
Fully-Dynamic Coresets1

Monika Henzinger2

University of Vienna, Faculty of Computer Science, Vienna, Austria3

https://homepage.univie.ac.at/monika.henzinger/4

monika.henzinger@univie.ac.at5

Sagar Kale6

University of Vienna, Faculty of Computer Science, Vienna, Austria7

https://sagark4.github.io/8

sagar.kale@univie.ac.at9

Abstract10

With input sizes becoming massive, coresets—small yet representative summary of the input—are11

relevant more than ever. A weighted set Cw that is a subset of the input is an ε-coreset if the cost12

of any feasible solution S with respect to Cw is within [1±ε] of the cost of S with respect to the13

original input. We give a very general technique to compute coresets in the fully-dynamic setting14

where input points can be added or deleted. Given a static (i.e., not dynamic) ε-coreset-construction15

algorithm that runs in time t(n, ε, λ) and computes a coreset of size s(n, ε, λ), where n is the number16

of input points and 1−λ is the success probability, we give a fully-dynamic algorithm that computes17

an ε-coreset with worst-case update time O((logn) · t(s(n, ε/ logn, λ/n), ε/ logn, λ/n)) (this bound18

is stated informally), where the success probability is 1−λ. Our technique is a fully-dynamic analog19

of the merge-and-reduce technique, which is due to Har-Peled and Mazumdar [17] and is based on a20

technique of Bentley and Saxe [3], that applies to the insertion-only setting where points can only21

be added. Although, our space usage is O(n), our technique works in the presence of an adaptive22

adversary, and we show that Ω(n) space is required when adversary is adaptive.23

As a concrete implication of our technique, using the result of Braverman et al. [4], we get fully-24

dynamic ε-coreset-construction algorithms for k-median and k-means with worst-case update time25

O(ε−2k2 log5 n log3 k) and coreset size O(ε−2k logn log2 k) ignoring log logn and log(1/ε) factors and26

assuming that ε = Ω(1/ poly(n)) and λ = Ω(1/ poly(n)) (which are very weak assumptions made only27

to make these bounds easy to parse). This results in the first fully-dynamic constant-approximation28

algorithms for k-median and k-means with update times O(poly(k, logn, ε−1)). Specifically, the29

dependence on k is only quadratic, and the bounds are worst-case. The best previous bound for30

both problems was amortized O(n logn) by Cohen-Addad et al. [10] via randomized O(1)-coresets31

in O(n) space.32

We also show that under the OMv conjecture [18], a fully-dynamic (4 − δ)-approximation33

algorithm for k-means must either have an amortized update time of Ω(k1−γ) or amortized query34

time of Ω(k2−γ), where γ > 0 is a constant.35

2012 ACM Subject Classification Theory of computation → Facility location and clustering36

Keywords and phrases Clustering, Coresets, Dynamic Algorithms37

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.3638

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.14891.39

Funding Monika Henzinger : The research leading to these results has received funding from the40

European Research Council under the European Union’s Seventh Framework Programme (FP/2007-41

2013) / ERC Grant Agreement no. 340506.42

Sagar Kale: Fully supported by Vienna Science and Technology Fund (WWTF) through project43

ICT15-003.44

https://orcid.org/0000-0002-5008-6530
https://homepage.univie.ac.at/monika.henzinger/
mailto:monika.henzinger@univie.ac.at
https://sagark4.github.io/
mailto:sagar.kale@univie.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.36
https://arxiv.org/abs/2004.14891

M. Henzinger and S. Kale 36:1

1 Introduction45

Clustering is an ubiquitous notion that one encounters in computer-science areas such as data46

mining, machine learning, image analysis, bioinformatics, data compression, and computer47

graphics, and also in the fields of medicine, social science, marketing, etc. Today, when48

the input data has become massive, one would rather run an algorithm on a small but49

representative summary of the input, and for clustering problems, a coreset serves that50

function perfectly. The concept of a coreset was defined first in computational geometry as a51

small subset of a point set that approximates the shape of the point set. The word coreset52

has now evolved to mean an appropriately weighted subset of the input that approximates53

the original input with respect to solving a computational problem.54

Let P be a problem for which the input is a weighted subset1 Xw ⊆ U ; think of U as55

in a metric space (U, d), so U is unweighted and d is the distance function. Let n := |Xw|56

and W :=
∑
x∈Xw

w(x). We also refer to elements of U as points. The goal in the problem57

P then is to output S∗ that belongs to the feasible-solution space (or query space) Q58

such that the cost c(S∗, Xw) is minimized. For example, in the k-median (respectively,59

k-means) problem, Q is the set of all (unweighted) subsets of Xw of cardinality at most60

k and c(S,Xw) :=
∑
x∈Xw

w(x) mins∈S d(x, s) (respectively,
∑
x∈Xw

w(x) mins∈S(d(x, s))2).61

Then, for the problem P , a weighted set Cw such that Cw ⊆ Xw is an ε-coreset if, for any62

feasible solution S ∈ Q, we have that c(S,Xw) ∈ [1±ε]c(S,Cw); we sometimes say that the63

quality of coreset Cw is ε. For many problems, fast coreset-construction algorithms exist;64

e.g., for k-median and k-means, Õ(nk)-time2 algorithms for computing ε-coresets of size65

O(ε−2k polylog(n)) exist.66

Throughout the paper, we assume that the cost function c for the problem P is linear :67

for any weighted subsets Y 1
w , Y

2
w ⊆ U with disjoint supports and any S ∈ Q, we have that68

c(S, Y 1
w ∪ Y 2

w) = c(S, Y 1
w) + c(S, Y 2

w), where the union Y 1
w ∪ Y 2

w is the weighted union. It is69

easy to see that k-median and k-means cost functions are linear.70

Our goal in this paper is to give dynamic algorithms for computing a coreset. In the71

dynamic setting, the input changes over time. A dynamic algorithm is a data structure that72

supports three types of operations: Insert(p, w), which inserts a point p with weight w into73

Xw; Delete(p), which removes point p from Xw; and Query(), which outputs a coreset of74

Xw. Weight updates can be simulated by deleting and re-inserting a given point, or the data75

structure may support a separate weight-changing operation. This is known as the fully76

dynamic model as opposed to the insertion-only setting where a point can only be inserted.77

At any time instant, a coreset is maintained by the algorithm, and the complexity measure of78

interest is the update time, i.e., how fast the solution can be updated after receiving a point79

update, and also the size of the coreset, which determines the query time. Suppose there is a80

dynamic coreset-construction algorithm, say ALGD, for a problem P . Then a solution for81

the problem P can be maintained dynamically by running ALGD, and on query, a solution82

is computed by querying ALGD and running a static (i.e., not dynamic) algorithm for P on83

the returned coreset. In this paper, we give a very general technique on how to maintain a84

coreset in the fully-dynamic setting: given a static coreset-construction algorithm for any85

problem P , we show how to turn it into a dynamic coreset-construction algorithm for P .86

Intuitively, our technique is to the fully-dynamic setting as the merge-and-reduce technique87

1 When using a set operation such as union or notation such as ⊆ with one or more weighted sets, we
mean it for the underlying unweighted sets. Also, all weights are nonnegative.

2 Logarithmic factors are hidden in the Õ notation.

ESA 2020

36:2 Fully-Dynamic Coresets

is to the insertion-only setting. Themerge-and-reduce technique, which is based on a technique88

of Bentley and Saxe [3], is due to Har-Peled and Mazumdar [17] and is a fundamental technique89

to obtain an insertion-only coreset-construction algorithm using a static coreset-construction90

algorithm, say ALGS , as a black box. Loosely speaking, it is as follows. At any time instant,91

the algorithm maintains up to dlogne buckets. For i ∈ {1, 2, . . . , dlogne}, the bucket Bi92

has capacity 2i−1, each bucket can be either full, (i.e. at capacity 2i−1) or empty, and each93

point goes in exactly one bucket. Then at any time-instant, the current number of points94

uniquely determines the states of the buckets. Whenever a point is inserted, the states of the95

buckets change like a binary counter. That is, the new point goes into Bi, where Bi is the96

smallest-index empty bucket, and all the points in ∪i−1
j=1Bj are moved to Bi (merge). Note97

that this creates a full bucket Bi. Then a coreset is computed on Bi by running ALGS on it98

(reduce). The overall coreset is then just union of all non-empty buckets.99

We show that a similar result can be achieved in the fully-dynamic setting. Our main100

result is the following theorem (stated slightly informally).101

I Theorem 1. Assume that there is a static coreset construction algorithm for a problem102

P with linear cost function that a) runs in time tP (ns, εs, λs,Ws), b) always outputs a103

set of cardinality at most sP (εs, λs,Ws) and total weight at most (1+δ)Ws, and c) has the104

guarantee that the output is an εs-coreset with probability at least 1−λs, where ns is the105

number of integer-weighted input points and Ws is the total weight of points.106

Then there is a fully-dynamic coreset-construction algorithm for P that, with rational-107

weighted input points, a) always maintains an output set of cardinality at most sP (ε, λ,W),108

b) has the guarantee that the output is an ε-coreset with probability at least 1−λ, and c) has109

worst-case update time110

O

(
(logn) · tP

(
s∗P ,

ε

logn,
λ

n
,W

))
,111

where W = O((1+δ)dlogne poly(n)), s∗P = sP

(
ε

logn ,
λ
n ,W

)
, and n is the current number of112

points.113

We mention below a concrete implication of the above theorem for k-median and k-means114

using the result of Braverman et al. [4].115

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm116

that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an117

ε-coreset with probability at least 1−λ, and has worst-case update time118

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,119

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)). 3
120

Ignoring log logn and log(1/ε) above, the coreset cardinality is O(ε−2k logn log2 k) and121

worst-case update time is O(ε−2k2 log5 n log3 k). It can be easily proved that running an122

α-approximation algorithm for k-median on an ε-coreset gives a 2α(1+ε)-approximation123

whereas that for k-means gives a 4α(1+ε)-approximation. Any such polynomial-time static124

algorithm—say, e.g., (5 + ε′)-approximation algorithm for k-median by Arya et al. [2] and125

16-approximation algorithm for k-means by Gupta and Tangwongsan [15]—can be run on126

3 We make these very weak assumptions to simplify some extremely unhandy factors involving ε and λ in
the expression for the update time.

M. Henzinger and S. Kale 36:3

our output coreset in O(poly(k, logn, ε−1)) time to obtain a constant approximation. This is127

the first fully-dynamic constant-approximation algorithm for k-median and k-means whose128

worst-case time per operation is polynomial in k, logn, and ε−1. The best previous result129

was a randomized algorithm with amortized O(n logn) update time and O(n) space by130

Cohen-Addad et al. [10].131

With a simple reduction, we also show a conditional lower bound on the time per operation132

for k-means. The following theorem is proved as Theorem 20 in Section 4.133

I Theorem 3. Let γ > 0 be a constant. Under the OMv conjecture [18], for any δ > 0, there134

does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means135

with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial136

number of updates, the error probability is at most 1/3.137

Our technique138

At the core, our technique is simple. We always maintain a balanced binary tree of depth139

dlogne containing exactly n leaf nodes (recall that n is the current number of points). Each140

node corresponds to a subset of Xw, the current input: each leaf node corresponds to a141

singleton (hence n leaf nodes), and an internal node corresponds to the weighted union of the142

sets represented by its children. If the cardinality of the union exceeds a certain threshold,143

then we use the static coreset-construction algorithm to compute its coreset. The root gives144

a coreset of the whole input.145

We next explain how we handle updates in this data structure. Point insertions are146

straightforward: create a new leaf node and run all the static-algorithm instances at the147

nodes on the leaf-to-root path. The way we handle point deletions is similar in spirit to148

the way delete-min works in a min-heap data structure: whenever a point at leaf-node `d is149

deleted, we swap contents of `d with those of the rightmost leaf-node, say `r, and delete `r,150

thus maintaining the balance of the tree. Then we run all the static-algorithm instances at151

the nodes on the two affected leaf-to-root paths.152

However, there are some complications that require new techniques to make it work in153

worst-case time. To maintain guarantees for the output coreset quality and overall success154

probability, we need to adapt the parameters εs and λs used for the static algorithm at the155

internal nodes. The problem is that both depend on n, which changes over time and thus156

might become outdated. To show an amortized update-time bound, we can simply rerun157

the static algorithms at all internal nodes whenever n has changed by a constant factor. To158

achieve our worst-case bound, we use two refresh pointers that point at leaf nodes, and after159

each update operation, we rerun using the new values of εs and λs all the static-algorithm160

instances at the nodes on the leaf-to-root path from the leaf nodes pointed to by the refresh161

pointers. This keeps the outputs of the static-algorithm instances at the internal nodes162

always fresh. After every update, we move these pointers to the right so that they point to163

the next leaf nodes.164

Further complications are caused by fractional weights at the leaf nodes and fractional165

intermediate-output weights. A problem arises when the weights in Xw are fractional, and166

the static algorithm expects integer-weighted input [9]. Even if the static algorithm can167

handle fractional weights [12, 4], there can be a problem. The output of the static algorithm168

at an internal node is the input for the static algorithm at its parent. Naïvely feeding these169

output fractional weights directly to the static algorithm at the parent may result in numbers170

exponential in n near the root, thus prohibitively increasing the update time. To deal with171

these problems, rounding is needed for the input, i.e., at the leaf nodes, as well as for each172

ESA 2020

36:4 Fully-Dynamic Coresets

intermediate-output at an internal node. Thus, we propose a more sophisticated rounding173

scheme and show that the rounding errors accumulated by our rounding are not too high.174

We note that our balanced binary-tree data structure may be used to get dynamic175

algorithms in the following situations. Let f : Rdim → Rdim be a multi-valued function.176

Suppose for any u and v with disjoint supports and for any fu ∈ f(u) and fv ∈ f(v), we177

have fu + fv ∈ f(u+ v). Also suppose that f(f(v)) ⊆ f(v) for any v. Now, given input v,178

we want to compute some vector in f(v). If there is a static algorithm for this, then using179

our technique, we can maintain some vector in f(v) for a dynamically changing vector v.180

The allowed dynamic operation on v is “add a to the ith coordinate of v,” where a ∈ R.181

The resulting dynamic algorithm is fast if the static algorithm always outputs a “small”182

vector; this is true for coresets because coresets are small by nature. Thinking about coresets183

in the above language, each point is an identity vector in R|U |+ , and then each weighted184

set of points naturally identifies with a vector. An ε-coreset reduces the number of points185

drastically. Union of coresets of two disjoint sets is a coreset of the union of those two sets (see186

Lemma 5). Although an ε-coreset of an ε-coreset is not an ε-coreset, it is a (2ε+ ε2)-coreset187

(see Lemma 6).188

Space189

In the merge-and-reduce technique, a bucket Bi will not actually contain 2i−1 points but190

just a coreset of 2i−1 points that would have been there otherwise at any time instant. Thus,191

using space just dlogne times the coreset size for a bucket, one can get a coreset of the whole192

input [17]. This makes it also applicable in the more restricted streaming model, where the193

input points arrive in a sequence and the goal is to compute a coreset using sublinear space.194

In the fully-dynamic setting, deletions also need to be handled, and hence no deterministic195

or randomized algorithm against an adaptive adversary that stores only a coreset is possible:196

the adversary generating the input could simply ask a query and then delete all points in197

the returned coreset. Hence, an algorithm that does not store any information about the198

non-coreset points would not be able to maintain a valid coreset. Even though we store199

all the points in our fully-dynamic technique, i.e., its space usage is O(n), it works against200

an adaptive adversary because we never make any assumption about the next update and201

perform each update independently of all previous updates. By a straightforward reduction202

from the communication problem of index, we show that Ω(n) space is required in the203

presence of an adaptive adversary. The proof of the following theorem appears in Section 4.204

I Theorem 4. A fully-dynamic algorithm that obtains any bounded approximation for 1-205

median or 1-means that works in the presence of an adaptive adversary and has success206

probability 1− 1/(8n2) must use Ω(n) space, where n is the current number of points.207

Comparison with the sparsification technique208

Our technique is close to the sparsification technique of Eppstein et al. [11] that is used to209

speed up dynamic graph algorithms. There, one has to assume that the number of vertices210

in the input graph, say nv, does not change, but the edge set changes dynamically, and the211

bounds are obtained in terms of nv and m, the current number of edges. Their dynamic212

edge-tree structure is based on a fixed vertex-partition tree. In the vertex-partition tree, a213

node at level i corresponds to a vertex-set of cardinality nv/2i, and a vertex-set at a node is214

a union of its children’s vertex sets (cf. our technique). To start using the edge tree, the215

vertex-partition tree has to be built first and hence the knowledge of nv is necessary. Neither216

do we need such a fixed structure nor any information about the number of points. Also,217

M. Henzinger and S. Kale 36:5

in the sparsification technique, there is no analog of weight handling/rounding. Another218

crucial difference is that they do not use a routine analogous to our refresh-pointers routine219

because their internal-node guarantees are always fresh. As we discussed before, these refresh220

pointers are critical for us also in making sure that the error introduced by the unavoidable221

rounding of output weights of the static-algorithm instances is kept in check.222

1.1 Related Work223

The most related work is by Cohen-Addad et al. [10] who give an O(1)-coreset for k-median224

and k-means in amortized update time of O(n logn).225

For k-median and k-means, the first coreset-construction algorithms were by Har-Peled226

and Mazumdar [17] for Euclidean metrics and by Chen [9] for general metrics. Improved227

algorithms computing smaller coresets were later obtained by Har-Peled and Kushal [16]228

and by Feldman and Langberg [12]. The current known best is by Braverman et al. [4]:229

O(ε−2k log k logn)-size coresets in Õ(nk) time, who also give an excellent summary of the230

literature on coresets that we highly recommend. Note that by merge-and-reduce technique,231

each improvement also gave rise to better (insertion-only) streaming coreset constructions.232

For k-median and k-means, Frahling and Sohler [14] gave the first coreset-construction233

algorithm in the dynamic-streaming setting where points can be added or removed. It uses234

space and update time of O(poly(ε−1, logm, log ∆)) for constant k and dim when the points235

lie in the discrete Euclidean metric space {1, . . . ,∆}dim; for k-median, this was recently236

improved to O(ε−2k poly(dim, log ∆)) space and update time of O(poly(ε−1, k, dim, log ∆))237

by Braverman et al. [5]. Coreset constructions with improvements in certain parameters in238

the Euclidean settings have been obtained [13, 24].239

The k-median and k-means problems have received significant attention in the algorithms240

community [8, 20, 19, 7, 2, 23, 21, 15, 22, 1, 6]. The best approximation ratio for k-median241

is 2.675 by Byrka et al. [6] and that for k-means is 9 + ε by Ahmadian et al. [1].242

2 Preliminaries243

Let us fix a problem P with the input Xw, the set of feasible solutions Q, and the linear244

cost function c : Q×W → R+, where W is the set of all weighted subsets4 of Xw. All the245

numbers encountered are nonnegative.246

The computational model247

The input set Xw is a weighted set of n points having rational weights whose numerators248

and denominators are bounded by O(poly(n)). The algorithm works in the random access249

machine model with word size O(logn). Each memory word can be accessed in constant250

time. With each update, a new point is inserted, an existing point is deleted, or the weight251

of an existing point is modified by adding or subtracting a nonnegative number. The net252

weight of each point always stays nonnegative with its numerator and denominator always253

bounded by O(poly(n)).254

We will prove some basic lemmas about coresets. Using these, we can take weighted255

union of two coresets without any loss (Lemma 5) and take a coreset of a coreset without256

much loss (Lemma 6).257

4 To be precise: denote unweighted version of Xw by X ′, then W is essentially RX
′

+ .

ESA 2020

36:6 Fully-Dynamic Coresets

I Lemma 5. If C1
w and C2

w are ε-coresets of X1
w and X2

w, respectively, with respect to a258

linear cost function c such that X1
w ∩X2

w = ∅, then C1
w ∪ C2

w is an ε-coreset of X1
w ∪X2

w.259

Proof. By linearity of c: for any S ∈ Q,260

c(S,X1
w∪X2

w) = c(S,X1
w)+c(S,X2

w) ∈ [1±ε]
(
c(S,C1

w) + c(S,C2
w)
)

= [1±ε]c(S,C1
w∪C2

w) ,261

where, recall that, C1
w ∪ C2

w is a weighted union. J262

I Lemma 6. If C ′w is an ε-coreset of Cw, and C ′′w is a δ-coreset of C ′w, both with respect to263

c, then C ′′w is an (ε+ δ + εδ)-coreset of Cw with respect to c.264

Proof. For any S ∈ Q, we have c(S,Cw) ∈ [1±ε]c(S,C ′w) and c(S,C ′w) ∈ [1±δ]c(S,C ′′w). So,265

c(S,Cw) > (1−ε)c(S,C ′w) > (1−ε)(1−δ)c(S,C ′′w) > (1− ε− δ − εδ)c(S,C ′′w) ,266

and c(S,Cw) 6 (1+ε)c(S,C ′w) 6 (1+ε)(1+δ)c(S,C ′′w) = (1 + ε+ δ + εδ)c(S,C ′′w). J267

Let C1
w be an ε-coreset of Cw and C2

w be an ε-coreset of C1
w. Then we say that C1

w and268

C2
w are, respectively, 1-level and 2-level ε-coresets of Cw. Extending this notion, we define269

an i-level ε-coreset to be an ε-coreset of an (i− 1)-level ε-coreset.270

I Lemma 7. If C`w is an `-level ε-coreset of Cw, then C`w is a
(∑`

i=1
(
`
i

)
εi
)
-coreset of Cw.271

Proof. The proof is by induction on `. Base case is when ` = 1, and by definition, a 1-level272

coreset is an ε-coreset. By induction hypothesis, we have that C`−1
w is a

(∑`−1
i=1
(
`−1
i

)
εi
)
-273

coreset of Cw. Now, C`w is an ε-coreset of C`−1
w , hence C`w is an

(
ε+ (1+ε)

∑`−1
i=1
(
`−1
i

)
εi
)
-274

coreset of Cw by Lemma 6. Now, use Lemma 8, which appears below, with α = ε to finish275

the proof. J276

We prove two basic lemmas.277

I Lemma 8. For any positive integer ` and α ∈ R+, we have α + (1+α)
∑`−1
i=1
(
`−1
i

)
αi =278 ∑`

i=1
(
`
i

)
αi.279

Proof idea. The proof is provided in Appendix A and uses elementary identities involving280

binomial coefficients and algebraic manipulations. J281

I Lemma 9. For any positive integer ` and α ∈ [0, 1], we have
∑`
i=1
(
`
i

) (
α
2`
)i

6 α.282

Proof.
∑`
i=1
(
`
i

) (
α
2`
)i

6
∑`
i=1 `

i αi

2i`i =
∑`
i=1

αi

2i 6
∑`
i=1

α
2i 6 α. J283

Now, as a corollary to Lemma 7, we get the following using Lemma 9.284

I Corollary 10. If C`w is an `-level (ε/(2`))-coreset of Cw, then C`w is an ε-coreset of Cw.285

As we discussed earlier, rounding of the weights at internal nodes is needed in our dynamic286

algorithm to achieve the desired worst-case update time. Towards that, we need two lemmas.287

In the next lemma, think of a/b as the original weight of the point, c/d as the weight that288

we want to approximate a/b with, and D as the cost of this point with respect to a feasible289

solution in Q. So the lemma says that by rounding, the cost of the point stays within 1± b/d290

of the original cost.291

I Lemma 11. For positive integers a, b, and d, let c = bad/bc. Then cD/d ∈ [1± b/d]aD/b292

for any nonnegative real D.293

M. Henzinger and S. Kale 36:7

Proof. By the definition of c, we have that c/d 6 a/b 6 c/d+ 1/d, and 1/d 6 a/d because294

a > 1; hence a/b > c/d > a/b − a/d, which implies that aD/b > cD/d > aD/b − aD/d =295

(1− b/d)aD/b. J296

The proof of the following lemma is very similar. Here, think that we approximate the297

weight r of a point by brc+ c/d and the cost of the point stays within 1± 1/d of the original298

cost.299

I Lemma 12. Let r > 1 be a rational number, a and b be positive integers such that300

a/b = r − brc, d be any positive integer, and c = bad/bc. Then (brc+ c/d)D ∈ (1± 1/d)rD301

for any nonnegative real D.302

Proof. By the definition of c and using r > 1, we get that a/b > c/d > a/b− r/d; adding303

brc and multiplying by D finishes the proof. J304

3 A Dynamic Coreset305

We describe our dynamic algorithm for maintaining an ε-coreset for a problem P with query306

space Q that uses a static coreset algorithm, say, ALGS .

v1 v3 v2 v4

ALG2
S ALG3

S

v2
1 v2

2

ALG1
S

Output

Figure 1 An ALGS node takes input from two point-nodes. If the union of the sets has cardinality
greater than s′, then the ALGS node computes a coreset of cardinality at most s′ and passes it on
to the point-node above it (its parent). The number of leaf nodes is always n, and the number of
levels is always O(logn), where n is the current number of points.

307

The main idea is described in Figure 1 using a tree with a special structure. Each node308

is of one of the two types: a point-node representing a weighted set of points or an alg-node309

representing an instance of ALGS . We sometimes use a point-node to denote the point set it310

represents and an alg-node to denote the ALGS instance it represents. Each level contains311

either only point-nodes or only alg-nodes. All leaf nodes are point-nodes and represent a312

weighted singleton with an input point. Each alg-node gets as input the weighted union of313

its children, and its output is represented by its parent node (which is a point-node). When314

running ALGS at an alg-node A, if the union of its children has cardinality larger than s′,315

then A would compute a coreset of cardinality at most s′ otherwise it would just output the316

weighted union. We will later fix this threshold s′ for computing a coreset. An example of317

ESA 2020

36:8 Fully-Dynamic Coresets

how insertions and deletions are handled is shown in Figure 2 (where all weights are assumed318

to be one). For the ease of description, from now onwards, we will think of this tree with319

alg-nodes being collapsed into their parent nodes. Then each leaf node would contain a320

weighted singleton and each internal node would contain the output of the ALGS instance321

run on the weighted union of its children’s sets.322

Insert v1

v1

Output
Insert v2

v1 v2

ALG1
S

Output

Insert v3

v1 v3

ALG2
S

v1
2 v2

ALG1
S

Output

Delete v2

v1 v3

ALG1
S

Output

Figure 2 An example of how insertions and deletions are handled. We start with an empty tree.
The first point that is inserted is represented by v1. We use a point and the node that represents it
interchangeably. Then v2 is inserted followed by v3. Next, if v4 is inserted, we get exactly the tree
shown in Figure 1, and if v2 is deleted, then we get the last tree.

We guarantee that the resulting tree then will always be a complete binary tree, i.e.,323

every level except possibly the lowest is completely filled, and the nodes at the lowest level324

are packed to the left. To describe the updates briefly, let `r denote the rightmost leaf325

node at the lowest level; for simplicity, assume that the lowest level is not full. Insertion is326

straightforward: the new point goes in a new leaf node to the right of `r. For deletion of a327

point at leaf node `d, if `d 6= `r, then we replace contents of `d with those of `r and delete `r.328

See Section 3.1 for details of these operations. For weight update, the tree does not change.329

I Remark 13. Since a coreset will not be computed until a node has more than s′ points,330

the tree can be modified so that each leaf node corresponds to a set of Θ(s′) points. Then331

the number of nodes in the tree is Θ(n/s′). This reduces the additional space used for332

maintaining this tree. This is important when the number of points is very large. See333

Section 3.2 for further details. This is essentially the same idea as used for asymmetric334

sparsification in Section 3.4 in Eppstein et al. [11].335

We call the leaf nodes at the same level as that of the leftmost leaf node to be at level 0.336

We increment these level numbers naturally as we move upwards in the tree. Since we337

maintain a complete binary tree, the root, which is at the highest level, is on level dlogne.338

After a point insertion, deletion, or weight update, we recompute all the nodes that are339

affected by running ALGS from scratch. Once we update a leaf node, all the nodes on its340

leaf-to-root path are affected. Since at most two leaf nodes are updated after every point341

update, we run at most 2dlogne instances of ALGS . Finally, to reduce the cardinality of342

our output coreset, we run another outer instance of ALGS with εs = ε/3 and λs = λ/2343

with input as the output of the root. Here, εs and λs are parameters for ALGS as described344

below, and our goal is to compute an ε-coreset with probability at least 1−λ. The outer345

instance is run after every update.346

The static coreset algorithm ALGS takes as input an integer weighted set of ns points347

M. Henzinger and S. Kale 36:9

with total weight Ws and always returns a weighted set of cardinality at most s(εs, λs,Ws);348

this set is an εs-coreset with probability at least 1−λs. Let the running time of ALGS349

be t(ns, εs, λs,Ws). We assume that the functions t and s are nondecreasing in Ws and350

nonincreasing in εs and λs, and also that t is nondecreasing in ns. We call such functions t351

and s well-behaved.352

We note that t and s implicitly depend on the query space Q as well. In particular,353

for k-median and k-means, they depend on k and the dimension or the cardinality of the354

universe from which a solution is allowed to be picked. Also, assume that the total weight of355

ALGS ’s output is at most 1+δ times the total input weight and it outputs a coreset of points356

with integer weights. For the dynamic algorithm, n denotes the current number of points,357

and we assume that any input weight is a rational number with numerator and denominator358

bounded by nc, for a fixed constant c.359

I Theorem 14. Assume that there is a static algorithm ALGS that takes as input an integer-360

weighted set of ns points with total weight Ws and always returns an integer-weighted set361

of cardinality at most s(εs, λs,Ws) with total weight at most (1+δ)Ws, and this set is an362

εs-coreset with probability at least 1−λs. Let the running time of ALGS be t(ns, εs, λs,Ws),363

and assume that both s and t are well-behaved. Then there is a fully-dynamic algorithm that,364

on rational-weighted input points, always maintains an s
(
ε
3 ,

λ
2 ,Wp

)
-cardinality weighted set.365

This set is an ε-coreset with probability at least 1−λ. Its worst-case update time is366

O

(
t

(
2s∗, ε

6dlognpe
,
λ

2np
,Wp

)
·
(

1 + log(1+δ) + log ε−1

logn

)
· logn

)
,367

where Wp = (1+δ)dlognpenc
′′

p d1/εe, c′′ is a constant, s∗ = s
(

ε
6dlog 2npe ,

λ
4np

,Wp

)
, and 8n/3 6368

np 6 8n.369

Proof. We first prove that the output of the algorithm is an ε-coreset if every non-outer370

ALGS instance outputs an εs-coreset of its input for some εs 6 ε/(6dlogne) and the outer371

ALGS instance outputs an (ε/3)-coreset of its input. We prove the following by induction372

on level number: every node at level ` contains a (
∑`
i=1
(
`
i

)
εis)-coreset of the leaf nodes373

in its subtree. In the base case, a node at level 1 contains an εs-coreset of its input374

trivially. An ALGS instance A at level i gets as input two sets, say C ′w and C ′′w, each375

of which is a (
∑`−1
i=1
(
`−1
i

)
εis)-coreset for the leaf nodes in their respective nodes’ subtrees.376

Hence, C ′w ∪ C ′′w is a (
∑`−1
i=1
(
`−1
i

)
εis)-coreset for leaf nodes in the subtree rooted at A by377

Lemma 5. Now, A outputs an εs-coreset of C ′w ∪ C ′′w, hence by Lemma 6, its output is378

an (εs + (1+εs)
∑`−1
i=1
(
`−1
i

)
εis)-coreset of the leaf nodes in its subtree, which, by Lemma 8,379

means a (
∑`
i=1
(
`
i

)
εis)-coreset. This completes the induction step. Hence, the root node,380

which is at level dlogne, contains (
∑dlogne
i=1

(dlogne
i

)
εis)-coreset. Now, since εs 6 ε/(6dlogne),381

by Lemma 9, the output at the root is an (ε/3)-coreset. The outer ALGS instance outputs382

an (ε/3)-coreset of this, hence, by Lemma 6, the final output is an (2ε/3 + ε2/9)-coreset,383

which is an ε-coreset of all points.384

Recall that the running time of ALGS is t(ns, εs, λs,Ws) to compute an εs-coreset with385

probability at least 1−λs, where ns is the number of points in the input. Our output success386

probability will depend on λs, and ε depends on εs as proved in the previous paragraph. We387

will need εs 6 ε/(6dlogne) and λs 6 λ/(2n), so these depend on n, which can change a lot388

over time. We now show how to maintain these guarantees for εs and λs after each update.389

Towards this, we need a little tweak to our algorithm and an additional maintenance390

routine that we call the refresher. The algorithm works in phases. The refresher routine391

maintains two refresh pointers that always point to consecutive leaf nodes, say r1 and r2.392

ESA 2020

36:10 Fully-Dynamic Coresets

The refresh pointers are reset after the end of a phase as follows. If the number of leaf nodes393

is a power of 2, then r1 and r2 point to the two leftmost leaf nodes, otherwise they point to394

the two leftmost leaf nodes at the level above the lowest level. Assume, for completeness,395

that the very first phase ends after receiving two points, so the tree is just two leaf nodes396

and their parent as the root.397

For each subsequent phase, let n0 be the value of n at the beginning of the phase. Each398

phase ends after n0/2 updates, and we set np = 4n0. This guarantees that np is greater399

than n throughout the whole phase and even the next phase (details appear below). After400

receiving an update, we rerun all the ALGS instances on the leaf-to-root path starting at401

r1 and r2 (at most 2dlogne such instances). This is the refresher routine. Then we move402

the refresh pointers to the next two leaf nodes on the right. If we reach the right end, then403

we go to the next level if it exists, otherwise we stop. If we stop, then we achieved the404

goal of (re-)running all the ALGS instances that are present at the end of the phase at405

least once in this phase (this will become clearer below). After the refresher routine, we406

execute the update which affects at most two leaf nodes. We rerun all the ALGS instances407

that are affected by this update, again, at most 2dlogne such instances. So in total, at408

most 4dlogne of non-outer ALGS instances are run after an update and one outer instance,409

which explains the logn factor in the update time. We now explain the parameters used410

in the ALGS instances. For all the non-outer ALGS instances, we use εs = ε/(6dlognpe)411

and λs = λ/(2np). (This explains the εs and λs parameters of the functions t and s in the412

theorem statement.) Note here that the running time of the outer instance is going to be413

less than any non-outer instance because t is non-increasing in εs and λs.414

As we use np = 4n0 and there could be at most n0/2 insertions in a phase, the final value415

of n is at most 3n0/2, and, thus, np is always greater than n. In fact, crucially, np is an upper416

bound on n for even the next phase; in the next phase, n 6 n0 + n0/2 + (n0 + n0/2)/2 =417

9n0/4 6 np. Also, in the current phase, n0/2 6 n 6 3n0/2, hence 8n/3 6 np 6 8n, as418

required (cf. the theorem statement).419

We now prove that any non-outer ALGS instance uses εs 6 ε/(6dlogne) and λs 6 λ/(2n)420

at any time instant. Let L be the set of leaf nodes at the beginning of the phase; therefore,421

|L| = n0. An ALGS instance that exists at the end of the phase is either on the leaf-to-root422

path for some leaf in L or it was created/updated in this phase. At the end of the phase, the423

refresh pointers will hit all surviving leaf nodes in L; the argument is as follows. Each phase424

lasts for n0/2 updates, |L| = n0, and we move the two refresh pointers to the right on next425

two leaf nodes after each update. Importantly, new leaf nodes are added only to the right of426

the rightmost leaf node at the lowest level, and hence, the refresher routine will have hit all427

surviving leaf nodes in L before hitting a newly created leaf node.428

This shows that, in any case (being either hit by a point update or by the refresher429

routine), each ALGS instance is run with np = 4n0, setting up these instances for the next430

phase. This means that at any time instant, each ALGS instance was created/updated in the431

current phase or created/updated in the previous phase, thus showing that εs 6 ε/(6dlogne)432

and λs 6 λ/(2n) for all ALGS instances at all times.433

At any time instant, there are at most n non-outer instances of ALGS , each with success434

probability at least 1− λ/(2n), and the outer ALGS instance has success probability at least435

1− λ/2. Hence, the final success probability is at least 1−λ by the union bound over these436

n+ 1 instances.437

M. Henzinger and S. Kale 36:11

How to handle weights438

We will need one further tweak to argue that each weight ever encountered by the algorithm439

can be stored using O(1 + log(1+δ) + log(1/ε)/ logn) words, which also explains that factor440

in the update time. By assumption, an insertion or weight update comes with a weight that is441

a fraction with the numerator and the denominator bounded by nc for some fixed constant c.442

After receiving such an update, we approximate the weight by a fraction that has numerator443

bounded by nc′

p d1/εe, where c′ = 2c + 1 is also a fixed constant, and the denominator is444

equal to nc+1
p d1/εe5. The change in the cost due to this approximation is at most ε/np times445

the original cost; hence, by the linearity of the cost function, the output coreset quality is446

affected by at most an additive factor of O(ε/n). More formally, the following claim holds447

by Lemma 11 and using b/d 6 ε/np below (think of D below as cost).448

B Claim 15. Let d = nc+1
p d1/εe. Given a rational number a/b, where a and b are integers,449

a 6 ncp and b 6 ncp, let f = dad/be. Then f 6 n2c+1
p d1/εe and (f/d)D ∈ [1±ε/np](a/b)D for450

any nonnegative real D.451

Recall that due to the refresher routine, at any time instant, the denominator of the weight452

at any leaf node can be one of the two: nc+1
p d1/εe or nc+1

pp d1/εe, where npp is the value of np453

for the previous phase. When the two children of an internal node use different denominators,454

this complicates our rounding scheme. Thus, when taking a union of the children’s sets at455

an internal node, for each weight, we make its numerator an integer and the denominator456

equal to (npnpp)c+1d1/εe, which is a common multiple of nc+1
p d1/εe and nc+1

pp d1/εe—the only457

possible denominators of an input weight after rounding. Next, we run the ALGS instance458

with integer weights as given by the numerator, then (implicitly) dividing the output weights459

by the denominator (npnpp)c+1d1/εe afterwards. Since each ALGS instance can increase the460

total weight by at most a factor of 1+δ, the sum of the numerators of all weights at level i is461

always bounded by n(1+δ)i(npnpp)c
′d1/εe. Since i 6 dlogne and npp = Θ(np), there exists462

a constant c′′, such that the sum of the numerators of all weights at any level i and all the463

possible numerators and denominators are bounded by (1+δ)dlognpenc
′′

p d1/εe =: Wp, and464

hence, can be stored in O(1 + log(1+δ) + log(1/ε)/ logn) words as desired (see the beginning465

of the paragraph before Claim 15). This also justifies the Ws parameters of the functions t466

and s in the theorem statement.467

Now we put everything together. The outer ALGS instance outputs a weighted set of468

size at most s
(
ε
3 ,

λ
2 ,Wp

)
. This set is an ε-coreset with probability at least 1−λ, which469

we proved by a union bound over all ALGS instances. We set s′ = s
(

ε
6dlognpe ,

λ
2np

,Wp

)
,470

which is the threshold for computing a coreset at each internal node, i.e., (recall that) if the471

number of points at an internal node is greater than s′, then we run ALGS to compute a472

coreset. An upper bound on the threshold for the current phase and the previous phase is473

s∗ = s
(

ε
6dlog 2npe ,

λ
4np

,Wp

)
because the np value for the previous phase can be at most twice474

that of the current phase. Then the worst-case update time is dominated by the non-outer475

5 The static algorithm ALGS expects integer-weighted input and outputs integer-weighted points, whereas
our dynamic algorithm handles fractional weights. If fractional weights are naïvely stored in our dynamic
algorithm, then at internal nodes, combining two fractions may result in larger magnitude numbers.
E.g., naïvely handling two points with weights a/b and c/d so as to be used in ALGS results in weights
ad/(bd) and bc/(bd). Thus, at level i, the numerators and denominators may be as large (poly(n))2i

.
Note that some rounding would be needed even if ALGS can handle rational weights, because its output
may be points with rational weights having much larger magnitude; e.g., even if the output magnitude
is about only quadratic in that of the input, the blowup near the root in our dynamic algorithm would
be nth power of the input. In fact, we do this rounding in the proof of Theorem 2.

ESA 2020

36:12 Fully-Dynamic Coresets

ALGS instances, each running in time t
(

2s∗, ε
2dlognpe ,

λ
2np

,Wp

)
, and we run O(logn) of476

these after receiving an update. An additional factor of 1+log(1+δ)+log(1/ε)/ logn appears477

because each weight may need memory worth O(1 + log(1+δ) + log(1/ε)/ logn) words, and478

we need constant time to access each memory word. J479

Before proving the concrete bounds for k-median and k-means that are stated in Theorem 2,480

we prove a weaker theorem that is a direct consequence of Theorem 14 using the static481

algorithm of Chen [9].482

I Theorem 16. For the k-median and k-means problems, there is a fully-dynamic algorithm483

that maintains a set of cardinality O(ε−2k log2(n/ε)(k logn+ log(1/λ))), that is an ε-coreset484

with probability at least 1−λ, and has worst-case update time485

O

(
ε−2k2 log3 n log2 n

ε
log n

λ

(
k logn+ log n

λ

)
log log n

ε

(
1 + log ε−1

logn

))
.486

Ignoring the log logn factors, for λ = Ω(1/ poly(n)) and ε = Ω(1/ poly(n)), the coreset487

cardinality is O(ε−2k2 log3 n), and the worst-case update time is O(ε−2k3 log7 n).488

Proof. Chen’s algorithm takes in an integer weighted set and outputs also an integer weighted489

set. Its output has the same total weight as the input, so δ = 0 (see Theorem 14). Also,490

for Chen’s algorithm, s(εs, λs,Ws) = O(ε−2
s k(k logn+ log(1/λs)) log2 Ws) and the running491

time t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs) (see Theorems 3.6 and 5.5 in Chen [9]),492

which is dominated by the computation of a bicriteria approximation. Note that both s and493

t are well-behaved. Using Wp = O(poly(n)/ε),494

s∗ = O
(
ε−2k log2 n log2 n

ε

(
k logn+ log n

λ

))
,495

and δ = 0 in Theorem 14 gives the desired bounds using the functions t and s above. J496

Now we use the result of Braverman et al. [4] to get better bounds as stated in Theorem 2497

in the introduction section. Unfortunately, we cannot use Theorem 14 as a complete black498

box for this because in this case, on integer weighted input, ALGS does not output an integer499

weighted coreset. The proof of the following theorem is thus an extension of the proof of500

Theorem 14.501

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm502

that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an503

ε-coreset with probability at least 1−λ, and has worst-case update time504

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,505

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)).506

Proof. Our dynamic algorithm expects to have at its disposal a static algorithm ALGS that507

takes integer-weighted input and outputs an integer-weighted coreset. Since the algorithm508

of Braverman et al. that we use as ALGS outputs on integer weighted input a coreset with509

fractional weights, we need some modifications. Hence, before ALGS is ready to be used in510

the dynamic algorithm, we round its output to turn it into integers.511

M. Henzinger and S. Kale 36:13

Weight-Rounding Modifications for ALGS512

513

Let input to ALGS be Yw which is a set of ns points with integer weights w(1), . . . , w(ns).514

We run ALGS on the same points with scaled weights s′w(1), . . . , s′w(ns), where s′ is515

the desired cardinality of the output coreset (which is the same as the threshold for516

computing a coreset at an internal node in this case). We set s′ later in a such a way that517

it can be computed by our dynamic algorithm. This step of multiplying input weights by518

s′ is done to make sure that each of the fractional weights output by ALGS is at least 1519

(see Line 6 of Algorithm 2 in Braverman et al. [4]).520

Let the output Cw of ALGS be a weighted set of s′ points with fractional weights521

wo(1), . . . , wo(s′). Using the rounding strategy of Lemma 12, round these fractional522

weights to have an integer numerator and the denominator equal to d(lognp)/εe to get523

weights w̃(1), . . . , w̃(s′), where np is as defined in the proof of Theorem 14. Formally, for524

i ∈ {1, . . . , s′}:525

w̃(i) = bwo(i)c+

⌊
(wo(i)− bwo(i)c)

⌈
lognp

ε

⌉⌋
⌈

lognp

ε

⌉ .526

Since wo(i) > 1, by Lemma 12, for any real D > 0, we have w̃(i)D ∈ [1±ε/ lognp]wo(i)D.527

Hence, by the linearity of the cost function, Cw with weights w̃(1)/s′, . . . , w̃(s′)/s′528

is an (εs + 2ε/ lognp)-coreset of Yw with weights w(1), . . . , w(ns) if Cw with weights529

wo(1), . . . , wo(s′) is an εs-coreset of Yw with weights s′w(1), . . . , s′w(ns). Note that530

w̃(i)/s′ can be represented as a fraction with an integer numerator and denominator531

equal to s′d(lognp)/εe.532

The additive loss of 2ε/ lognp in the coreset quality due to this rounding is tolerable533

because every non-outer ALGS instance will be run with εs = O(ε/ lognp)6. Hence, the534

coreset quality at internal nodes will always be O(εs + ε/ lognp) = O(ε/ logn), as desired.535

This rounding ensures that on integer-weighted input with total weight W , the output536

weights of ALGS are fractions with integer numerator bounded by (1+δ)Ws′d(lognp)/εe537

and integer denominator equal to s′d(lognp)/εe. Here, 1+δ is the factor by which ALGS538

can increase the total weight.539

To handle rational weights in the dynamic algorithm, we first proceed as described in the540

paragraph on how to handle weights in the proof of Theorem 14. Recall that we assume that541

each insertion or weight update by the adversary comes with a weight that is a fraction with542

the numerator and the denominator bounded by nc for some fixed constant c, and we set543

c′ = 2c+1. Also, each leaf node was created/updated in the current phase or created/updated544

in the previous phase and thus uses the value either np or npp, where npp is the value of np545

for the previous phase. We then showed the following. At any time instant, the weight of546

the point at a leaf node is rounded in such a way that the numerator is bounded by nc′

p d1/εe547

and the denominator is equal to nc+1
p d1/εe, or the numerator is bounded by nc′

ppd1/εe and548

the denominator is equal to nc+1
pp d1/εe. Due to this rounding, the output coreset quality is549

affected by at most an additive factor of max{2ε/np, 2ε/npp} = O(ε/n). We now prove the550

following more general statement towards the current proof.551

6 If we go for smaller additive loss, say ε/np, the denominators of resulting numbers due to this rounding
would become exponential in np. And if we go for a larger additive loss, it would worsen the coreset
quality at non-outer instances to ω(ε/ lognp) resulting in the quality of the output coreset worse than ε.

ESA 2020

36:14 Fully-Dynamic Coresets

I Lemma 17. At any time instant, every weight at a node at level i has an integer numerator552

and a denominator that is a factor of (npnpp)c+1d1/εe(s′ps′ppd(lognp)/εed(lognpp)/εe)i =:553

D(i), where s′p and s′pp are values of the threshold s′ in the current and the previous phase,554

respectively.555

Proof. We prove this statement by induction over the sequence of nodes updated by the556

algorithm.557

In the base case, the first ever node update will be due to creation of a leaf node, and the558

weight will have denominator nc+1
p d1/εe. Next we discuss the induction step. Let the update559

be on a node at level i, so we run the modified ALGS instance with all weights having a560

denominator that is a factor of D(i−1), which is true by induction hypothesis. Then, since561

the modified ALGS adds a factor of s′pd(lognp)/εe to the denominator, all resulting output562

weights have a denominator that is a factor of D(i−1)s′pd(lognp)/εe, which is a factor of563

D(i). This finishes the induction step for the case when the node update is not the last of564

the phase. When the node being updated is the last of the phase, we have to be careful. In565

this case, we need to show that for all weights in all nodes, npp or s′pp do not appear in the566

denominator, as this will set these denominators for the next phase. Towards this, we need567

the following claim.568

B Claim 18. Let u be a node at level i. Fix a time instant. Suppose, in the current phase,569

all nodes in the subtree rooted at u were updated and u was updated after the update of the570

last-updated leaf node in the subtree. Then the denominator of the weights at u is a factor571

of nc+1
p d1/εe(s′pd(lognp)/εe)i at the fixed time instant.572

We omit the proof of this claim as it can be proved easily by induction on the level number573

at any fixed time instant.574

After the last node update of the phase, every node in the tree has been updated in the575

current phase and the premise of Claim 18 holds due to the refresher routine. Hence, by576

Claim 18, after the last node update of the phase, i.e., just before the new phase begins, all577

denominators at level i are a factor of nc+1
p d1/εe(s′pd(lognp)/εe)i. Since np and s′p of this578

phase will become npp and s′pp in the next phase, the induction hypothesis stays true for the579

next phase as well. This finishes the proof of Lemma 17. J580

Since an ALGS instance may increase the total weight by at most a factor of 1+δ, the581

sum of the numerators of weights at any level i is at most582

np(1+δ)i(npnpp)c
′
⌈

1
ε

⌉(
s′ps
′
pp

⌈
lognp
ε

⌉⌈
lognpp
ε

⌉)i
;583

this can be seen by an easy induction on the level number. Using this bound, we set the584

threshold s′ in a way similar to that in the proof of Theorem 14: we set585

s′p = s

(
ε

6dlognpe
,
λ

2np
,Wp

)
,586

where587

Wp = (1+δ)dlognpenc1
p

(
k

⌈
lognp
ε

⌉)c2dlognpe

,588

and c1 and c2 are chosen to be large enough constants so thatWp upper bounds the sum of the589

numerators of all weights at any level. From now onwards, we assume that λ = Ω(1/ poly(n)).590

M. Henzinger and S. Kale 36:15

For ALGS , the function s is s(εs, λs,Ws) = O(ε−2
s k(log k logWs + log(1/λs))) and δ = O(ε).591

Then, using npp = Θ(np), we get that both s′p and s′pp are O
((
k
⌈

lognp

ε

⌉)c3)
, where c3 is a592

fixed constant (so, independent of c1 and c2). Observe that Wp and thus s′p are determined593

by the phase and hence can be computed by our algorithm. More concretely, we get that594

both s′p and s′pp are595

O

(
ε−2k log3 n log k log k logn

ε

)
.596

All possible numerators and denominators encountered by the algorithm are bounded by597

N := O

(
poly(n)

(
k logn
ε

)O(logn)
)
,598

so, can be stored in m := (logN)/ logn = O(log((k logn)/ε)) words.599

The running time of ALGS is t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs), which,600

similar to Chen’s algorithm, is dominated by computation of a bicriteria approximation. At601

a non-outer ALGS instance, ns = O(s′p), εs = O(ε/ lognp), λs = O(λ/np), and Ws 6 Wp.602

With every update, O(logn) instances of ALGS are run, and an additional m factor appears603

because a weight may need up to m words. Hence, the worst-case update time assuming604

ε = Ω(1/ poly(n)) and λ = Ω(1/poly(n)) is605

O

(
t

(
s′p,

ε

logn,
λ

n
,Wp

)
m logn

)
= O

(
ε−2k2 log5 n log k log2

(
k logn
ε

)
log log

(
k logn
ε

))
606

and a looser, easier to parse, bound is O
(
ε−2k2 log5 n log3 k log2(1/ε)(log logn)3). The607

output coreset cardinality is608

s

(
ε

3 ,
λ

2 ,Wp

)
= O

(
ε−2k

(
logn log k log

(
k logn
ε

)
+ log 1

λ

))
.609

This finishes the proof of Theorem 2. J610

3.1 The Binary-Tree Structure611

We describe the tree structure in more detail, especially, how insertions and deletions are612

handled. We always maintain a complete binary tree, in which every level except possibly the613

lowest is completely filled, and the nodes in the lowest level are packed to the left. We also614

maintain the property that each internal node has exactly two children. Our data structure615

behaves somewhat like a heap, though a crucial difference is that we do not have keys. This616

structure supports insertion and deletion of a leaf node. Insertion of a new leaf-node ` works617

as follows.618

If the current number of leaf nodes is a power of 2, then let v be the leftmost leaf node,619

Else let v be the leftmost leaf node in the level above the lowest level.620

Let p be v’s parent.621

Create a new node u.622

Make p to be u’s parent; u replaces v, so if v was p’s right (respectively, left) child, then623

u is now p’s right (respectively, left) child.624

Make v to be u’s left child and ` to be u’s right child. This way, ` the rightmost leaf node625

at the lowest level.626

Deletion of a leaf-node ` works as follows. Let v be the rightmost leaf node at the lowest627

level, p be v’s parent, and v′ be v’s sibling. Replace `’s contents by v’s contents and replace628

p’s contents by the contents of v′. Delete v and v′.629

ESA 2020

36:16 Fully-Dynamic Coresets

3.2 Reducing the Number of Nodes630

The tree can be modified to have each leaf node correspond to a set of Θ(s′) points to reduce631

the additional space used for maintaining this tree (pointers and such). Recall that s′ is the632

threshold for computing a coreset. To reduce the number of nodes in the tree this way, we633

maintain the invariant that each leaf node, except possibly one, contains a set of size s` with634

s′/2 6 s` 6 s′. To maintain this invariant, we use a pointer ps that points to a leaf node635

with less than s′/2 elements if such a leaf node exists.636

Whenever a point is inserted, we add it to the leaf node, say `e pointed to by ps. If `e637

now contains at least s′/2 points, then we make ps a null pointer. If ps was a null pointer638

already, then we create a new leaf node, say `n, insert the new point in `n, and make ps639

point to `n. The new leaf node `n is inserted in the tree as described in Section 3.1.640

Whenever a point is deleted, we check if the leaf node, say `d that contains it now contains641

less than s′/2 points. If `d contains less than s′/2 points, and ps points to some leaf node,642

say `e, then we move points in `d into `e and delete `d. (Deletion of a leaf node is handled as643

described in Section 3.1.) If ps does not point to any leaf node, then we make it point to `d.644

As usual, we recompute all nodes on the affected leaf-to-root path.645

4 Lower Bounds646

In this section, we show lower bounds. We first see a space lower bound and then a conditional647

lower bound on the time per operation.648

4.1 Space Lower Bound649

We show a simple and very general space lower bound. Consider any problem that on650

input X has to output a feasible solution that is a subset of X. Moreover, if X non-empty,651

then all feasible solutions are also non-empty. Call such a problem compliant. Clearly,652

computing any bounded approximation for k-median and k-means and the problem of653

constructing any coreset with bounded quality are compliant. To get a linear space lower654

bound for fully-dynamic algorithms that solve a compliant problem, we use the communication655

problem of index. In indexN , Alice’s input is an N -bit string and Bob’s input is an index656

I ∈ {1, 2, . . . , N}. Alice sends one message to Bob, and he needs to correctly output the bit657

at position I. By a well-known communication complexity lower bound, Alice must send658

a message of size (1 −H2(3/4))N > 2N/11 bits so that Bob can correctly output with a659

success probability of 3/4; here H2 is the binary entropy function.660

I Theorem 19. A fully-dynamic algorithm for a compliant problem that works in the presence661

of an adaptive adversary and has success probability 1− 1/(8n2) must use space Ω(n), where662

n is the current input size.663

Proof. We describe the reduction for any compliant problem in a metric space, such as664

1-median or 1-means, but it can be naturally generalized to any compliant problem. Alice665

defines666

X = {j : jth bit in her string = 1} ,667

and distance between any two points of X to be 1. She runs the fully-dynamic algorithm on668

X and sends the memory snapshot to Bob. Bob queries for a solution and if X is nonempty,669

a nonempty solution S1 would be returned. He deletes the points in S1 and queries again to670

get S2, and so on until ∅ is returned. There would be at most N such queries. Note that671

M. Henzinger and S. Kale 36:17

this works because the algorithm works under an adaptive adversary. If one of the S`s in672

this process contains I, which is Bob’s input for the index problem, then Bob outputs 1, else673

he outputs 0. In the worst case, Bob makes N queries, where query number i would have674

failure probability at most 1/(8(N − i + 1)2). So overall failure probability by the union675

bound is at most676

N∑
i=1

1
8(N − i+ 1)2 6

1
8

∞∑
i=1

1
i2

= 1
8
π2

6 6
1
4 .677

Alice communicated as many bits as the space usage of the dynamic algorithm. Then, by the678

indexN lower bound, the space usage of the algorithm is at least 2N/11 > 2n/11 bits. J679

4.2 Conditional Lower Bounds on the Time Per Operation680

Now, we show conditional lower bounds on the time per update and query for fully-dynamic681

k-means algorithms. They are based on the OMv-conjecture [18]: You are given an N ×N682

Boolean matrix M that can be preprocessed in polynomial time. Then, an online sequence683

of N -dimensional Boolean vectors v1, . . . , vN is presented and the task is to compute each684

Mvi (using Boolean matrix-vector multiplication) before seeing the next vector vi+1. The685

conjecture is that finding all the N answers takes time Ω(N3−γ) for any constant γ > 0.686

In [18] also the following OuMv problem was presented: You are given an N ×N Boolean687

matrix M that can be preprocessed in polynomial time and an online sequence of Boolean688

vector pairs (u1, v1), . . . , (uN , vN) with the goal to compute each (ui)TMvi (using Boolean689

matrix-vector multiplication) before seeing the next vector pair (ui+1, vi+1). Under the OMv690

conjecture, finding N answers for the OuMv problem such that the error probability is at691

most 1/3 takes time Ω(N3−γ) for any constant γ > 0. We will show a reduction from the692

latter problem to prove the following result.693

I Theorem 20. Let γ > 0 be a constant. Under the OMv conjecture, for any δ > 0, there694

does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means695

with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial696

number of updates the error probability is at most 1/3.697

Proof. For the ease of presentation, we assume that k is even; if k is odd, the construction698

can be easily adapted. We set N = k/2. Given an OuMv instance with N ×N matrix M ,699

we construct the following metric space with distance function d from it:700

The metric space U consists of 4N points numbered from 1 to 4N . For any 1 6 i < j 6 N701

and N + 1 6 i < j 6 2N , the distance d(i, j) = 2. Furthermore, for 1 6 i 6 N and702

N + 1 6 j 6 2N , the distance d(i, j) = 1 if Mi,j−N = 1, and d(i, j) = 2 otherwise.703

Additionally, all 2N points 2N + 1, . . . , 4N are at distance 100 from each other and from all704

the other points.705

We use a k-means data structure to solve a uTMv computation as follows: Initially the set706

X is empty. When given a vector pair (u, v), let p be the number of ones in v and in u. Note707

that p 6 2N . We insert the points i such that ui = 1 and the points j such that vj−N = 1708

into X and additionally 2N + 1− p of the points ` with ` > 2N . Thus |X| = 2N + 1 = k+ 1.709

Then we ask a k-means query. Afterwards, we delete the inserted points.710

If uTMv = 1, then there exist indices i and j such that ui = 1,Mi,j = 1, and vj = 1.711

Consider the optimal solution that consists of all points in X except for point i. Note that712

the cost of this solution for the k-means problem is 1.713

If uTMv = 0, then any optimal solution must also consist of 2N + 1− p of the points714

` with ` > 2N , and all but one of the other points in X. But as none of the points in X715

ESA 2020

36:18 Fully-Dynamic Coresets

has distance smaller than 2 to any other point in X, the cost of the solution is at least 4 for716

k-means. Thus, any (4− δ)-approximation for k-means can distinguish between the cases717

uTMv = 1 and uTMv = 0. Hence, the OMv conjecture implies that it takes at least time718

Ω(N2−γ) time to execute the above 2N update operations and 1 query operation. This719

implies the claimed lower bound. J720

References721

1 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for722

k-means and euclidean k-median by primal-dual algorithms. In 58th IEEE Annual Symposium723

on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,724

pages 61–72. IEEE Computer Society, 2017.725

2 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and726

Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM727

J. Comput., 33(3):544–562, 2004.728

3 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-dynamic729

transformation. J. Algorithms, pages 301–358, 1980.730

4 Vladimir Braverman, Dan Feldman, and Harry Lang. New Frameworks for Offline and731

Streaming Coreset Constructions. arXiv e-prints, 2016.732

5 Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.733

Clustering high dimensional dynamic data streams. In Proceedings of the 34th International734

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,735

pages 576–585, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.736

6 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.737

An improved approximation for k-median and positive correlation in budgeted optimization.738

ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.739

7 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location740

problems. SIAM J. Comput., 34(4):803–824, 2005.741

8 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor742

approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,743

2002.744

9 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean745

spaces and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. URL:746

https://doi.org/10.1137/070699007, arXiv:https://doi.org/10.1137/070699007, doi:747

10.1137/070699007.748

10 Vincent Cohen-Addad, Niklas Oskar D Hjuler, Nikos Parotsidis, David Saulpic, and Chris749

Schwiegelshohn. Fully dynamic consistent facility location. In Advances in Neural Information750

Processing Systems 32, pages 3255–3265. Curran Associates, Inc., 2019. URL: http://papers.751

nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf.752

11 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification—a753

technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.754

12 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering755

data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San756

Jose, CA, USA, 6-8 June 2011, pages 569–578, 2011.757

13 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:758

Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the759

Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New760

Orleans, Louisiana, USA, January 6-8, 2013, pages 1434–1453. SIAM, 2013.761

14 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In762

Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,763

USA, May 22-24, 2005, pages 209–217. ACM, 2005.764

https://doi.org/10.1137/070699007
http://arxiv.org/abs/https://doi.org/10.1137/070699007
http://dx.doi.org/10.1137/070699007
http://dx.doi.org/10.1137/070699007
http://dx.doi.org/10.1137/070699007
http://papers.nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf
http://papers.nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf
http://papers.nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf

M. Henzinger and S. Kale 36:19

15 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for765

facility location, 2008. arXiv:0809.2554.766

16 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.767

Discret. Comput. Geom., 37(1):3–19, 2007.768

17 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In769

Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04,770

page 291–300. Association for Computing Machinery, 2004.771

18 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.772

Unifying and strengthening hardness for dynamic problems via the online matrix-vector773

multiplication conjecture. In Symposium on Theory of Computing (STOC), pages 21–30, 2015.774

doi:10.1145/2746539.2746609.775

19 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility776

location problems. In Proceedings on 34th Annual ACM Symposium on Theory of Computing,777

May 19-21, 2002, Montréal, Québec, Canada, pages 731–740. ACM, 2002.778

20 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location779

and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,780

48(2):274–296, 2001.781

21 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,782

and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.783

Geom., 28(2-3):89–112, 2004.784

22 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.785

Comput., 45(2):530–547, 2016.786

23 Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering.787

Mach. Learn., 56(1-3):35–60, 2004.788

24 Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approx-789

imation: Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of Computer790

Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 802–813. IEEE Computer791

Society, 2018.792

A Proof of Lemma 8793

I Lemma 8. For any positive integer ` and α ∈ R+, we have794

α+ (1 + α)
`−1∑
i=1

(
`− 1
i

)
αi =

∑̀
i=1

(
`

i

)
αi .795

Proof.

α+ (1 + α)
`−1∑
i=1

(
`− 1
i

)
αi = α+

`−1∑
i=1

(
`− 1
i

)
αi +

`−1∑
i=1

(
`− 1
i

)
αi+1

796

=
(
`− 1

0

)
α+

`−1∑
i=1

(
`− 1
i

)
αi +

`−1∑
i=1

(
`− 1
i

)
αi+1

797

using the fact
(
`− 1

0

)
= 1798

=
(
`− 1

0

)
α+

`−1∑
i=1

(
`− 1
i

)
αi +

∑̀
i=2

(
`− 1
i− 1

)
αi799

change of index in the second summation800

=
`−1∑
i=1

(
`− 1
i

)
αi +

∑̀
i=1

(
`− 1
i− 1

)
αi801

ESA 2020

http://arxiv.org/abs/0809.2554
http://dx.doi.org/10.1145/2746539.2746609

36:20 Fully-Dynamic Coresets

incorporating first term in second summation802

=
∑̀
i=1

(
`− 1
i

)
αi +

∑̀
i=1

(
`− 1
i− 1

)
αi803

using the fact
(
`− 1
`

)
= 0804

=
∑̀
i=1

((
`− 1
i

)
+
(
`− 1
i− 1

))
αi805

=
∑̀
i=1

(
`

i

)
αi ,806

807

where we use
(
`
i

)
=
(
`−1
i

)
+
(
`−1
i−1
)
in the last step. J808

	Introduction
	Related Work

	Preliminaries
	A Dynamic Coreset
	The Binary-Tree Structure
	Reducing the Number of Nodes

	Lower Bounds
	Space Lower Bound
	Conditional Lower Bounds on the Time Per Operation

	Proof of Lemma 8

