those in SLd \ S are bad. The computing task
defined by an LCL (L,S) consists, for every node of every graph G ∈ Gd, of computing a
label in L such that every resulting labeled radius-1 star in G is isomorphic to a star in S. In
other words, the objective of every node is to compute a label in L such that every resulting
labeled radius-1 star in G is good. It is undecidable, in general, whether a given LCL task
has an algorithm performing in O(1) rounds in the LOCAL model [16].

In their full generality, LCL tasks include tasks in which nodes have inputs, potentially
of some restricted format. For instance, this is the case of the task consisting of reducing
c-coloring to MIS in the n-node cycle Cn, studied in the next section. Hence, in its full
generality, an LCL task is described by a quadruple (Lin,Sin,Lout,Sout) where Lin and Lout
are the input and output labels, respectively. The set of stars Sin can often be simply viewed
as a promise stating that every radius-1 star of the input graph G belongs to Sin, and the
set Sout is the target set of good radius-1 stars. LCL tasks also capture settings in which the
legality of the output stars depends on the inputs. A typical example of such a setting is
list-coloring where the output color of each node must belong to a list of colors given to this
node as input. The framework of LCL tasks can be extended to balls of radius r > 1, and
assuming radius 1 is not restrictive, up to increasing the size of the set of labels [3].

4 Warm Up: Coloring and MIS in the Ring

In this section, we exemplify our technique, in a way that resembles the proof of Theorem 2.
We consider an LCL task on a ring, where the legal input stars define a proper 3-coloring,
and the output stars define a maximal independent set (MIS). That is, we study the time
complexity of reducing a 3-coloring to a MIS on a ring. It is known [15] that there is a
2-round algorithm for the problem in the LOCAL model, and we show that this is optimal
using topological arguments. This toy example provides the basic concepts and arguments
that we use later, when considering general LCL tasks and proving Theorem 2.

1 Recall that an (α, β)-ruling set in a graph G = (V,E) is a set R ⊆ V such that, for any node v ∈ V
there is a node u ∈ R in distance at most β from v, and any two nodes in R are at distance at least α
from each other.

ICALP 2020
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4.1 Reduction from 3-coloring to MIS
Let us consider three consecutive nodes of the n-node ring Cn, denoted by p−1, p0, and p1,
as displayed on Figure 3.

p0 p1p-1

Figure 3 Three consecutive nodes in the n-node ring.

By the independence property, if p0 is in the MIS, then neither p−1 nor p1 can be in the
MIS, and, by the maximality property, if p0 is not in the MIS, then p−1 or p1, or both, must
be in the MIS. These constraints are captured by the complexM2 displayed on Figure 4,
including six vertices (pi, x), with i ∈ {−1, 0, 1}, and x ∈ {0, 1}, where x = 1 (resp., x = 0)
indicates that pi is in the MIS (resp., not in the MIS).

(p0,1)

(p1,0)(p-1,0)

(p-1,1)(p1,1)

(p0,0)

1

11

0 0
0

(a) (b)

p0 p1p-1

Figure 4 The local complexM2 of MIS in the ring. (a) the vertices are labeled with the index
of the processes and the values; (b) the indexes of the processes are replaced by colors.

The complexM2 of Figure 4 has four facets of dimension 2: they are triangles. Some
triangles intersect along an edge, while some others intersect only at a node. The complex
M2 is called the local complex of MIS in the ring (the index 2 refers to the fact that rings
have degree 2). Note that the sets {(p−1, 0), (p0, 0), (p1, 0)} and {(p−1, 1), (p0, 1), (p1, 1)}
do not form simplices of M2. We call these two sets monochromatic. In the objective of
reducing 3-coloring to MIS,M2 will be the output complex, corresponding to Od with d = 2
in Figure 2 and in Theorem 2.

Similarly, let us focus on 3-coloring, with the same three processes p−1, p0, and p1. The
neighborhood of p0 cannot include the same color as its own color, and thus there are twelve
possible colorings of the nodes in the star centered at p0. Each of these stars corresponds
to a 2-dimensional simplex, forming the facets of the local complex C2 of 3-coloring in the
ring, depicted in Figure 5. This complex contains nine vertices of the form (pi, c), with
i ∈ {−1, 0, 1}, and c ∈ {1, 2, 3}, and twelve facets. Note that the vertices (p−1, 3) and (p1, 3)
appear twice in the figure, since the leftmost and rightmost edges are identified, but in
opposite direction, forming a Möbius strip. C2 is a manifold (with boundary). When reducing
3-coloring to MIS, C2 will be the input complex, corresponding to Id with d = 2 in Figure 2.

Remark. It is crucial to note that the complexes displayed in Figures 4 and 5 are not the
ones used in the standard settings (e.g., [4, 11]), for which Lemma 1 would use vertices
of the form (p, x) for p ∈ [n], or even p ∈ [N ] assuming IDs in a range of N values. As
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1

1

1 2

2

2

3

3

3

3

3

p0 p1p-1

Figure 5 Local complex C2 of 3-coloring in the ring.

a consequence, these complexes have 6 vertices instead of 2n!
(
N
n

)
for MIS, and 9 vertices

instead of 3n!
(
N
n

)
for coloring, where n can be arbitrarily large. Even if the IDs would have

been fixed, the approach of Lemma 1 would yield complexes with a number of vertices linear
in n, while the complexes of Figs. 4 and 5 are of constant size.

As it is well know since the early work by Linial [15], a properly 3-colored ring can be
“recolored” into a MIS in just two rounds. First, the nodes colored 3 recolor themselves 1 if
they have no neighbors originally colored 1. Then, the nodes colored 2 do the same, i.e., they
recolor themselves 1 if they have no neighbors colored 1 (whether it be neighbors originally
colored 1, or nodes that recolored themselves 1 during the first round). The nodes colored 1
output 1, and the other nodes output 0. The set of nodes colored 1 forms a MIS. Note that
this algorithm is ID-oblivious, i.e., it can run in an anonymous network.

Task specification. The specification of reducing 3-coloring to MIS can be given by the
trivial carrier map ∆ : C2 → 2M2 defined by ∆(F ) = {F ′ : F ′ is a facet ofM2} for every
facet F of C2. (As the LOCAL model is failure-free, it is enough to describe all maps at the
level of facets.) Note that the initial coloring of a facet in C2 does not induce constraints
on the facet of M2 to which it should be mapped. Figure 6 displays some of the various
commutative diagrams that will be considered in this section. In all of them, ∆ is the carrier
map specifying reduction from 3-coloring to MIS in the ring, and none of the simplicial maps
δ exist. Also recall that π is the map removing IDs.

C2,∅ C2,∅

C2 M2

Ξ0

∆

π δ

C2,∅ P(1)
2,∅

C2 M2

Ξ1

∆

π δ

C2,[24] C2,[24]

C2 M2

Ξ0

∆

π δ

C2,[R] P(1)
2,[R]

C2 M2

Ξ1

∆

π δ

Figure 6 Complexes corresponding to reduction from 3-coloring to MIS in the n-node ring. From
left to right: 0 rounds without IDs, 1-round without IDs, 0 rounds with ID, and 1-round with IDs.

4.2 ID-Oblivious Algorithms
Impossibility in Zero Rounds. Let us consider an alleged ID-oblivious algorithm alg which
reduces 3-coloring to MIS in zero rounds. Such an algorithm sees only the node’s color
c ∈ {1, 2, 3}, and must map it to some x ∈ {0, 1}. This mapping can be extended to
a mapping δ that maps every pair (pi, c) with i ∈ {−1, 0, 1} and c ∈ {1, 2, 3} to a pair
δ(pi, c) = (pj , x), j ∈ {−1, 0, 1} and x ∈ {0, 1}, with the following properties.
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Name-preservation. The mapping δ must satisfy that pj = pi, i.e., δ is name-preserving.
By the name-preserving property, the algorithm maps the vertices in Figure 5 to the
vertices in Figure 4(b) while preserving the names p−1, p0, p1 of these vertices. Therefore,
the algorithm induces a chromatic simplicial map δ : C2 →M2. (The “color” of p, i.e.,
p’s name, is preserved).
Name-independence. In addition to name-preservation, the mapping δ must satisfy that,
for every i 6= j, (pi, c) and (pj , c) are mapped to (pi, xi) and (pj , xj), respectively, with
xi = xj , i.e., δ is name-independent. Indeed, the names p−1, p0, and p1 given to the nodes
are “external”, i.e., they are not part of the input to the algorithm alg.

We are therefore questioning the existence of a name-preserving name-independent
simplicial map δ : C2 →M2. This is in correspondence to Figure 2 and Theorem 2, in the
degenerated case where t = 0 and [R] = ∅, for which C2 = I2, and C2,∅ = I2,∅ = P(0)

2,∅ = C2 –
see the leftmost diagram in Figure 6. There cannot exist a name-preserving name-independent
simplicial map δ from the manifold C2 to M2 (from Figure 5 to Figure 4(b)), which we
formally prove in the full version of the paper [9]. The intuition is that if some triangle
of C2 is mapped to the triangle {(p0, 1), (p−1, 0), (p1, 0)} ofM2 then all triangles of C2 must
be mapped to that triangle of M2, from which it follows by name-independence that all
processes output 1, or all processes output 0, which leads to contraction in both cases. The
absence of a name-independent name-preserving simplicial map δ : C2 →M2 is a witness of
the impossibility to construct a MIS from a 3-coloring of the ring in zero rounds, when using
an ID-oblivious algorithm.

Impossibility in One Round. For analyzing 1-round algorithms, let us consider the local
protocol complex P(1)

2,∅, including the views of the three nodes p−1, p0, and p1 after one round.
The vertices of P(1)

2,∅ are of the form (pi, xyz) with i ∈ {−1, 0, 1}, and x, y, z ∈ {1, 2, 3},
x 6= y, and y 6= z. The vertex (pi, xyz) is representing a process pi starting with color y, and
receiving the input colors x and z from its left and right neighbors, respectively. The facets
of P(1)

2,∅ are of the form {(p−1, x
′xy), (p0, xyz), (p1, yzz

′)}. Figure 7 displays that complex,
which consists of three connected components K1,K2, and K3 where, for y = 1, 2, 3, Ky
includes the four vertices (p0, xyz) for x, z ∈ {1, 2, 3}r {y}, and all triangles that include
these vertices. Each set of four triangles sharing a vertex (p0, xyz) forms a cone (see Figure 8).
These cones are displayed twisted on Figure 7 to emphasis the “circular structure” of the
three components.
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312

323

321

121

323

123 321

131

232

132 2311Ƙ 2Ƙ 3Ƙ

p0 p1p-1

Figure 7 Local protocol complex P(1)
2,∅ after 1 round starting from a 3-coloring of the ring.
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Following the same reasoning as for 0-round algorithms, a 1-round algorithm alg induces
a chromatic (i.e., name-preserving) simplicial map δ : P(1)

2,∅ →M2, as in the second to left
diagram in Figure 6. In the full version, we show that such a mapping cannot exist [9].

212

121

321

121

123

212

121

123 321

121

(a) (b)

p0 p1p-1

Figure 8 (a) A cone composed of four triangles; (b) The same cone “twisted”.

The 2-Round Algorithm. The local protocol complex P(2)
2,∅ includes the views of the three

nodes p−1, p0, and p1 after two rounds. The vertices of P(2)
2,∅ are of the form (pi, c1c2c3c4c5)

with i ∈ {−1, 0, 1}, cj ∈ {1, 2, 3} for 1 ≤ j ≤ 5, and cj 6= cj+1 for 1 ≤ j < 5. Figure 9(a)
displays one of the connected components of P(2)

2,∅, denoted K323 ,which includes the four
vertices (p0, c1323c5), c1, c5 ∈ {1, 2}. There are 12 disjoint isomorphic copies of this connected
component in P(2)

2,∅, one for each triplet c2, c3, c4 ∈ {1, 2, 3}, c2 6= c3, and c3 6= c4.

1

11

0 0

0

σ00

σ01 σ10
σ11

(a) (b)

31323

21323

32323

12323

32313

32312

32323

32321

13231

23232

13
23
2 23231

p0 p1p-1

Figure 9 (a) The sub-complex K323 of the local protocol complex P(2)
2,∅. (b) The facets ofM2.

Interestingly, each connected component of P(2)
2,∅ is isomorphic to each connected compo-

nent of P(1)
2,∅, while there are more connected components in P(2)

2,∅ than in P(1)
2,∅. However,

the larger views of the processes provides more flexibility for the mapping from P(2)
2,∅ toM2

than for the mapping from P(1)
2,∅ to M2. And indeed, the 2-round anonymous algorithm

presented at the end of Section 4.1 does induce a chromatic simplicial map δ : P(2)
2,∅ →M2.

Specifically, the four sub-complexes Kx1y, as well as the simplex K232 are entirely mapped
to the simplex σ00 (see Figure 9(b) for the labeling of the four facets of M2). The two
sub-complexes K1x1 are entirely mapped to the simplex σ11. The two sub-complexes K321
and K231 are entirely mapped to the sub-complex σ01 ∪ σ11, and the two sub-complexes K123
and K132 are entirely mapped to the sub-complex σ10 ∪ σ11. The mapping of the remaining
sub-complex K323 is more sophisticated, and illustrates that the simple algorithm showing
reduction from 3-coloring to MIS in [15] is actually topologically non-trivial. Indeed, K323 is
mapped by the algorithm so that it wraps around the hole inM2, as depicted in Figure 9.
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4.3 General Case with IDs
The presence of IDs given to the nodes adds power to the distributed algorithms, as the
output of a process is not only a function of the observed colors in its neighborhood, but
also of the observed IDs. In particular, after one round, a process p is not only aware of a
triplet of colors (c1c2c3), but also of a triplet of distinct IDs (x1x2x3).

Impossibility in Zero Rounds with IDs. Since the simplicial maps δ induced by the potential
algorithms are name-preserving, they actually act on pairs (x, c) where x is an ID and c is a
color, i.e., δ(p, (x, c)) = (p, δ̂(x, c)) for some δ̂. For brevity, we identify δ̂ with δ. Let us assume
that the IDs are from {1, . . . , R}, for some R ≥ 4. That is, we consider now C2,[R] for R ≥ 4.
By the pigeon-hole principle, there exists a set I1 ⊆ {1, . . . , R} with |I1| ≥ R/2 such that, for
every x, x′ ∈ I1, δ(x, 1) = δ(x′, 1). Therefore, again by the pigeon-hole principle, there exists
a set I2 ⊆ I1 with |I2| ≥ |I1|/2 such that, for every x, x′ ∈ I2, δ(x, 2) = δ(x′, 2). Finally,
there exists a set I3 ⊆ I2 with |I3| ≥ |I2|/2 such that, for every x, x′ ∈ I3, δ(x, 3) = δ(x′, 3).
Therefore, there exists a set I ⊆ {1, . . . , R} with |I| ≥ R/8 such that, for every x, x′ ∈ I,
δ(x, 1) = δ(x′, 1), δ(x, 2) = δ(x′, 2), and δ(x, 3) = δ(x′, 3). Therefore, whenever R ≥ 24,
the set I has size at least 3. Consider the sub-complex C′2,[R] of C2,[R] induced by the three
smallest IDs in I – this sub-complex is isomorphic to C2,∅ (Figure 5). More importantly, the
mapping from C′2,[R] toM2 depends only on the colors and not on the IDs, by the choice
of I. Hence, if there was a mapping from C′2,[R] toM2, then there would exist a mapping
from C2,∅ toM2, which we know does not exist.

It follows that there are no mappings from C2,[24] = P(0)
2,[24] to M2 – see the second to

right diagram in Figure 6. In other words, if the IDs are picked from a set of at least 24
values, then 3-coloring cannot be reduced to MIS in zero rounds.

Impossibility in One Rounds with IDs. We reduce the case with IDs to the case without
IDs following the guideline introduced in [16]. We consider the 1-round protocol complex with
IDs in a finite set X with at least 5 elements, denoted by P(1)

2,X . That is, P(1)
2,X = P(1)

2,[k] with
k = |X|. The vertices of this complex are of the form (pi, (xyz, abc)) where i ∈ {−1, 0, 1},
{x, y, z} ∈

(
X
3
)
, and a, b, c ∈ {1, 2, 3} with a 6= b and b 6= c. The facets of P(1)

2,X are of the
form F = {(p−1, (x′xy, a′ab)), (p0, (xyz, abc)), (p1, (yzz′, bcc′))}. Let us assume the existence
of a name-preserving name-independent simplicial map δ : P(1)

2,X →M2 (see the rightmost
diagram in Figure 6). This map induces a labeling of the pairs (xyz, abc) with labels
in {0, 1}, where xyz is an ordered triplet of distinct IDs, and abc is an ordered triplet
of colors in {1, 2, 3}. It follows that δ induces a labeling of the ordered triplets xyz of
distinct IDs by labels in {0, 1}12, by applying δ to the 12 possible choices of color triplets.
By Ramsey’s Theorem [14], by taking the IDs in the set X = {1, . . . , R} with R large
enough, there exists a set Y of five IDs such that, for every two sets {x, y, z} and {x,′ y′, z′}
of IDs in Y , with x < y < z and x′ < y′ < z′, and for every ordered sequence abc of
colors, δ(p0, (xyz, abc)) = δ(p0, (x′y′z′, abc)). Let P(1)

2,Y be the sub-complex of the 1-round
protocol complex P(1)

2,X induced by the vertices with IDs in Y ordered in increasing order.
By construction of Y , δ is ID-oblivious on P(1)

2,Y . Now, let P
(1)
2,∅ as displayed on Figure 7. Let

us define the map δ′ : P(1)
2,∅ →M2 by δ′(pi, abc) = δ(pi, (xyz, abc)) where {x, y, z} ⊂ Y and

x < y < z. Note that δ′ is well defined as δ is ID-oblivious on Y . Assuming δ : P(1)
2,X →M2

is simplicial yields that δ′ : P(1)
2,∅ →M2 is simplicial as well. We have seen in Section 4.2

that such a simplicial mapping does not exist. It follows that there are no name-preserving
name-independent simplicial maps δ : P(1)

2,[R] →M2 whenever R is large enough (see Figure 6).
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5 Topology of LCL Tasks

Let Sd be the star of d + 1 nodes, whose center node is named p0, and the leaves are
named pi, for i = 1, . . . , d. We consider algorithms for classes G ⊆ Gd of graphs. Let
T = (Lin,Sin,Lout,Sout) be an LCL task for G ⊆ Gd. The input complex Id (resp., output
complex Od) associated with T is the complex where {(pi, xi) : i ∈ {0, . . . , d}} is a facet
of Id (resp., a facet of Od) if xi ∈ Lin (resp., Lout) for every i ∈ {0, . . . , d}, and the labeled
star resulting from assigning label xi to the node pi of Sd for every i ∈ {0, . . . , d} is in Sin
(resp., Sout). If the considered LCL task T imposes constraints on the correctness of the
outputs as a function of the inputs, as in list-coloring, then the carrier map ∆ : Id → 2Od

specifies, for each facet F ∈ Id, the facets ∆(F ) which are legal with respect to F . Otherwise,
∆(F ) = {all facets of Od}, for every facet F of Id.

Let t ≥ 0, and let us fix a graph G = (V,E) in G ⊆ Gd. In t rounds, every node in G
acquires a view w, whose structure is isomorphic to a radius-t ball in G centered at that
node, including the input labels and the IDs of the nodes in the ball. An ordered collection
w0, . . . , wd of views at distance t forms a collection of mutually compatible views for G if
there exists a graph G ∈ G, an assignment of input labels and IDs to the nodes of G, and a
star S in G, with nodes v0, . . . , vd, centered at v0, such that wi is the view of vi in G after t
rounds, for i = 0, . . . , d.

Let T be an LCL task for G ⊆ Gd, and let t ≥ 0. The t-round protocol complex associated
with T for a finite set X of IDs, is the complex P(t)

d,X where F = {(pi, wi) : i ∈ {0, . . . , d}}
is a facet of P(t)

d,X if w0, . . . , wd is an ordered collection of mutually compatible views at
distance t for G. The special case t = 0 corresponds to P(0)

d,X = Id,X where Id,X in the input
complex Id extended with IDs in X. The set X must be large enough for all the nodes in the
views wi, i = 0, . . . , d, to be provided with distinct IDs. Namely, |X| ≥ N(d, t+ 1), where
N(d, t+ 1) denotes the maximum number of nodes in the ball of radius t in a graph in G.

Two mappings from Id,X play a crucial role. The first is the simplicial map π : Id,X → Id
defined by π(pi, (id, x)) = (pi, x) for every i = 0, . . . , d, every id ∈ X, and every x ∈ Lin.
The second is the carrier map Ξt : Id,X → 2P

(t)
d,X that specifies, for each facet F ∈ Id,X , the

set Ξt(F ) of facets which may result from F after t rounds of computation in graphs in G.
Specifically, they are merely the facets of P(t)

d,X for which the views w0, . . . , wd are compatible
with the IDs and inputs of p0, . . . , pd in F .

Our main result is an analog of the generic lemma (see Lemma 1), but involving local
complexes, even for tasks defined on arbitrarily large networks, and for arbitrarily large sets
of IDs.

I Theorem 3. Let T = (Id,Od,∆) be an LCL task for G ⊆ Gd, and let t ≥ 0.
If there exists a distributed algorithm solving T in t rounds in the LOCAL model then, for
every R ≥ N(d, t+ 1), there is a name-independent and name-preserving simplicial map
δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F )) ⊆ ∆(π(F )).
There exists R ≥ N(d, t+ 1) satisfying that, if there is a name-independent and name-
preserving simplicial map δ : P(t)

d,[R] → Od such that, for every facet F ∈ Id,[R], δ(Ξt(F )) ⊆
∆(π(F )), then there is a distributed algorithm solving T in t rounds in the LOCAL model.

Proof. Let us fix an LCL task T = (Lin,Sin,Lout,Sout) = (Id,Od,∆) for G, and t ≥ 0. Let
alg be a t-round algorithm for T . For any finite set X of IDs, let δX : P(t)

d,X → Od defined by
δX(pi, wi) = (pi,alg(wi)), for every i = 0, . . . , d. By construction, δX is name-independent,
and name-preserving. To show that δX is simplicial, let F ′ = {(pi, wi) : i ∈ {0, . . . , d}} be
a facet of the protocol complex P(t)

d,X . This facet is mapped to δX(F ′) = {(pi,alg(wi)) :
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i ∈ {0, . . . , d}}. Since alg solves T , every output alg(wi) is in Lout, and the labeled star
resulting from assigning label alg(wi) to the node pi of the star Sd, for every i ∈ {0, . . . , d},
is in Sout. It follows that δX(F ′) is a facet of Od, and thus δX is simplicial. Moreover, if
the facet F ′ belongs to the image Ξt(F ) of a facet F of Id,X , since alg solves T , it follows
that δX(F ′) ∈ ∆(π(F )) as desired. So, the existence of an algorithm alg guarantees the
existence of a simplicial map δX satisfying the requirements of the theorem for every large
enough set X of IDs.

We now show that, to guarantee the existence of an algorithm, it is sufficient to guarantee
the existence of a simplicial map δX just for one specific set X = [R]. In order to identify R,
we follow the same guideline as the specific impossibility proof in Section 4.3, using Ramsey’s
theorem. Note that the number of possible balls of radius t in graphs of G is finite, and
depends only on t and d. Given such a ball B, there are finitely many ways of assigning
input labels to the vertices of B. The number of assignments depends only on the structure
of B, and on |Lin|. (It may also depend on Sin, but in the worst case, all assignments are
possible.) Let us enumerate all the labeled balls in G as B(1), . . . , B(k). The number k of
such labeled balls depends only on d, t, and |Lin|. (It may also depend on G, but it is upper
bounded by a function of d, t, and |Lin|.)

For every labeled ball B(i), i = 1, . . . , k, let νi = |B(i)|. Let us rank the vertices of
B(i) arbitrarily from 1 to νi, and let Σi be the set of all permutations of {1, . . . , νi}. To
every π ∈ Σi corresponds a labeled ball B(i)

π in which the rank of the vertices is determined
by π. Now, let X be a finite set of IDs with |X| ≥ N(d, t + 1). We consider all possible
identity-assignments with IDs in X to the nodes of the labeled balls with ranked vertices,
B

(i)
π , i = 1, . . . , k, π ∈ Σi, as follows. For every S ⊆ X with |S| = N(d, t), let us order the

IDs in S in increasing order. Given a ranked labeled ball B(i)
π , i.e., a labeled ball B(i) whose

vertices are ranked by some permutation π ∈ Σi, the IDs in S are assigned to the nodes of
B

(i)
π by assigning the jth smallest ID in S to the node ranked π(j) in B(i)

π , for j = 1, . . . , νi.
By picking all i = 1, . . . , k, all π ∈ Σi, and all S ⊆ X, we obtain all possible views resulting
from performing a t-round algorithm in G with IDs taken from X. Let us order these views
as w(1), . . . , w(h), where the views induced by B(1) are listed first, then the views induced by
B(2), etc., until the views induced by B(k). Moreover, for a given i ∈ {1, . . . , k}, the views
corresponding to the labeled ball B(i) are listed according to the lexicographic order of the
permutations in Σi. Note that the number h of views depends only on d, t, |Lin|, and |X|.
Each set S is then “colored” by

c(S) = (δX(p0, w
(1)), . . . , δX(p0, w

(h))) ∈ {1, . . . , |Lout|}h.

In this way, the set
(

X
N(d,t)

)
is partitioned into |Lout|h classes. Thanks to Ramsey’s Theorem,

by taking set

X = [R] with R = R(a, b, c) for a = |Lout|h, and b = c = N(d, t+ 1),

we are guaranteed that there exists a set Y of at least N(d, t+1) IDs such that every two sets
S and S′ of N(d, t) IDs in Y are given the same color c(S) = c(S′). In other words, for any
ball B of radius t in a graph from G, and for every valid assignment of inputs values to the
nodes of B, if one assigns the IDs in S and S′ in the same manner (i.e., the ith smallest ID
of S is assigned to the same node as the ith smallest ID of S′), then δX(p0, w) = δX(p0, w

′),
where w and w′ are the views resulting from assigning IDs from S and S′ to the nodes,
respectively.
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Now, let us define the following t-round algorithm alg for T . Actually, this is precisely
the order-invariant algorithm constructed in [16]. Every node v collects the data available in
its centered ball B = BG(v, t) of radius t in the actual graph G ∈ G. Note that B contains
IDs, and input values. Node v reassigns the IDs to the nodes of B by using the |B| smallest
IDs in Y , and assigning these IDs to the nodes of B in the order respecting the order of the
actual IDs assigned to the nodes of B. Then node v considers the view w after reassignment
of the IDs, and outputs alg(w) = δX(p0, w). Note that δX returns values in Lout, and thus
alg is well defined.

To show correctness, let us consider a star v0, . . . , vd centered at v0 in some graph G ∈ G.
Performing alg in G, each of these d + 1 nodes acquires a view of radius t. These views
are mutually compatible. Let us reassign the IDs in the ball of radius t + 1 centered at
v0 in G, using the at most N(d, t + 1) smallest IDs in Y , and assigning these IDs to the
nodes of the ball B of radius t + 1 centered at v0, in the order respecting the order of
the actual IDs assigned to the nodes of B. The resulting views w0, . . . , wd of the d + 1
nodes v0, . . . , vd remain mutually compatible. It follows that if these d + 1 nodes would
output δX(p0, w0), . . . , δX(pd, wd), respectively, then the resulting star would be good. We
claim that this is exactly what occurs with alg. Indeed, first, δX is name-independent,
and thus δX(p0, w) = δX(pi, w) for every i = 1, . . . , d. Second, and more importantly, by
the construction of Y , the actual values of the IDs do not matter, but solely their relative
order. The reassignment of IDs performed at each of the nodes v0, . . . , vd is different from the
reassignment of IDs in the ball B of radius t+ 1 around v0, but the relative order of these IDs
is preserved as it is governed by the relative order of the original IDs in B. As a consequence,
the nodes of Sd correctly output δX(p0, w0), . . . , δX(pd, wd) in alg, as desired. J

To illustrate Theorem 3, we reprove the celebrated result by Linial [15] regarding 3-
coloring the n-node ring in at least 1

2 log∗ n − 1 rounds (see also [2, 3, 13]), which can be
obtained by iterating Corollary 4.

I Corollary 4. Let t ≥ 1, k ≥ 2, n ≥ 1, and N ≥ n. If there is a t-round algorithm for
k-coloring Cn = (v1, . . . , vn) whenever the IDs in [N ] are assigned to consecutive nodes
vi, vi+1, i ∈ {1, . . . , n− 1}, in increasing order of their indices, then there is a (t− 1)-round
algorithm for 22k -coloring Cn under the same constraints of the identity assignment.

Proof. Our aim is to find δt−1 : P(t−1)
[R] → O22k where O22k is the output complex for 22k -

coloring Cn. For this purpose, we follows the approach illustrated on Figure 10. That is, first,
we identify a functor Φ on a category corresponding to a subclass of simplicial complexes. From
the simplicial map δt : P(t)

[R] → Ok, we derive the simplicial map Φ(δt) : Φ(P(t)
[R]) → Φ(Ok).

Then we show that Φ(Ok) ⊆ O22k , and therefore Φ(δt) maps Φ(P(t)
[R]) to O22k . Finally, we

identify a simplicial map f : P(t−1)
[R] → Φ(P(t)

[R]) enabling to conclude that δt−1 : P(t−1)
[R] → O22k

defined by δt−1 = Φ(δt) ◦ f satisfies the hypotheses of Theorem 3, showing the existence of a
(t− 1)-round algorithm for 22k -coloring Cn.

More specifically, given any complex K with vertices (pi, v) with i ∈ {−1, 0, 1}, and v ∈ V
where V is a finite set of values, we define the functor Φ as follows. The complex Φ(K) is
on the set of vertices (pi,S) where S = {S1, . . . , S`} for some ` ≥ 0, and Si ⊆ V for every
i = 1, . . . , `. A set {(p−1,S−1), (p0,S0), (p1,S1)} forms a facet of Φ(K) if for every i ∈ {0, 1},

∃S ∈ Si−1 ∀S′ ∈ Si ∃v′ ∈ S′ ∀v ∈ S : {(pi−1, v), (pi, s′)} ∈ K. (1)
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P(t)
[R] Φ(P(t)

[R]) P(t−1)
[R]

Ok Φ(Ok) ⊆ O22k

Φ

Φ

δt

f

δt−1
Φ(δt)

Figure 10 Commutative diagrams in the proof of Corollary 4.

Given a simplicial map ψ : A → B the map Φ(ψ) is defined as

Φ(ψ)(pi,S) =
(
pi,
{{
π2◦ψ(pi, v1,1), . . . , π2◦ψ(v1,s1)

}
, . . . ,

{
π2◦ψ(v`,1), . . . , π2◦ψ(v`,s`

)
}})

for every i = {−1, 0, 1}, and every S = {S1, . . . , S`} with Sj = {vj,1, . . . , vj,sj
} and sj ≥ 0,

where π2 : B → V is the mere projection π2(pi, v) = v for every value v. By construction,
Φ(ψ) : Φ(A) → Φ(B) is simplicial. Note that if ψ is name-invariant and name-preserving,
then Φ(ψ) as well.

Next, we observe that Φ(Ok) is a sub-complex of O22k . To see why, note first that Φ
maps vertices of Ok to vertices of O22k . Moreover, a facet F = {(p−1,S−1), (p0,S0), (p1,S1)}
of Φ(Ok) is a facet of O22k . Indeed, Eq. (1) guarantees that there exists a set S in S−1
such that for every set S′ in S0, there exists a color v′ in S′ that is different from all the
colors in S. It follows that S /∈ S0, and therefore S−1 6= S0. By the same argument,
S0 6= S1, and thus F is a facet of O22k , as claimed. Finally, we define the simplicial
map f : P(t−1)

[R] → Φ(P(t)
[R]) as follows. Let us consider a vertex (pi, w) ∈ P(t−1)

[R] , with
w = (z−(t−1), . . . , z−1, z0, z1, . . . , zt−1) ∈ [R]2t−1 with z−(t−1) < · · · < zt−1. For every b ∈ [R]
with b > zt−1, let W b

i = {awb : a ∈ [R], a < z−(t−1)}, and let Wi = {W b
i : b ∈ [R], b > zt−1}.

We set f(pi, w) = (pi,Wi). This mapping maps every vertex of P(t−1)
[R] to a vertex of Φ(P(t)

[R]).
Let us show that f is simplicial. For this purpose, let us consider a facet

F = {(p−1, x
′xw), (p0, xwy), (p1, wyy

′)}

of P(t−1)
[R] . Here w = (z−(t−2), . . . , z−1, z0, z1, . . . , zt−2) ∈ [R]2t−3 with x′ < x < z−(t−2) <

· · · < zt−2 < y < y′. Let us consider the two sets W y
−1 ∈W−1 and W y′

0 ∈W0. We claim
that these are the two sets witnessing the validity of Eq. (1) for establishing the fact that f(F )
is a facet of Φ(P(t)

[R]). To see why, let W b
0 ∈ W0, and let x′xwyb ∈ W b

0 . The view ax′xwy

for p−1 is compatible with the view x′xwyb for p0, for every a < x′. Therefore, for every set
W b

0 ∈W0, there exists a view x′xwyb ∈W b
0 such that, for every view ax′xwy ∈W y

−1,

{(p−1, ax
′xwy), (p0, x

′xwyb)} ∈ P(t)
[R].

Hence Eq. (1) is satisfied for p−1 and p0. By the same arguments, using W y′

0 instead of W y
−1,

Eq. (1) is satisfied for p−1 and p0, from which it follows that f(F ) is a facet of Φ(P(t)
[R]). We

conclude that f is simplicial. Since both f and Φ(δ) are simplicial, the map δ′ = Φ(δ) ◦ f is
simplicial too, which completes the proof by application of Theorem 3. J

6 Conclusion and Further Work

This paper shows that the study of algorithms for solving LCL tasks in the LOCAL model can
be achieved by considering simplicial complexes whose sizes are independent of the number of
nodes, and independent of the number of possible IDs that could be assigned to these nodes.
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Two main directions for further work can be identified. A first direction is understanding
topological properties of the carrier map Ξt : Id,X → P(t)

d,X occurring in the LOCAL model
depending on the network. Another direction is understanding what governs the existence of
the simplicial map δ : P(t)

d,X → O depending on the considered task.
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