Block Me If You Can: A Large-Scale Study of Tracker-Blocking Tools

Georg Merzdovnik*, Markus Huber, Damjan Buhov*, Nick Nikiforakis*,
Sebastian Neuner*, Martin Schmiedecker*, Edgar Weippl*
*SBA Research, {gmerzdovnik, dbuhov, sneuner, mschiedecker, eweippl} @sba-research.org
tSt. Polten UAS, markus.huber@fhstp.ac.at
J:Stony Brook University, nick@cs.stonybrook.edu

Abstract—In this paper, we quantify the effectiveness of third-
party tracker blockers on a large scale. First, we analyze the
architecture of various state-of-the-art blocking solutions and
discuss the advantages and disadvantages of each method.
Second, we perform a two-part measurement study on the
effectiveness of popular tracker-blocking tools. Our analysis
quantifies the protection offered against trackers present on
more than 100,000 popular websites and 10,000 popular An-
droid applications. We provide novel insights into the ongoing
arms race between trackers and developers of blocking tools
as well as which tools achieve the best results under what
circumstances. Among others, we discover that rule-based
browser extensions outperform learning-based ones, trackers
with smaller footprints are more successful at avoiding being
blocked, and CDNs pose a major threat towards the future of
tracker-blocking tools.

Overall, the contributions of this paper advance the field
of web privacy by providing not only the largest study to
date on the effectiveness of tracker-blocking tools, but also by
highlighting the most pressing challenges and privacy issues of
third-party tracking.

1. Introduction

In the modern internet, it has become a common practice
for websites and mobile applications to rely on services
provided by third parties. These services include adver-
tisements, analytics, social integration widgets, and CDN-
residing versions of popular JavaScript libraries. While the
benefits of this third-party content integration are clear for
the developers of first-party sites, the widespread adoption
of these services is also inevitably linked with increased user
tracking.

Every time a user’s browser is instructed to fetch a
third-party resource, that third-party server is given the
ability to deliver tracking scripts and associate the first-party
website with the bearer of third-party cookies and browser
fingerprints. This tracking of online behavior allows for the
construction of increasingly detailed user profiles, including
sensitive information such as a user’s political views and
medical history. In addition to the exposure of users’ online
behavior to third parties, this third-party communication,
which is typically unencrypted, can be further exploited

by rogue ISPs and state-level attackers. For instance, it
became publicly known that the National Security Agency
(NSA) is piggybacking on third-party tracking cookies to
de-anonymize Tor users and to identify targets for further
exploitation [1], [2].

Third-party tracking thus has serious implications for
the overall privacy and security of Internet users. Previous
research focused on measuring the prevalence of tracking
on common websites [3], [4], [5] and showed how privacy-
conscious users and online trackers are at an arms race,
with the former deleting their cookies and utilizing client-
side, privacy-enhancing technologies, whereas the latter are
migrating from traditional stateful tracking to more opaque,
stateless tracking technologies based on browser fingerprint-
ing [6], 7], [8], [9].

The absence of explicit policies regarding what a website
is and is not allowed to do — coupled with the difficulty
of setting and preserving opt-out cookies [10], [11], and the
fact that the Do-Not-Track HTTP header is typically ignored
by websites [3], [12], [13] — has motivated most savvy
users to rely on client-side tools to preserve their online
privacy. These client-side tools typically come in the form
of browser extensions which differentiate between tracking
and non-tracking HTTP requests, blocking the former and
allowing the latter. At the time of writing, the two most
common blocking tools are AdBlock Plus and Ghostery.
AdBlock Plus focuses on blocking online advertisements,
while Ghostery provides feedback on trackers included in
websites. Note that even though advertisers do not neces-
sarily need to track user interests in order to show ads,
the majority of modern advertisers utilize Online Behavior
Advertising which relies on building detailed profiles of
a user’s interests and is thus one more form of tracking.
It is also worthwhile to note that some browser vendors
such as Mozilla and Apple have recently acknowledged
the importance of tracker-blocking tools and provide native
support for rule-based blocking in their browsers [14], [15].

Despite the prevalence of these tracker-blocking tools,
there is currently a lack of understanding of their effective-
ness and applicability in the wild, and the extent to which
they can protect users against motivated trackers. Previous
research on the effectiveness of tracker-blocking tools is
limited, both in scope as well as their considered threat
models [13], [14], [16], [17]. In order to help close that gap,

we present the first large-scale study on the effectiveness
of tracker-blocking tools taking into account both stateful
and stateless tracking as well as the tracking of a growing
number of mobile device users. In particular, this paper
makes the following contributions:

¢ We analyze over 100,000 popular websites and pro-
vide an up-to-date view on the reach of online track-
ing. We find that a small number of companies can
effectively track users across the majority of popular
websites. We also find that over 60% of tracking
information is exchanged over unencrypted HTTP
connections.

o We measure the effectiveness of browser extensions
in blocking stateful and stateless trackers. We find
that the effectiveness among different browser ex-
tensions varies, with a small number of extensions
effectively blocking the majority of stateful trackers.
None of the analyzed extensions was, however, able
to block all fingerprinting services.

e We highlight an important research challenge: the
lack of effective protection methods on mobile de-
vices. Our analysis discusses the feasibility of block-
ing trackers on mobile devices based on 10,000
Android applications.

2. Third-Party Tracking

Online tracking typically involves three parties: the host
of the online service (the first party), the user (the second
party), and the online tracking service (the third party). In
our threat model, we account for third-party tracking by
both websites as well as mobile applications. This section
discusses our threat model in detail.

2.1. Web Tracking

In the following, we describe the two most common web
tracking methods, followed by our tracking threat model.

Stateful web tracking. The most commonly used tech-
nology to track users online are persistent cookies
which uniquely identify users across multiple websites. Per-
sistent cookies stay in the user’s browser until they either are
explicitly deleted by the user or expire. In the case of track-
ing cookies, the expiration date is set to several years. Next
to HTTP cookies, unique identifiers might be also stored in
a number of different locations including Local Shared
Objects, HTML5 storage, and HTTP ETags [17],
[18]. The multitude of possible storage locations for unique
identifiers enables persistent user tracking even if HTTP
cookies are deleted. As long as the identifiers in one such
location escape deletion, they can be used to respawn HTTP
cookies [7].

Stateless web tracking (fingerprinting). Stateless track-
ing methods rely on device-specific information and user-
specific configurations in order to uniquely re-identify users.

Eckersley [19] conducted the first large-scale study to an-
alyze the uniqueness of web browser configurations, con-
verting them to so called “device fingerprints”. Stateless
web tracking does not rely on unique identifiers stored on
user devices, but on the properties of user devices including:
browser version, installed fonts, browser plugins, and screen
resolution. Eckersley found that 94.2% of browsers with
both Flash and Java installed could be uniquely identified.
Follow-up studies by Nikiforakis et al. [6] and Acar et
al. [7], [8] showed that stateless web tracking is already used
in the wild. Englehardt and Narayanan [9] recently showed
that fingerprinters are expanding their arsenal of techniques,
e.g., with audio-based fingerprinting.

Next to the utilized tracking method, web tracking
also depends on how third-party content is integrated into
websites. Analytics services such as Google Analytics are
included as third-party scripts, and thus set a unique iden-
tifier per site and user. As such, these services typically do
not have globally unique identifiers per user. Advertisement
services are typically included within an iframe, and
advertisement providers can therefore set a global (i.e., site-
independent) tracking identifier per user. Social widgets act
as a first- and third-party and can therefore track users
uniquely across multiple websites. An example of a social
widget is Facebook’s “Like” button, where a unique per-
user cookie is set by Facebook and transmitted back to
Facebook from all websites that display that button. Trackers
that have both first-party and third-party roles have other
user information in addition to unique identifiers such as
the users’ full names and e-mail addresses. First parties
might also unintentionally leak personal information to third
parties via various coding mistakes [13], [20].

2.2. Mobile Tracking

The tracking threats involved in browsing websites apply
equally well to desktop browsers as well as browsing done
via mobile devices. Mobile devices, however, provide an ad-
ditional source of potential information leakage: third-party
services bundled with mobile applications [21], [22], [23].
In-app third-party services transmit unique device identifiers
(UDID) to track the behavior of users. In older versions
of Android and iOS, third parties were allowed to access
these immutable UDIDs. Since 2013 both mobile operating
systems replaced immutable UDIDs with advertisement IDs
which can be reset by users. Mobile third-party trackers can
still, however, collect additional unique device identifiers
such as the device’s IMEI or MAC address of the WiFi
interface in order to reclaim reset-resistant tracking.

2.3. Threat Model

We exclude first-party tracking from our model under
the assumption that users visit those sites intentionally and
the sites may legitimately need to track users to provide, for
instance, the notion of a session. Our threat model accounts
for the following threats posed by third-party trackers:

o Stateful and stateless tracking by third parties
Both stateful and stateless tracking methods ulti-
mately rely on transferring either a unique user
identifier or a device fingerprint to the tracking third
party.

« Passive collection of transmitted identifiers
The passive collection of transmitted identifiers is
enabled by additional third-party trackers who rely
on unencrypted communication protocols.

In this paper, we investigate the interactions of the trackers
described in our aforementioned threat models with tracker-
blocking software, because it is currently the only protec-
tion method which prevents communication with third-party
tracking services. Furthermore, we use a more stringent
classification of tracking services than that of prior work,
e.g., compared with the work of Roesner et al. [3]. Specifi-
cally, we do not treat analytics services separately, because
we argue that these services can hypothetically match per-
site identifiers to a unique user profile based on various
system properties (fingerprints) they collect. However, our
threat model does not account for Internet Service Providers
(e.g., [24], [25]) or other entities that are able to actively
manipulate en route web traffic.

3. Blocking Trackers

In this section we describe the various tracker-blocking
methods that users have at their disposal, including the ones
that can access and block all network traffic as well as the
ones specifically situated in users’ browsers.

3.1. Network-based blocking

Network-based blocking methods were in use long be-
fore web browsers supported the notion of plugins and
extensions. In the following, we discuss the most common
network-based filtering methods and their drawbacks.

DNS blocking. DNS blocking uses address-based blacklists
in order to block access to certain domains. In the context
of blocking trackers (including ads) DNS blacklists are
commonly distributed in the form of a hosts file. These
hosts files are intended as replacements or extensions to
the stock hosts files of operating systems. A number of
projects maintain hosts files with popular advertising and
tracking domains which redirect requests to these domains
to localhost. Examples of DNS blacklists focused on
blocking advertisements and trackers include the longstand-
ing MVPS hosts [26] and Peter Lowe’s list [27]. DNS
blacklists exist since the late 1990ies and are now experi-
encing a renaissance for blocking in-app advertisements on
rooted mobile devices [28]. This tracker-blocking method
works independently of the used application, but is also the
most coarse-grained form of blocking. DNS filtering can be
used to block entire (sub)domains, but not individual URIs.
That is, one cannot block newyorktimes.com/tracker.js while
maintaining access to newyorktimes.com.

TABLE 1. COMMON BROWSER EXTENSIONS TO BLOCK ONLINE
TRACKERS, INSTALLATIONS, AND UNDERLYING FILTER RULES (AUG.

2016).
Browser Extension Filter-Rules Firefox Users Chrome Users
AdBlock Plus (ABP) ABP 18,689,656 10,000,000+
AdBlock ABP NA 10,000,000+
Ghostery custom (proprietary) 1,337,831 2.348.209
uBlock (Origin) ABP 1,243,409 3,852,990
AdBlock Edge ABP 408,410 NA
Disconnect custom (GPL) 265,773 797,097
Blur custom (proprietary) 176,027 329,446
Privacy Badger algorithmic 80,291 324,062

Interception Proxies. Interception proxies forward and
modify web traffic. A popular privacy-enhancing intercep-
tion proxy is Privoxy [29]. Privoxy has URI-based filtering
capabilities and can modify the content and headers of web
requests. As such, interception proxies can be used for more
fine-grained blocking of third-party tracking by removing
individual cookies, blocking certain URIs, and removing
tracking code from web pages. Interception proxies cannot,
however, intercept or modify encrypted TLS (HTTPS) traf-
fic. In theory, interception proxies could use their own cus-
tom TLS Certification Authority to modify HTTPS traffic.
In practice, an active man—-in-the-middle attack that
blocks trackers puts users at a serious security risk [30].
Furthermore, even with a custom Certification Authority,
interception proxies cannot handle websites that utilize cer-
tificate pinning [31], [32].

All network-based blocking methods have the advantage
of working independently of the underlying application or
browser. These methods have, however, two important short-
comings: First, as mentioned earlier, they cannot perform
fine-grained blocking on encrypted web traffic (proxy), but
only block entire domains (DNS based). Second, third-party
content cannot always be reliably detected at a network
level. Specifically, at every third-party request, the network-
level blocking tool must be able to reliably differentiate
intentional third-party requests (user clicked on a third-party
link and is expecting to navigate to a different website) from
unintentional, tracking-related, third-party requests.

3.2. Browser Extensions

Browser extensions can reliably detect third party con-
tent and modify any content loaded by web browsers includ-
ing encrypted web traffic. Table 1 shows the most popular
tracker-blocking browser extensions available for users of
Mozilla Firefox and Google Chrome. In the following, we
describe the different browser extensions in more detail.

Ad Blockers. The apparent need for blocking ads has led to
some of today’s most popular browser extensions. This trend
also becomes apparent when comparing the install counts
of different tracker-blocking tools across extension markets.
AdBlock Plus (ABP) is the most popular of these extensions,
at the time of writing ABP also has by far the most users of
all Firefox extensions. ABP limits user tracking by blocking

ads from being loaded. A number of other extensions build
upon the filter rules by ABP (shown in Tab. 1). ABP filters
are written using a custom pattern syntax and are then
internally translated to regular expressions. There are two
basic types of ABP filter rules: general blocking filters
and CSS filters. CSS filters are used to hide previously
blocked ad elements on websites. In addition to filter rules,
exceptions for these filters can be defined. The use of regular
expressions in the filter rules is discouraged, because of the
potential performance impact. By default, ABP subscribes
to EasyList filter rules which include general adblocking
rules. A number of additional subscriptions exists to improve
regional blocking of ads as well to block additional third-
party trackers (EasyPrivacy).

Tracker Blockers. Tracker-blocking extensions focus on
blocking trackers. The most popular extension in this cate-
gory is Ghostery. It is important to note that Ghostery does
not block trackers by default, but merely provides feedback
on which third-party trackers are included in each visited
website. Similar extensions are Disconnect, Abine’s Blur,
and EFF’s Privacy Badger. Tracker blocking rules include:
third-party domains, specific URIs, and “surrogates.” Sur-
rogates offer click-to-play functionality for social widgets
similar to the ones proposed by Roesner et al. [3].

3.3. Different Types of Rulesets

The effectiveness of all tracker-blocking methods dis-
cussed so far depends on their underlying blocking ruleset.
Rulesets can be divided into three categories: community-
driven, centralized, and algorithmic. The most popular
community-driven rulesets for blocking ads and trackers
origin from the development of the AdBlock Plus browser
extension. At the time of writing, the main AdBlock Plus
ruleset (EasyList) consists of over 17,000 URI pat-
terns and more than 25,000 CSS tags to be blocked.
EasyPrivacy is a ruleset for AdBlock Plus with more
than 9,000 community-maintained rules targeted at blocking
trackers. The subscriptions offered by the AdBlock Plus
community are used in a number of other browser ex-
tensions, including AdBlock, AdBlock Edge, and uBlock.
Every change to the AdBlock Plus rulesets is tracked via a
public mercurial repository [33]. Eyeo, the company behind
the AdBlock Plus browser extension, started an “acceptable
ads program” at the end of 2011 [34]. By 2015 Eyeo’s
acceptable ads program allowed for the whitelisting of over
300 businesses [35]. The acceptable ads program is enabled
by default for the AdBlock Plus browser extension.

Ghostery, Disconnect and Blur rely on a centralized
approach to create blocking rules. This means that the com-
panies behind these three tracker-blocking tools maintain
and curate blocking rules. These centralized, top-down filter
rules are, in general, more compact than community-driven
approaches. For example, Disconnect consists of a list of
2,200 third-party domains, whereas there are over 9,000
rules in the community-driven EasyPrivacy ruleset.

The third category are algorithmic approaches for block-
ing rules. These blocking tools do not rely on regularly

updated blacklists, but instead use heuristics to automatically
detect third-party trackers. The most popular example for the
use of algorithmic rulesets is EFF’s Privacy Badger which
labels third parties as trackers by observing the requests be-
tween first-party and third-party websites and searching for
the same high-entropy strings exchanged between multiple
first-party websites and individual third-party ones.

4. Methodology

In this section, we describe the methodology of our
large-scale tracker analysis. The section has two main parts:
our web tracking evaluation and our mobile tracking evalu-
ation.

4.1. Web Tracking

We evaluate the effectiveness of the most popular rule-
based advertisement and tracker blocking browser exten-
sions. Specifically, we use the following browser extensions:

AdBlock Plus 2.7.3 (default settings)
Disconnect 3.15.3 (default settings)
Ghostery 6.2.0 (blocking activated)
EFF Privacy Badger 0.2.6

(trained with Alexa Top 1,000)

e uBlock Origin 1.7.0 (default settings)

Overall, we use, whenever possible, browser extensions
with their default settings to simulate the experience of users
who install an extension, but do not further configure them.
We include AdBlock Plus, because it is by far the most
popular browser extension to block advertisement which is
one form of tracking due to the trend of Online Behavior
Advertising (OBA). AdBlock Plus by default relies on the
EasyList ruleset, but whitelists some “acceptable” adver-
tisement networks. Ghostery is the most popular browser
extension focused on online tracking, but displays by de-
fault only detected trackers and does not block them. For
our measurements, we thus activated blocking for all of
Ghostery’s third-party categories. Disconnect is an alterna-
tive for Ghostery, and Disconnect’s ruleset is also used for
Firefox’s tracking protection [14]. uBlock Origin markets
itself as a lightweight alternative for AdBlock Plus and a
“wide-spectrum blocker”. We use uBlock with its default
settings — which include EasyList and EasyPrivacy rulesets
— and other community-driven rulesets for blocking: ads,
trackers, and malware. Finally, we trained EFF’s Privacy
Badger with the Alexa Top 1,000 websites to evaluate the
effectiveness of this novel algorithmic blocking approach.

Analysis Framework. In order to analyze the browser
extensions, we developed a distributed modular web crawler
framework called CRAWLIUM. We designed the CRAWLIUM
measurement framework, because none of the existing
frameworks, such as OpenWPM [36], were able to run
multiple browser configurations in parallel and support high
scalability at the same time.

A high-level system overview of our framework
is outlined in Figure 1. Our analysis framework

CrawlMaster

CrawlerInstances

InstanceManager

Task
Creator —0 Task Queue)§

Result

1
!
1
1
1
NN Task
+Handler<—>Extons1(m 2
| :
1
1

Browser

1
1

Extension L Igroicar i
/ 1

Manager !
T~ Proxy

l«—>»Extension N

Data
Storage

| Data
“|Analysis

|
Collector <—0 Result Oueue)§

Figure 1. System overview of our modular web measurement framework CRAWLIUM. The CrawlMaster is responsible for task distribution and data
handling. The CrawlerInstances each manage several task handlers which process the tasks by running them against the different browser extensions in
parallel. The results are sent back to the CrawlMaster for collection and analysis.

consists of two instance types: CrawlMaster and
CrawlerInstances. The CrawlMaster instance
is responsible for producing tasks and aggregating
results, while the CrawlerInstances are responsible
for executing the actual measurement tasks. The
CrawlMaster needs to run all the time for uninterrupted
operation, whereas CrawlerInstances can be
terminated at any point in time. Each crawler instance
hosts several TaskHandlers. They are responsible
for running the tasks on the browsers and sending the
results back to the manager instance. Each TaskHandler
is responsible for a set of BrowserManagers, one
for each browser extension and another one without
modifications, as a baseline for the analysis (“plain”
profile). BrowserManagers handle command execution on
browsers and collect results from the proxy. They also take
care of restarting browsers and proxies and retry execution
of tasks in the case of an error. By running the browser with
the different profiles in parallel, we account for potential
temporal effects during crawls. These temporal effects are,
for example, changes to a website between requests from
different profiles. Since our setup is very modular it can be
easily adapted for other user profiles. The actual framework
is based on Firefox, Selenium and mitmproxy [37] in order
to load web pages and collect request and responses.

Im order to thoroughly evaluate the extensions concern-
ing their functionality, we also collect statistics on resource
consumption. Therefore, our framework collects information
on CPU usage and memory consumption for each browser
based on a task granularity. Every time before a new task
is sent to the browser, the BrowserManager collects the
current memory consumption and resets the count for CPU
usage. After the task is handled by the browser we store
the percentage of used computation resources and collect
a second memory snapshot. Finally, for each finished task
we reset the browser by closing all windows and pages that
were opened during crawling.

Web Sample. The sample of our evaluation is seeded from
the global Alexa Top Sites. The detection requires the analy-
sis of the actual (sub)pages from the Alexa Top Sites which
contain trackers. On certain websites, such as news sites,
tracking code (e.g., social widgets) is embedded in news
pages and not on the landing page of domains. We therefore
use a twofold crawling strategy to account for trackers on
nested web pages. First, we use PhantomJS to determine
the landing page of the top 200,000 domains in the global
Alexa Top Sites dataset. This phase of the measurement
does not collect final results, but serves as a first stage
to determine the sample set of pages for the second stage
of the measurement. We chose PhantomJS to account for
AJAX requests and thus have access to the content of current
websites, while still maintaining a low profile during sample
set selection. Second, we enumerate all nested links on a
given domain by analyzing the gathered websites. After
collecting the nested links, we select two random subpages
for each website. If no nested links are found or the domain
did not respond, the given domain is excluded. Finally, each
valid website sample consists of three webpages: the landing
page and the two random subpages.

Domain Aggregation. In order to extract the main domains
from URIs, we rely on the python tld package, which in
turn uses Mozilla’s public suffix list [38]. We removed user-
provided TLD information from Mozilla’s list to accurately
group our results based on providers instead of individual
services.

Detection of Fingerprinters. In addition to traditional,
stateful third-party tracking, our large-scale evaluation ac-
counts for tracking based on fingerprinting. Our analysis
is based on the findings provided by Acar et al. in FPDe-
tective [8] and Englehardt et al. based on OpenWPM [9].
Acar et al. provide several regular expressions [39] to detect
fingerprinters based on their URIs, while Englehart et al.
provide specific URI’s to identify fingerprinters. We used

these regular expressions and URI’s to detect if a page
includes a fingerprinting script based on the collected re-
sults. This analysis provides a baseline on the effectiveness
of existing browser extensions to prohibit the execution of
well-known and recently identified fingerprinting scripts.

4.2. Mobile Tracking

To better understand the difference between desktop
and mobile systems we analyzed a sample set of 10,000
popular Android applications concerning the inclusion of
third-party trackers. We obtained the sample from Viennot
et al. [40]. We expected that the browser extensions ported
to mobile platforms yield comparable results to our web
tracking experiments. This analysis complements our web
tracking experiments in the sense that we include in-app
third-party services which cannot be easily blocked without
rooting the underlying operating system. We conducted pilot
experiments by statically analyzing our collected sample
with androguard [41] to extract activities found in the ap-
plications’ manifest file. These pilot experiments, however,
showed a clear drawback of static analysis: Although the
extracted activities point to a specific ad provider, we were
unable to determine the ad-network tracking mobile users.
The main reason behind the limit of static analysis regarding
mobile in-app tracking is, that nowadays most mobile ads
are delivered through mediation networks such as Google
AdMob [42]. This implies that even if an application con-
tains an activity pointing to the AdMob advertisements, it
does not tell us whether the advertisement which is going
to be served will originate from AdMob itself or from some
different ad provider which is part of the mediated networks.

To overcome the limitation of static analysis, we set up
a dynamic analysis environment. Our framework is executed
in the Genymotion emulator [43] and exercised apps with
the help of Monkeyrunner. We furthermored use MITM
proxy to intercept all outgoing and incoming traffic for each
application in our sample. Finally, we evaluate two common
blocking approaches for mobile in-app advertisement: DNS-
based blocking and Adblock Plus for Android. In order to
analyze DNS-based blocking, we use the rulesets of two
different applications, AdAway [28] and MoaAB (Mother of
all AD-BLOCKING) [44]. AdAway and MoaAB are Android
applications for rooted Android phones which rely on a
network-based approach to block mobile in-app advertise-
ment by replacing Android’s stock host file. The Adblock
Plus for Android application does not require root access,
but creates a proxy which filters web traffic based on the
same filter rules as the Adblock Plus browser extension. The
Adblock Plus Proxy only intercepts HTTP traffic and thus
does not block advertisements on HTTPS requests [45]. In
order to evaluate the effectiveness of these three popular
mobile blocking tools, we matched their underlying rulesets
against the collected requests from our dynamic Android
application analysis. For AdAway and MoaAB, we use their
hosts files, for Adblock Plus we match requests against their
default ruleset.

5. Results

In this section we present the results of our evaluation
of more than 100,000 popular websites and 10,000 Android
applications.

5.1. Collected Data

We seeded our crawling framework with the top 200,000
Alexa websites. The actual crawling was performed on
Amazon EC2 via their Oregon datacenter, therefore all
requests originated from the same region in order to limit po-
tential location bias. We carried out multiple measurements
of the Top 200,000 Alexa websites to ensure our framework
produces comparable and valid samples. The data discussed
in this section is based on a sample obtained in May
2016. Out of 200,000 websites from the Alexa dataset, we
consider 61.93% of them as having been properly crawled.
This rather low number has two reasons: First, during the
PhantomJS analysis a number of websites did not respond,
which reduced the set of tasks available for the second
stage of the crawl to 191,492 websites (4.25% failed).
Second, we only considered web site samples where none
of the browser extensions caused timeouts when loading.
The number of successful results for the different extensions
is shown in Table 2. The use of Privacy Badger caused
the highest number of failed samples, where only 71% of
all websites loaded without time-outs with this extension
installed. Except from Privacy Badger, all extensions im-
proved our sample collection success rate compared to the
plain profile, while less than 10% of all websites produced
timeouts. Our filtering process finally resulted in a total
set of 123,876 websites which were successfully analyzed
with all browser extensions. These websites are uniformly
spread in the Alexa top 200K ranks; therefore, we argue
that our results are generalizable and characteristic of the
entire range. In terms of requests, our crawlers were able to
collect over 137 million HTTP(S) requests.

TABLE 2. SUCCESSFULLY CRAWLED WEB PAGES PER EXTENSION. WE
CONSIDER A REQUEST PER EXTENSION AS FAILED IF THEY EITHER DID
NOT RETURN ANY RESULTS AT ALL AFTER 3 TRIES OR HAD AT LEAST
ONE EMBEDDED REQUEST TIME-OUT AFTER 90 SECONDS.

Plugin # Sites # Success Failed %

plain 191,492 164,815 13.93%
adblockplus 191,492 170,636 10.89%
disconnect 191,492 176,659 7.75%
ghostery 191,492 179,068 6.49%
privacybadger 191,492 136,796 28.56%
ublock-origin 191,492 178,233 6.92%

The analysis of Android applications was performed at
our local lab. We used our dynamic analysis framework to
collect the network requests of the 10,000 most popular
Android applications. We excluded 939 applications from
our set that caused runtime errors while being analyzed.

o= google-analyticc.com o= googlesyndication.com
»=v doubleclick.net o= googleadservices.com
=== google.com === facebook.net
=< gstatic.com o= adnxs.com
> facebook.com e twitter.com
c oo googleapis.com oo fbcdn.net
© 80%
€
=] o
T 70% & et - . .
‘é‘ ~ - e ° o
© 0, -
3 60% R . R
° A4 a4 a4 vov Vemg——
™ 50% g8 o o § G Frgetey o 0 s S 2 3 9
o ¥
£ o T,
T 40% & "o, e — —
=] —— o S o B omogp a8 ® % T
o] N\ SO - o o B8 o o o a
£ 30% ° o, — S —
wn - -
8\ ommgE—, O,
@ 20% o oo oG By ¢ § O o g o
[o% R e e B —
bS]
< 10% — T T T T
S > > > > > > > > > >
F ¥F ¥ ¥ §F ¥ ¥ Yy §FF
A A R s A K R
~ N I N DA A S
A A R S S S I~
Sy Y Y P Y LS
<L < < < <
Alexa Rank

Figure 2. Distribution of most popular third-party domains (TLD+1) in
Alexa Top 200,000 websites in 10,000 intervals.

5.2. Identified Third-Party Services

We extracted the set of domains to which the different
browser instances issued requests. The actual top level do-
mains were identified based on Mozilla’s public suffix list
(see subsection 4.1). The information was then aggregated to
determine how often a specific domain (TLD+1) occurs in
different popularity ranks of first-party websites. Figure 2
outlines the distribution of the most popular third-party
domains in our crawled set of popular websites.

We found that the great majority of third-party services
belongs to a relatively small number of large Internet play-
ers. Table 3 shows an aggregated view on the third-party
services we observed, based on the meta-information of
Falahrastegar et al. [46]. Google provides by far the most
popular third-party web services; overall, Google services
are included by ~97% of websites in our sample. The
reach of Google can be attributed to three service cate-
gories: analytics, advertisements, and CDN services (e.g.,
googleapis.com). Social widgets by Facebook are included
by ~47% and those of Twitter by ~24% of all websites in
our sample. Amazon is the third-biggest third-party service
due to their CDN and cloud computing services.

Mobile Third Parties. Table 3 also shows the reach of
Internet companies in the context of Android applications.
Google’s reach of 74% of their third-party services for
Android applications follows intuitively as Google develops
Android. In comparison with our web sample, however, it
appears that Facebook, Twitter and Amazon have consid-
erable less reach on Android applications in comparison to
websites.

Insecure Content Delivery. Our results indicate that the
majority of observed third-party services use plaintext proto-
cols to deliver content and to exchange tracking information.
Figure 3 outlines the inclusion of third-party content through

TABLE 3. PERCENTAGE OF WEBSITES AND ANDROID APPLICATIONS
REACHED BY THE TOP 15 COMPANIES THAT PROVIDE THIRD-PARTY
SERVICES. THE RESULTS SHOW THE TOTAL REACH (PLAIN) AS WELL AS
THE REACH AFTER THE APPLICATION OF EACH BLOCKING SOLUTION.
FOR THE WEB DATASET THESE ARE ADBLOCK PLUS [ABP],
DISCONNECT [DC], GHOSTERY [GH], PRIVACYBADGER [PB], UBLOCK
ORIGIN [UBO], AND ALL APPLICATIONS COMBINED [C]. FOR ANDROID
THESE ARE EASYLIST [E], ADAWAY [A] AND MOAAB [M]

Desktop Mobile

plain abp dc gh pb ubo c|plain e a m
Google 97 93 80 66 93 69 60| 74 74 57 54
Facebook 47 44 5 2 4 39 0 6 6 6 6
Amazon 25 2121 13 20 13 10 8 8 8 7
Twitter 24 21 6 119 19 1 1 1 1 1
Yahoo 18 6 4 2 3 2 1 1414 14 0
AddThis 15 14 8 0 0 0 O 00 00
ComScor 14 10 1 01 0 O 2 2 00
AOL 1 01 01 0 O 00 00
Adobe 10 5 0 00 0O 00 00
Quantcast 9 51 0 0 00 00 00
Conversant(ValueClick) § 1 0 01 0O 0 0 0 0
RadiumOne 6 1 0 0 0O 0O 00 00
Baidu 6 6 6 2 0 1 0 2 2 20
AudienceScience 5 00 00 0O 00 00
Sizmek 5 0001 00O 00 00

HTTP and HTTPS for our complete set of analyzed websites.
Our results show that more than 60% of websites still
use HTTP for third-party content delivery. There are also
several web pages that access the same third-party domain
through HTTP and HTTPS. This behavior is likely due to
initial requests performed through HTTP and upgraded to
HTTPS by a third-party content provider. We found that, for
our Android sample, more than 75% of all requests were
performed over HTTP. Furthermore, the mobile blocking
tools we analyzed had an overall small impact on requests
to third-party services, with the best DNS-based blocking
list (MoaAB) reducing requests to third parties by 25%. As
such, our results effectively show that browser extensions
reduce insecurely loaded third-party content on websites.
Ghostery, for example, limits insecurely loaded third-party
content to about 20%. This, however, means that attackers
could, in the worst case, still target users on every fifth
website through passive and active attacks on third-party
services.

5.3. Blocking Behavior and Shortcomings

We categorized the 30 most popular third-party tracker
domains identified in our experiment to compare the effec-
tiveness of our analyzed browser extensions with respect
to blocking specific third-party service categories. Figure 4
shows the effectiveness of browser extensions in block-
ing the most common categories of third-party services.
This figure outlines the blocking behavior of the popular
browser extensions we analyzed. Table 6 in the Appendix
provides a detailed view on the 30 most-popular third parties
identified in our measurements, and the impact of tracker-
blocking browser extensions. For example, the first row in
Table 6 shows that Google Analytics was the most popular
third-party service in our sample, with 53.6% of requests

100 100
https only

B http+https
http only

£ 80 £ 80
c c
- - I
£ ‘s
£ £
S 5
3 S
z so- Z 60]
5]
g g
® ®
- I
I} ©
= £
G 40 f 40
° o
8] S8
P | 8
m — m
]]
g 20 g 20
-3 — — 4
—

00— T T T 0 T

N & & O & N & BT > »®

£ & ¢ £ & O & & & &L

& & S 2 o & ks P &
o° & & F & & & 2
& & & R Activated Blocklist (Android)

Activated Browser Extension

Figure 3. Protocols used for requests to distinct third-party domains.

to www.google-analytics.com performed over HTTP, and
13.2% performed over HTTPS (plain column). The columns
following “plain” show the impact of our evaluated browser
extensions where, for example, uBlock effectively blocks all
HTTP and HTTPS requests to Google Analytics.

AdBlock Plus is by far the most popular ad blocker,
and our findings show that AdBlock Plus blocked the
least amount of advertising-related, third-party requests
of all tracker-blocking extensions in our measurements.
The blocking behavior of AdBlock Plus can be attributed to
its acceptable ads program (discussed in Section 3) which
resulted in an overall decrease by 4% of blocked advertise-
ments in our measurements. Table 6 details our findings:
the majority of browser extensions, e.g., completely block
googleads.g.doubleclick.net, while Adblock Plus still allows
it to be included in about 1.5% of pages through HTTP and
13.7% of pages through HTTPS.

Furthermore, our measurements highlight an important
issue: a number of browser extensions fail to effectively
block social widgets (e.g., Facebook’s “Like” button or
Twitter’s button) from tracking users. Disconnect fails to
block requests originating from Twitter’s social widgets in
our measurements. uBlock Origin, with the community-
driven EasyPrivacy rules, fails to significantly impact track-
ing by major social networks such as Facebook or Twitter.
PrivacyBadger is the only extension to completely block
third-party requests to https://www.facebook.com (see Ta-
ble 6) but does not block all requests to Twitter.

Overall, our results suggest that top-down approaches
for rulesets (Disconnect, Ghostery) outperform community-
based rulesets (Adblock Plus, uBlock Origin) in terms of
their overall effectiveness in blocking the most popular third-
party trackers. PrivacyBadger takes a different approach
at blocking third-party trackers and does not come with
a preloaded blocking list, with its blocking capabilities
depending largely on the pages that have been previously
visited. Furthermore, certain major third parties, like Google

I Social
Advertising
B Analytics
Tag Manager
s CDN
Affiliate Marketing

Requests to 3rd party domains in %
B [=)]
o o

T
N & S) X & >
Q\'b\ 3 & ée} & O R4
O S o 2 O
o° & S & & <,°@
S S & o
N

Activated Browser Extension

Figure 4. Categories blocked by different extensions, and all extensions
combined. The data shows the categorized and aggregated numbers of the
30 most popular third-party services in our sample of 123,876 websites.

Analytics, are not considered trackers, because they do not
share state between pages and are therefore not blocked by
PrivacyBadger at all [47]. Overall, PrivacyBadger showed
promising effectiveness when compared with traditional
rule-based blocking extensions, but, as previously discussed,
also led to a large number of timeouts and therefore to a
potentially large number of malfunctioning webpages.

Mobile Blocking. Table 4 outlines third-party services de-
tected in our Android application sample and the impact
of our evaluated blocking tools in detail. The three block-
ing tools we evaluated offered limited protection against
third-party tracking. AdAway [a] blocked the four most
popular domains for mobile ad delivery (DoubleClick, Ads
by Flurry, googlesyndication, and admob), but did not
include rules for Chartboost and other common mobile
analytics providers. Adblock Plus for Android with their
default EasyList [e] ruleset detected common advertise-
ment providers, but this proxy-based solution can not block
HTTPS requests. Table 4 highlights this limitation of Ad-
block Plus for Android. For example, the first row of
Table 4 shows that 41.89% of apps that make requests to
googleads.g.doubleclick.net are not blocked, because they
used HTTPS. The default rulesets of Adblock Plus also lack
mobile-specific rules for other popular third parties such as
AdMob. The DNS-based “Mother of All AD-BLOCKING”
[m] blocklist had the biggest impact on third-party tracking
in Android applications. There are specific third-party ser-
vices that none of these tools can easily block. Facebook,
for example, uses HTTPS for all requests, meaning that
proxy-based blocking does not work, and DNS-blocking of,
e.g., graph.facebook.com would break the functionality of
applications.

5.4. Blind Spots of Different Rule Sets

Apart from the ability of browser extensions to block
the third-party domains with the largest footprint in terms

googleads.g.doubleclick.net

TABLE 4. PER-APP DISTRIBUTION OF THE TOP 15 THIRD-PARTY
SERVICES IN THE ANDROID SAMPLE IN % OF TOTAL APPS AND THE
IMPACT OF DNS-/PROXY- BASED BLOCKING.

plain easylist adaway moaab
http/https http/https http/https http/https

doubleclick.net googleads.g 17.22/41.89 /41.89 / /
stats.g 0.08/0.71 0.08/0.71 / /
pubads.g 0.26/0.43 /043 / /
google.com android.clients 0.08/28.48 0.08/28.48 0.08/28.48 0.08/28.48
wWWW 2.37/4.97 2.24/4.97 2.37/4.97 2.37/4.97
accounts /0.61 /0.61 /0.61 /0.61
googlesyndication.com pagead2 12.56/15.52 /15.52 /
tpe 1.33/11.60 0.03/11.60 / /
video-ad-stats 0.01/ 0.01/ / /
googleapis.com fonts 7.12/11.09 7.12/11.09 7.12/11.09 7.12/11.09
www /444 /444 /444 /444
play /435 /435 /435 /4.35
gstatic.com fonts 6.72/10.74 6.72/10.74 6.72/10.74 6.72/10.74
csi 2.22/3.62 2.22/3.62 2.22/3.62
Www 3.07/098 291/098 3.07/0.98 3.07/0.98
admob.com media 16.52/0.22 16.52/0.22 / /
e 0.02/ / 0.02/ /
google-analytics.com ssl /11.44 /11.44 / /
WWW 3.92/0.63 3.92/0.63 /
googleusercontent.com 1h3 6.38/8.38 6.38/8.38 6.38/838 6.38/8.38
1h5 0.03/0.28 0.03/0.28 0.03/0.28 0.03/0.28
1h4 0.06/0.15 0.06/0.15 0.06/0.15 0.06/0.15
flurry.com data 9.30/3.94 9.30/3.94 9.30/3.94 /
ads 0.26/0.73 /073 / /
cdn 10.66 /0.66 /0.66
adobe.com mobiledl 8.77/ 8.77/ 8.77/ 8.77/
airdownload2 6.91/ 6.91/ 6.91/ 6.91/
sp.auth /0.09 /0.09 /0.09 /0.09
chartboost.com live /4.34 /4.34 /4.34
a /3.16 /3.16 /3.16 /
— /3.00 /3.00 /3.09 /
unity3d.com stats 7.01/ 7.01/ 7.01/ /
config.uca.cloud /0.01 /0.01 /0.01 /0.01
api.uca.cloud 0.01/ 0.01/ 0.01/ 0.01/
facebook.com graph 0.11/3.97 0.11/3.97 0.11/3.97 0.11/3.97
m 0.04/2.42 0.04/2.42 0.04/2.42 0.04/2.42
WWW 0.36/1.20 0.36/1.20 0.36/1.20 0.36/1.20
amazonaws.com s3 0.19/3.20 0.19/3.20 0.19/3.20 0.19/3.20
prod-static-images.s3 ~ 0.21/ 0.21/ 0.21/ 0.21/
s3-us-west-1 0.08/0.15 0.08/0.15 0.08/0.15 0.08/0.15
tapjoyads.com ws 0.01/4.46 0.01/4.46 0.01/4.46 /

of their web presence, we were also interested in each
extension’s ability to block smaller, less popular third-party
trackers. Furthermore, we analyzed if there exists a trend
of blocked third parties from the more popular to the less
popular websites. To this end, we first extracted the number
of distinct third-party domains included in the plain requests
(no blocking extension installed) for each 10,000 Alexa
rank interval. This dataset was split into 3 distinct sets
containing third parties that were included on (2-20)/(20-
200)/200-10000) distinct first-party pages. Therefore, the
first set includes third parties with the smallest footprint
(web presence), whereas the last set comprises third parties
with the largest one. For each browser extension we then
analyzed the number of the third-party domains that were
not blocked. We consider a site as being, at least partially,
blocked, if the inclusion count drops to half of the lower
bound (e.g., less than 1/10/100 inclusions left respectively).
Therefore, if a browser extension blocks more third-party
domains in each respective set, it will consequently have a
lower rate of third-party domains still included.

The results of this analysis are outlined in Figure 5.
One conclusion we can draw from the results is that third-
party domains with a larger footprint seem to be blocked
more effectively by all extensions. Furthermore, we see that
Ghostery has the best performance in blocking third parties
with more than 20 inclusions. However, as the first plot
shows, uBlock has a better performance on third parties

included in less than 20 pages per Alexa rank interval.
Our results indicate that smaller tracking companies are
able to avoid attention from blocking tools and thus persist
regardless of the presence of tracker-blocking extensions.
An interesting side-effect is that in the very competitive
and crowded sector of third-party tracking, tracker-blocking
tools with incomplete coverage are indirectly ‘“helping”
smaller players by blocking their larger competitors.

Fingerprinters. In addition to measuring the effectiveness
of browser extensions in blocking well-known third par-
ties, we also investigated their ability to block stateless
fingerprinting services. These services are able to identify
users based on different attributes that are exposed through
their browser, like available fonts or installed extensions.
To quantify each extension’s ability to block fingerprinting,
we leveraged the previously detected fingerprinters found
by Acar et al. [8] as well as the newly identified fin-
gerprinters by Englehardt et al. [9]. Specifically, we uti-
lized the regular expressions provided by the authors of
FPDetective on Github [39] and the URI’s provided in
Englehardts’ paper. The results we gathered by applying
the rules to our dataset are shown in Table 5. Between
the two studies it seems that recently more third parties
rely on fingerprinting to identify users. A number of the
fingerprinting services we detected were not blocked by
any of our evaluated web browser extensions such as MER-
CADOLIBRE, SiteBlackBox, or CDN.net. Even though some
of these services were identified by both studies as providers
of fingerprinting scripts, it is unfortunate to see that they
are not completely blocked by all browser extensions. For
example, CDN.net was identified by FPDetective (i.e., three
years ago) and again by Englehardt et al., and yet none of
the extensions includes it in its rule set. Furthermore, we
noticed that the numbers between OpenWPM and our crawl
are distributed differently. As an example, we look at the
first three scripts in canvas fingerprinting. While Englehart
et al. identified doubleverify.com/dvtp_src_internal23.js and
doubleverify.com/dvtp_src_internal24.js as the fingerprinters
with most inclusions, both of them were not included in
our dataset. However, as we checked for the regular expres-
sion doubleverify.com/dvtp_src_internal.*.js we were able to
identify a similar number of inclusions, albeit with slightly
different names. We assume that fingerprinters change the
names of their scripts to evade overly strict rule sets. We
also noticed that for some instances we observed more
invocations of fingerprinting scripts with activated browser
extensions compared to our vanilla (plain) browser instance.
This divergence is likely a result of additional measures by
websites to combat clickfraud in the absence of other third-
party identifiers [6]. Finally, our analysis of popular Android
applications showed that ThreatMetrix was included in 149
applications, i.e., 1.64% of our sample. We found that only
the extensive DNS-based block list “Mother of all AD-
BLOCKING” [44] effectively blocked this fingerprinting
service.

oo disconnect m=v combined s~ ublock-origin == privacybadger =& ghostery S adblockplusl
2-20 20 - 200 200 - 10000
= 100%
a9
an-j
©
o) 0,
g.‘ﬁ 80% ... o U-oﬂ‘co o o
g
>g GO%M
t »
er e et e B > = ® o0 o
Q_v40‘)/)AA - > S Z> > °°°°ooooooooo . /__’___,—/\—/-’
EE o “ I -
|‘EE M B w
« O 20% e s e e e >
oc > e O e e =
K= - .
D Do o D999 DD D Do Y Y D222 DO D D0 O Y D299 D 2
FFIFIFTFIFTFIF & FFFFTFIFTFF TS FFIFIFTFIFFF TS
N M 9 NS N Y 5 N O N MmN S N Y 5 N N Hm g NS Ny 5 N O
N Yy N Iy Yy N Iy Yy
SRS TITFSS SRS FIFFSS YRS TS
NSESYSSSTSS NESYTSLLES NESTLLTES
N VNV VN N NNV NN N N NNV N

Figure 5. Sum of included third-party domains with 2-20/20-200/200-10000 inclusions which are not blocked by a specific browser extension in relation
to the plain profile. In all graphs: the lower an extension is on the y-axis, the better (less third-parties remaining).

5.5. Overhead of Tracker Blocking

Blocking trackers with browser extensions comes at the
cost of additional memory and CPU overhead for matching
requests against their blocklists. This section discusses the
overhead of the browser extensions we measured. These
findings are especially important to mobile devices where
mobile browsers are slowly opening up to extensions, but
computing resources and battery life are still a limited
commodity.

Overall, our evaluated browser extensions did not cause
a significant CPU overhead. Two of the tested extensions
even led to a reduction of the overall CPU usage of the tested
web browser (Disconnect and uBlock). Figure 6 shows that
browser extensions have a considerable impact on overall
memory consumption. For this analysis, we first excluded
the results from browser instances where we did not collect
continuous samples of 30 accessed webpages, since browser
instances were restarted, because one of the tasks (three
webpages of one website) failed. This resulted in different
sample subsets for the different browser extensions. We
found that all browser extensions resulted in a higher initial
memory consumption. After 30 webpages were accessed,
the memory footprint varied depending on the used browser
extension. We assume this happens, because the initial mem-
ory overhead is slowly amortized by the resource savings of
blocking third-party trackers. Adblock Plus was responsible
for a significant memory overhead, although none of the
extensions resulted in less memory being used.

6. Discussion

After presenting our large-scale analysis on the effec-
tiveness of tracker-blocking tools on websites and mobile
applications, we now discuss the implications of our findings
for designing future tracker-blocking solutions.

10

1566 1999 1276 1501 142 1642
450 i
n Initial memory usage
! I Memory usage after 10 tasks
400 !
1
350 - : : ;
m ! : i 4
= 1 : 1 1
ks ! ; L 1
© 300 '] : - '
g 1 — : —+ 1 1 1
w 1 1 1
=1 1 1
> 1
£ 250 L ' _ .
€ : — _ .
(7}]
= 1 — 1 1
200 1 _ = . Lo
— 1 . - 4
. = =
150 - e -
100
. X S .
& Q\\f’ & @«‘\ o &
N & N & o S
»® & § ¥ &
L & & ©
$

Activated Browser Extension

Figure 6. Initial memory usage and memory usage after requesting 30 web
pages per browser extensions in MB. The numbers on the top show the
amount of samples for each of the extensions.

6.1. Limitations

Our paper tackles the challenge of evaluating the effec-
tiveness of tracker-blocking tools on a large scale. However,
like any other large-scale study, our work has some limita-
tions.

First, our results on third-party tracking only provide
lower bounds, because our analysis does not account for
content behind registration walls, since we cannot obtain
accounts (paid and free) for thousands of websites. Second,

TABLE 5. NUMBER OF PAGES WITH DETECTED FINGERPRINTING
SERVICES, LISTED WITHOUT ANY EXTENSIONS (PLAIN) AND PER
BLOCKING EXTENSION. (SEE TABLE 3 FOR A DESCRIPTION OF THE
TABLE HEADER).

Web Dataset Android

plain abp dc gh pb ubo c‘plain e am
FP-Detective
BlueCava 27 5 0 025 00 0o 0 00
Myfreecams o 0 0 O 0 0O 0O 0 00
Mindshare Tech. 1 1 1 1 1 00 0o 0 00
AFK Media 2 2 2 2 1 21 0O 0 00
CDN.net 15 14 17 17 14 16 11 0o 0 00
ANALYTICSPROS o 0 0 0 0 00 0o 0 00
Anonymizer o 0 0 0 0 00 0 0 00
AAMI o 0 0 0 0 00 0o 0 00
VIRWOX 1 1 1 1 1 11 0O 0 00
ISINGLES o 0 0 0 0 00 0o 0 00
BBelements o 0 0 0 0 00O 0O 0 00
Inside graph 16 17 16 0 15 0 O 0O 0 00
PIANOMEDIA 0O 0 0 0 0 00 0 0 00
ALIBABA o 0 0 0 0 00 0O 0 00
MERCADOLIBRE 4 5 5 5 4 53 0O 0 00
LIGATUS o 0 0 0 0 00 0o 0 00
ThreatMetrix 39 39 39 1 37 0 0] 149 149 149 0
IOVATION 98 97 97 1 97 4 1 0o 0 00
MaxMind 4 13 13 14 12 1 1 1 1 10
Analytics-engine o 0 0 0 0 0O 0O 0 00
Coinbase o 0 0 0 0 00 0o 0 00
SiteBlackBox 11 11 12 12 11 11 11 0O 0 00
Perferencement o 0 0 0 0 00 0o 0 00
OpenWPM: Canvas Font Fingerprinting
mathid.mathtag.com/device/id\ .js 12016 1 1 O 1 0 0O 0 00
mathid.mathtag.com/d/i\.js 437374 2 1 2 30 0O 0 00
admicrol.vemedia.vn/core/fipmin\ js 39 1 0 3 4 10 0o 0 00
*.online-metrix.net 39 39 39 1 37 0 0| 149 149 149 0
pixel.infernotions.com/pixel/ 6 6 6 1 7 11 0o 0 00
api.twisto.cz/v2/proxy/test 0O 0 0 0 0 0O 0O 0 00
go.lynxbroker.de/eat_session) js O 0 0 0 0 00 0 0 00
OpenWPM: Canvas Fingerprinting
doubleverify.com/dvtp_src_internal.*\ js 4118 78 8 6 37 9 0 0 0 0
doubleverify.com/dvtp_src_internal24\ js o 0 0 0 0 00 0o 0 00
doubleverify.com/dvtp_src_internal23\ js 0O 0 0 0 0O 0O 0O 0 00
ap.lijit.com/sync 799 41 1 3364 1 0 1 1 10
cdn.doubleverify.com/dvbs_src\ .js 1781 26 4 2 51 4 0 0O 0 00
rtbedn.doubleverify.com/bsredirect5\ .js 20 8 2 0 2 00O 0O 0 00
g.alicdn.com/alilog/mlog/aplus_v2\ .js 116 121 129 131 48 0 0 0O 0 00
static.audienceinsights.net/t\ .js 39 17 27 25 30 0 O 0O 0 00
static.boo-box.com/javascripts/embed) .js 21 021 021 0O 0O 0 00
admicrol.vemedia.vn/core/fipmin)\ js 39 1 0 3 4 10 0O 0 00
c.imedia.cz/js/script)\ .js 45 35 45 0 43 38 0 0O 0 00
ap.lijit.com/www/delivery/fp 826 2729 3349 1 0 1 0 10
www.lijit.com/delivery/fp 20 1 8 0 8 00 0O 0 00
*amazonaws.com/af-bdaz/bquery\ .js 40 0 35 0 32 0 0 0O 0 00
* cloudfront.net/.*/platform.min\ js 23 24 23 3 25 15 2 0o 0 00
voken.eyereturn.com/ 4 0 1 0 13 0 0 0O 0 00
* hwedn.net/fp/Scripts/PixelBundle) js 2 1 1 1 1 00 0O 0 00
static.fraudmetrix.cn/fm\ js 1 11 11 14 11 9 0o 0 00
e.e701.net/cpe/js/common\ .js 1 1 12 9 10 10 5 0O 0 00
tags.bkrtx.com/js/bk-coretag\ .js 631 391 134 0449 6 0| 10 10 10 O
dtt617kogteso.cloudfront.net/sauce.min\ js 1 1 1 1 1 11 0O 0 00
OpenWPM: WebRTC Local IP discovery
cdn.augur.io/augur.min\.js 111 31 4 43 57 21 2 0O 0 00
click.sabavision.com/*/jsEngine\ js 78 54 81 84 77 56 46 0O 0 00
static.fraudmetrix.cn/fm\ js I 1 11 11 14 11 9 0o 0 00
.hwedn.net/fp/Scripts/PixelBundle\ .js 2 1 1 1 1 00 0O 0 00
www.cdn-net.com/cc\ js 15 14 17 17 14 16 11 0o 0 00
scripts.poll-maker.com/3012/scpolls\ js 33 3 3 4 33 0O 0 00
static-hw.xvideos.com/vote/displayFlash\ .js 6 7 9 9 7 10 6 0O 0 00
g.alicdn.com/security/umscript/3.0.11/um\ js 0O 0 0 O 0 0O 0O 0 00
load.instinctiveads.com/s/js/afp)\ js o 0 0 0 0 00 0 0 00
cdnd.forter.com/script\ .js 4 4 4 2 5 00 0O 0 00
socauth.privatbank.ua/cp/handler .html 2 3 2 1 0 10 0o 0 00
retailautomata.com/ralib/magento/raa\ js o 0 0 0 0 0O 0O 0 00
live.activeconversion.com/ac)\ .js o 0 0 0 0 00 0O 0 00
*.ml.com/publish/ClientLoginU/HTML/cc\ js 32 1 3 2 21 0O 0 00
cdn.geocomply.com/101/gc-html5\ js 0O 0 0 0 0 00 0O 0 00
retailautomata.com/ralib/shopifynew/raa\ .js o 0 0 0 0 00O 0o 0 00
2nyan.org/animal/ 2 2 2 2 2 22 0O 0 00
pixel.infernotions.com/pixel/ 6 6 6 1 7 11 0o 0 00
167.88.10.122/ralib/magento/raa\ .js 0O 0 0 0 0 0O 0O 0 00

we used the default settings of all browser extensions,
with the exception of Ghostery where we manually acti-
vated blocking of third-party trackers (the default mode of
Ghostery is to only report the presence of trackers, but not
to block them). Therefore, users must not misunderstand

11

our experiments and arrive at the conclusion that merely in-
stalling Ghostery currently offers the best protection against
trackers. Finally, the PrivacyBadger extension was limited
to blocking trackers based on our training on the Alexa top
1,000 websites. As such, given more realistic workloads or
usage spanning many days, PrivacyBadger could perform
better (or worse) than it did in our measurements.

6.2. Future Tracking Defenses

Based on our findings we identify the following major
challenges for future tracker-blocking browser extensions:

Social widgets are important. Despite the reach and im-
pact of social widgets on the tracking of users, a number
of existing browser extensions failed to effectively block
Facebook’s and Twitter’s widgets. Future tracking defenses
should focus on the creation of effective surrogates for
common social widgets.

Creation of filter rules. We identified the need for research
to automate or at least assist the laborious process of cre-
ating tracker-blocking filter rules. Previous research relied
on the community-driven EasyList and EasyPrivacy filter
rules [48], [49], [50] our findings suggest that the centralized
rule sets by Ghostery or Disconnect might provide a better
baseline for future research.

Closing blindspots. In addition to the varying effectiveness
of different browser extensions regarding different stateful
online trackers, all evaluated browser extensions failed to
completely block well-known stateless fingerprinting ser-
vices. We think that this is because of the opaque nature
of fingerprinting which makes it harder for users to spot
and hence report. Ideally, novel research into detecting
stateless fingerprinters would automatically create blocking
rules (since for some of the identified fingerprinters even
after three years no filter rules exist). Finally, our results
suggest that the proprietary filter rules of Ghostery should
be complemented with the community-based rules from
uBlock, to account for less popular third-party trackers.

Methodology for detecting broken websites. Our findings
highlight an important research challenge for the automated
creation of blocking rules: the risk of breaking websites.
The heuristic creation of blocking rules with EFF’s Privacy
badger showed promising effectiveness, but also led to the
highest number of unresponsive websites in our sample.
Future research should therefore focus on methods to au-
tomatically detect whether a certain rule may break the
functionality of websites.

Provide for content distribution networks. This ideal
combination of filter rules would ultimately reduce third-
party services to content distribution networks which cannot
be blocked without breaking the functionality of websites.
The growing usage of CDNs could ultimately thwart all
existing tracker-blocking tools since CDN providers could
deploy probabilistic stateless tracking based on the IP ad-
dress and user agent of their users. A possible counter-
measure for future tracker-blocking solutions would be the

inclusion of popular JS libraries/fonts to make requests to
CDNs unnecessary. There is currently one browser extension
for Mozilla Firefox which complements tracker-blocking
browser extensions by locally providing popular CDN con-
tent [51].

Mobile in-app tracking. Mobile devices are often neglected
in the discussion of third-party tracking protection, despite
their growing usage. Currently, the most common browser
extensions for blocking web trackers are available for An-
droid (through Firefox Mobile) and iOS [15]. Unfortunately,
tracking by mobile applications is harder to block. The
rooting of mobile phones is outside the reach of everyday
users, and therefore blocking can only be performed at a net-
work level. Our results showed that AdAway/MoaAB (DNS-
based blocking) and Adblock Plus for Android (proxy-based
blocking) fail to significantly impact tracking by third parties
on mobile applications.

6.3. Online Tracking and Security

In our large scale analysis, blocking extensions did
not result in noticeable CPU overhead, and in the case
of Disconnect it even led to decreased CPU usage. The
majority of analyzed browser extensions, however, led to
an increased memory footprint. Adblock Plus resulted in
the biggest overhead which can be attributed to its use
of cosmetic CSS-based filters which hide advertisements
and the space they used to occupy, in addition to blocking
them. Despite the memory overhead we measured, tracker-
blocking has additional benefits for the security of users.

Third-party tracking and third-party content in general
have been exploited as an attack vector in the past. The
NSA used tracking identifiers to identify targets for further
exploitation by passively analyzing unencrypted traffic en
route to third-party tracking services. Our measurements
showed that over 60% of third-party services did not use
TLS to protect third-party requests and responses. Next to
passive attacks abusing unprotected requests and responses,
a web-wide over-reliance on specific third-party trackers can
also be abused by active adversaries. For example, in a
recent nation-state attack later dubbed “Great Cannon” [52],
attackers replaced advertisements and analytics code loaded
from baidu.com with malicious code which performed DoS
attacks against specific targets. This example shows that
popular third-party services can make very attractive targets
for attackers. For example, based on our measurements,
if attackers would be able to successfully attack google-
analytics.com, they could push malicious code to approxi-
mately 70% of the top web pages.

7. Related Work

Measurement studies. To the best of our knowledge, there
has been no study on blocking third-party trackers of a
scope comparable to our work. Mayer and Mitchell [17]
provide a survey describing how companies track users
online and discuss current protection strategies. In addition,

12

they introduced FourthParty [53], a web measurement tool
to analyse third-party tracking. The authors used Fourth-
Party to analyse the effectiveness of different blocking tools
based on the Alexa Top 500. They found Adblock Plus
with FEasyList and EasyPrivacy to be the most effective
browser extension. Balebako et al. [12] proposed a research
methodology to analyze behavioral advertising based on
web history and textual Google ads. They analyzed the
built-in browser functionality, Ghostery, Abine, and the Do
not Track header. They found that blocking tools were
effective against behavioral profiling by Google text ads,
because these tools completely removed the JavaScript code
that generated them. Roesner et al. [3] analyzed the Top
500 websites, Non-Top 500, and the AOL testdata set in
2012 on existing trackers using a custom Firefox exten-
sion. Furthermore, they proposed a classification of dif-
ferent trackers according to their relationship with first-
party websites and users and analyzed different browser-
protection mechanisms. Reisman et al. [13] showed that
the current state of third-party tracking enables surveillance
and analyzed different blocking strategies. They found that
Ghostery was the most effective tool for blocking trackers
on the Alexa top 500 websites. All mentioned research
has one key finding in common: dedicated tracker blockers
significantly outperform other protection methods such as
the disabling of third-party cookies, the usage of the Do-
Not-Track header, and the setting of opt-out cookies. Our
paper provides new insights in the arms race between third-
party blockers and tracker blockers and demonstrates that
the use of tracker blockers can have unexpected side-effects,
such as the indirect assistance of smaller third-party trackers
by blocking popular ones.

Stateless tracking. Motivated by the initial findings of
Eckersley [19], a number of researchers further investi-
gated stateless tracking and its implications. Yen et al. [54]
performed a fingerprinting study similar to Eckersley’s by
analyzing logs of Bing and Hotmail. Interestingly, the au-
thors found that a client’s IP in combination with her user-
agent string provided enough entropy to uniquely identify
over 80% of the users. Nikiforakis et al. [6] described
how fingerprinting works by analyzing the code of three
browser-fingerprinting providers. Their work also showed
that the spoofing of user-agents is an insufficient protection
method that can cause more harm than good. Acar et al. [§8]
developed the FPDetective framework to detect web-based
fingerprinters in the wild. They found that fingerprinting
was used by over 400 domains in the Alexa Top 1 Million
dataset. In a later study, the authors also investigated the
usage of canvas-fingerprinting [55] in the wild as one more
vector for uniquely identifying users across multiple web-
sites [7]. The most extensive measurement on stateless track-
ing has been performed by Englehardt and Narayanan [9],
including novel findings on the use of AudioContext fin-
gerprinting. Our work leverages the findings of Englehardt
and Narayanan as well as Acar et al. to shed light on the
effectiveness of the state-of-the-art blocker tracking tools
against stateless tracking on popular websites and mobile

apps. Our results showed that stateless tracking constitutes
a serious blindspot of today’s tracker-blocking tools.

Tracking defense strategies. A number of defense strate-
gies has been proposed in the past. Guha et al. [56] proposed
Privad which acts as a privacy-preserving dealer for adver-
tising. The approach by Guha et al. tries to find a balance
between privacy and still showing relevant ads to users. To
the best of our knowledge, no systems comparable to Privad
are used by advertisement providers. Recent proposals like
the TrackingFree browser by Pan et al. [57] rely on separated
identities (browser principals) for different websites in order
to hinder tracking by third parties. A similar approach has
been proposed by Torres et al. [58] where a custom browser
extension enforces separate web identities per website [58].
Privaricator [59] uses a modified stock web browser to fake
browser fingerprints. These proposals offer promising meth-
ods to hinder stateful and stateless tracking, but they all rely
on browser vendors adopting their technologies. Tracker-
blocking browser extensions thus offer the best protection
strategy against online tracking and also have positive side-
effects, such as protecting users from malvertising and active
URL hijacking attacks [52]. Cranor [10] showed that these
tools are plagued by usability issues and proposed improve-
ments. The usability survey by Leon et al. [60] furthermore
highlighted that only one out of five participants was able to
enable the optional blocking feature of Ghostery, the most
effective tool in our measurement study.

Finally, given the effectiveness of tracker-blocking tools,
the research community focuses on improving the under-
lying tracker-blocking rules. Previous research suggests to
leverage machine learning for complementing existing rule
sets. Bau et al. [48] proposed to use supervised machine
learning to detect tracking by third-party domains. Bha-
gavatula et al. [49] evaluated different machine learning
algorithms and found that the k-nearest neighbor algorithm
outperformed the accuracy of other classifiers. They used
EasyList as a baseline and analyzed if they could correctly
predict URLs included in this popular ad-blocking list.
Gugelman et al. [50] used a naive Bayes classifier to detect
privacy-intrusive services based on statistical HTTP traffic
features. It is interesting to note that the research community
bases their experiments on the EasyList and EasyPrivacy
rule sets with which they train their detection classifiers.
Our results suggest that other rule sets, such as those of
Ghostery’s or Disconnect might provide a better benchmark
for machine learning experiments.

8. Conclusion

In this paper we conducted a large-scale analysis of
the widespread practice of online tracking by third-party
services. Third-party tracking has serious implications for
the privacy and security of users, and we provide insights
into the effectiveness of current tracker-blocking tools. Our
results are based on the analysis of over 100,000 websites
in combination with the state-of-the-art tracker blocking
tools. Our findings suggest that some browser extensions can

13

effectively block the majority of stateful third-party trackers,
although still having blind spots regarding blocking stateless
fingerprinting scripts and smaller third-party trackers. We
furthermore showed that over 60% of third-party tracking
services communicate in plain text. Finally, our paper dis-
cussed the unique challenges of effectively blocking third-
party trackers on mobile devices.

Overall, the contributions of this paper advance the field
of web privacy by providing not only the largest study on the
effectiveness of tracker-blocking tools on websites to date,
but furthermore highlighting the most pressing challenges
for mitigating online tracking.

Acknowledgements

This work has been carried out within the scope of
“w’smile”, the Josef Ressel Center for User-Friendly Secure
Mobile Environments, funded by the Christian Doppler
Gesellschaft, A1 Telekom Austria AG, Drei-Banken-EDV
GmbH, LG Nexera Business Solutions AG, NXP Semicon-
ductors Austria GmbH, and Osterreichische Staatsdruckerei
GmbH. Furthermore, this work has been supported by the
Austrian Research Promotion Agency under grant 853264
(PriSAd), a joint project of Nimbusec GmbH and the St.
Polten University of Applied Sciences. For Stony Brook
University, this research was supported by the National
Science Foundation (NSF) under grants CNS-1527086 and
CNS-1617593.

References

o,

[1] The Guardian, tor stinks” presentation,”
http://www.theguardian.com/world/interactive/2013/oct/04/

tor-stinks-nsa-presentation-document.

2013,

[2]

G. Greenwald, “Xkeyscore: Nsa tool collects’ nearly everything a
user does on the internet’,” The Guardian, vol. 31, 2013.

[3] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in NSDI. USENIX Asso-

ciation, 2012.

[4] B. Krishnamurthy and C. E. Wills, “Generating a privacy footprint
on the internet,” in ACM Internet Measurement Conference. ACM,

2006, pp. 65-70.

C. J. Hoofnagle, A. Soltani, N. Good, D. J. Wambach, and M. Ayen-
son, “Behavioral advertising: The offer you cannot refuse,” Harvard
Law & Policy Review, 2012.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting,” in Security and privacy (SP), 2013 IEEE
symposium on. 1EEE, 2013, pp. 541-555.

G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” ACM CCS’14, 2014.

G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Giirses, F. Piessens,
and B. Preneel, “Fpdetective: Dusting the web for fingerprinters,” in
ACM CCS’13. ACM, 2013, pp. 1129-1140.

[5]

[6]

[7]

[8]

[9] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis Draft: July 11th, 2016,” Jul. 2016,
[Technical Report]. [Online]. Available: http://randomwalker.info/

publications/OpenWPM_1_million_site_tracking_measurement.pdf

http: //www.theguardian.com/world/interactive/2013/ oct/04/tor-stinks-nsa-presentation-document
http: //www.theguardian.com/world/interactive/2013/ oct/04/tor-stinks-nsa-presentation-document
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]
[28]

[29]

(30]

[31]

[32]

[33]

L. F. Cranor, “Can users control online behavioral advertising effec-
tively?” Security & Privacy, IEEE, vol. 10, no. 2, pp. 93-96, 2012.

J. Mayer, “Tracking the trackers: Early results,” The Center for
Internet and Societys Blog, 2011.

R. Balebako, P. Leon, R. Shay, B. Ur, Y. Wang, and L. Cranor,
“Measuring the effectiveness of privacy tools for limiting behavioral
advertising,” in W2SP, 2012.

D. Reisman, S. Englehardt, C. Eubank, P. Zimmerman, and
A. Narayanan, “Cookies that give you away: Evaluating the surveil-
lance implications of web tracking,” in WWW, 2014.

G. Kontaxis and M. Chew, “Tracking protection in firefox for privacy
and performance,” W2SP, 2014.

Engadet, “iOS 9’s web browser can block annoying ads,”
2015. [Online]. Available: http://www.engadget.com/2015/06/10/
safari-in-ios-9-can-block-ads/

D. Malandrino, A. Petta, V. Scarano, L. Serra, R. Spinelli, and
B. Krishnamurthy, “Privacy awareness about information leakage:
who knows what about me?” in /2th ACM WPES workshop. ACM,
2013, pp. 279-284.

J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and
technology,” in Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012, pp. 413-427.

S. Kamkar, “Evercookie-virtually irrevocable persistent cookies,” His
Blog, vol. 9, 2010.

P. Eckersley, “How unique is your web browser?” in Privacy Enhanc-
ing Technologies. Springer, 2010, pp. 1-18.

B. Krishnamurthy, K. Naryshkin, and C. Wills, “Privacy leakage vs.
protection measures: the growing disconnect,” W2SP, vol. 2, pp. 1-
10, 2011.

R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST). Citeseer, 2012.

M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in WISEC. ACM, 2012,
pp. 101-112.

T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal analysis
of android ad library permissions,” arXiv preprint arXiv:1303.0857,
2013.

J. Mayer, “The Turn-Verizon Zombie Cookie,” 2015, http://webpolicy.
org/2015/01/14/turn-verizon-zombie-cookie/.

Ars Technica, “How a banner ad for H&R Block appeared on
apple.com without Apple’s OK |,” 4 2013, http://arstechnica.com/
tech-policy/2013/04/how-a-banner-ad-for-hs-ok/.

MVPS, “Blocking unwanted connections with a hosts file,” 2015,
http://winhelp2002.mvps.org/hosts.htm.

P. Lowe, “Yoyo hosts file,” 2015, http://pgl.yoyo.org/as/.

D. Schiirmann, D. Mosenkovs, and 0-kaladin, “Adaway,” https:/www.
adaway.org, 2016.

F. Keil, D. Schmidt, H. Burgiss, L. Rian, and R. Rosenfeld, “Privoxy,”
2015, http://www.privoxy.org/.

T. Register, “Ssl-busting adware: Us cyber-plod open fire on
comodo’s privdog,” 2015, http://www.theregister.co.uk/2015/02/24/
comodo_ssl_privdog/.

C. Evans, C. Palmer, and R. Sleevi, “Public key pinning extension
for http,” http://www.rfc-editor.org/rfc/rfc7469.txt, 2015.

M. Kranch and J. Bonneau, “Upgrading https in mid-air: An empirical
study of strict transport security and key pinning.” in NDSS, 2015.

Adblock Plus, “Mercurial repositories index,” https://hg.adblockplus.
org/.

14

[34]

[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

W. Palant, “Allowing acceptable ads in adblock plus,”
12 2011, https://adblockplus.org/development-builds/
allowing-acceptable-ads-in-adblock-plus.

Ars Technica, “Over 300 businesses now whitelisted on adblock
plus, 10% pay to play,” 2015, http://arstechnica.com/business/2015/
02/over-300-businesses-now- whitelisted-on-adblock-

plus- 10-pay-to-play/.

S. Englehardt, C. Eubank, P. Zimmerman, D. Reisman, and
A. Narayanan, “Openwpm: An automated platform for web privacy
measurement,” 2015.

A. Cortesi, “mitmproxy,” https://mitmproxy.org/, 2015.

M. Foundation, “Public suffix list,” https://publicsuffix.org/, 2015.

G. Acar, “Fpdetective regular expressions,” https://github.com/
fpdetective/fpdetective/blob/master/src/crawler/fp_regex.py, 2016.

N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in SIGMETRICS. ACM, 2014, pp. 221-233.

A. Desnos, “Androguard: Reverse engineering, malware and good-
ware analysis of android applications... and more (ninja!),” https:
//github.com/androguard/androguard, 2015.

Google, “Admob mediation network,” https://developers.google.com/
admob/android/mediation-networks, 2015.

Genymobile, “Genymotion,” https://www.genymotion.com, 2015.

BSDgeek_Jake, “Moaab: Mother of all ad-blocking,” http://forum.
xda-developers.com/showthread.php?t=1916098, 2015.

A. Novikov, “Adblock plus 1.0 for android released,” https:
//adblockplus.org/releases/adblock-plus- 10-for-android-released,
2012.

M. Falahrastegar, H. Haddadi, S. Uhlig, and R. Mortier, “Anatomy
of the third-party web tracking ecosystem,” arXiv preprint
arXiv:1409.1066, 2014.

A. Lutz, “Not blocking google analytics?” https://github.com/EFForg/
privacybadgerfirefox/issues/298, 2015.

J. Bau, J. Mayer, H. Paskov, and J. C. Mitchell, “A promising direction
for web tracking countermeasures,” W2SP, 2013.

S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart,
“Leveraging machine learning to improve unwanted resource filter-
ing,” in AISec. ACM, 2014, pp. 95-102.

D. Gugelmann, M. Happe, B. Ager, and V. Lenders, “An automated
approach for complementing ad blockers blacklists,” Proceedings on
Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 282-298, 2015.
T. Rientjes, “Decentraleyes,” 2016, https://decentraleyes.org.

B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune,
A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson, “An analysis of
china’s “great cannon”,” in 5th USENIX FOCI Workshop. Washing-
ton, D.C.: USENIX Association, Aug. 2015.

J. Mayer, “Fourthparty
http://fourthparty.info/, 2015.
T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host fingerprinting
and tracking on the web: Privacy and security implications.” in NDSS,
2012.

K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
html5,” in Web 2.0 Workshop on Security and Privacy (W2SP), 2012.
S. Guha, B. Cheng, and P. Francis, “Privad: Practical privacy in online
advertising.” in NSDI, 2011.

X. Pan, Y. Cao, and Y. Chen, “I do not know what you visited
last summer: Protecting users from third-party web tracking with
trackingfree browser,” in NDSS, 2015.

H. J. Christof Torres and S. Mauw, “Fp-block: usable web privacy
by controlling browser fingerprinting,” in ESORICS, 2015.

web measurement platform,”

N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving
fingerprinters with little white lies,” in WWW. International World
Wide Web Conferences Steering Committee, 2015, pp. 820-830.

P. Leon, B. Ur, R. Shay, Y. Wang, R. Balebako, and L. Cranor, “Why
johnny can’t opt out: a usability evaluation of tools to limit online
behavioral advertising,” in SIGCHI. ACM, 2012, pp. 589-598.

http://www.engadget.com/2015/06/10/safari-in-ios-9-can-block-ads/
http://www.engadget.com/2015/06/10/safari-in-ios-9-can-block-ads/
http://webpolicy.org/2015/01/14/turn-verizon-zombie-cookie/
http://webpolicy.org/2015/01/14/turn-verizon-zombie-cookie/
http://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
http://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
http://winhelp2002.mvps.org/hosts.htm
http://pgl.yoyo.org/as/
https://www.adaway.org
https://www.adaway.org
http://www.privoxy.org/
http://www.theregister.co.uk/2015/02/24/comodo_ssl_privdog/
http://www.theregister.co.uk/2015/02/24/comodo_ssl_privdog/
http://www.rfc-editor.org/rfc/rfc7469.txt
https://hg.adblockplus.org/
https://hg.adblockplus.org/
https://adblockplus.org/development-builds/allowing-acceptable-ads-in-adblock-plus
https://adblockplus.org/development-builds/allowing-acceptable-ads-in-adblock-plus
http://arstechnica.com/business/2015/02/over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/
http://arstechnica.com/business/2015/02/over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/
http://arstechnica.com/business/2015/02/over-300-businesses-now-whitelisted-on-adblock-plus-10-pay-to-play/
https://mitmproxy.org/
https://publicsuffix.org/
https://github.com/fpdetective/fpdetective/blob/master/src/crawler/fp_regex.py
https://github.com/fpdetective/fpdetective/blob/master/src/crawler/fp_regex.py
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://developers.google.com/admob/android/mediation-networks
https://developers.google.com/admob/android/mediation-networks
https://www.genymotion.com
http://forum.xda-developers.com/showthread.php?t=1916098
http://forum.xda-developers.com/showthread.php?t=1916098
https://adblockplus.org/releases/adblock-plus-10-for-android-released
https://adblockplus.org/releases/adblock-plus-10-for-android-released
https://github.com/EFForg/privacybadgerfirefox/issues/298
https://github.com/EFForg/privacybadgerfirefox/issues/298
https://decentraleyes.org
http://fourthparty.info/

Appendix A: Impact of Tracker Blocker Extensions on Major Third-Party Services

TABLE 6. THIS TABLES OUTLINES COMMON THIRD PARTIES WE DETECTED IN OUR SAMPLE OF 123,876 WEBSITES OUT OF THE ALEXA TOP
200,000. THE NUMBERS ACCOUNT FOR THE PERCENTAGE OF INCLUSION IN DIFFERENT WEBSITES WITH RESPECT TO THE TOTAL SAMPLE

(HTTP/HTTPS).
plain adblockplus disconnect ghostery privacybadger ublock-origin combined
http/https http/https http/https http/https http/https http/https hitp/https
google-analytics.com WWW 13.2/53.6 19.2/47.4 1.4/0.4 0.9/ 54.6/13.7 / /
ssl /6.9 /6.8 / /5.7 / /
/ / / / / / /
doubleclick.net stats.g /35.4 0.6/34.6 / / / / /
googleads.g 3.3/31.9 1.5/13.7 / / /1.4 / /
cm.g 13.3/25.9 8.0/3.8 1.7/0.8 / 0.9/ / /
google.com WWW 13.8/41.1 7.7/24.3 6.9/14.6 4.9/13.1 6.8/14.0 5.6/14.0 5.0/10.2
apis /14.4 0.5/14.3 /8.5 /1.3 / /14.1 /
accounts /10.1 /9.9 /3.8 /1.3 / /9.8 /
gstatic.com fonts 21.2/24.3 20.8/21.9 21.7/19.0 21.0/17.5 20.8/15.5 21.4/22.5 18.2/15.5
www 4.0/17.3 1.1/4.0 1.4/4.0 0.6/2.9 1.4/3.7 0.6/3.9 0.6/2.1
ssl 0.5/10.4 0.5/10.2 0.5/4.0 /1.5 /0.5 0.5/10.1 /0.5
googleapis.com fonts 23.8/15.9 23.6/12.9 24.2/13.5 23.5/13.3 23.6/12.6 23.9/13.2 20.9/12.3
ajax 16.2/10.3 15.5/9.6 16.2/9.9 15.4/9.6 16.0/9.4 15.5/9.6 13.3/8.3
maps 1.8/2.4 1.8/2.4 1.8/2.6 1.9/2.6 1.7/2.3 1.8/2.5 1.3/1.8
facebook.com wWww 1.4/37.9 1.7/35.7 /0.7 /1.0 / 1.0/22.8 /
staticxx 2.8/22.7 4.3/22.5 / / 0.8/0.8 2.9/22.7 /
graph 1.9/2.0 1.9/1.8 /0.5 / 0.9/1.1 1.0/1.7 /
googlesyndication.com pagead2 27.5/29.4 0.7/0.7 14.6/1.1 / 16.7/16.1 / /
tpe 4.5/20.1 /0.5 / / /
video-ad-stats / / / / / / /
facebook.net connect 8.0/24.1 10.8/20.5 1.8/0.6 / / 9.5/18.6 /
www.connect / / / / / / /
googleadservices.com WWW 10.2/6.2 9.9/5.5 5.7/2.4 / 9.2/4.9 / /
partner 9.4/0.9 8.1/0.8 0.6/ / 8.8/0.8 / /
pagead2 / / / / / / /
twitter.com platform 13.8/13.6 13.8/13.5 3.5/1.0 / 12.5/11.8 12.6/12.8 /
syndication /117 /11.5 / / /5.0 /
analytics /5.9 /2.6 / / /17 / /
fbedn.net static.xx /19.0 /18.8 / /0.4 / /18.5 /
scontent.xx /8.9 /8.7 /0.5 / /0.5 /9.0 /
external.xx /1.0 /1.0 / / / /11 /
adnxs.com ib 14.8/4.1 7.2/1.1 1.2/0.4 / 5.7/0.8 / /
secure 0.4/4.7 /2.2 / / /2.5 / /
acdn 1.6/ / / 0.6/ / /
cloudfront.net d5nxst8fruwdz /2.8 /2.7 /2.8 / /2.6 / /
d31gbvlcthcecs /2.7 /2.6 /2.7 / /2.5 / /
dnn506yrbagrg 1.5/0.4 1.5/0.4 1.5/0.5 / 1.5/0.4 / /
yahoo.com ads 7.5/3.2 / / / / /
pr-bh.ybp 3.2/1.9 / / / / / /
cms.analytics 2.4/ 1.7/ / / / / /
googletagmanager.com ~ Www 9.9/4.5 9.8/4.5 9.9/4.6 / 9.7/4.3 / /
/ / / / / / /
addthis.com m 9.8/1.3 9.7/1.3 / / / / /
s7 6.3/1.0 6.3/1.1 5.6/1.0 / / / /
su 5.0/0.4 3.8/ / / / /
amazonaws.com s3 2.2/2.1 2.0/2.0 2.1/2.0 1.7/1.5 2.1/1.8 1.6/1.6 1.3/1.1
load.s3 2.7/1.0 1.3/ / / / / /
cloudfront-labs 2.4/ 2.3/ 2.4/ / 2.3/ / /
scorecardresearch.com b 9.7/ 7.3/ 0.5/ / / / /
sb /3.3 /1.2 / / / / /
sa /0.9 / / / / / /
mathtag.com sync 7.3/2.0 3.2/0.7 / / / / /
pixel 4.9/0.7 2.5/ / / / / /
tags 1.2/2.4 / / / / / /
rledn.com idsync 9.9/2.4 5.3/0.7 0.6/ / / / /
rc 1.6/ 1.3/ / / / / /
ei / / / / / / /
2mdn.net s0 1.9/9.2 / / / / / /
s /4.4 / / / / / /
s0qa /0.9 / / / / / /
adsrvr.org match 9.0/2.2 / / / / / /
insight 0.7/0.7 / / / / / /
usw-lax 0.6/ / / / / / /
openx.net us-u 7.4/4.0 / / / / / /
us-ads 1.1/ / / / / / /
u 0.9/ / / / / / /
bluekai.com tags 9.2/3.3 4.6/ / / 0.5/ / /
stags /1.3 /0.5 / / / / /
analytics / / / / / / /
rubiconproject.com pixel 6.6/4.7 / /0.4 / / / /
optimized-by 1.8/ / / / / / /
ads 1.7/ / / / / /
googletagservices.com www 9.0/2.4 7.6/1.0 0.5/ / 8.4/1.1 / /
cloudflare.com cdnjs 3.3/4.3 3.1/2.3 3.3/2.4 3.2/2.4 3.2/2.2 3.2/2.3 2.8/2.0
ajax 2.3/ 2.2/ 2.3/0.4 2.3/ 2.3/ 2.2/ 2.0/
www / / / / / /
advertising.com sync.adaptv 4.2/1.4 / / / / / /
pixel 2.8/0.5 / / / / / /
cas.pxl.ace 1.4/ / / / / / /
bidswitch.net X 7.3/3.2 1.3/1.0 0.8/0.6 / / / /
useast-aws2 / / / / / /
us-east / / / / / / /

15

	Introduction
	Third-Party Tracking
	Web Tracking
	Mobile Tracking
	Threat Model

	Blocking Trackers
	Network-based blocking
	Browser Extensions
	Different Types of Rulesets

	Methodology
	Web Tracking
	Mobile Tracking

	Results
	Collected Data
	Identified Third-Party Services
	Blocking Behavior and Shortcomings
	Blind Spots of Different Rule Sets
	Overhead of Tracker Blocking

	Discussion
	Limitations
	Future Tracking Defenses
	Online Tracking and Security

	Related Work
	Conclusion
	References

