
Hijacking Routes in Payment Channel Networks:
A Predictability Tradeoff

Saar Tochner and Aviv Zohar
The Hebrew University of Jerusalem

{saart,avivz}@cs.huji.ac.il

Stefan Schmid
Faculty of Computer Science, University of Vienna

stefan schmid@univie.ac.at

Abstract—Off-chain transaction networks can mitigate the
scalability issues of today’s trustless electronic cash systems such
as Bitcoin. However, these peer-to-peer networks also introduce
a new attack surface which is not well-understood today. This
paper identifies and analyzes, a novel Denial-of-Service attack
which is based on route hijacking, i.e., which exploits the way
transactions are routed and executed along the created channels
of the network. This attack is conceptually interesting as even
a limited attacker that manipulates the topology through the
creation of new channels can navigate tradeoffs related to the way
it attacks the network. Furthermore, the attack also highlights
a fundamental design tradeoff for the defender (who determines
its own routes): to become less predictable and hence secure, a
rational node has to pay higher fees to nodes that forward its pay-
ments. We find that the three most common implementations for
payment channels in Bitcoin (lnd, C-lightning, Eclair) approach
routing differently. We begin by surveying the current state of
the Lightning network and explore the routes chosen by these
implementations. We find that in the current network nearly 60%
of all routes pass through only five nodes, while 80% go through
only 10 nodes. Thus, a relatively small number of colluding nodes
can deny service to a large fraction of the network.

We then turn to study an external attacker who creates links
to the network and draws more routes through its nodes by
asking for lower fees. We find that just five new links are enough
to draw the majority (65% - 75%) of the traffic regardless of
the implementation being used. The cost of creating these links
is very low.

We discuss the differences between implementations and
eventually derive our own suggested routing policy, which is based
on a novel combination of existing approaches.

I. INTRODUCTION

Emerging decentralized ledger and blockchain technologies
bear the promise to streamline business, governance and non-
profit activities, by eliminating intermediaries and authorities.
A main hurdle toward such more decentralized applications
however remains scalability [5], [8], [27]. The typical example
is that Bitcoin can only support dozens of transactions per
second, compared to several thousands in deployed payment
services such as Visa [28].

Off-chain peer-to-peer networks (a.k.a. payment channel
networks) are a promising approach to mitigate this scalability
problem: by allowing participants to make payments directly
through a network of payment channels, the overhead of
global consensus protocols and committing transactions on-
chain can be avoided. This not only improves transaction
throughput but also avoids the blockchain’s transaction latency;
ideally, in a payment channel network, most transactions are

done using bidirectional payment channels that only require
direct communications between a handful of nodes, while
the blockchain is used only rarely, to establish or terminate
channels. As an incentive to participate in others’ transactions,
the nodes obtain a small fee from every transaction that was
routed through their channels. Over the last few years, payment
channel networks such as Lightning [24], Ripple [4], and
Raiden [23] have been implemented, deployed and have started
growing.

This paper is concerned with the routing mechanisms
which lie at the heart of payment channel networks: an
important feature of payment channel networks is that they
also support transactions between participants without direct
channels, using multihop routing [18], [24]. However, the
design tradeoffs and security implications of such multi-hop
routing are not well-understood today. In fact, routing in
payment channel networks is fairly different from routing in
traditional communication networks: in traditional communi-
cation networks, routing algorithms typically aim to find short
and low-load paths in a network whose links are subject to
fixed capacity constraints. In a payment channel network, link
capacities represent payment balances, which can be highly dy-
namic: every transaction changes the payment balance initially
set up for the channel. What is more, both the establishment as
well as the use of payment channels is an inherently strategic
decision, and subject to complex incentives and the extent to
which a participant thinks she or he can benefit from different
behaviors. In fact, a participant may not only try to strategically
maximize her or his profit, but may also be malicious.

A. Our Contributions

This paper is motivated by the question whether and how
malicious players can strategically influence and exploit the
way transactions are routed in off-chain networks. Our main
contribution is the identification, analysis, and evaluation of a
novel Denial-of-Service attack which is based on the hijacking
of transaction routes. To this end, we examine different existing
implementations (which turn out to differ significantly), and we
provide empirical insights into the structure and properties of
payment channel networks.

More specifically, we find that there exists a group of 10
nodes that participates in 80% of the routes, and 30 nodes
that participate in more than 95% of the routes. On the other
hand, we find that by creating 5 new new channels, an attacker
can hijack about 65% of the routes, and with 30 channels, it
can hijack 80% of the routes of every implementation. Fur-
thermore, we find that existing clients differ in their objectives

ar
X

iv
:1

90
9.

06
89

0v
1

 [
cs

.C
R

]
 1

5
Se

p
20

19

and hence introduce trade-offs in route selection. Finally, we
find only limited evidence that users configure their nodes to
extract high rewards. Nodes typically use default values or set
minimal fees and contribute cheap routes to the network. Both
aspects can potentially be exploited by selfish and malicious
players.

Reasoning about more secure solutions, we find that the
underlying routing problem exhibits a fundamental design
tradeoff, related to how unpredictable a rational player aims
to be: by behaving less predictably (i.e., choosing alternative
routings), a rational player can become more secure against
attacks, however, such behaviors induce a higher fee for
the player. We investigate this novel tradeoff (the price of
predictability) and discuss strategies both for the attacker as
well as the defender to optimally invest its resources.

An additional tradeoff that we discuss regards the times
nodes must be online (how often they need to check the
network to make sure funds are not stolen from them) and
the time it takes live channels to reset. Network defaults
currently allow nodes relatively long periods of offline time,
which implies that connection attempts that are hijacked are
not retried quickly.

This paper investigates additional tradeoffs and gives intu-
ition on their impact on the network. One of these tradeoffs
regards the fee rate of the channels. On the one hand, if we
let the nodes determine the fee by themselves (in an open
market), then it will increase the vulnerability to attacks in
which the attacker will exploit the nodes’ selfish routing and
offer very low fees in order to hijack traffic. On the other
hand, if the system determines the fees for the channels, then
the system may suffer from incentives problems; too low fees
will cause the channels to be non-profitable, which may cause
them to close (which affects the network connectivity); too
high fees will decrease the incentives of the nodes to perform
transactions.

In order to ensure reproducibility and in order to facilitate
followup work, we share our source code (python3.7) with the
research community at https://github.cs.huji.ac.il/saart/saart-
lightning.

B. Organization

The remainder of this paper is organized as follows. In
Section II, we will present our DoS attack and explore different
hijack possibilities. Section III examines the state-of-the-art
routing algorithms, and then provides an overview of the
experiments we conducted. We then describe in Section IV a
model resulting from our attack as well as the algorithms that
we used in our experiments. In Section V we explore methods
to decrease this vulnerability through both a game theoretic
model and suggestions on future weight implementation. Re-
lated work will be presented in Section VI. Finally, we present
conclusions and discuss future work in Section VII.

II. DOS ATTACK VIA ROUTE HIJACKING

This section uncovers a potential vulnerability, based on
route hijacking, which may be used for a Denial-of-Service
(DoS) attack on off-chain networks. We will first provide an
explanation of the key elements of the protocol, then present

the basic attack and finally describe how this attack may be
amplified. In the next sections, we will then explore the fea-
sibility of this attack empirically, in a state-of-the-art payment
channel network, evaluate it and reason about optimization
opportunities both for the attacker and the defender.

A. Context of the Attack

To be more concrete, we consider the Lightning network as
a case study in the following. However, the concepts are similar
in other networks as well. In the Lightning off-chain network,
the channels are established by the nodes for secure payments.
Every two nodes that are willing to create such a channel,
need to make a commitment: they need to execute a Bitcoin
transaction that locks money (i.e., liquidity) for this channel1.
A transaction is then simply an agreement between the two
end-points of the channel, which leads to a different split of the
money. The intermediate states resulting from this transaction
do not have to be committed to the blockchain: Once they will
commit the state into the blockchain, the channel will be closed
(because it “wastes” the original transaction). Until this occurs,
the channel can remain operational and the internal split of
funds can be adjusted by the participants. As the intermediate
states of channels are built, older states are “revoked”: if one
tries to commit an old state, the other participant can claim
funds back. This recovery of funds can only be done within a
certain pre-set period of time. This setup thus requires each
of the participants in a channel to occasionally check the
blockchain and make sure that the other party did not close
the channel using an old state.

Off-chain networks such as Lightning however do not only
support transactions between nodes that have a direct channel,
but also allow chaining paths to connect nodes indirectly. This
is achieved by allowing two nodes to find a path along multiple
existing channels that connect the nodes: in order to realize
such a “multi-hop transaction”, a transaction is executed on
each direct channel along the path.

The technique used to chain paths together but still guaran-
tee that funds are not stolen by intermediate nodes is based on
“hash & time lock contracts”, or HTLCs, which are essentially
contracts awarding nodes a slightly different split of the money
in each channel if a secret is revealed. Paths are then created
by establishing a chain of channels with HTLCs conditioned
on the release of the same secret, and the transfer is finally
executed as the recipient node releases the secret (additional
details can be found in [24]). HTLCs must additionally posses
an expiration time which specifies the timeout of each lock.
This timeout is the timeout of the next node in the path
plus some small delay specified by the preceding node. These
decreasing delays ensure that intermediate nodes never reach a
situation where they might have an outgoing payment without
being compensated by an incoming payment (due to an ear-
lier timeout of the incoming channel). This small difference
between HTLC timeouts is called delay and is expressed by a
number of blocks in the blockchain (as timestamps on blocks
are considered unreliable, and block height is the fundamental
way to meassure the progress of time in blockchains).

1Note that this means that every channel is backed-up with a real Bitcoin’s
transaction, therefore no one can spoof channels

2

Fig. 1. The routing vulnerability: an adversary creates edges that decrease
the weight for many nodes.

To motivate nodes to allow routing transactions, nodes
are allowed to specify a fee for forwarding transactions. This
fee that the nodes performing a transaction have to pay to
the nodes that hold the channels that they use, is published
when the channel is created. It consists of a base fee and a
proportional fee; the latter is relative to the transaction size. For
example, to use a channel that has base fee of 100 millisatoshis,
and a proportional fee of 1 per million, a 1 million millisatoshis
transaction will pay a fee of 101, and a 2 million millisatoshis
transaction will pay a fee of 102.

In order to find such a path, nodes leverage the knowledge
of the channel graph which is continuously gossiped about by
nodes in the network. Given this knowledge of the network
graph, nodes utilize source routing to pick their path. As
we will see, different implementations use different routing
algorithms for path selection, optimizing different measures
(e.g. fee, delay, security, etc.).

B. Basic Attack: A Rerouting Vulnerability

The fact that nodes can strategically choose transaction
paths introduces a potential vulnerability. In the following, we
model the off-chain network as a graph, where nodes represent
the Lightning nodes of the network and edges represent
payment channels. In the basic attack, an adversary (either
selfish or malicious) can aim to establish a set of edges in this
graph which put it in a topologically important location, as
well as to announce a low fee. As a consequence, other nodes
are likely to route transactions through the adversarial node.
As route establishment is done via an onion-routing approach,
and intermediary node may drop the payload and fail to follow
through on the establishment of the rest of the path. In this
case, the payment does not take place, and the sender must
wait for the original HTLC to expire before attempting to re-
send the payment.

By maximizing its centrality, the adversary can hijack a
large number of transaction paths, which in turn allows it to
launch a Denial-of-Service attack. Even if payments are re-
sent, route selection may yet again cause the path to go through
one of the attacker’s nodes.

For an illustration, consider Figure 1. First, ignore the red
node and its edges. In the blue network, there are then two
groups of nodes that communicate through a single link with
a high fee of 10. If an adversary (indicated as red node) now
introduces the two red edges of low fee, it essentially creates a
shortcut between some of the nodes, hijacking the transactions
that aim to minimize the fee.

While we will analyze the algorithmic problem underlying
both the adversary’s and the defender’s optimization more
formally only later, we note that counteracting this attack is
non-trivial. Essentially, there are two options:

1) One may consider introducing mechanisms which
quickly alert nodes about interrupted channels. How-
ever, this can also be problematic as it may be
exploited by adversaries to make false reports.

2) If the source node does not know which specific
channels were stopped, it may only heuristically
invalidate nodes or channels from the original path
(which may disconnect the network or lead to higher
fees), and/or hope that a newly (randomly?) chosen
path may reestablish connectivity.

Note that every node can create channels to most of
the nodes that it chooses: the default behaviour in all the
implementations is to accept every channel suggestions. This
willingness to connect can be attributed to the perceived low
risk in doing so: the construction guarantees that none of the
funds in the channel is at risk of theft. Given the attack that
we propose, it may be wise to accept channel connections only
from known and trusted entities.

C. Amplified Attack: Delay Vulnerability

The basic attack may be further amplified by exploiting
the delay mechanism. If the attacker participates in path
establishment, but stops participating during the transaction
itself, then the other nodes may already have locked their
money for the channel and will be able to free it only after a
timeout. This means that a higher delay will lock the money
of the nodes in the path for a longer time, and potentially
prevent from the source node to execute another transaction’s
attempt for a longer period. We explore this aspect as well in
our evaluation.

III. FEASIBILITY AND CASE STUDIES

We now explore the feasibility of the attack identified
above. To this end, we consider different Lightning net-
work implementations and also conduct an empirical study
on today’s network topology, its fees and other parameters,
which may be of independent interest. We also report on our
experimental evaluation results.

A. Implementation Details

In order to investigate the feasibility of our attack, as a
case study, we consider the three main implementations of the
Lightning network: lnd (implemented in Golang), C-lightning
(implemented in C) and Eclair (implemented in Scala). The
implementations differ in the way they operate relative to
aspects not covered in the BOLTs [1] which make up the
Lightning network’s standard. Specifically, the standard does
not dictate any routing behavior, leaving each implementation
to set its own (as there is no real need for path finding to be
identical between implementations). In our experiments, we
use the default parameters of every implementation.

3

1) lnd: lnd chooses the path of minimum weight, calcu-
lated using the following recursive formula, where p is the list
of channels in this path, and ams is the list of amounts the
go through each channel (changes depending on the fees):2

fee = ams[i+ 1] · p[i].propFee+ p[i].baseFee

weight[i] =ams[i+ 1] · p[i].delay · riskFactor
+ fee

For default riskFactor = 15/1,000,000,000

Note that lnd changed this weight function in March 2019,
in commit 6b70791. The authors added3 a new phrase to
the channel’s weight: + 100

edgeProbability . This parameter is an
aggregated success score over the previous routing through
this channel. If the node has no prior knowledge about the
channel, then it uses the default value that is relative to the
a-priori failing rate in the network. Otherwise, the penalty
considers only the time of the last failure. In the first hour, the
probability is 0, and then it increases exponentially with the
formula: 0.6− 0.6

2t (when using the default arguments). We note
that lnd looks only at the last failure to discount channels, so
if the time until failure is long enough, then it will effectively
choose between at most two channels in the network, both
with low weight (quite similarly to Eclair’s “top 3” approach).
This is not in itself sufficient to bypass the attacker, as it is
easy for it to be on both routes (just like we show for Eclair).
Additionally, the decay rate of the penalty on failures needs
to be low in order to remain relevant as the previous HTLC
contract times out. At last, an attacker that completes the route
as requested, but delays the HTLC secret release until the very
last moment, will delay the transfer significantly and will not
suffer the penalty at all.

2) C-lightning: C-lightning multiplies the fee by a fuzz
that is randomly calculated (and is within configured range),
and gives a penalty for delays. Denote by h the hash that was
calculated using siphash24 on a random string that the user
generated (before every path selection) and the short channel
id. Denote fuzz to be the configured fuzz factor (0.05 by
default).4

scale = 1 + fuzz · (2 · h

264 − 1
− 1)

fee = scale · (ams[i+ 1] · p[i].propFee+ p[i].baseFee)

weight[i] =(ams[i+ 1] + fee) · (p[i].delay · riskFactor)
+ 1

for a configurable riskFactor, which is 10 by default.

3) Eclair: Eclair multiplies the fee by a proportional factor
depending on the channel properties: delay, capacity, and
height (while assuming upper and lower bound for each of
them). In addition to the above, Eclair also randomizes the
selected paths uniformly, from the 3 (a parameter) best routes.5

2References can be found in the methods FindRoutes and findPath in
lnd.routing.router.go and pathfind.go

3References can be found in routing/missioncontrol.go:261 and rout-
ing/pathfind.go:531

4References can be found in the methods bfg one edge and find route in
the file gossipd/routing.c

5References can be found in: eclair-core/src/main/resources/reference.conf,
and the methods FindRoute, edgeWeight in the files eclair/router/Router.scala,
Graph.scala

fee = ams[i+ 1] · p[i].propFee+ p[i].baseFee

weight[i] = fee·(normalizedDelay · delayRatio
+ normalizedCapacity · capacityRatio
+ normalizedHeight · ageRatio)

For upper and lower bounds6:

9 < delay < 2016 delayRatio = 0.15

1000 < capacity < 224 capacityRatio = 0.5

0 < height < 8640 ageRatio = 0.35

B. First Empirical Insights

We first provide some general insights into the empirical
properties of today’s Lightning network. While these insights
are not directly related to routing, they provide insights into
the behavior of the network users, and what this implies for
the vulnerability of the network.

1) Methodology: The following results are based on mea-
surement data we collected using a live Lightning node (lnd)
that is connected to the mainnet through bitcoind. We used
the CLI command lncli describegraph in order to extract
the network structure, and mongodb to store and query the
different paths (different implementations, and different pa-
rameters). We use information that was dumped from a live
mainnet Lightning node at July 24th 2019 17:00 UTC.

Note that using this method, we can examine only public
channels; our analysis omits private channels. We argue that
since these channels are private, nodes which are not directly
part of the private channel are typically not aware of them and
will not route through them. Thus most routing, by design,
relies primarily on the public network.

2) Network Analysis: The network is composed of 4,300
nodes, 33,600 channels, with an average channel capacity of
0.028BTC and an average node capacity of 0.238BTC.

Figures 2, 3, 4, 5, and 6 show some basic properties on
the Lightning network. In particular, Figure 2 reveals that
the base fee across channels has two highly common values:
most channels simply use the default value, which is 1000.
Interestingly, however, the second most frequent value, and
the most frequent non-default value, is the minimum possible
fee. This provides two main insights: first, most users do
not configure the software beyond the default values, and
second, most of those who do, do it in a way which supports
the network. Thus, we hardly find any evidence for selfish
optimizations of fees in the current network. Both properties
may influence a potential attacker.

Figure 3 shows the corresponding distribution for the
proportional fee, the transaction fee. Here, the default value
is 1/1000, which is also by far the most frequent value. Inter-
estingly, however, the value 1 is also frequent; we conjecture
that this may be due to a confusion with the base fee, or
with units (satoshis vs millisatoshis). Other high values also
appear, which one may interpret as an attempt to profit from

68640 is the number of Bitcoin’s blocks in two months

4

Fig. 2. Channels by base fees

Fig. 3. Channels by proportional fees

the network—but this is unlikely: the values are still very
small. Given the network scale, nodes are unlikely to be able
to benefit from such fees [14]. This figure also suggests that
there are altruistic nodes in the network, which are willing to
hold channels without taking fees. Indeed, out of the channels
with base fee 0, we obtain that the percentage of channels with
0 proportional fee is about twice the percentage in the whole
network (about 40% comparing to 24%).

Similarly to the other figures, Figure 4 shows that most of
the channels in the network use the defaults. In this case, we
see that 144 blocks (a full day), are used as delay by most
of the channels. Note that this percentage is similar to the
percentage of the default configuration in Figures 2 and 3.

Figure 5 provides another interesting insight: the capacities
of the channels are surprisingly large: around 5% of the nodes
invest a full Bitcoin into a channel. One could interpret this
result as quite a high level of commitment to the network. This
also corresponds well with the surprisingly low fees observed
above.

Figure 6 shows the number of channels per node. We
find that approximately 5% of the nodes are end-points (are
of degree 1), and 25% have degree 2. The distribution is
highly heavy-tailed and some nodes exhibit very high degrees.

Fig. 4. The delay of the channels (144 blocks is ∼ 24 hours)

0.0 5000.0 10000.0 15000.0 20000.0 m ore
Capacity in 1000 satoshis

0%

2%

4%

6%

8%

P
e

rc
e

n
t

o
f

ch
a

n
n

e
ls

Fig. 5. Channels by capacities

Furthermore, about 88% of the channels are connected to a
node with degree higher than 600, and 90% of the rest have
the default configurations of base and proportional fee. This
suggests that most of the channels that were created by the
more sophisticated nodes, are almost always connected to the
“central” nodes.

3) Evaluation of Routing Properties: We next take a deeper
dive into routing properties. In particular, we examine the
paths that are selected by the different routing algorithms
used in the three main implementations. For every two nodes
we determine the paths for transactions of size 1 satoshi
(1000 millisatoshis). Figure 8 highlights the impact of the
different routing algorithms nicely: the path length distribution
is affected by the specific algorithm.

Figure 9 shows the fee volume for the different implemen-
tations. We can see that Eclair is the “cheapest” implementa-
tion, and the reason is clear from the pseudo code; This is the
only implementation that multiplies the channel’s properties
with the fee itself, where the others multiply by the total
amount (transaction size + fee).

In Figure 10 we see the correlation between the degree of
the nodes and the percentage of transactions that route through

5

Fig. 6. number of channels per node

Fig. 7. Every point is a single node (5% of the nodes was trimmed).

Fig. 8. Number of edges in each path for each implementation (for
transactions of size 1000 millisatoshis)

0.0 500.0 1000.0 1500.0 m ore
fees in satoshis

0%

20%

40%

60%

80%

100%

p
e

rc
e

n
t

o
f

p
a

th
s

c-lightning

lnd

eclair - best

eclair - average

Fig. 9. The fee volume for a transaction of size 1000 satoshis

Fig. 10. The correlation between the degree and the number of occurrences
in paths. The nodes in this graph are ordered according to their degree.

it. We see that in the lower degrees, there is a high variance
in the percentage of paths. On the other hand, the variance
decreases in the higher degrees, and the percentage of routes
increases respectively.

C. Feasibility of the Attack

We now evaluate the feasibility of a DoS attack in two
main scenarios:

• Collusion by existing central nodes: We consider
the case that a small number of highly central nodes
collude and jointly launch a DoS attack using their
existing resources and connections.

• External attacker: An attacker joins the network,
creates new channels to existing nodes and “hijacks”
routing using low fees and other channel properties,
competing with existing paths.

In what follows, let us assume that all pairs of nodes in
the network connect to one another to transfer 1 and 1000
satoshis exactly once. For our analysis, we count the number
of disrupted pairs of transactions.

6

0 5 10 15 20 25 30
first st rongest nodes

0%

20%

40%

60%

80%

100%

cu
m

u
la

ti
v

e
 p

e
rc

e
n

t
o

f
p

a
th

s

eclair (average)

lnd

c-lightning

Fig. 11. percentage of paths that go through the most common nodes
(assuming transaction sizes of 1000 millisatoshis).

1) Colluding Nodes: Figure 11 plots the nodes’ centrality:
the number of paths going through the k most central nodes
(cumulative). We can see that the five highest ranked nodes
can disrupt roughly 60% of all pair connections, and that
differences between different implementations are relatively
minor. Clearly, if these nodes collude and start a DoS attack,
they will cause major disruptions to the network.

As Eclair’s implementation chooses uniformly between
the best three routes, we dive deeper with respect to that
implementation. If some of the three top paths between a
given pair of nodes do not pass through the attacker, there is
a chance that a connection will form. Therefore, in Figure 12,
we examine 3 metrics: (i) The fraction of hijacked best routes
(lowest weight route of the 3 options), (ii) the fraction of pairs
for which we hijack all the top 3 routes, in order to build
an attack that always works, and (iii) the expected fraction of
hijacked routes from the top 3. The main lesson from the figure
is that all metrics are very similar. Thus Eclair’s randomization
between the top 3 routes helps very little to avoid attackers.

Digging deeper, the figure shows that (iii) yields the highest
hijack rate, then (i), and the last is (ii). We try to illustrate an
explanation in Figure 13.

2) An External Attacker: We now consider attacks by
an external attacker that creates links to the network. Our
discussion will focus on an attacker that tries to maximize
the number of hijacked paths out of the the paths between all
pairs of nodes, and not necessarily to maximize the fees it
collects.

Figure 14 examines an attacker that creates new channels
in order to attack the network. We used Algorithm 3 that adds
edges one by one, in a greedy approach, and calculated the
percentage of the hijacked paths. We compared the attack
impact between the different implementations. We added a
control group, that was created by selecting connecting nodes
uniformly and checking the hijack percentage in lnd. This
graph is one of our main results. It shows the consequences of
an attack on the network and compares between the different
implementations.

Alternatively, we can consider the hijacked routes as part

Fig. 12. Percentage of paths that go through the most common nodes.
Average - increase the probability of hijack a created path, Worst - increase
the probability to hijack nodes (every possible paths between the two).

Fig. 13. If the attacker creates the red edges, the best 3 routes are illustrated
in blue dashed lines. The approach to “hijack the best path” results in the
value 0.5 (1 of 2 best paths pass through the attacker). The approach “hijack
all the top 3” results in 0 (as one path does not pass through the attacker, and
“hijack as many from the top 3” in 0.66.

Fig. 14. Number of channels that we need to create (with zero fees and
minimum delay) in order to hijack the paths of transaction sizes of 1000
millisatoshis.

7

0 5 10 15 20 25
Num ber of added links

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
t

o
f

a
ll

p
a

ir
s

not hijacked

hijacked

not connected

Fig. 15. Creating channels in the context of connecting new nodes (lnd).

Fig. 16. The hijack percentage in the trained sampling (with no fuzz)
compared to the percentage in other samples with fuzz = 5% (default).

of the number of paths in the context of all the available
connections between two nodes. Figure 15 shows that the
attack actually creates new available paths sometimes between
nodes who were not previously connected. These new paths
are now available as the route weight and hops are decreased
(below the threshold of lnd).

Figure 16 shows the effectiveness of the weight-fuzzing
method of C-lightning. We used the weight function without
any fuzzing in order to greedily find the channels that the
attacker should create, and then we evaluated our results
against routing with the default fuzz parameter. We repeated
this 4 times with different fuzz rates. The figure indicates that
the re-introduction of the default fuzz (±5%) does not prevent
the attack. Our suggested explanation is that the fuzz multiplies
only the channel’s fee, which is very low in this attack, and
thus does not substantially change routing decisions.

D. Amplified Attack With Delays

This subsection discusses a way to amplify the DoS attack,
by increasing the time that the attacker holds the hijacked

Fig. 17. The hijack percentage when we create edges for increasing delays,
using the top 30 new links from Figure 15

transaction (the delay parameter). Here, we suggest the follow-
ing enhancement: the attacker will report a high delay value
for his node, which will then affect the delay of all preceeding
HTLCs in the path (recall that delays must accumulate in the
reverse order of the path to guarantee intermediary nodes that
the outgoing HTLCs expire before the incoming ones).

Note that there is a trade-off for the attacker, because this
delay is part of the channel’s properties that are used in order to
calculate the weight, so higher delay means a stronger effect on
fewer nodes. Figure 17 shows the hijack rate when the attacker
increases the delay of the 30 channels that were created in the
previous subsection. Note that there is a big drop around the
delay of 144 blocks, which correlates with the fact that many
nodes use this as their parameter (Figure 4).

IV. ANALYSIS AND OPTIMIZATION
OF ATTACKER STRATEGY

Having demonstrated the feasibility of the attacks empir-
ically, we now explore the optimization problems underlying
the attack from an algorithmic perspective. To this end, we
propose an analytical model for the adversary. In particular, we
will show that while determining the best adversarial strategy is
an NP-hard problem, efficient polynomial-time approximation
algorithms exist. To this end, we establish an interesting
connection to centrality theory, which turns out to come with
a twist in our setting.

A. Preliminaries

Let V be the nodes that participate in the network and
E be the channels, i.e., (u, v) ∈ E ⊆ V × V are nodes with
established channel7. A valid path from a source node s ∈ V to
a target node t ∈ V is a list of edges ((u1, v1), · · · , (un, vn)) ∈
E∗ where u1 = s, vn = t and vi = ui+1 for all i.

Path selection algorithm AW is an algorithm with the
inputs: source node, target node, and the channels’ graph. It
returns a valid path from the source to the target.

7Note that we are not interested in the P2P network itself, but only the
channels graph.

8

The centrality of a channel e is the percentage of the
network’s transactions that pass through this channel. In the
same way, define the centrality of a set of channels e1, · · · , en
(note: this is not necessarily the sum). Denote this function
with C : 2E −→ R. Note that although this is a close notion
to the betweeness centrality in the literature, we consider here
routing algorithms that do not necessarily choose the shortest
path (lowest weight), like Eclair’s top-k randomization.

B. Attacker’s Algorithms

In general, computing an optimal attack is hard, as the
problem of computing optimal link additions is already NP-
hard for shortest paths, i.e., betweenness centrality [7]. We
hence explore the possibility of polynomial-time approxima-
tion algorithms: algorithms which are fast enough to scale at
least to all the nodes and channels of the Lightning network
(about 4000 nodes at the moment).

In the following, we will explore the opportunity intro-
duced by submodularity, and consider the connection to the
problem of betweeness maximization with bounded budget [6].

Lemma 1: The centrality rate of existing edges for a given
node is a non-negative, monotone, sub-modular function. That
is, for ∀A,B ⊆ E it holds that C(A) + C(B) ≥ C(A ∪ B) +
C(A ∩B)

Proof: Recall that C(A) is the number of transactions that
go through the channels in A. The non-negative and monotone
properties follow directly from the definition. Regarding the
sub-modularity, we consider the different cases: (i) Transac-
tions that go through only one of A and B, we count exactly
once on both sides of the equation. (ii) Transactions that do
not go through A or B, we do not count on both sides. (iii)
Transactions that go both through A and B and that are in
A∩B, we count twice on every side. (iv) Transactions that go
both through A and B, but that are not in A ∩ B, we count
twice on the left side, but only once on the right. Overall, we
obtain that the left side can be larger then the right side, as
desired.

Remark 1: The above lemma can be rephrased also to
A,B ⊆ V (group of nodes instead of edges).

Lemma 2: The centrality rate of creating new edges for a
given node is a non-negative, monotone, sub-modular function.
I.e. ∀N1 ⊆ N2 ⊆ V and x ∈ V − N2, denote by A,B the
groups of new channels that connect N1, N2 to a new node
v, respectively, and e that connects x to v. Then it holds that
C(A ∪ {e})− C(A) ≥ C(B ∪ {e})− C(B).

The proof is equivalent to the proof of Theorem 5.2 in [7].
The key ideas are: (i) If we consider two sets of new edges
X ⊆ Y , then the distance between every two nodes in the
graph with the new edges from X is greater equal the distance
when adding Y . (ii) If all the new edges are connected to only
the attacker’s nodes, then the attacker’s centrality when adding
X is lower than when adding Y . (iii) Strong inequality in (i)
implies strong inequality in (ii).

Let us now consider a repetitive attack, in which our goal is
to attract others to always route through our node. To achieve
this goal, we will add many edges with 0 fees and delay. Each
such channel bears some costs for the attacker due to the need

to lock funds by the attacker. To decrease costs we therefore
wish to minimize the number of channels.

Function GreedyApproach(k, f , E, V , v̄):
for i = 1, · · · , k do

e = arg maxv∈V f(E ∪ {(v, v̄)})
E = E ∪ {e}

end
Algorithm 1: Greedy perspective to find k channels that
maximize the function f

Theorem 1: A greedy algorithm that, given edges E, node
n and number k, iteratively finds the edge e that maximizes the
centrality rate of n and updates E = E ∪ {e} (Algorithm 1),
gives a 1− (1− 1

k)k approximation.

Proof: As in Section 4 (corollary of Prop. 4.3) of [22],
we implied the greedy heuristic on the function C (which is a
sub-modular set function according to Lemmas 1,2).

It remains to show an efficient method to calculate
arg maxe f(E∪{e}). This can simply be achieved by dynamic
programming: find the best edge to add, and update the state
accordingly. Algorithm 2 describes this idea.

In our algorithm, we made some further improvements,
based on the fact that there are no valid paths between all
the pairs (because of defaults of max hops or max fee). See
Algorithm 3 for details.

Function Preprocessing(E, V):
dbPaths = ∅
dbV ertexes = ∅
for v ∈ V do

dbPaths.update(perform dijkstra and get
shortest paths and weights to v)

end
dbV ertexes.update(map between vertex to all the

participated paths)

Function FindNextNaive(E, V , v̄):
best, value = null, 0;
for candidate ∈ V do

counter = 0
for src, dst ∈ V × V do

if shortest(src, candidate) + shortest(v̄, dst)
≤ shortest(src, dst) then
counter ++

end
end
if counter > value then

best, value = candidate, counter
end

end
return best

Algorithm 2: calculate arg maxe f(E ∪ {e}) efficiently

It is important to notice that the above algorithms are
indeed not optimal and are just an approximation. This only
strengthens our results: these algorithms yield, in practice, very
good results (for the attacker), and more sophisticated attackers
may do even more damage.

9

Function FindNext(E, V , v̄):
best, value = null, 0;
for candidate ∈ V do

counter = 0
for src reachable to candidate do

for dst reachable from src do
if (src, dst) is already attacked then

continue
end
if shortest(src, candidate) + shortest(v̄,

dst) ≤ shortest(src, dst) then
counter ++

end
end

end
if counter > value then

best, value = candidate, counter
end

end
return best

Algorithm 3: Our implementation of findNext, while opti-
mizing the runtime and reduce calls to the db

V. EXPLORING SOLUTIONS

Let us now explore methods that can increase the robust-
ness of the network, and at least partially address the tradeoffs
observed above. In the following, we will suggest two different
solutions: the first is based on a game-theoretic perspective
where we analyze the strategies of the attacker and defender
as two rational players. The second is based on a set of
conclusions that we learned from the above experiments.

A. Game Theoretic Approach

We can reason about the interaction of the attacker and
the defender as a continuous game, where the attacker tries to
sabotage as many edges as possible in a long time range. On
the other hand, the attacker may try to perform “fast attacks”,
where the adversary gains access to much resources for a short
period, and then tries to block the transactions in the network.
As for the defender’s perspective, the matching examples are if
it performs cycles of trust-building or maximizes the security
of each transaction.

Another interesting approach to see the interaction is to
consider non-selfish nodes, where we utilize the interaction
between a single attacker and the network as a whole. The
nodes cooperate in order to increase the overall security of the
network. This approach is interesting because it must include
other incentives to the nodes (otherwise they will employ
selfish routing).

In the following, as a first step, we will examine only a
very simple approach, in which the defender is selfish, and
the attacker ties to attack a single transaction.

Simple example We will present here a short game theoretic
analysis of a specific case, wherein a selfish node (defender)
tries to perform a single transaction. On the other hand, the
attacker is trying to attack this node specifically, knowing the

exact target node of the transaction and the transaction size.
We assume that they both are fully rational.

The model that we suggest here is simple: assume that
the weight function is simply the sum of fees on channels on
the route, and that the attacker can always create a channel
that has less weight compared to an existing channel. For the
attacker, the price to create nodes is negligible, and the price to
establish a channel with capacity of c is c·I , where I is a global
constant that represents liquidity costs (i.e., the attacker pays
the interest rate on locked funds that are otherwise unused for
the duration of the attack)8. Moreover, assume that in the case
of successful attack, the attacker wins the same value that the
defender looses. Denote this value by H . The defender, tries
to minimize the weight to execute the transaction.

The pure strategies available to the defender are described
by all the paths to the target, and the attacker’s pure strategies
are always to add new nodes and new channels. The utility
function is thus defined as follows: if the attacker created the
channels Catt = a1, · · · , ak and the defender chooses the
path Cdef = d1, · · · , dl, then the utility of the attacker is
Uattacker = H · δCatt,Cdef

− I ·
∑

c∈Catt
ccapacity , and the de-

fender’s utility is Udefender = −H ·δCatt,Cdef
−
∑

c∈Cdef
cfee,

where ccapacity, cfee are the capacity and fee of the channel
c, and δA,B is 0 if A ∩B = ∅ or 1 otherwise.

Intuitively, in every Nash equilibrium in this game, the
attacker will hijack the paths that the defender will use with
the highest probability. On the other hand, the defender will
try to minimize the probability to use every set of specific
channels (not being predictable).

Exploring examples in different graphs is interesting, but
beyond the scope of this paper and left for future research.

B. Lesson Learned - Suggested Weight Function

We next suggest first ideas based on the empirical ex-
periments that we did in Section III-C. We will focus on
insights that aim to increase the cost of a successful hijack
attack, and we hope that these insights will be considered when
implementing a new weight function. We later give an example
of the impact of slight changes to Eclair’s weight function.

The first lesson is related to the vulnerability of Eclair to
the delay attack. Here, the weight is determined by multiplying
the channel’s parameters with the fee. This creates a tradeoff
between the fee and the delay: when multiplying the delay
and dividing the fee by the same factor, this will result in the
same weight, although the more intensive attack. Therefore we
suggest to either multiply the delay by the total amount of the
transaction or to summarize it to the other evaluations.

The second lesson is how to create a non-deterministic al-
gorithm. C-lightning adds noise to the channel’s fee (fuzzing).
As we saw, it has a low effect in case the attack because of
the exceptionally low fees of the attack channels. On the other
hand, Eclair chooses uniformly a path among the top ones
(and not necessarily the best), and that has also a low effect
in a case of an attack because of the amount of different paths
that the attacker can create with a small amount of resources.

8Note that we omit the time span for which the money is locked. This
obviously may change I . We will get back to this point in the next subsections.

10

Therefore we suggest to add fuzz to the total weight of the
channel, and avoid choosing one of the top-k. The difference
between these two options is rather that the attacker needs
to be better than the others by a small constant difference or
linearly.

Few more lessons worth pointing: (i) older nodes are better
because the interest rate (as a parameter in the utility of the
attacker) is higher; (ii) high capacity is safer than low capacity;
(iii) the delay is important.

We were considering to add the betweeness rank to the
weight calculation, but we think that it makes the routing
algorithm computationally expensive, and therefore diverges
from the goal to create simple improvements to existing weight
functions.

Improve Eclair We think that creating a weight function
that will be resilient to hijack attacks and preserve important
network properties (such as connectivity, low fees, etc.) should
be researched properly. In the next discussion we will not
suggest an optimal weight function, but only try to improve
the existing weight functions using the same structure of
implementation. We based our suggestion on Eclair’s weight
function that was presented in Section III-A3.

We suggesting the improvement of taking into account
the following channels properties. The weight parameters
should be determined according to the network and the user’s
configuration. The general structure is:

scale = N (1, σ2)

fee = ams[i+ 1] · p[i].propFee+ p[i].baseFee

weight[i] = scale · (
normalizedDelay · delayRatio
+ normalizedHeight · ageRatio
− normalizedCapacity · capacityRatio
− capacity · height · IntrestRatio

+
fee

ams[i+ 1]
· feeRatio

)

ForN (1, σ) which is the standard Gaussian distribution around
1 with variance σ2 and some normalization factors and ratios.
Note that the fee is not normalized, the scale multiplies
everything and the negative sign in the capacity parameters.

In order to evaluate the above function, we took the fol-
lowing parameters: σ = 0.2, delayRatio = 0.5, ageRatio =
0.5, capacityRatio = 0.3, feeRatio = 100, and the nor-
malization parameters of Eclair. We implemented this weight
function and evaluated it using the same experiments as before.
The results are presented in Figures 18,19,20.

We note that these results require further exploration,
specifically, it is important to evaluate other features of the
new weight function, including the average fees for paths that
it finds, and the failure rates of paths it selects due to liquidity
imbalances. We leave such deeper evaluations for future work.

0 5 10 15 20 25 30
first st rongest nodes

0%

20%

40%

60%

80%

100%

cu
m

u
la

ti
v

e
 p

e
rc

e
n

t
o

f
p

a
th

s

eclair (best)

lnd

c-lightning

suggested

Fig. 18. Percentage of paths that go through the most common nodes
(assuming transaction sizes of 1000 millisatoshis).

0 5 10 15 20 25 30
Num ber of added links

0%

20%

40%

60%

80%

P
e

rc
e

n
t

o
f

h
ija

ck
e

d
 p

a
th

s

eclair

lnd

c (average)

suggested

Fig. 19. The hijack percentage in the trained sampling (with no fuzz)
comparing to the percentage in other samples with fuzz = 5% (default).

0 50 100 150 200 250 300
Added Delay (in Blocks)

0%

20%

40%

60%

80%

P
e

rc
e

n
t

o
f

h
ija

ck
e

d
 p

a
th

s

lnd

c-lightning

eclair

suggested

Fig. 20. The hijack percentage when we create edges with higher and higher
delay, using the top 30 new links

11

VI. RELATED WORK

Since Bitcoin was first deployed in 2009 [20], it received
significant interest in academia, including security aspects.
While the main initial security research focus was on the
analysis of the double-spending attack [26], many additional
vulnerabilities were identified later [17].

Also the P2P network has been analyzed intensively, for
Bitcoin [16] and Ethereum [15] (including the centralization
analysis in [11]), but similar analysis existed already, e.g., for
Skype [12]. Our routing attacks can generally be understood
from the perspective of centrality; as discussed, especially be-
tweenness centrality has been studied much in the literature, as
well as its interesting generalizations [10]. However, our model
is different because the weight of each edge is determined
by all the path (and not only by the edge). More implicitly,
the weight of the edge is calculated using the amount of
millisatoshis that it is transfer, and this amount could be
changed if we will choose a different path (because of the
difference in fees).

Attacks on the network level are also known, e.g., the
eclipse attacks on Bitcoin [13] and Ethereum [19], or the at-
tacks possibly performed by ASes [2]. Route hijacking attacks
were researched in a variety of fields, such as wireless ad-hoc
networks [9], general P2P networks [21], and Bitcoin [3].

An interesting recent work also discusses path hijacking
in the Lightning network [25]. There, the focus is on iso-
lation attacks: the authors consider only the graph of the
channels, without referring to the different implementations
of the routing algorithms. Our work continues this idea and
generalizes it to a general DoS attack, where the attacker tries
to damage the transactions of the network and not the nodes
themselves. Therefore the delay amplifier and the analysis of
the differences between the weight functions and randomized
path selection has not been researched yet.

VII. CONCLUSION

This paper identified a novel attack on off-chain networks
which introduces an interesting tradeoff both for the attacker
as well as the rational defender. We have demonstrated the
feasibility of this attack on different networks and provided a
first analysis.

We showed an empirical difference between the existing
methods used to randomize the chosen path. Random fuzzing
on the fee of every channel was found to yield, in practice,
weak protection against this type of attack compared to fuzzing
the overall weight of the channel. Furthermore, we showed
that if the defender considers the fee as a multiplier to the
weight, then it will be especially vulnerable to the increasing
delay attack. We also proposed a first game theoretic model
for designing a new weight function.

We see our work as a first step and believe that it opens
several interesting avenues for future work. Generally, it will be
interesting to analyze properties that weight functions should
have, and build optimal functions accordingly. It would also
be interesting to consider the use of mechanism design to
incentivize nodes to choose routes that will increase the overall
security of the network. Finally, it will be interesting to exam-
ine this attack on future features, such as node “switchboards”

for message passing: the attacker may connect only to them
to control all the nodes that use it.

REFERENCES

[1] Basis of lightning technology (BOLTs).
https://github.com/lightningnetwork/lightning-rfc.

[2] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking
bitcoin: Large-scale network attacks on cryptocurrencies. arXiv preprint
arXiv:1605.07524, 2016.

[3] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin:
Routing attacks on cryptocurrencies. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 375–392. IEEE, 2017.

[4] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck
Youssef, and Erik Zenner. Ripple: Overview and outlook. In Interna-
tional Conference on Trust and Trustworthy Computing, pages 163–180.
Springer, 2015.

[5] Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer,
and Samuel Welten. Have a snack, pay with bitcoins. In IEEE P2P
2013 Proceedings, pages 1–5. IEEE, 2013.

[6] Xiaohui Bei, Wei Chen, Shang-Hua Teng, Jialin Zhang, and Jiajie
Zhu. Bounded budget betweenness centrality game for strategic network
formations. Theoretical Computer Science, 412(52):7147–7168, 2011.

[7] Elisabetta Bergamini, Pierluigi Crescenzi, Gianlorenzo D’angelo, Hen-
ning Meyerhenke, Lorenzo Severini, and Yllka Velaj. Improving
the betweenness centrality of a node by adding links. Journal of
Experimental Algorithmics (JEA), 23:1–5, 2018.

[8] Christian Decker and Roger Wattenhofer. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Symposium on
Self-Stabilizing Systems, pages 3–18. Springer, 2015.

[9] Hongmei Deng, Wei Li, and Dharma P Agrawal. Routing security in
wireless ad hoc networks. IEEE Communications magazine, 40(10):70–
75, 2002.

[10] Shlomi Dolev, Yuval Elovici, and Rami Puzis. Routing betweenness
centrality. Journal of the ACM (JACM), 57(4):25, 2010.

[11] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and
Emin Gün Sirer. Decentralization in bitcoin and ethereum networks.
arXiv preprint arXiv:1801.03998, 2018.

[12] Saikat Guha and Neil Daswani. An experimental study of the skype
peer-to-peer voip system. Technical report, Cornell University, 2005.

[13] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. In 24th {USENIX}
Security Symposium ({USENIX} Security 15), pages 129–144, 2015.

[14] Alyssa Hertig. Coindesk: You can now get paid (a little) for using
bitcoin’s lightning network, 2018.

[15] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew
Miller, and Michael Bailey. Measuring ethereum network peers. In
Proceedings of the Internet Measurement Conference 2018, pages 91–
104. ACM, 2018.

[16] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of
anonymity in bitcoin using p2p network traffic. In International
Conference on Financial Cryptography and Data Security, pages 469–
485. Springer, 2014.

[17] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen.
A survey on the security of blockchain systems. Future Generation
Computer Systems, 2017.

[18] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain
scalability and interoperability. In NDSS, 2019.

[19] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource
eclipse attacks on ethereum’s peer-to-peer network. IACR Cryptology
ePrint Archive, 2018:236, 2018.

[20] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008.

[21] Naoum Naoumov and Keith Ross. Exploiting p2p systems for ddos
attacks. In Proceedings of the 1st international conference on Scalable
information systems, page 47. ACM, 2006.

12

[22] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set functions—i.
Mathematical programming, 14(1):265–294, 1978.

[23] Raiden Network-Fast. cheap, scalable token transfers for ethereum,
2018.

[24] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network:
Scalable off-chain instant payments, 2016.

[25] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged
payment channels: Quantifying the lightning network’s resilience to
topology-based attacks. arXiv preprint arXiv:1904.10253, 2019.

[26] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv
preprint arXiv:1402.2009, 2014.

[27] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transac-
tion processing. fast money grows on trees, not chains. IACR Cryptology
ePrint Archive, 2013(881), 2013.

[28] Manny Trillo. Stress test prepares visanet for the most wonderful time of
the year. URl: http://www. visa. com/blogarchives/us/2013/10/10/stress-
testprepares-visanet-for-the-most-wonderful-time-of-the-year/index.
html, 2013.

APPENDIX

Claim 1: The value of the game that is presented in Table 1
is k ·

(
H
|V |−1−I

)
, and the Nash Equilibrium is that the attacker

will play “direct” with probability k
|V |−1 , and the defender with

probability 1
|V |−1 .

Proof: We will solve the game using the known fact: let
(σ1, σ2) be a Nash Equilibrium, and U be the utility function
of player 1. Then any pure strategy s within the support of
σ2 holds the property that U(σ1, σ2) = U(σ1, s) and equals
to the value of the game.

Now getting back to the proof, assume that in Nash
Equilibrium the defender choose “direct” with probability p,
then:

U((p, 1− p), direct) = p(−H − 1) + (1− p)(−H k − 1

V − 2
− 2)

U((p, 1− p), indirect) = p(−1) + (1− p)(−H k

V − 2
− 2)

from the fact above we get equality, therefore: −Hp − p −
H k−1

V−2 −2 +pH k−1
V−2 + 2p = −p−H k

V−2 −2 +pH k
V−2 + 2p

which is exactly

pH(−1 +
k − 1

V − 2
)−H k − 1

V − 2
= −H k

V − 2
+ pH

K

V − 2

therefore p = 1
V−1

And the same for the attacker: if he will choose “direct”
with probability q then:

U2(direct, (q, 1− q)) = q(H − Ik) + (1− q)(−Ik)

U2(indirect, (q, 1−q)) = q(H
k − 1

V − 2
−Ik)+(1−q)(H k

V − 2
−Ik)

Therefore: qH − Ik = qH(k−1
V−2 −

k
V−2) +H k

V−2 − Ik which
is exactly qE = −q + k therefore q = k

V−1 .

Now, in order to get the value of the game for the at-
tacker, we can simply calculate U2(pure direct, (q, 1− q)) =
kH−Ik2−IEk−Ik+Ik2

V−1 = k · (H
V−1 − I)

13

	I Introduction
	I-A Our Contributions
	I-B Organization

	II DoS Attack Via Route Hijacking
	II-A Context of the Attack
	II-B Basic Attack: A Rerouting Vulnerability
	II-C Amplified Attack: Delay Vulnerability

	III Feasibility and Case Studies
	III-A Implementation Details
	III-A1 lnd
	III-A2 C-lightning
	III-A3 Eclair

	III-B First Empirical Insights
	III-B1 Methodology
	III-B2 Network Analysis
	III-B3 Evaluation of Routing Properties

	III-C Feasibility of the Attack
	III-C1 Colluding Nodes
	III-C2 An External Attacker

	III-D Amplified Attack With Delays

	IV Analysis and Optimizationof Attacker Strategy
	IV-A Preliminaries
	IV-B Attacker's Algorithms

	V Exploring Solutions
	V-A Game Theoretic Approach
	V-B Lesson Learned - Suggested Weight Function

	VI Related Work
	VII Conclusion
	References
	Appendix

