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Abstract
Most clustering algorithms have been designed only for pure numerical or pure categorical data sets, while nowadays many
applications generate mixed data. It raises the question how to integrate various types of attributes so that one could efficiently
group objects without loss of information. It is already well understood that a simple conversion of categorical attributes into
a numerical domain is not sufficient since relationships between values such as a certain order are artificially introduced.
Leveraging the natural conceptual hierarchy among categorical information, concept trees summarize the categorical attributes.
In this paper, we introduce the algorithm ClicoT (CLustering mixed-type data Including COncept Trees) as reported by
Behzadi et al. (Advances in Knowledge Discovery and Data Mining, Springer, Cham, 2019) which is based on the minimum
description length principle. Profiting of the conceptual hierarchies, ClicoT integrates categorical and numerical attributes
by means of a MDL-based objective function. The result of ClicoT is well interpretable since concept trees provide insights
into categorical data. Extensive experiments on synthetic and real data sets illustrate that ClicoT is noise-robust and yields
well-interpretable results in a short runtime. Moreover, we investigate the impact of concept hierarchies as well as various
data characteristics in this paper.

Keywords Mixed-type data · Information-theoretic clustering

1 Declarations

– Availability of data and material We used MPG, Auto-
mobile and Adult data sets from the UCI Public Data
Repository [7] as well as Airport data set from the public
project Open Flights (http://openflights.org/data.html).
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– Code availability Our algorithm is implemented in Java
and the source code as well as the data sets are publicly
available here: https://tinyurl.com/ucp8289.

2 Introduction

Clustering mixed data is a non-trivial task and typically is
not achieved by well-known clustering algorithms designed
for a specific type. It is already well understood that convert-
ing one type to another one is not sufficient since it might
lead to information loss. Moreover, relations among values
(e.g., a certain order) are artificially introduced. In order to
elaborate the issue, we generate a synthetic mixed-type data
and investigate the impact of converting a categorical data
type to a numerical one while applying well-known cluster-
ing algorithms.

Let Fig. 1 show a synthetically generated mixed-type data
consisting of three different clusters illustrated by different
shapes (rectangle, circle, cross), i.e., shapes are cluster IDs or
ground truth. Thus, there are two Gaussian-shaped clusters
where one of them (points with the shape rectangle) includes
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Fig. 1 Clustering results after converting categorical attribute Color to numerical (color figure online)

only data points having cyan as their color and the other clus-
ter (points with the shape cross) includes data points having
purple and rose as their color. The last cluster (points with
the shape circle) is a line-shaped cluster consisting of dark
green and light green data points.

The data set comprises two numerical attributes concern-
ing the position of data objects and a categorical attribute
representing the color of data points (rose, purple, light green,
dark green and cyan). Therefore, a data object in our syn-
thetic data looks like, for example (1, 2, purple). Numerical
attributes are generated following various random Gaussian
distributions. We simply converted the color to a numerical
attribute by mapping numbers to various colors. Considering
the normalized mutual information (NMI) [17] as an evalu-
ation measure, Fig. 1 depicts the inefficiency of applying
K-means and DBSCAN, two popular clustering algorithms,
on the converted data. Therefore, integrating categorical and
numerical attributes without any conversion is required since
it preserves the original format of any attribute.

Utilizing the minimum description length (MDL) princi-
ple, we can regard the clustering task as a data compression
problem such that the best clustering is linked to the strongest
data set compression. MDL allows integrative clustering by
relating the concepts of likelihood and data compression
while for any attribute a representative model is required.
Although for solely numerical data sets a probability dis-
tribution function (PDF) represents an approximation of
data, finding an appropriate approximation for categorical
attributes is not straightforward. Considering the natural
hierarchy among categorical values, concept hierarchies are
introduced to summarize the categorical information.Back to
the running example, assuming pink as a higher-level hier-
archy for the objects in the cluster consisting of rose and
purple, points with the shape × more accurately represent
the characteristics of the cluster.

Beyond the clustering approaches, detecting the most rel-
evant attributes during this process improves the quality of
clustering. However, considering a data set with an unknown
distribution where only few subgroups in the data space are
actually relevant to characterize a cluster, it is not trivial

to recognize the cluster-specific attributes. Thus, we intro-
duce an information-theoretic greedy approach to specify the
most relevant attributes. As a result, the novel parameter-
free CLustering algorithm for mixed-type data Including
COncept Trees, shortly ClicoT, provides a natural interpre-
tation. The approach consists of several contributions:

– Integration ClicoT integrates two types of information
considering data compression as an optimization goal.
ClicoT flexibly learns the relative importance of the two
different sources of information for clustering without
requiring the user to specify input parameters which are
usually difficult to estimate.

– Interpretation In contrast to most clustering algorithms,
ClicoT not only provides information about which
objects are assigned to which clusters, but also gives an
answer to the central question why objects are clustered
together. As a result of ClicoT, each cluster is character-
ized by a signature of cluster-specific relevant attributes
providing appropriate interpretations.

– Robustness The compression-based objective function
ensures that only the truly relevant attributes are marked
as cluster-specific attributes. Thereby, we avoid over-
fitting, enhance the interpretability and guarantee the
validity of the result.

– UsabilityClicoT is convenient to be used in practice since
the algorithm scales well to large data sets. Additionally,
the compression-based approach avoids difficult estima-
tion of input parameters, e.g., the number or the size of
clusters.

Moreover, in this paper we elaborate the concept hierar-
chies and investigate the impact of them on the performance
ofClicoT.Wealso addresswhether or not various characteris-
tics of data sets, e.g., proportion of categorical and numerical
attributes, have any influence on the effectiveness of ClicoT
via extensive experiments.
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3 Clusteringmixed data types

To design a mixed-type clustering algorithm, we need to
address three fundamental questions: How to model numeri-
cal attributes to properly characterize a cluster?How tomodel
categorical attributes?Andfinally how to efficiently integrate
heterogeneous attributeswhen themost relevant attributes are
specified? In principle, a PDF summarizes values by approx-
imating meaningful parameters. However, the idea of using
a background PDF for categorical attributes is not intuitive
at first; therefore, we employ concept hierarchies.

3.1 Concept hierarchy

In this paper, a concept could be color of an object (e.g.,
light green or cyan), marital status (e.g., married) or the con-
tinent where a country is located (e.g., Asia). More precisely,
a concept is a categorical value showing some characteris-
tics of every data object. As mentioned, concept hierarchies
allow us to express conceptual interchangeable values by
selecting an inner node of a concept hierarchy to describe
a cluster. Concept hierarchies not only capture more rele-
vant categories for each cluster but also help to interpret the
clustering result appropriately. Let DB denote a database
consisting of n objects. An object o comprises m categorical
attributesA = {A1, A2, . . . , Am} and d numerical attributes
X = {x1, x2, . . . , xd}. For a categorical attribute Ai , we
denote different categorical values by Ai

( j). An Element
represents a categorical value or a numerical attribute and
we denote the number of all Elements by E . Considering
the natural hierarchy between different categories, for each
categorical attribute Ai a concept hierarchy is already avail-
able as follows:

Definition 1 Concept Hierarchy Let TAi = (N , E) be a tree
with root Ai denoting the concept hierarchy corresponding
to the categorical attribute Ai with the following properties:

1. TAi consists of a set of nodes N = {n1, n2, . . . , ns}where
any node is corresponding to a categorical concept. E is
a set of directed edges E = {e1, e2, . . . , e(s−1)}, where
n j is a parent of nz if there is an edge el ∈ E so that
el = (n j , nz).

2. The level l(n j )of a noden j is the height of the descendant
sub-tree. If n j is a leaf, then l(n j ) = 0. In a concept, tree
leaf nodes are categorical values existing in the data set.
The root node is the attribute Ai which has the highest
level, also called the height of the concept hierarchy.

3. Each node n j ∈ N is associated with a probability p(n j )

which is the frequency of the corresponding category in
a data set.

Color
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Fig. 2 Aflat concept tree for the categorical attribute color (color figure
online)

Fig. 3 Concept tree corresponding to the running example w.r.t. the
natural hierarchy among various colors (color figure online)

4. Each node n j represents a sub-category of its parent;
therefore, all probabilities of the children sum up to the
probability of the parent node.

To elaborate, let us consider the synthetic example illus-
trated in Sect. 2 (see Fig. 1). In this example, the only
categorical attribute is color, while two other attributes are
numeric. Therefore, A = {A1} and X = {x1, x2} where A1

is color and X1, X2 show X and Y -axis in a two-dimensional
space. Every data point in this data set can have one of the fol-
lowing colors: cyan, rose, purple, light green and dark green.
Thus, the set of categorical values w.r.t. A1 is { cyan, rose,
purple, light green and dark green}. As a default, we assume
a flat concept tree to summarize the frequency of categori-
cal values, especially, when there is no meaningful hierarchy
among different categories. A flat hierarchy consists of a one
level tree including all the categories in the leaf level with-
out any hierarchy. Figure 2 depicts a default flat concept tree
corresponding to the running example. However, usually, for
each categorical attribute a concept hierarchy is available
due to the natural hierarchy among different categories. For
instance, considering the natural scalable range of colors, one
can categorize different colors as illustrated in Fig. 3. Here,
the height is 2 showing another concept level (level 1) which
categorizes the color of data points, e.g., green categorizes
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Fig. 4 Concept tree for categorical attribute marital status w.r.t. Adult
data set

dark green and light green in a same category based on the
natural scalable range of colors. The node labels show back-
ground probabilities p(n j ) (i.e., frequency) for each node.
This initialization of the background distribution is once per-
formed before assigning objects to clusters.

Categorical attributes are more often observed in real
applications, e.g., population surveys. As an example, we
focus onAdult data, a real-world data set from theUCI repos-
itory [7]. Adult data set without missing values, extracted
from the census bureau database, consists of 48,842 instances
of 11 attributes. The class attribute Salary indicates whether
the salary is over 50K or lower. Categorical attributes con-
sist of different information about people in this survey,
e.g., work-class, education, occupation and marital status.
Focusing on the categorical feature marital status, every
person belongs to a unique category including divorced,
never married, married-spouse-absent, etc. The leaf level
shows various marital status one could have in both con-
cept trees illustrated in Fig. 4. The left concept tree without
any hierarchy (Fig. 4a) shows the default flat hierarchy can
be considered in the beginning. However, we can categorize
various status based on whether or not a person is married. In
this case, three different categories, i.e., married-civ-spouse,
married-spouse-absent and married-AF-spouse, fall in the
same category, married. All other categorical values, i.e.,
divorced, separated, widowed and never-married, cannot be
located in the same category since people having these status
are single. Therefore, we consider another category, single,
which seems more plausible for those status. Thus, Fig. 4b
shows one of the possible concept hierarchies one can assume
w.r.t. marital status for Adult data. We investigate this data
set in more detail in Sect. 6.

ClicoT profits the concept hierarchy to provide more
interpretable results. But also non-hierarchical categorical
attributes can be regarded as a simple flat concept hierarchies
with height one. We claim our algorithm performs appropri-
ately in comparison with other algorithms for this case as
well.

3.2 Cluster-specific elements

Besides an efficient clustering approach, finding relevant
attributes to capture the best fitting model is important. Usu-
ally, the clustering result is disturbed by irrelevant attributes.
To make the model for each cluster more precise, we distin-
guish between relevant and irrelevant attributes. Each cluster
c is associated with a subset of the numerical and categorical
relevant elements denoted by cluster-specific elements. Cate-
gorical cluster-specific elements are represented by a specific
concept hierarchy which diverges from the background hier-
archy (i.e., the concept hierarchy of the entire database).

Definition 2 Cluster A cluster c is described by:

1. A set of objects Oc ⊂ DB.
2. A cluster-specific subspace I = Xc∪Ac, whereXc ⊆ X

and Ac ⊆ A.
3. For any categorical attribute Ai ∈ Ac, the correspond-

ing cluster-specific concept hierarchy is a tree T c
Ai =

(Nc, Ec) with nodes and edges as specified in Defini-
tion 1. Nc ⊂ N indicates the cluster-specific nodes. For
computing the probabilities associated with the cluster-
specific nodes instead of all n objects, only the objects
Oc in cluster c are applied, i.e., p(n j ) = |n j |

|Oc| .

The idea of cluster-specific nodes allows to specify an
inner node as a representative for each cluster. ClicoT aims
at finding a partition ofDB into clusters, and simultaneously
at discovering the cluster-specific subspace for each cluster.

3.3 Integrative objective function

Given the appropriate model corresponding to any attribute,
MDL allows a unified view on mixed data. The better the
model matches major characteristics of the data, the better
the result is. Following the MDL principle [16], we encode
not only the data but also the model itself and minimize the
overall description length. Simultaneously, we avoid over-
fitting since the MDL principle tends to a natural trade-off
between model complexity and goodness-of-fit.

Definition 3 Objective Function Considering cluster c the
description length (DL) corresponding to this cluster is
defined as:

DL(c) = DLn(X ) + DLc(A) + DL(model(c)) (1)

The first two terms, i.e., DLn andDLc, represent coding costs
concerningnumerical and categorical attributes, respectively.
The last term (DL(model)) denotes the model encoding cost.
Essentially, numerical and categorical attributes contribute
simultaneously and in the same way. We incorporate the
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required coding cost for both types, numerical and categori-
cal, without any data type conversion. Thus, instead of data
type conversion we integrate all attributes avoiding infor-
mation loss. Our proposed objective function minimizes the
overall description length of the database which is defined
as:

DL(DB) =
∑

c∈C
DL(c) (2)

Coding Numerical Attributes Considering Huffman cod-
ing scheme, the description length of a numerical value oi
is defined by − log2 PDF(oi ). We assume the same PDF to
encode the objects in various clusters and clusters compete
for an object while the description length is computed by
means of the same PDF for every cluster. Therefore, any
PDF would be applicable and using a specific model is not
a restriction [4]. For simplicity, we select Gaussian PDF,
N (μ, σ ). Moreover, we distinguish between the cluster-
specific attributes in any cluster c, denoted by Xc, and the
remaining attributes X \ Xc (Definition 2). Let μi and σi
denote the mean and variance corresponding to the numeri-
cal attribute xi in cluster c. If xi is a cluster-specific element
(xi ∈ Xc), we consider only cluster points to compute the
parameters otherwise (x j ∈ X \ Xc) the overall data points
will be considered. Thus, the coding cost for numerical
attributes in cluster c is provided by:

DLn(X ) =
∑

xi∈X

∑

oi∈Oc

− log2
(
N (μi , σi )

)
(3)

Coding Categorical Attributes Analogously, we employ
Huffman coding scheme for categorical attributes. The asso-
ciatedprobability to a category is its frequencyw.r.t. either the
specific or the background hierarchy (Definition 1). Similar
to numerical attributes, we assume Ac as the set of cluster-
specific categorical attributes and A \ Ac for the rest. Let
o j denote a categorical object value corresponding to the
attribute A j . We define f (A j , o j ) as a function which maps
o j to a node in either a specific or a background hierarchy
depending on A j . In summary, f (.) is defined as:

f (A j , o j ) =
{
n j ∈ T c

A j A j ∈ Ac

n j ∈ TA j A j ∈ A \ Ac

Thus, the categorical coding cost for a cluster c is given by:

DLc(A) =
∑

A j∈A

∑

o j∈Oc

− log2
(
p( f (A j , o j )

)
) (4)

Model Complexity Without taking the model complexity
into account, the best result will be a clustering consisting of
singleton clusters. This result is completely useless in terms

of the interpretation. Focusing on cluster c, the model com-
plexity is defined as:

DL(model(c)) = idCosts(c) + SpecificIdCosts(c)

+ paramCosts(c) (5)

The idCosts are required to specify which cluster is
assigned to a object while balancing the size of clusters.
Employing the Huffman coding scheme, idCosts are defined
by |Oc| · log2 n

|Oc| where |Oc| denotes the number of objects
assigned to cluster c. Moreover, in order to avoid information
loss we need to specify whether an attribute is a cluster-
specific attribute or not. That is, given the number of specific
elements s in cluster c, the coding costs corresponding to
these elements, SpecificIdCosts, is defined as:

SpecificIdCosts(c) = s · log2
E

s
+ (E − s) · log2

E

(E − s)
(6)

Following fundamental results from information theory
[16], the costs for encoding themodel parameters are reliably
estimated by:

paramCosts(c) = numParams(c)

2
· log2 |Oc| (7)

For any numerical cluster-specific attribute, we need to
encode its mean and variance while for a categorical one the
probability deviations to the default concept hierarchy need
to be encoded, i.e., numParams(c) = |X | · 2+ ∑

Ai∈A |Nc|.
Moreover, we need to encode the probabilities associated
with the default concept hierarchy, as well as the default
(global) means and variances for all numerical attributes.
However, these costs are summarized to a constant term
which does not influence our subspace selection and clus-
tering technique.

4 Algorithm

Together with the main building blocks of ClicoT, two other
steps are required to achieve an appropriate parameter free
clustering: (1) recognizing the cluster-specific elements and
(2) probability adjustments.

4.1 How to specify cluster-specific elements?

The optimization process in the objective function tends to
mark an element with the most cost saving as a cluster-
specific. Let the specific coding cost denote the cost where an
element ismarked as specific and the non-specific coding cost
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Algorithm 1 Cluster-specific elements
1: Deviation (Element ei )
2: scc := specific coding cost
3: nscc := non-specific coding cost
4: dev := deviation in terms of coding cost
5: if ei is numerical then
6: // case 1: ei is specific
7: // find N (μi , σi ) w.r.t. Oc and compute DLn(.)

8: s = s + 1
9: scc = ∑

c∈C DL(c)
10:
11: // case 2: ei is not specific
12: // find N (μi , σi ) w.r.t. DB and compute DLn(.)

13: nscc = ∑
c∈C DL(c)

14:
15: else if ei is categorical then
16: // case 1: ei is specific
17: A j := categorical attribute w.r.t. ei
18: TA j := concept tree w.r.t. A j
19: // adjust TA j and get T c

A j

20: for all Vertex V in TA j do
21: ProcessHierarchy(V )
22: end for
23: // find DLc(.) w.r.t. specific concept tree T c

A j

24: P(o) = P(n) where n ∈ T c
A j

25: s = s + 1
26: scc = ∑

c∈C DL(c)
27:
28: // case 2: ei is not specific
29: // find DLc(.) w.r.t. background concept tree TA j

30: P(o) = P(n) where n ∈ TA j

31: nscc = ∑
c∈C DL(c)

32: end if
33:
34: // find the deviation
35: dev = |nscc − scc|
36: return dev

indicates the cost otherwise. Consulting the idea that cluster-
specific elements have the most deviation of specific and
non-specific cost and therefore saves more coding costs, we
introduce a greedy method to recognize them. Algorithm 1
summarizes how to find the coding cost deviation w.r.t. every
element ei .We sort the elements according to their deviations
and specify the first element as a cluster-specific element.
We continue marking elements until marking more elements
does not pay off in terms of the coding cost. Note that differ-
ent nodes of a concept hierarchy have the same opportunity
to be specific. Additionally marking a categorical element
influences the specific concept hierarchy; therefore, we have
to consider the adapted probabilities (next section).

4.2 Probability adjustment

To adjust the probabilities for a numerical cluster-specific
attribute, we can safely usemean and variance corresponding
to the cluster. In contrast, learning the cluster-specific concept
hierarchy is more challenging since we need to maintain the

Algorithm 2 Concept tree updates
1: ProcessHierarchy (Vertex V )

2: ssp := sum of specific probabilities
3: sup := sum of unspecific probabilities
4: if V is a leaf then
5: if V is specific then
6: return (V .probabili t y, 0)
7: end if
8: return (0, V .backgroundProbabili t y)
9: end if
10: // now V is not a leaf
11: (ssp, sup) := (0, 0)
12: for all C in children(V ) do
13: (s, u) := processHierarchy(C)

14: (ssp, sup) := (ssp + s, sup + u)

15: end for
16: if V is specific or root then
17: f actor := (V .probabili t y − ssp)/sup
18: for all C in children(V ) do
19: propagateDownFactor(C, f actor)
20: end for
21: return (V .probabili t y, 0)
22: end if
23: return (ssp, sup)

integrity of a hierarchy. According to Definition 1, we assure
that node probabilities of siblings in each level sum up to the
probability of the parent node. Moreover, node probabilities
should sum up to one for each level.

Algorithm 2 summarizes the adjustment process where
ProcessHierarchy() is a recursive procedure to update the
concept tree assuming marked cluster-specific elements. It,
firstly, determines all probabilities in a concept hierarchy
starting from the following configuration: Initially, all nodes
are assigned to the background probability of the overall
data set (V .backgroundProbability). An arbitrary number of
(internal and/or leaf) nodes aremarked as cluster-specific and
assigned to different probabilities, taken from the currently
considered cluster (V .probability). The recursive procedure
is always started at the root node. When descending the con-
cept hierarchy recursively, for each node we keep track of
two sums, that of the specific probabilities inside the com-
plete subtree (ssp) and that of the unspecific ones (sup).
When returning from a recursion, we pass exactly these two
variables to the caller, enabling him to determine how much
the remaining probabilities must be adjusted. Whenever we
return from the recursion and reach a cluster-specific node,
we determine an adjustment factor according to the formula

f actor = V .probabili t y − ssp

sup
(8)

which is the factor correcting the deviation between all
cluster-unspecific nodes in the sub-tree from the probabil-
ity which we have in the current specific node. This factor
is propagated down the concept hierarchy using the proce-
dure PropagateDownFactor() in Algorithm 3 which is again
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Fig. 5 Update concept hierarchies considering pink as a cluster-specific node (color figure online)

recursive and descends the sub-tree only in the non-cluster-
specific nodes, because only for those we can adapt the
probabilities. If ConceptTreeUpdate() returns to a cluster-
unspecific node, it only sums up ssp and sup and delivers this
information to its caller without directly down-propagating
anything. Overall, the recursive method ProcessHierarchy()
visits every node of the concept hierarchy once (and only
once). During this whole recursive procedure, it is also guar-
anteed that PropagateDownFactor() also visits every node at
most once. Thus, themethod is linear in the number of nodes.

Algorithm 3 Down-propagation of the adjustment factor
1: PropagateDownFactor (Vertex V ,double factor)
2: if V is unspecific then
3: V .probability := V .probability · factor
4: if V is not leaf then
5: for all C ∈ V .children do
6: PropagateDownFactor(C , factor)
7: end for
8: end if
9: end if

To clarify, let Fig. 5 show the procedure on the concept
hierarchy corresponding to the running example (Fig. 1)
where labels denote the frequencies. Moreover, let pink be
a cluster-specific node for the cluster with the shape ×. The
adjustment starts with the root node and processes its chil-
dren. Then, it continues computing the relative probabilities
for the specific concept hierarchy rather by background prob-
ability fraction (Fig. 5a). 80% relative probability should be
distributed between two children, rose and purple, based on
the computed propagation factor. During the next step, the
remaining 20% probability is assigned level-wise to blue and
green to assure that probabilities in each level sum up to 1
(Fig. 5b). Again each parent propagates down its probability
(Fig. 5c). The result is a concept hierarchy best fitting to the
objects when the background distributions are preserved.

4.3 ClicoT algorithm

ClicoT is a top-down parameter-free clustering algorithm.
That is, we start from a cluster consisting of all objects and

Algorithm 4 ClicoT
1: input DB
2: learn background distributions of each attribute
3: C ′ = {C0} with C ′

0 = Oi ∈ DB
4: repeat
5: // try to split until convergence
6: C = C ′
7: cost = DL(DB|C) // current cost
8: C ′ = {C ′

1 . . .C ′
k−1} split worst Ci ∈ C to {C ′

i ,C
′
k}

9: while clustering C ′ changes do
10: C ′

i = {Oj : mini DL(Oj |C ′
i )} // assign objects

11: Select cluster-specific elements by a greedy method for each
cluster and compute costs

12: Update each attribute of C ′
i

13: end while
14: cost′ = DL(DB|C ′) // split cost
15: until cost > cost′
16: k = |C |
17: return C , k

iteratively split down the most expensive cluster c in terms
of the coding cost to two new clusters {c′

a, c′
b}. Then, we

apply a k-means-like strategy and assign every point to clos-
est cluster which is nothing else than the cluster with the
lowest increase in the coding cost. Employing the greedy
algorithm, we determine the cluster-specific elements and
finallywecompute the compression cost for clustering results
in two cases, before and after splitting (Definition 3). If the
compression cost after splitting, i.e., C′ with |C′| = k + 1, is
cheaper than the cost of already accepted clustering C with
|C| = k, then we continue splitting the clusters. Otherwise
the termination condition is reached and the algorithm will
be stopped.

5 Related work

Driven by the need of real applications, the topic of cluster-
ingmixed-typedata representedbynumerical and categorical
attributes has attracted attentions, e.g., CFIKP [19], CAVE
[10], CEBMDC [8]. In between, most of the algorithms are
designed based on the algorithmic paradigmof k-means, e.g.,
k-Prototypes [11]. Often in this category not only the num-
ber of clusters k but also the weighting between numerical
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and categorical attributes in clustering has to be specified by
the user. Among them, K-means-mixed (KMM) [1] avoids
weighting parameters by an optimization scheme learning
the relative importance of the single attributes during run-
time, although it needs the number of clusters k as input
parameter. KMM employs data conversion and discretize
numerical attributes into categorical ones and then calculate
the interactions in terms of categorical ways. Almost sim-
ilarly, SpectralCAT [6] and CoupledMC [18] both conduct
k-means clustering on continuous features and use a validity
index to choose clustering label as new continuous features.
These methods calculate the couplings based on discretized
numerical data which may lead to information loss due to
failure in capturing the distribution of the continuous data.

Following a mixture of Gaussian distributions, model-
based clustering algorithms have been also proposed for
mixed-type data. In between, ClustMD [13] is developed
using a latent variable model and employing an expecta-
tion maximization (EM) algorithm to estimate the mixture
model. Yet, this algorithm has a certain Gaussian assump-
tion which does not have to be necessarily fulfilled. On the
other hand, clustering algorithms for mixed-data often do not
properly model dependencies and are limited to modeling
meta–Gaussian distributions. Copulas, that provide a modu-
lar parameterizationof joint distributions, canmodel a variety
of dependencies, but their use with discrete data remains lim-
ited due to challenges in parameter inference. Authors in [15]
use Gaussian mixture copulas, to model complex dependen-
cies beyond those captured by meta–Gaussian distributions,
for clustering. However, this approach may not only result
in information loss but also fail to capture the discriminative
information between objects.

Some of the approaches utilize the unique characteris-
tics of any data type to avoid the drawbacks of converting a
data type to another one. Profiting of the concept hierarchy,
these algorithms introduce an integrative distance measure
applicable for both numerical and categorical attributes. The
algorithm DH [9] proposes a hierarchical clustering algo-
rithm using a distance hierarchy which facilitates expressing
the similarity between categorical and numerical values.
As another method, MDBSCAN [2] employs a hierarchical
distance measure to introduce a general integrative frame-
work applicable for the algorithms which require a distance
measure, e.g., DBSCAN. On the other hand, information-
theoretic approaches have been proposed to avoid the diffi-
culty of estimating input parameters. These algorithms regard
the clustering as a data compression problem by hiring the
minimum description length (MDL). The cluster model of
these algorithms comprises joint coding schemes supporting
numerical and categorical data. The MDL principle allows
balancingmodel complexity andgoodness-of-fit. INCONCO
[14] and Integrate [5] are two representative for mixed-type
clustering algorithms in this family.While Integrate has been

designed for general integrative clustering, INCONCO also
supports detectingmixed-type attribute dependency patterns.

Recently, deep neural networks are widely used for
clustering. Among them, authors in [12] propose an auto-
instructive representation learning scheme to enable margin-
enhanced distance metric learning for a discrimination-
enhanced representation. Finally, they feed the learned rep-
resentation into both partition-based (k-means) and density-
based (DBSCAN) clustering methods.

6 Evaluation

In this section, we assess the performance of ClicoT com-
pared to other clustering algorithms in terms of NMI which
is a common evaluation measure for clustering results. NMI
numerically evaluates pairwise mutual information between
ground truth and resulted clusters scaling between zero and
one. We conducted several experiments evaluating ClicoT
in comparison with KMM [1], INCONCO [14], DH [9],
ClustMD [13], Integrate [5] and MDBSCAN [2]. In order to
be fair in any experiment, we input the corresponding con-
cept hierarchy to the algorithms which are not designed for
dealing with it. That is, we encode the concept hierarchy as
an extra attribute so that categorical values belonging to the
same category have the same value in this extra attribute.
Our algorithm is implemented in Java, and the source code
as well as the data sets is publicly available1.

6.1 Mixed-type clustering of synthetic data

In order to cover all aspects of ClicoT, we first consider a syn-
thetic data set. Then, we continue experiments by comparing
all algorithms in terms of the noise-robustness. Finally, we
will discuss the runtime efficiency.

Clustering Results In this experiment, we evaluate the
performance of all the algorithms on the running exam-
ple (Fig. 1) while all parametric algorithms are set up with
the right number of clusters. The data have two numerical
attributes concerning the position of any data point and a cat-
egorical attribute showing the color of the points. Figure 6
shows the result of applying the algorithms where different
clusters are illustrated by different colors. As it is explicitly
shown in this figure, ClicoT, with NMI 1, appropriately finds
the initially sampled three clusters where green, pink and
blue are cluster-specific elements. Setting the correct num-
ber of cluster and trying various Gaussian mixture models,
ClustMD results in the next accurate clustering. Although
MDBSCAN utilizes the distance hierarchy, it is not able to
capture the pink and green clusters. KMMcannot distinguish
among various colors. Since two clusters pink and green

1 https://tinyurl.com/ucp8289.
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Fig. 6 Clustering results on the running example

Fig. 7 Comparing
noise-robustness of ClicoT to
other algorithms
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are heavily overlapped, Integrate cannot distinguish among
them. DH and INCONCO result on this data set inefficiently
finding almost only one cluster.

Noise-robustness In this section, we benchmark noise-
robustness of ClicoT w.r.t the other algorithms in terms of
NMI by increasing the noise factor. To address this issue,
we generate a data set with the same structure as the run-
ning example when adding another category, brown, to the
categorical attribute color as noise. Regarding numerical
attributes, we increase the variance of any cluster. We start
from 5% noise (noise factor = 1) and iteratively increase the
noise factor ranging to 5. Figure 7 clearly illustrates noise-
robustness of ClicoT compared to others.

Flat Hierarchy In this section, we investigate the case
when no appropriate hierarchy is considered. That is, we
assume a flat concept tree with no hierarchy (e.g., Fig. 2) and
run the following two experiments. Firstly, we focus on the

running example introduced inSect. 2 (seeFig. 1) and assume
a flat hierarchy for the categorical attribute Color where no
higher level concept categorizes the colors (Fig. 2).

As expected also observed from Fig. 8, ignoring a mean-
ingful hierarchy for categorical attributes decreases the
performance of ClicoT. However, ClicoT-flat (NMI = 0.60)
is still comparable to MDBSCAN and more effective than
KMM, Integrate, INCONCO and DH. In this data set, Clus-
ter 3 (the line shape cluster illustrated by green circles in
Fig. 1) highly overlaps two other clusters at some points.
The data points in this cluster have the colors light green and
dark green. As it is observed from the result of ClicoT-flat
(Fig. 8), ignoring a meaningful hierarchy for the colors leads
to an inefficiency in the sense that numerical attributes get
cluster-specific and hence important while clustering. There-
fore, parts of Cluster 3 which overlap with two other clusters
(middle part and tail of Cluster 3) are wrongly grouped.
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Fig. 8 Result of ClicoT applied on running example assuming a flat
concept tree for colors (Fig. 2) (color figure online)
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Fig. 9 Comparing ClicoT and ClicoT-flat assuming various noise fac-
tors

In the next investigation, we repeat the noise experiment
applying ClicoT-flat. Here, the goal is to compare ClicoT and
ClicoT-flat in various cases when the data set gets more noisy
iteratively.As the plot in Fig. 9 depicts, ClicoT is alwaysmore
effective in comparison with ClicoT-flat, although the per-
formance of ClicoT-flat is still comparable in the beginning
when the noise factor is smaller. It again approves the role of
a meaningful hierarchy in order to increase the efficiency.

Scalability To evaluate the efficiency of ClicoT w.r.t the
other algorithms, we generated a 10-dimensional data set
(5 numerical and 5 categorical attributes) with three Gaus-
sian clusters. Then, respectively, we increased the number

of objects ranging from 2000 to 10,000. In the other case,
we generated different data sets of various dimensionality
ranging from 10 to 50 where the number of objects is fixed.
Figure 10 depicts the performance of all algorithms in terms
of the runtime complexity. Regarding the first experiment
on the number of objects, ClicoT is slightly faster than oth-
ers while increasing the dimensionality Integrate performs
faster. However, the runtime of this algorithm highly depends
on the number of clusters k initialized in the beginning (we
set k = 20). That is, this algorithm tries a range of k and out-
puts the best results. Therefore, by increasing k the runtime
is also increasing.

Proportion How would ClicoT behave when various
proportions of categorical and numerical attributes are con-
sidered in the data sets? What happens when the majority
of attributes are numerical and vice versa? In this exper-
iment, we address the mentioned questions and generate
various synthetic data sets each of which having a differ-
ent proportion of categorical and numerical attributes. The
x-axis in Fig. 11 shows the proportion factor, while for
factor 1, for example, we generate 2 numerical and 2 cat-
egorical attributes. In Fig. 11, the yellow bins show the
case when we increase the number of numerical attributes
while the categorical attributes are set two, e.g., factor 3 =
6 numerical attributes
2 categorical attributes . For the categorical attributes, we
assume a flat hierarchy with 3 various categories in every
experiment. Analogously the green bins in Fig. 11 illustrate
the results of applying ClicoT when the proportion factor is
achieved by proportion = #categorical attributes

#numerical attributes .
As observed in Fig. 11 having various number of numer-

ical or categorical attributes as well as different proportions
does not influence the performance of our proposed algo-
rithm. ClicoT is very well designed to deal with any kind
of data structures since it always utilizes cluster-specific
attributes and marks the most relevant attributes as specific.
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Fig. 10 Investigating the runtime efficiency of ClicoT in comparison
with other algorithms. Two various cases are considered: a when the
number of objects is increasing while the dimensionality is fixed, b

when the number of objects is fixed and the dimensionality (number of
categorical and numerical attributes) is increasing
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Fig. 12 Cluster-specific categories for Cluster 12 and Cluster 26 w.r.t.
the categorical attribute Fuel System
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Fig. 13 Concept tree for 3 categorical attributes of Adult data set

Table 1 Cluster specific attributes for attribute Relationship based on
the most deviation

C2 C3

Family − 0.24 0.359

Wife 0.025 − 0.047

Own child 0.111 − 0.154

Husband − 0.398 0.59

Other relative 0.02 − 0.028

No family 0.24 − 0.359

Unmarried 0.074 − 0.105

Not in family 0.165 − 0.253

Bold numbers in the table show maximum deviations corresponding to
each attribute

6.2 Experiments on real-world data

Finally, we evaluate clustering quality and interpretability of
ClicoT on real-world data sets. We used MPG, Automobile
and Adult data sets from the UCI Repository [7] as well as
Airport data set from the public project Open Flights2.

MPG MPG is a slightly modified version of the data set
provided in the StatLib library. The data concern city-cycle
fuel consumption in miles per gallon (MPG) in terms of 3
categorical and 5 numerical attributes consisting of different
characteristics of 397 cars. We consider MPG ranging from
10 to 46.6 as the ground truth and divide the range to 7 inter-
vals of the same length. Considering a concept hierarchy for
the name of cars, we group all the cars so that we have three
branches: European, American and Japanese cars.Moreover,
we divide the range of model year attribute to three intervals:
70–74, 75–80 and after 80. We leave the third attribute as a
flat concept hierarchy since there is no meaningful hierarchy
between variation of cylinders. Comparing ClicoT (NMI =
0.4) to the other algorithms INCONCO (0.17), KMM (0.37),
DH (0.14),MDBSCAN(0.02), ClustMD (0.33) and Integrate
(0), ClicoT correctly finds 7 clusters each of which is com-
patiblewith one of theMPGgroups. Cluster 2, for instance, is
compatible with the first group of MPGs since the frequency
of the first group in this cluster is 0.9. In this cluster, Amer-
ican cars with the frequency of 1.0 and cars with 8 cylinders
with the frequency of 1 and model year in first group (70–
74) with the frequency of 0.88 are selected as cluster-specific
elements.

Automobile This data set provides 205 instances with
26 categorical and numerical attributes. The first attribute
defining the risk factor of an automobile has been used as
class label. Altogether there are 6 different classes. Due
to many missing values, we used only 17 attributes. Com-
paring the best NMI captured by every algorithm, ClicoT

2 http://openflights.org/data.html.
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Fig. 14 Result of ClicoT on
Open Flights data set

Fig. 15 Result of KMM on
Open Flights data set

(NMI = 0.38) outperforms KMM (0.23), INCONCO (0.20),
Integrate (0.17),DH (0.04), ClustMD (0.16) andMDBSCAN
(0.02). Furthermore, ClicoT gives an insight into the inter-
pretability of the clusters. As illustrated in Fig. 12, Cluster
12, for instance, is characterized mostly by the fuel system of
2bbl, but also by 1bbl and 4bbl. Also we see that Cluster 26
is consisting of both mpfi and slightly of mfi, too. Concern-

ing the risk analysis this clustering serves, ClicoT allows to
recognize which fuel systems share the same insurance risk.

Adult Data Set Adult data set without missing values,
extracted from the census bureau database, consists of 48,842
instances of 11 attributes. The class attribute Salary indi-
cates whether the salary is over 50K or lower. Categorical
attributes consist of different information, e.g., work-class,
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Fig. 16 Result of MDBSCAN
on Open Flights data set

education, occupation. A detailed concept hierarchy is pro-
vided in Fig. 13. Although compared to INCONCO (0.05),
ClustMD (0.0003), MDBSCAN (0.004), DH (0) and Inte-
grate (0), our algorithm ClicoT (0.15) outperforms all other
algorithms except KMM (0.16) which is slightly better. In
order to give more insights into discovered clusters, we use
two other evaluation measures, Categorical Utility (CU) and
Rand Index, and compare the result of ClicoT toKMMwhich
in this experiment is slightly more efficient in terms of NMI.

Before any comparison, we briefly explain about new
evaluation strategies. Rand index is one of the most popu-
lar external clustering validation indices. Assuming P as the
true clustering of data set with N data objects and C as clus-
tering result, for each pair of data objects xi and x j , there are
four different cases:

– Case 1 xi and x j belong to the same clusters of C and
the same category of P

– Case 2 xi and x j belong to the same clusters of C but
different categories of P

– Case 3 xi and x j belong to different clusters of C but the
same category of P

– Case 4 xi and x j belong to different clusters of C and
different categories of P

Let a, b, c, d correspond to number of pairs for the first to
fourth cases and L is the total number of pairs (L = a + b+
c + d). Thus, Rand index is defined as follows, with larger

values indicating better results:

Rand index = a + d

L

On the other side, in order to evaluate the clustering result
in terms of categorical attributes we apply the categorical
utility criterion. CU attempts to maximize both the probabil-
ity that two patterns in the same cluster have attribute values
in common and the probability that patterns from different
clusters have different values:

CU=
∑

k

⎛

⎝ Ck

DB
∑

A∈A

∑

j

[P(A = A j |Ck)
2 − P(A = A j )

2]
⎞

⎠

where P(A = A j |Ck) is the conditional probability that
attribute A has the value A j given clusterCk , and P(A = A j )

is the overall probability of attribute i having A j in the entire
data set. Obviously, the higher the CU value, the better the
clustering performs.

Considering the Rand index as the metric, ClicoT (0.592)
performs almost the same asKMM(0.604).However, ClicoT
(0.41) slightly outperforms KMM (0.39) in terms of CU.
Meaning that, clusters resulted byClicoT aremore efficiently
distinguished in terms of categorical attributes compared to
KMM.

On the other side, a deeper look to the clusters found by
ClicoT shows interesting and interpretable results. ClicoT
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Fig. 17 Result of INCONCO
and integrate on Open Flights
data set

Fig. 18 Result of DH on Open
Flights data set

finds 4 clusters in which Cluster 2, the biggest cluster, con-
sists of almost 56% of objects. As Table 1 shows, in this
cluster Husband is specified as the cluster-specific element,
since it has the most deviation in terms of coding cost, but
negative. The probability of instances having Husband as
categorical value and the salary<= 50K is zero in this clus-
ter. Therefore, along with the negative deviation this means

that in Cluster 2 persons with the role as husband in a family
earn more than 50K .

According to this table, for Cluster 3 Husband is cluster-
specific as well. It has the most positive deviation and also
the highest probability in this cluster, 0.99 which approves
specifying this categorical value as cluster specific. In this
cluster, almost 60% of persons having Husband as a role
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earn more than 50k per year which is compatible with the
overall distribution of the salary in Cluster 2 (Table 1).

Open Flights Data Set The public project Open Flights
provides worldwide information about airports, flights and
airlines. Here, we consider instances of airports in order to
carry out a cluster analysis. The data set consists of 8107
instances each of which represents an airport. The numeric
attributes show the longitude and latitude , the sea height in
meters and the time zone. Categorical attributes consist of the
country, where the airport is located and the day light saving
time. We constructed the concept hierarchy of the country
attribute so that each country belongs to a continent. Since
there is no ground truth provided for this data set, we inter-
pret the result of ClicoT (Fig. 14) and illustrate the result of
applying other algorithms (Figs. 15, 16, 17, 18). INCONCO,
Integrate andDH found almost only one cluster whichmakes
any interpretation for this result nonsense (Figs. 17 and 18).

Clustering results illustrated in Fig. 14 consist of 15
clusters showing that ClicoT appropriately grouped almost
geographically similar regions in the clusters. Therefore, we
set the number of clusters for the other algorithms which
required a user to specify it as 15. Starting from west to
east, North American continent divided into five clusters.
Obviously here the attribute of the time zone was chosen
as specific because the clusters are uniquely made accord-
ing to this attribute. In comparison with ClicoT, KMM found
almost one cluster here and grouped all airportswith different
time zones together (Fig. 15). On the other hand,MDBSCAN
groups all the airports continentally ignoring the time zone
while the same concept hierarchy asClicoT is given (Fig. 16).

Moving to the south, ClicoT pulled a plausible separa-
tion between South and North America. Considering South
America as cluster-specific element and due to the rather
low remaining airport density of SouthAmerica ClicoT com-
bined almost all of the airports to a cluster (red). In Western
Europe, there are some clusters, which can be distinguished
by their geographic location. Additionally, many airports
around and in Germany are be grouped together.

7 Conclusion

To conclude, we have developed and demonstrated that
ClicoT is not only able to cluster mixed-typed data in a noise-
robust manner, but also yielded most interpretable cluster
descriptions. By using data compression as the general prin-
ciple ClicoT automatically detects the number of clusters
within any data set without any prior knowledge. Moreover,
the experiments impressively demonstrated that clustering
can greatly benefit from a concept hierarchy. Therefore,
ClicoT excellently complements the approaches for mining
mixed-type data.
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