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Abstract
Fueled by massive data, important decision mak-
ing is being automated with the help of algorithms,
therefore, fairness in algorithms has become an
especially important research topic. In this work,
we design new streaming and distributed algo-
rithms for the fair k-center problem that models
fair data summarization. The streaming and dis-
tributed models of computation have an attractive
feature of being able to handle massive data sets
that do not fit into main memory. Our main con-
tributions are: (a) the first distributed algorithm;
which has provably constant approximation ratio
and is extremely parallelizable, and (b) a two-pass
streaming algorithm with a provable approxima-
tion guarantee matching the best known algorithm
(which is not a streaming algorithm). Our algo-
rithms have the advantages of being easy to im-
plement in practice, being fast with linear running
times, having very small working memory and
communication, and outperforming existing algo-
rithms on several real and synthetic data sets. To
complement our distributed algorithm, we also
give a hardness result for natural distributed algo-
rithms, which holds for even the special case of
k-center.

1. Introduction
Data summarization is a central problem in the area of ma-
chine learning, where we want to compute a small summary
of the data. For example, if the input data is enormous, we
do not want to run our machine learning algorithm on the
whole input but on a small representative subset. How we
select such a representative summary is quite important. It
is well known that if the input is biased, then the machine
learning algorithms trained on this data will exhibit the same
bias. This is a classic example of selection bias but as exhib-
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ited by algorithms themselves. Currently used algorithms
for data summarization have been shown to be biased with
respect to attributes such as gender, race, and age (see, e.g.,
(Kay et al., 2015)), and this motivates the fair data summa-
rization problem. Recently, the fair k-center problem was
shown to be useful in computing fair summary (Kleindess-
ner et al., 2019). In this paper, we continue the study of fair
k-center and add to the series of works on fairness in ma-
chine learning algorithms. Our main results are streaming
and distributed algorithms for fair k-center. These models
are extremely suitable for handling massive datasets. The
fact that the data summarization problem arises when the
input is huge makes our work all the more relevant!

Suppose the input is a set of real vectors with a gender at-
tribute and you want to compute a summary of k data points
such that both1 genders are represented equally. Say we are
given a summary S. The cost we pay for not including a
point in S is its distance from S. Then the cost of S is the
largest cost of a point. We want to compute a summary with
minimum cost that is also fair, i.e., contains k/2 women
and k/2 men. In one sentence, we want to compute a fair
summary such that the point that is farthest from this sum-
mary is not too far. Fair k-center models this task: let the
number of points in the input be n, the number of groups
be m, target summary size be k, and we want to select a
summary S such that S contains kj points belonging to
Group j, where

∑
j kj = k. And we want to minimize

maxx d(x, S) = maxx minx′∈S d(x, x′), where d denotes
the distance function. Note that each point belongs to ex-
actly one of the m groups; for the case of gender, m = 2.

We call the special case where m = 1 and k1 = k as just k-
center throughout this paper. For k-center, there are simple
greedy algorithms with an approximation ratio of 2 (Gon-
zalez, 1985; Hochbaum & Shmoys, 1985), and getting bet-
ter than 2-approximation is NP-hard (Hsu & Nemhauser,
1979). The NP-hardness result also applies to the more
general fair k-center. The best algorithm known for fair
k-center is a 3-approximation algorithm that runs in time
O(n2 log n) (Chen et al., 2016). A linear-time algorithm
with approximation guarantee of O(2m), which is constant
if m is, was given recently (Kleindessner et al., 2019). Both
of these algorithms work only in the traditional random

1sincere apologies to the people who identify with neither
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access machine model, which is suitable only if the input
is small enough to fit into fast memory. We give a two-
pass streaming algorithm that achieves the approximation
ratio arbitrarily close to 3. In the streaming setting, input
is thought to arrive one point at a time, and the algorithm
has to process the input quickly, using minimum amount
of working memory—ideally linear in the size of a feasi-
ble solution, which is k for fair k-center. Our algorithm
processes each incoming input point in O(k) time and uses
space O(km), which is O(k) if the number of groups m
is very small. This improves the space usage of the exist-
ing streaming algorithm (Kale, 2019) almost quadratically,
from O(k2), while also matching the best approximation
ratio achieved by Chen et al. We also give the first dis-
tributed, constant approximation algorithm where the input
is divided among multiple processors, each of which per-
forms one round of computation and sends a message of
size O(km) to a central processor, which then computes
the final solution. Both rounds of computation are linear
time. All the approximation, communication, space usage,
and running-time guarantees are provable. To complement
our distributed algorithm, we prove that any distributed al-
gorithm, even randomized, that works by each processor
sending a subset of its input to a central processor which
outputs the solution, needs to essentially communicate the
whole input to achieve an approximation ratio of better than
4. This, in fact, applies for the special case of k-center
showing that known 4-approximation algorithm (Malkomes
et al., 2015) for k-center is optimal.

We perform experiments on real and synthetic datasets and
show that our algorithms are as fast as the linear-time al-
gorithm of Kleindessner et al., while achieving improved
approximation ratio, which matches that of Chen et al. Note
that this comparison is possible only for small datasets, since
those algorithms do not work either in streaming or in dis-
tributed setting. We also run our algorithms on a really large
synthetic dataset of size 100GB, and show that their running
time is only one order of magnitude more than the time
taken to just read the input dataset from secondary memory.

As a further contribution, we give faster implementations of
existing algorithms—those of Kale and Chen et al.

Related work

Chen et al. gave the first polynomial-time algorithm that
achieves 3-approximation. Kale achieves almost the same
ratio using just two passes and also gives a one-pass (17+ε)-
approximation algorithm, both usingO(k2) space. All these
algorithms are designed to work on a single machine.

One (incomparable) way to compute a fair summary is using
a determinantal measure of diversity (Celis et al., 2018).
Fair clustering has been studied under another notion of
fairness, where each cluster must be balanced with respect

to all the groups (no over-or-under-representation of any
group) (Chierichetti et al., 2017), and this line of work also
has received a lot of attention in a short span of time (Bera
et al., 2019; Ahmadian et al., 2019; Bandyapadhyay et al.,
2019; Schmidt et al., 2020; Jia et al., 2020).

The k-median clustering problem with fairness constraints
was first considered by (Hajiaghayi et al., 2010) and with
more general matroid constraints was studied by (Krish-
naswamy et al., 2011). The work of Chen et al. and Kale
also actually applies for matroid constraints.

There has been a lot of work done on fairness, and due to
space constraints, we refer the reader to overviews by (Klein-
dessner et al., 2019; Celis et al., 2018).

2. Preliminaries
The input to fair k-center is a set X of n points in a metric
space given by a distance function d. We denote this metric
space by (X, d). Each point belongs to one of m groups,
say {1, . . . ,m}. Let g : X −→ {1, . . . ,m} denote this
group assignment function. Further, for each group j, we
are given a capacity kj . Let k =

∑m
j=1 kj . We call a subset

S ⊆ X feasible if for every j, the set S contains at most kj
points from group j. (Readers familiar with matroids will
recognize this as a partition matroid constraint.) The goal
is to compute a feasible set of centers that (approximately)
minimizes the clustering cost, formally defined as follows.

Definition 1. Let A,B ⊆ X . Then the clustering cost of A
for B is defined as maxb∈B mina∈A d(a, b).

Note here that A need not be a subset of B. The following
lemmas follow easily from the fact that the distance function
d satisfies the triangle inequality.

Lemma 1. Let A,B,C ⊆ X . The clustering cost of A
for C is at most the clustering cost of A for B plus the
clustering cost of B for C.

Lemma 2. Suppose for a set T of points there exists a set
of k centers, not necessarily a subset of T , whose clustering
cost for T is at most ρ. If P ⊆ T is a set of points separated
pairwise by distance more than 2ρ, then |P | 6 k.

Proof. If |P | > k then some two points in P must share one
of the k centers, and must therefore be both within distance
ρ from that common center. Then by the triangle inequality,
they cannot be separated by distance more than 2ρ.

We denote by S∗ a feasible set which has the minimum
clustering cost for X , and by OPT the minimum clustering
cost. We assume that our algorithms have access to an
estimate τ of OPT. When τ is at least OPT, our algorithms
compute a solution of cost at most ατ for a constant α. Thus,
when τ ∈ [OPT, (1 + ε)OPT], our algorithms compute a
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(1 + ε)α-approximate solution. In Section 3.3 we describe
how to efficiently compute such a τ .

3. Algorithms
Before stating algorithms, we describe some elementary
procedures which will be used as subroutines in our algo-
rithms.

getPivots(T, d, r) takes as input a set T of points with
distance function d and a radius r. Starting with P = ∅, it
performs a single pass over T . Whenever it finds a point q
which is not within distance r from any point in P , it adds
q to P . Finally, it returns P . Thus, P is a maximal subset
of T of points separated pairwise by distance more than r.
We call points in P pivots. By Lemma 2, if there is a set
of k points whose clustering cost for T is at most r/2, then
|P | 6 k. Moreover, due to maximality of P , its clustering
cost for T is at most r. Note that getPivots() runs in
time O(|P | · |T |).

getReps(T, d, g, P, r) takes as input a set T of points
with distance function d, a group assignment function g, a
subset P ⊆ T , and a radius r. For each p ∈ P , initializing
N(p) = {p}, it includes in N(p) one point, from each
group, which is within distance r from p whenever such a
point exists. Note that this is done while performing a single
pass over T . This procedure runs in time O(|P | · |T |).

Informally, if P is a good but infeasible set of centers, then
getReps() finds representatives N(p) of the groups in the
vicinity of each p ∈ P . This, while increasing the clustering
cost by at most r, gives us enough flexibility to construct a
feasible set of centers. The procedure HittingSet() that
we describe next finds a feasible set from a collection of sets
of representatives.

HittingSet(N , g, k) takes as input a collection N =
{N1, . . . , NK} of pairwise disjoint sets of points, a group
assignment function g, and a vector k = (k1, . . . , km) of
capacities of the m groups. It returns a feasible set S inter-
secting as many Ni’s as possible. This reduces to finding
a maximum cardinality matching in an appropriately con-
structed bipartite graph. It is important to note that this
procedure does the post-processing: it doesn’t make any
pass over the input stream of points. This procedure runs in
time O(K2 ·maxi |Ni|).

For interested readers, the pseudocodes of these procedures,
an explanation of HittingSet(), and the proof of its
running time appear in the full version (Chiplunkar et al.,
2020).

3.1. A Two-Pass Algorithm

Recall that τ is an upper bound on the minimum clustering
cost. Our two-pass algorithm given by Algorithm 1 consists

Algorithm 1 Two-pass algorithm
Input: Metric space (X, d), group assignment function
g, capacity vector k.
/* Pass 1: Compute pivots. */
P ← getPivots(X, d, 2τ).
/* Pass 2: Compute representatives. */
{N(q) : q ∈ P} ← getReps(X, d, g, P, τ).
/* Compute solution. */
S ← HittingSet({N(q) : q ∈ P}, g, k).
Output S.

of three steps. First, the algorithm constructs a maximal
subset P ⊆ X of pivots separated pairwise by distance
more than 2τ by executing one pass on the stream of points.
In another pass, the algorithm computes a representative set
N(q) of each pivot q ∈ P using the function getReps. By
the property of getReps, points in the representative set
of a pivot are within distance τ from the pivot. Due to the
separation of 2τ between the pivots, these representative sets
are pairwise disjoint. Finally, a feasible set S intersecting
as many N(q)’s as possible is found and returned. (It will
soon be clear that S intersects all the N(q)’s.)

The algorithm needs working space only to store the pivots
and their representative sets. By substituting S = S∗ in
Lemma 2, the number of pivots is at most k, that is, |P | 6 k.
Since N(q) contains at most one point from any group, it
has at most m− 1 points other than q. Thus,

Observation 1. The two-pass algorithm needs just enough
working space to store km points.

The calls to getPivots and getReps both take time
O(|P | · |X|) = O(kn), with O(|P |) = O(k) update time
per point. The call to HittingSet takes time O(|P |2 ·
maxq∈P |N(q)|) = O(mk2). Thus,

Observation 2. The two-pass algorithm runs in time
O(kn + mk2), which is O(kn) when m, the number of
groups, is constant.

We now prove the approximation guarantee.

Theorem 1. The two-pass algorithm returns a feasible set
whose clustering cost is at most 3τ . This is a 3(1 + ε)-
approximation when τ ∈ [OPT, (1 + ε)OPT].

Proof. Recall that S∗ is a feasible set having clustering cost
at most τ . For each q ∈ P let cq ∈ S∗ denote a point
such that d(q, cq) 6 τ . Since the points in P are separated
by distance more than 2τ , the points cq are all distinct.
Recall that N(q), the output of getReps(), contains one
point from every group which has a point within distance
τ from q. Therefore, N(q) contains a point, say bq, from
the same group as cq such that d(q, bq) 6 τ . Consider the
set B = {bq : q ∈ P}. This set intersects N(q) for each q.
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Algorithm 2 Summary computation by the i’th processor
Input: Set Xi, metric d restricted to Xi, group assign-
ment function g restricted to Xi.
/* Compute local pivots. */
pi1← an arbitrary point in Xi.
for j = 2 to k + 1 do
pij ← arg maxp∈Xi

minj′:16j′<j d(p, pij).
end for
Pi ← {pi1, . . . , pik}.
ri ← minj′:16j′6k d(pik+1, p

i
j)/2.

/* Compute local representative sets. */
{L(p) : p ∈ Pi} ← getReps(Xi, d, g, Pi, 2ri).
Li ←

⋃
p∈Pi

L(p).
/* Send message to coordinator. */
Send (Pi, Li) to the coordinator.

Furthermore, B contains exactly as many points from any
group as {cq : q ∈ P} ⊆ S∗, and therefore, B is feasible.
Thus, there exists a feasible set, namely B, intersecting
all the pairwise disjoint N(q)’s. Recall that S, the output
of HittingSet(), is a feasible set intersecting as many
N(q)’s as possible. Thus, S also intersects all the N(q)’s.

Now, the clustering cost of S for P is at most τ , because S
intersects N(q) for each q ∈ P . The clustering cost of P
for X is at most 2τ by the maximality of the set returned by
getPivots(). These facts and Lemma 1 together imply
that the clustering cost of S, the output of the algorithm, for
X is at most 3τ .

3.2. A Distributed Algorithm

In the distributed model of computation, the set X of points
to be clustered is distributed equally among ` processors.
Each processor is allowed a restricted access to the metric
d: it may compute the distance between only its own points.
Each processor performs some computation on its set of
points and sends a summary of small size to a coordinator.
From the summaries, the coordinator then computes a feasi-
ble set S of points which covers all the n points in X within
a small radius. Let Xi denote the set of points distributed to
processor i.

The algorithm executed by each processor i is given by
Algorithm 2, which consists of two main steps. In the first
step, the processor uses Gonzalez’s farthest point heuristic
to find k+1 points. The first k of those constitute the set Pi,
which we will call the set of local pivots. The point pk+1

is the farthest point from the set of local pivots, and ri is
defined to be half the distance of pk+1 from the set of local
pivots. Thus, every point Xi is within distance 2ri from the
set of local pivots. This means,

Observation 3. The clustering cost of Pi for Xi is 2ri.

In the second step, for each local pivot p ∈ Pi, the processor
computes a set L(p) of local representatives in the vicinity
of p using the function getReps. Finally, the set Pi of
local pivots and the union Li =

⋃
p∈Pi

L(p) of local repre-
sentative sets is sent to the coordinator. By the property of
getReps, L(p) contains at most one point from any group.
Therefore, it has at most m− 1 points other than p. Since
|Pi| = k we have the following observation.

Observation 4. Each processor sends at most km points
to the coordinator.

Moreover, the separation between the local pivots is
bounded as follows.

Lemma 3. For every processor i, we have ri 6 OPT 6 τ .

Proof. Suppose ri > OPT. Then {pi1, . . . , pik+1} ⊆ Xi is a
set of k+ 1 points separated pairwise by distance more than
2OPT. But S∗ is a set of at most k points whose clustering
cost for Xi is OPT 6 τ . This contradicts Lemma 2.

Observation 3 allows us to define a covering function cov
from X , the input set of points, to

⋃`
i=1 Pi, the set of local

pivots, as follows.

Definition 2. Let p be an arbitrary point in X . Suppose p
is processed by processor i, that is, p ∈ Xi. Then cov(p) is
an arbitrary local pivot in Pi within distance 2ri from p.

Since the processors send only a small number of points
to the coordinator, it is very well possible that the optimal
set S∗ of centers is lost in this process. In the next lemma,
we claim that the set of points received by the coordinator
contains a good and feasible set of centers nevertheless.

Lemma 4. The set L =
⋃`

i=1 Li contains a feasible set,
say B, whose clustering cost for

⋃`
i=1 Pi is at most 5τ .

Proof. Consider any c ∈ S∗, and suppose it is processed
by processor i. Then d(c, cov(c)) 6 2ri by Definition 2.
Recall that L(cov(c)), the output of getReps(), con-
tains one point from every group which has a point within
distance 2ri from cov(c). Therefore, L(cov(c)) ⊆ Li

contains some point, say c′, from the same group as c
(possibly c itself), such that d(c′, cov(c)) 6 2ri. Then
d(c, c′) 6 4ri 6 4τ by the triangle inequality and Lemma 3.
Let B = {c′ : c ∈ S∗}. Clearly, B ⊆

⋃`
i=1 Li. Since B

has exactly as many points from any group as S∗, B is
feasible. The clustering cost of B for S∗ is at most 4τ .
The clustering cost of S∗ for

⋃`
i=1 Pi is at most τ , because⋃`

i=1 Pi ⊆ X . By Lemma 1, the clustering cost of B for⋃`
i=1 Pi is at most 5τ , as required.

The algorithm executed by the coordinator is given by Algo-
rithm 3. The coordinator constructs a maximal subset P of
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Algorithm 3 Coordinator’s algorithm
X ′ ← ∅, L← ∅.
/* Receive messages from processors. */
for i = 1 to ` do

Receive (Pi, Li) from processor i.
X ′ ← X ′ ∪ Pi, L← L ∪ Li.

end for
/* Coordinator now has access to d and g restricted to
X ′ ∪ L, and capacity vector k = (k1, . . . , km). */
/* Compute global pivots. */
P ← getPivots(X ′, d, 10τ).
/* Compute global representative sets. */
{N(q) : q ∈ P} ← getReps(L, d, g, P, 5τ).
/* Compute solution. */
S ← HittingSet({N(q) : q ∈ P}, g, k).
Output S.

the set of pivots X ′ =
⋃`

i=1 Pi returned by the processors
such that points in P are pairwise separated by distance
more than 10τ . P is called the set of global pivots. For each
global pivot q ∈ P , using the function getReps, the coor-
dinator computes a set N(q) ⊆ L =

⋃`
i=1 Li of its global

representatives, all of which are within distance 5τ from q.
Due to the separation between points in P , the sets N(q)
are pairwise disjoint. Finally, a feasible set S intersecting as
many N(q)’s as possible is found and returned. (As before,
it will be clear that S intersects all the N(q)’s.)

Theorem 2. The coordinator returns a feasible set whose
clustering cost is at most 17τ . This is a 17(1 + ε)-
approximation when τ ∈ [OPT, (1 + ε)OPT].

Proof. By Lemma 4, L contains a feasible set, sayB, whose
clustering cost for X ′ is at most 5τ . For each q ∈ P ⊆ X ′,
let bq denote a point in B that is within distance 5τ from q.
Since the points in X ′ are separated pairwise by distance
more than 10τ , bq’s are all distinct. By the property of
getReps(), the set N(q) returned by it contains a point,
say b′q, from the same group as bq. Let B′ = {b′q : q ∈ P}.
This set B′ intersects N(q) for each q ∈ P . Since b′q and bq
are from the same group and bq’s are all distinct,B′ contains
at most as many points from any group as B does. Since B
is feasible, so is B′. To summarize, there exists a feasible
set, namely B′, intersecting all the N(q)’s. Recall that S,
the output of HittingSet(), is a feasible set intersecting
as many N(q)’s as possible. Thus, S also intersects all the
N(q)’s.

Now, the clustering cost of S for P is at most 5τ , because
S intersects N(q) for each q ∈ P . The clustering cost of P
for X ′ is at most 10τ by the maximality of the set returned
by getPivots(). The clustering cost of X ′ =

⋃`
i=1 Pi

for X =
⋃

iXi is at most 2τ because the clustering cost
of each Pi for Xi is at most 2ri 6 2τ . These facts and

Lemma 1 together imply that the clustering cost of S, the
output of the coordinator, for X is at most 17τ .

We note here that even though our distributed algorithm
has the same approximation guarantee as Kale’s one-pass
algorithm, it is inherently a different algorithm. Ours is
extremely parallel whereas Kale’s is extremely sequential.
We now prove a bound on the running time.

Theorem 3. The running time of the distributed algorithm
is O(kn/`+mk2`), which can be made O(m1/2k3/2n1/2)
by an appropriate choice of `, the number of processors.

Proof. For each processor i, computing local pivots as well
as the call to getReps() takes O(|Pi| · |Xi|) = O(kn/`)
time each. For the coordinator, the separation between
the global pivots and Lemma 2 together enforce |P | 6 k.
Observation 4 implies |L| 6 m ·maxi |Li| 6 mk`. There-
fore, getPivots() takes time O(|P | · |X ′|) = O(k2`)
and getReps() takes time O(|P | · |L|) = O(mk2`). The
call to HittingSet() takes time O(k2 maxq |N(q)|) =
O(mk2), thus limiting the coordinator’s running time to
O(mk2`). Choosing ` = Θ(

√
n/(mk)) minimizes the

total running time to O(m1/2k3/2n1/2).

3.3. Handling the Guesses

Given an arbitrarily small parameter ε, a lower bound
L 6 OPT, and an upper bound U > OPT, we run our algo-
rithms for guess τ ∈ {L,L(1+ε), L(1+ε)2, . . . , U}, which
means at most log1+ε(U/L) guesses. Call this method of
guesses as geometric guessing starting at L until U . For the
τ ∈ [OPT,OPT(1 + ε)], our algorithms will compute a
solution successfully.

In the distributed algorithm, by Lemma 3, for each processor,
ri 6 OPT. Therefore, maxi ri 6 OPT. We then run
Algorithm 3 with geometric guessing starting at maxi ri
until it successfully finds a solution.

For the two-pass algorithm, let P be the set of first k + 1
points; then L = minx1,x2∈P d(x1, x2)/2 is a lower bound
(call this the simple lower bound). Note that no passes
need to be spent to compute the simple lower bound. We
also need an upper bound U > OPT. One can compute
an arbitrary solution and its cost—which will be an up-
per bound—by spending two more passes (call this the
simple upper bound). This results in a four-pass algo-
rithm. To obtain a truly two pass algorithm and space usage
O(km log(1/ε)/ε), one can use Guha’s trick (Guha, 2009),
which is essentially starting O(log(1/ε)/ε) guesses and if
a run with guess τ fails, then continuing the run with guess
τ/ε and treating the old summary as the initial stream for
this guess; see also (Kale, 2019) for details. But obtain-
ing and using an upper bound is convenient and easy to
implement in practice.
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4. Distributed k-Center Lower Bound
(Malkomes et al., 2015) generalized the greedy algorithm
of (Gonzalez, 1985) to obtain a 4-approximation algorithm
for the k-center problem in the distributed setting. Here
we prove a lower bound for the 3-center problem with 9
processors for a special class of distributed algorithms: If
each processor communicates less than 2/9 fraction of their
input points, then with a constant probability, the output of
the coordinator will be no better than a 4-approximation to
the optimum. Figure 1 shows a graph metric with 9n′ + 7
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Figure 1. The underlying metric for n′ = 2

points for which lower bound holds, where the point x is not
a part of the metric but is only used to define the distances.
Note that |S1| = |S2| = |S3| = 3n′ and x is at distance of
1 from each point in S1 ∪ S2 ∪ S3.

For i ∈ {1, 2, 3}, let S1
i , S

2
i , S

3
i denote an arbitrary equipar-

tition of Si. There are 9 processors, whose inputs are given
by Y j

1 = {b∗1, b∗2, a} ∪ S
j
1 , Y j

2 = {a∗, c∗, b} ∪ Sj
2 and

Y j
3 = {b∗1, b∗2, c} ∪ S

j
3 , for j ∈ {1, 2, 3}. The goal is to

solve the 3-center problem on the union of their inputs. (Ob-
serve that the optimum solution is {a∗, c∗, b∗1} with distance
1.) Each processor is allowed to send a subset of their input
points to the coordinator, who outputs three of the received
points. For this class of algorithms, we show that if each
processor communicates less than 2n′/9 points, then the
output of the coordinator is no better than a 4-approximation
to the optimum with probability at least 2 · 10−6. Using
standard amplification arguments, we can generate a metric
instance for the (3α)-center problem on which with prob-
ability at least 1 − ε, the algorithm outputs no better than
4-approximation (α ≈ log(1/ε)).

We discuss the intuition behind the proof, and the full proof
is deferred to the full version (Chiplunkar et al., 2020). The
key observation is that all points in each Y j

i are pairwise
equidistant. Therefore, sending a uniformly random subset
of the inputs is the best strategy for each processor. Since

each processor communicates only a small fraction of its in-
put points, the probability that the coordinator receives any
of the points in {a∗, b∗1, b∗2, c∗, a, b, c} is negligible. Condi-
tioned on the coordinator not receiving these points, all the
received points are a subset of S1 ∪ S2 ∪ S3. As all points
in S1 ∪ S2 ∪ S3 are pairwise equidistant, the best strategy
for the coordinator is to output 3 points at random. Hence,
with constant probability, all the points in the output belong
to S1 or all of them belong to S3. This being the case, the
output has cost 4, whereas the optimum cost is 1.

5. Experiments
All experiments are run on HP EliteBook 840 G6 with
Intel R© CoreTM i7-8565U CPU 1.80GHz having 4 cores and
15.5 GiB of RAM, running Ubuntu 18.04 and Anaconda.
We make our code available on GitHub2.

We perform our experiments on a massive synthetic dataset,
several real datasets, and small synthetic datasets. The same
implementation is used for the large synthetic dataset and
the real datasets, but a slightly different implementation is
used for small synthetic datasets. Before presenting the
experiments, we first discuss the implementation details that
are common to all three experiments. Specific details are
mentioned along with the corresponding experimental setup.
For all our algorithms if the solution size is less than k, then
we extend the solution using an arbitrary solution of size k
(which also certifies the simple upper bound). In the case of
the distributed algorithm, an arbitrary solution is computed
using only the points received by the coordinator. Also,
one extra pass is spent into computing solution cost. In
the processors’ algorithm, we return ri along with (Pi, Li).
No randomness is used for any optimization, making our
algorithms completely deterministic. Access to distance
between two points is via a method get distance(),
whose implementation depends on the dataset.

We use the code shared by Kleindessner et al. for their
algorithm on github3, exactly as is, for all datasets. In their
code, the distance is assumed to be stored in an n × n
distance matrix.

As mentioned in the introduction, we give new implemen-
tations for existing algorithms—those of Chen et al. and
Kale (we choose to implement Kale’s two-pass algorithm
only, because it is the better of his two). Instead of us-
ing a matroid intersection subroutine, which can have run-
ning time of super quadratic in n, we reduce the postpro-
cessing steps of these algorithms to finding a maximum
matching in an appropriately constructed graph (for details,
see HittingSet() in the full version (Chiplunkar et al.,
2020)). We further reduce maximum matching to max-

2
https://github.com/sagark4/fair_k_center

3
https://github.com/matthklein/fair_k_center_clustering
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flow which is computed using Python package NetworkX.
This results in a postprocessing time of O(k2n) for Chen et
al. and O(k3) for Kale. This step itself makes Chen et al.’s
algorithm practical for much larger n than what is observed
by Kleindessner et al.

Handling the guesses For all algorithms (except Klein-
dessner et al.’s), we use ε = 0.1. For Chen et al.’s algorithm,
we use geometric guessing starting with the lower bound
given by the farthest point heuristic (call this Gonzalez’s
lower bound). For our two-pass algorithm and Kale’s algo-
rithm, we use geometric guessing starting with the simple
lower bound until the upper bound given by an arbitrary
solution. The values for the guesses τ in the coordinator’s
algorithm are scaled down by a factor of 5.1. Concretely, let
r1 be the maximum among the ri’s. Then the guesses take
values in r1

5.1 ,
1.1·r1
5.1 , (1.1)

2·r1
5.1 , . . ., until a feasible solution is

found. The factor of 5.1 ensures that when getPivots()
is run with the parameter 10τ < 2r1, we end up picking at
least k pivots from X ′.

We now proceed to present our experiments. To show the
effectiveness of our algorithms on massive datasets, we
run them on a 100 GB synthetic dataset which is a collec-
tion of 4,000,000 points in 1000 dimensional Euclidean
space, where each coordinate is a uniformly random real in
(0, 10000). Each point is assigned one of the four groups
uniformly at random, and capacity of each group is set to 2.
Just reading this data file takes more than four minutes. Our
two-pass algorithm takes 1.95 hours and our distributed al-
gorithm takes 1.07 hours; both compute a solution of almost
the same cost, even though their theoretical guarantees are
different. Here, we use block size of 10000 in the distributed
algorithm, i.e., the number of processors ` = 400.

For the above dataset and the real datasets: The input
is read from the input file and attributes are read from the
attribute file, one data point at a time, and fed to the algo-
rithms. This is done in order to be able to handle the 100
GB dataset. Using Python’s multiprocessing library, we are
able to use four cores of the processor 4.

5.1. Real Datasets

We use three real world datasets: Celeb-A (Liu et al., 2015),
Sushi (sus), and Adult (Kohavi & Becker), with n = 1000
by selecting the first 1000 data points (see Table 1).

Celeb-A dataset is a set of 202,599 images of human faces
with attributes including male/female and young/not-young,
which we use. We use Keras to extract features from
each image (fea) via the pretrained neural network VGG16,
which returns a 15360 dimensional real vector for each im-

4
https://www.praetorian.com/blog/multi-core-and-distributed-

programming-in-python

age. We use the `1 distance as the metric and two settings
of groups: male/female with capacity of 2 each (denoted by
[2, 2] in Table 1), and {male, female} × {young, not-young}
with capacity of 2 each (denoted by [2] ∗ 4 in Table 1).

Sushi dataset is about preferences for different types of
Sushis by 5000 individuals with attributes of male/female
and six possible age-groups. In SushiB, the preference is
given by a score whereas in SushiA, the preference is given
by an order. For SushiB, we use the `1 distance whereas for
SushiA, we use the number of inversions, i.e., the distance
between two Sushi rankings is the number of doubletons
{i, j} such that Sushi i is preferred over Sushi j by one
ranking and not the other. For both SushiA and SushiB, we
use three different group settings: with gender only, with
age group only, and combination of gender and age group.
This results in 2, 6, and 12 groups, respectively, and the
capacities appear as [2, 2], [2] ∗ 6, and [2] ∗ 12, respectively,
in Table 1.

Motivated by Kleindessner et al., we consider the adult
dataset (Kohavi & Becker), which is extracted from US
census data and contains male/female attribute and six nu-
merical attributes that we use as features. We normalize this
dataset to have zero mean and standard deviation of one and
use the `1 distance as the metric. There are two attributes
that can be used to generate groups: gender and race (Black,
White, Asian Pacific Islander, American Indian Eskimo, and
Other). Individually and in combination, this results in 2, 5,
and 10 groups, respectively.

Based on a reviewer’s suggestion, we also ran our experi-
ments on the Celeb-A, Sushi, and Adult datasets for capaci-
ties other than 2 for all groups. Results appear in Table 2.

On a majority of settings, our two-pass algorithm outputs
a solution with cost smaller than the rest (see Table 1 and
Table 2). We reiterate for emphasis that in addition to being
at least as good as the best in terms of solution quality, our
algorithms can handle massive datasets.

For the distributed algorithm, we use block size of 25, i.e.,
the number of processors are 1000/25 = 40: theoretically,
using ≈

√
n processor gives maximum speedup.

5.2. Synthetic Datasets

Motivated by the experiments in Kleindessner et al., we use
the Erdős-Rényi graph metric to compare the running time
and cost of our algorithms with existing algorithms. For
a fixed natural number n, a random metric on n points is
generated as follows. First, a random undirected graph on
n vertices is sampled in which each edge is independently
picked with probability 2 log n/n. Second, every edge is as-
signed a uniformly random weight in (0, 1000). The points
in the metric correspond to the vertices of the graph, and
the pairwise distances between the points are given by the



How to Solve Fair k-Center in Massive Data Models

Table 1. Comparison of solution quality of algorithms for fair k-center on real datasets. Each column after the third corresponds to an
algorithm and shows ratio of its cost and Gonzalez’s lower bound. Note that this is not the approximation ratio. Our two-pass algorithm is
the best for majority of the settings. Dark shaded cell shows the best-cost algorithm and lightly shaded cell shows the second best.

Dataset Capacities Gonzalez’s
Lower Bound

Chen et al. Kale Kleindessner
et al.

Two pass Distributed

CelebA [2, 2] 30142.4 1.9 1.9 1.85 1.76 1.76
CelebA [2, 2, 2, 2] 28247.3 2.0 2.0 1.9 1.88 1.88
SushiA [2, 2] 11.0 2.18 2.18 2.27 2.0 2.09
SushiA [2] * 6 8.5 2.35 2.35 2.24 2.35 2.24
SushiA [2] * 12 7.5 2.13 2.13 2.0 2.4 2.4
SushiB [2, 2] 35.0 1.8 1.8 2.11 1.8 1.86
SushiB [2] * 6 32.5 1.94 1.88 2.22 1.82 1.88
SushiB [2] * 12 30.5 1.93 2.0 2.07 2.0 2.0
Adult [2, 2] 4.9 2.04 2.13 2.44 1.9 2.02
Adult [2] * 5 3.92 2.66 2.66 2.02 2.36 2.35
Adult [2] * 10 2.76 2.75 2.41 2.48 2.48 2.75

Figure 2. Comparing Running Times

shortest path distance. In addition, if m is the number of
groups, then each point in the metric is assigned a group in
{1, 2, . . . ,m} uniformly and independently at random.

Figure 2 shows the plots between the running time and
instance size n; the bottom one is a zoom-in of the top one
to the lower four plots. In this experiment, n takes values in
{100, 150, 200, . . . , 350}. The number of groups is fixed to
5 and the capacity of each group is 2. For each fixing of n,
we run the five algorithms on 20 independent random metric
instances of size n to compute the average running time.
Our two pass algorithm and Kleindessner et al.’s algorithm
are the fastest. Our distributed algorithm is faster than Chen
et al.’s algorithm, but slower than Kale’s.

Figure 3. Comparing Approximation Ratios

Figure 3 shows the ratios of the cost of various algo-
rithms to Gonzalez’s lower bound. For this compar-
ison, the instance size is fixed to 500 and capacities
are [5, 5, 5], [2, 2, 11], [2, 2, 8, 8], [3, 3, 3, 11], [1, 2, 3, 4, 5],
[3, 3, 4, 4, 5], [4, 4, 5, 5, 5, 10], [2, 2, 2, 2, 2, 2]. Here again,
for every fixing of the capacities, the algorithm is run on
20 independent random metric instances to compute the
average costs. Chen et al.’s algorithm achieves the least cost
for almost all settings, and Kleindessner et al.’s algorithm
gives the highest cost on majority (5 out of 8) of settings.
Our two-pass algorithm and Kale’s algorithm perform sim-
ilar to each other and are quite close to Chen et al.’s. Our
distributed algorithm is somewhere in between Chen et al.’s
and Kleindessner et al.’s. Note that the ratios of the costs
between any two algorithms is at most 1.167.

In the implementation of our two pass algorithm, we use
geometric guessing starting with the simple lower bound
until the algorithm returns a success instead of running all
guesses. This is done for a fair comparison in terms of
running time.
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Table 2. Extension of Table 1 for capacities other than 2. See the description of Table 1.
Dataset Capacities Gonzalez’s

Lower Bound
Chen et al. Kale Kleindessner

et al.
Two pass Distributed

CelebA [1, 3] 30142.45 1.95 1.95 1.93 1.95 2.02
CelebA [3, 1] 30142.45 1.9 1.9 2.19 1.76 1.76
SushiA [1, 3] 11.0 2.18 2.18 2.0 2.18 2.09
SushiA [3, 1] 11.0 2.18 2.18 2.0 2.09 2.45
SushiB [1, 3] 35.0 1.74 1.74 2.11 1.74 1.86
SushiB [3, 1] 35.0 1.8 1.8 2.0 1.8 1.86
Adult [1, 3] 4.9 2.35 2.29 2.04 1.9 1.9
Adult [3, 1] 4.9 2.04 2.13 2.29 2.53 2.17
CelebA [1, 1, 3, 3] 28247.28 2.0 2.0 1.76 2.0 1.96
CelebA [3, 3, 1, 1] 28247.28 1.99 1.99 1.87 1.88 1.88
SushiA [1, 1, 1, 3, 3, 3] 8.5 2.35 2.47 2.35 2.35 2.35
SushiA [3, 3, 3, 1, 1, 1] 8.5 2.24 2.24 2.35 2.24 2.24

[3, 3, 3, 1, 1, 1,SushiA 3, 3, 3, 1, 1, 1] 7.5 2.27 2.27 2.4 2.13 2.13

SushiB [1, 1, 1, 3, 3, 3] 32.5 1.91 1.91 2.06 1.82 1.88
SushiB [3, 3, 3, 1, 1, 1] 32.5 1.88 2.03 2.12 1.97 1.82

[3, 3, 3, 1, 1, 1,SushiB 3, 3, 3, 1, 1, 1] 30.5 1.93 1.93 2.0 1.93 2.03

Adult [1, 1, 3, 3, 3] 3.57 2.72 2.72 2.42 2.72 2.64
Adult [3, 3, 1, 1, 1] 3.92 2.43 1.95 2.2 1.95 1.95

6. Research Directions
One research direction is to improve the theoretical bounds,
e.g., get a better approximation ratio in the distributed set-
ting or prove a better hardness result. Another interesting
direction is to use fair k-center for fair rank aggregation
using the number of inversions between two rankings as the
metric.
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