
A Competitive B-Matching Algorithm
for Reconfigurable Datacenter Networks

Marcin Bienkowski

University of Wrocław, Poland

David Fuchssteiner

University of Vienna, Austria

Jan Marcinkowski

University of Wrocław, Poland

Stefan Schmid

University of Vienna, Austria

ABSTRACT

This paper initiates the study of online algorithms for the main-

taining a maximum weight b-matching problem, a generalization

of maximum weight matching where each node has at most b ≥ 1

adjacent matching edges. The problem is motivated by emerging

optical technologies which allow to enhance datacenter networks

with reconfigurable matchings, providing direct connectivity be-

tween frequently communicating racks. These additional links may

improve network performance, by leveraging spatial and temporal

structure in the workload. We show that the underlying algorith-

mic problem features an intriguing connection to online paging,

but introduces a novel challenge. Our main contribution is an on-

line algorithm which isO(b)-competitive; we also prove that this is

asymptotically optimal.We complement our theoretical results with

extensive trace-driven simulations, based on real-world datacenter

workloads as well as synthetic traffic traces.

CCS CONCEPTS

• Networks → Network architectures; • Theory of computa-

tion → Online algorithms; Interactive computation.

KEYWORDS

reconfigurable networks, demand-aware networks, online algo-

rithms, competitive analysis, b-matching

1 INTRODUCTION

1.1 Motivation: Reconfigurable Datacenters

The popularity of distributed data-centric applications related to

machine learning and AI has led to an explosive growth of datacen-

ter traffic, and researchers are hence making great efforts to design

more efficient datacenter networks, providing a high throughput

at low cost. Indeed, over the last years, much progress has been

made in the design of innovative datacenter interconnects, based

on fat-tree topologies [2, 36], hypercubes [26, 56], expanders [34]

or random graphs [52], among many others [30, 57]. All these net-

works have in common that their topology is static and fixed.

An emerging intriguing alternative to these static datacenter

networks are reconfigurable networks [9, 10, 20, 23, 24, 32, 35, 41, 42,

54, 55, 58]: networks whose topology can be changed dynamically.

In particular, novel optical technologies allow to provide “short

cuts”, i.e., direct connectivity between top-of-rack switches, based

on dynamic matchings. First empirical studies demonstrate the

Research supported by the European Research Council (ERC) under grant agreement

number 864228 (AdjustNet project) and the Polish National Science Centre grants

2016/22/E/ST6/00499 and 2015/18/E/ST6/00456.

potential of such reconfigurable networks, which can deliver very

high bandwidth efficiency at low cost.

The matchings provided by reconfigurable networks are either

periodic (e.g., [41, 42]) or demand-aware (e.g., [24]). The latter is

attractive as it allows to leverage structure in the demand: datacen-

ter traffic is known to be highly structured, e.g., traffic matrices are

typically sparse and some flows (sometimes called elephant flows)

much larger than others [11, 48]. This may be exploited: in principle,

demand-aware datacenter networks allow to directly match racks

which communicate more frequently, leveraging spatial and tem-

poral locality in the workload [5]. These reconfigurable matchings

are usually assumed to enhance a given fixed datacenter topology

based on traditional electric switches [24]: the remaining traffic

(e.g., mice flows) can be routed along the fixed network, e.g., using

classic shortest path control planes such as ECMP.

The advent of such hybrid static-dynamic datacenter networks

introduces an online optimization problem: how to enhance a given

fixed topology with a set of additional shortcut “demand-aware”

edges, such that the current demand is served optimally (e.g., large

flows are routed along short paths, minimizing the “bandwidth

tax” [42]), while at the same time reconfiguration costs are kept

minimal (reconfigurations take time and can temporarily lead to

throughput loss).

1.2 Problem in a Nutshell

The above problem can be modeled as an online dynamic version of

the classicb-matching problem [4] (whereb is the number of optical

switches). In this problem, each node can be connected with at most

b other nodes (using optical links), which results in a b-matching.

Interestingly, while the offline version of theb-matching problem

has been studied intensively in the past (e.g., in the context of

matching applicants to posts) [51], we are not aware of any work

on the dynamic online variant. As the problem is fundamental

and finds applications beyond the reconfigurable datacenter design

problem, we present it in the following abstract form.

Input.We are given an arbitrary (undirected) static weighted and

connected network on the set of nodes V connected by a set of

non-configurable links F : the fixed network. LetV 2
be the set of all

possible unordered pairs of nodes fromV . For any pair τ = {u,v} ∈
V 2

, let ℓτ denote the length of a shortest path between nodes u
and v in graph G = (V , F). Note that u and v are not necessarily

directly connected in F .
The fixed network can be enhanced with reconfigurable links,

providing a matching of degree b: Any node pair from V 2
may

ar
X

iv
:2

00
6.

10
69

2v
1

 [
cs

.N
I]

 1
8

Ju
n

20
20

Technical Report, 2020, Vienna, Austria Marcin Bienkowski, David Fuchssteiner, Jan Marcinkowski, and Stefan Schmid

become a matching edge (such an edge corresponds to a reconfig-

urable optical link), but the number of matching edges adjacent to

any node has to be at most b, for a given integer b ≥ 1.

The demand is modelled as a sequence of communication re-

quests
1 σ = {s1, t1}, {s2, t2}, . . . revealed over time, where {si , ti } ∈

V 2
.

Output and Objective. The goal is to schedule the reconfigurable

links over time, that is, to maintain a dynamically changing b-
matchingM ⊆ V 2

. Each node pair fromM is called amatching edge

and we require that each node has at most b adjacent matching

edges. We aim to jointly minimize routing and reconfiguration

costs, defined below.

Costs. The routing cost for a request τ = {s, t} depends on whether
s and t are connected by a matching edge. In this model, a given

request can either only take the fixed network or a direct matching

edge (i.e., routing is segregated [24]). If τ < M , the requests is routed

exclusively on the fixed network, and the corresponding cost is ℓτ
(shorter paths imply smaller resource costs, i.e., lower “bandwidth

tax” [42]). If τ ∈ M , the request is served by the matching edge,

and the routing costs 0 (note that this is the most challenging cost

function: our result only improves if this cost is larger).

Once the request is served, an algorithm may modify the set of

matching edges: reconfiguration costs α per each node pair added

or removed from the matching M . (The reconfiguration cost and

time can be assumed to be independent of the specific edge.)

Online algorithms. An algorithm On is online if it has to take

decisions without knowing the future requests (in our case, e.g.,

which edge to include next in the matching and which to evict).

Such an algorithm is said to be ρ-competitive [14] if there exists

a constant β such that for any input instance I, it holds that

cost(On,I) ≤ ρ · cost(Opt,I) + β ,

where cost(Opt,I) is the cost of the optimal (offline) solution

for I. It is worth noting that β can depend on the parameters of the

network, such as the number of nodes, but has to be independent

of the actual sequence of requests. Hence, in the long run, this

additive term β becomes negligible in comparison to the actual cost

of online algorithm On.

1.3 Our Contributions

This paper initiates the study of a natural problem, online dynamic

b-matching. For example, this problem finds direct applications in

the context of emerging reconfigurable datacenter networks.

We make the following contributions:

• We show that the online dynamic b-matching problem fea-

tures an interesting connection to online paging problems,

however, with a twist, introducing a new challenge.

• We present anO((1 + ℓmax/α) · b)-competitive deterministic

algorithm, where ℓmax = maxe ∈V 2 ℓe . Note that in all rele-

vant practical applications ℓmax ≪ α (i.e., the cost of routing

between any two nodes is much smaller than the cost of

reconfiguration, and hence the term ℓmax/α is negligible).

1
A request could either be an individual packet or a certain amount of data transferred.

This model of a request sequence is often considered in the literature and is more

fine-grained than, e.g., a sequence of traffic matrices.

• We derive a lower bound which shows that no deterministic

algorithm can achieve a competitive ratio better than b.
• We verify our approach experimentally, performing exten-

sive trace-driven simulations, based on real datacenter work-

loads as well as synthetic traffic traces.

1.4 Challenges, Technical Novelty, Scope

At the heart of our approach lies the observation that online b-
matching is similar to online paging [1, 21, 38, 53]: each node in the

network can manage its reconfigurable edges in a cache of size b.
However, making a direct reduction to caching seems impossible as

reconfigurable edges involve both incident nodes, which introduces

non-trivial dependencies. Without accounting for these dependen-

cies, the competitive ratio would be in the order of the total number

of reconfigurable edges in the network, whereas we in this paper

derive results which only depend on the number of per-node edges.

Our algorithms hence combine “per-node caches” in a clever way.

Generally, we believe that the notion of link caching has inter-

esting implications for reconfigurable network designs beyond the

model considered in this paper. In particular, caching strategies

can typically be implemented locally, and hence may allow to over-

come centralized control overheads, similar to the stable matching

algorithms proposed in the literature [24]. However, we leave the

discussion of of such decentralized schedulers to future work.

1.5 Organization

The remainder of this paper is organized as follows. Our online

algorithm is described and analyzed in Section 2, and the lower

bound is presented in Section 3. We report on our simulation results

in Section 4. After reviewing related literature in Section 5, we

conclude our contribution in Section 6.

2 ALGORITHM BMA

This section introduces our online b-matching algorithm, together

with a competitive analysis. As described above, in our case study

of reconfigurable networks, the matching links may for example de-

scribe the reconfigurable links provided by optical circuit switches,

offering shortcuts between datacenters racks.

Before we present the algorithm and its analysis in details, let

us first provide some intuition of our approach and the underlying

challenges. To this end, let us for now assume that the fixed network

G = (V , F) is a complete unweighted graph (e.g., capturing the

distances in a datacenter network), that α = 1, and that all requests

are node pairs involving one chosen nodew . Also recall that each

node can have at most b incident matching edges.

In this simplified scenario, we can observe that the choice of an

appropriate set of matching edges becomes essentially a variant

of online caching (more precisely, a variant of online paging with

bypassing [19]). That is, an algorithm maintains a set of at most

b edges incident to w that are in the matching. These edges can

be thought as “cached”: subsequent requests to matched (cached)

edges do not incur further cost. Thus, from the perspective of a

single node, the question is roughly equivalent to maintaining a

cache of at most b items (which leads to the typical algorithmic

questions such as which item to cache or evict next).

Online B-Matching Technical Report, 2020, Vienna, Austria

Algorithm 1 Algorithm Bma

1: Initialization: ▷ Matching is empty and counters are zero

2: M ← ∅
3: for each edge e do
4: he ← 0

5:

6: Request τ = {u,v} arrives:
7: if τ < M then

8: hτ ← hτ + 1
9: if hτ = Tτ then ▷ If τ becomes saturated,

10: Execute FixSaturation(u,τ)
11: Execute FixSaturation(v,τ)
12: if hτ = Tτ then ▷ and if no desaturation event occured,

13: Execute FixMatching(u)
14: Execute FixMatching(v)
15: M ← M ∪ {τ } ▷ add τ to the matching.

16:

17: Routine FixSaturation(w,τ):
18: E ′w = Ew \ {τ }
19: if |E ′w ∩ {e : he = Te }| ≥ b then ▷ If the number of saturated node pairs from E ′w is at least b,
20: for each edge e ∈ Ew do ▷ reset counters of all node pairs from Ew (desaturation event atw).

21: he ← 0

22:

23: Routine FixMatching(w):
24: if |M ∩ Ew | = b then ▷ If there are already b incident matching edges,

25: Pick any e∗ ∈ M ∩ Ew such that he∗ < Te∗ ▷ remove any unsaturated edge e∗ from the matching.

26: M ← M \ {e∗}

However, if we simply run independent paging algorithms at

all nodes, local perspectives of particular nodes might not be co-

herent with each other: one endpoint of a node may want to keep

an edge in the matching, while the other may want to evict it from

the matching. This is practically undesirable, as transmitters and

receivers typically need to be aligned and coordinated [24, 42]. To

illustrate this issue, assume that nodew wants to add a new match-

ing edge {w,w ′}, but it already has b incident matched edges. To

accommodate a new matching edge,w removes edge {w,w ′′} from
the matching. This however removes the edge not only from the

“cache” of nodew , but also from the “cache” of nodew ′′. Handling
this coherence issue with a low overall cost, constitutes a main

technical challenge that we need to tackle in our algorithm.

2.1 Algorithm Definition

Our algorithm Bma is defined as follows. For each node pair e ∈ V 2
,

Bma keeps a counter he , initially equal to zero. The value of he
will always be a lower bound for the number of times e has been
requested since it was removed from the matching the last time

(or from the beginning of the input sequence if e was never in the

matching). For each node pair e ∈ V 2
we define a threshold

Te = 2 · ⌈α/ℓe ⌉ .

Once the counter he reaches Te , and additional certain conditions

are fulfilled, edge e will be added to the matching. Otherwise, the

counter will be reset to zero. A node pair e ∈ V 2
whose counter

value is equal to Te is called saturated; our algorithm always keeps

all saturated node pairs in the matching. Note that theseTe requests
to node pair e induced a total cost ofTe ·ℓe ∈ [2α , 2(α/ℓe +1) ·ℓe] =
[2α , 2α + 2ℓe].

For any nodew , we define Ew = {{w,v} : v ∈ V }, i.e., Ew ⊆ V 2

is the set of all node pairs, with one node equal tow . Recall that, at

any time,M ⊆ V 2
denotes the set of matching edges.

Bma is designed to preserve three invariants:

Counter invariant: 0 ≤ he ≤ Te .
Saturation invariant: If he = Te , then e ∈ M .

Matching invariant: If e ∈ M , then he = Te or he = 0.

plus an invariant for any nodew :

Saturation degree invariant: |{e ∈ Ew : he = Te }| ≤ b.

A pseudo-code for our algorithm Bma is given in Algorithm 1.

In the next section, we will explain it in more details, and prove

that it never violates the invariants.

2.2 Maintaining Invariants

At the beginning, the matching M is empty and the counters of

all edges are zero, and thus all invariants hold. Below we describe

what happens upon serving a communication request τ by Bma

and how Bma ensures that all invariants are preserved.

Bma first verifies whether τ is a matching edge. If so, then such

a request incurs no cost and Bma does nothing. Otherwise, by the

saturation invariant, hτ ≤ Te − 1. In this case, Bma pays for the

Technical Report, 2020, Vienna, Austria Marcin Bienkowski, David Fuchssteiner, Jan Marcinkowski, and Stefan Schmid

communication request and increments counter hτ . The increment

preserves the counter invariant. The matching invariant holds emp-

tily as τ < M . If hτ is still below Te , then the remaining invariants

also hold and Bma does not execute any further actions.

However, if the value of hτ reachesTτ (τ becomes saturated), the

saturation invariant becomes violated (τ should be a matching edge)

and also the saturation degree invariants may become violated at u
and v . We now explain how Bma handles these issues.

Bma first ensures that the saturation degree invariant is satisfied

at both endpoints of τ . To this end, Bma executes the FixSatura-

tion routine at u and v . If at any node w ∈ {u,v} the number of

saturated node pairs from Ew different from τ is already b, all edges
of Ew , including τ , have their counters reset to zero. In this case, we

say that a desaturation event occurred at the respective endpointw .

Note that all four cases are possible: there can be no desaturation

event, a desaturation event can occur at u, at v , or at both of u and

v . The execution of the FixSaturation routines reestablishes the

saturation degree invariants, and preserves counter, saturation and

matching invariants at all edges different from τ .
For edge τ , the corresponding counter and matching invariants

clearly hold. If any desaturation event occurs, then it also fixes the

saturation invariant for τ , and Bma need not do anything more.

Otherwise (no desaturation event occurs, that is, hτ is still equal

to Tτ), the saturation invariant is violated: τ has to be added to the

matching. However, if any of τ endpoints already has b incident

matching edges, one such edge has to be removed from thematching

before. This is achieved by the FixMatching routines executed at

both u and v : if necessary, they remove one incident non-saturated

matching edge. It remains to show that such amatching edge indeed

exists.

Lemma 2.1. A non-saturated matching edge e∗ chosen at Line 25

of the algorithm Bma (in routine FixMatching(w)) always exists.
Moreover, when it is removed, he∗ = 0.

Proof. Assume that FixMatching(w) is executed (for a node

w ∈ {u,v}). Let Sw = Ew ∩ {e : he = Te } be the set of saturated
node pairs from Ew . Note that FixMatching(w) is preceded by

the execution of FixSaturation(w,τ): it ensures that |Sw | ≤ b
(Sw contains τ and at most b − 1 other edges).

Let Mw = M ∩ Ew be the set of matching edges incident to w .

The condition at Line 24 ensures that |Mw | = b.
Now, observe that the set Sw \Mw is non-empty as it contains the

requested node pair τ . However, as |Mw | ≥ |Sw |, the setMw \Sw is

non-empty either, and any of its edges is a viable candidate for e∗.
Finally, by the matching invariant, the counter of a matching

edge e ∈ Mw is equal either to Te or 0. Hence, the counters of all

matching edges inMw \ Sw are zero, and thus he∗ = 0. □

2.3 Desaturation Events

Fix any nodew . For the analysis of Bma, a natural approach would

be to estimate the number of paid requests to all node pairs of Ew
between two desaturation events atw . This number corresponds

to the total increase of all counters corresponding to these node

pairs in the considered time interval. However, such an approach

fails as these counters may be reset multiple times because of de-

saturation events at other nodes. In particular, it is possible that a

node pair {w,u} from Ew in included multiple times in the match-

ing between two desaturation events atw . Therefore, we develop

a more complicated accounting scheme.

First, not only we track counters, but for any node pair e we

keep track of a set He of requests paid by Bma (that caused the

increase of the counter he , i.e., |He | = he). When the counter he is

reset, the set He is emptied.

When requests paid by Bma become removed from sets He , we

map them to the corresponding desaturation events: for any de-

saturation event d , we create a set of requests Ad , so that all these

sets are disjoint. Requests that still belong to the current contents

of sets He are not (yet) mapped. More precisely, note that when

a desaturation event at a nodew occurs, we empty all sets He for

node pairs e ∈ Ew . If a request τ = {u,v} triggers a single desatu-
ration event du at u, then we simply set Adu =

⊎
e ∈Eu He , i.e., we

map all requests corresponding to counters that were reset by du .
If, however, a request τ = {u,v} triggers desaturation events du
and dv both at u and v , we want requests from Hτ to be mapped

(partially) to both desaturation events. Thus, we partition Tτ re-

quests from Hτ arbitrarily into two subsets Hv
τ and Hu

τ , each of

cardinality Tτ /2 = ⌈α/ℓe ⌉, and set Adu = Hu
τ ∪

⊎
e ∈Eu \τ He and

Adv = Hv
τ ∪

⊎
e ∈Ev \τ He .

For any request set P , let ℓ(P) = ∑
e ∈P ℓe , i.e., ℓ(P) is the cost of

serving all requests from P without using matching edges. For any

desaturation event d and a node pair e , let Ad (e) be the requests
ofAd to node pair e . The following observation follows immediately

by the definition of Bma and sets Ad .

Observation 1. Fix any desaturation eventd at any nodew . Then,

the following properties hold:

(1) For any node pair e ∈ Ew , it holds that |Ad (e)| ≤ Te .
(2) There exists a set P ⊆ Ew of cardinality b + 1, such that

|Ad (e)| ≥ Te/2 for each e ∈ P .

2.4 Competitive Ratio of Bma

We now use sets Ad to estimate the costs of Bma and Opt. We do

not aim at optimizing the constants, but rather at the simplicity of

the argument.

Lemma 2.2. Let D(I) be the set of all desaturation events that

occurred during input I. Then,

cost(Bma,I) ≤ 4 · |V 2 | · (α + ℓmax) + 2
∑

d ∈D(I)
ℓ(Ad) .

Proof. Within this proof, we consider contents of sets He right

after Bma processes the whole input I. For any node pair e ∈ V 2
,

the set He contains at most Te edges, and therefore

ℓ(He) ≤ Te · ℓe ≤ 2 · α + 2 · ℓe ≤ 2 · (α + ℓmax) .
Any request to a node pair e paid by Bma is either in set He or

it was already assigned to a set Ad for some desaturation event

d ∈ D(I). Thus, the cost of serving all requests by Bma is at most∑
e ∈V 2

ℓ(He) +
∑

d ∈D(I)
ℓ(Ad) ≤ 2 · |V 2 | · (α + ℓmax) +

∑
d ∈D(I)

ℓ(Ad).

To bound the cost of matching changes, we observe that by

the definition of Bma, only a saturated node pair e may become

included in the matching. If e becomes removed from the matching

Online B-Matching Technical Report, 2020, Vienna, Austria

later, then by Lemma 2.1, the counter of e must have dropped to

zero in the meantime. Therefore, any addition of e to the matching

can be mapped to the unique Te paid requests to e . As the cost

of such Te requests is Te · ℓe ≥ 2 · α , the total cost of including
e in the matching is dominated by the half of the cost of serving

requests to e . Furthermore, as the number of removals from the

matching cannot be larger than the number of additions, the total

cost of excluding e from the matching is also dominated by the

same amount. Summing up, the matching reconfiguration cost of

Bma is not larger than its request serving cost, i.e.,

cost(Bma,I) ≤ 4 · |V 2 | · (α + ℓmax) + 2
∑

d ∈D(I)
ℓ(Ad),

which concludes the lemma. □

Lemma 2.3. Let D(I) be the set of all desaturation events that

occurred during input I. Then

cost(Opt,I) ≥ 1

3 · (b + 1) · (1 + ℓmax/α)
∑

d ∈D(I)
ℓ(Ad) .

Proof. To estimate the cost of Opt, it is more convenient to

think that its cost is not associated with node pairs but with nodes.

That is, we distribute the cost of Opt pertaining to node pairs

(paying for a request, including an edge in thematching or removing

an edge from the matching) equally between the endpoints: When

Opt pays ℓτ for a request at node pair τ = {u,v}, we account cost
ℓτ /2 for node u and cost ℓτ /2 for node v . When Opt pays α for

including node pair {u,v} into the matching or excluding it from

the matching, we associate cost α/2 with node u and α/2 with

node v .
Now, fix a desaturation eventd at a nodew . Letd0 be the previous

desaturation event at node w . (If d is the first desaturation event

atw , then d0 is the beginning of the input I.) Note that all requests
of Ad appeared between d0 and d .

Let the node cost (in Opt’s solution) ofw between d0 and d be

denoted cost(Opt,d). As each node-cost paid by Opt is covered

by at most one term cost(Opt,d), it holds that cost(Opt,I) ≥∑
d ∈D(I) cost(Opt,d). Hence, our goal is to lower bound the value

of cost(Opt,d) for any desaturation event d (at some nodew).

We sort the edges from Ew by the cost of serving them between

d0 and d . That is, let Ew = {e1, e2, . . . , e |V |−1} and

ℓ(Ad (e1)) ≥ ℓ(Ad (e2)) ≥ · · · ≥ ℓ(Ad (e |V |−1)) .

Let k be the number of node pairs from Ew that Opt added to the

matching between d0 and d . The corresponding node cost ofw due

to matching changes is then at least k · α/2. Then, the total number

of all node pairs from Ew that Opt may have in the matching at

some time between d0 and d is at most b + k . Therefore, Opt pays

for requests from Ad to all node pairs but at most b + k node pairs,

i.e.,

cost(Opt,d) ≥ k · α/2 + ℓ(Ad) −
b+k∑
j=1
ℓ(Ad (ej)) .

To lower-bound this amount, we first observe that for any k ≥ 0,

it holds that

3 · (b + 1) · [ℓ(Ad (eb+k+1)) + k · α/2] ≥ (b + k + 1) · α (1)

Indeed, ifk = 0, then by Property 2 of Observation 1), ℓ(Ad (eb+1)) ≥
α/2, and thus (1) follows. If k ≥ 1, then (3/2) · (b + 1) ·k ≥ b +k + 1
holds for any b ≥ 1, which implies (1).

Second, by Property 1 of Observation 1, for each node pair e ∈
Ew , it holds that

ℓ(Ad (e)) ≤ Te · ℓe ≤ 2 · (α + ℓmax) = 2α · (1 + ℓmax/α) . (2)

Therefore, using (1) and (2), we obtain that

cost(Opt,d) ≥ k · α/2 +
|V |−1∑

j=b+k+1

ℓ(Ad (ej))

= k · α/2 + ℓ(Ad (eb+k+1)) +
|V |−1∑

j=b+k+2

ℓ(Ad (ej))

≥ (b + k + 1) · α
3 · (b + 1) +

|V |−1∑
j=b+k+2

ℓ(Ad (ej))

≥
∑b+k+1
j=1 ℓ(Ad (ej))

6 · (b + 1) · (1 + ℓmax/α)
+

|V |−1∑
j=b+k+2

ℓ(Ad (ej))

≥ 1

6 · (b + 1) · (1 + ℓmax/α)
·
|V |−1∑
j=1
ℓ(Ad (ej))

=
ℓ(Ad)

6 · (b + 1) · (1 + ℓmax/α)
.

Summing this relation over all desaturation events from the input I
and using the relation cost(Opt,I) ≥ ∑

d ∈D(I) cost(Opt,d) yields
the lemma. □

Theorem 2.4. Bma is O((1 + ℓmax/α) · b)-competitive.

Proof. Fix any input instance I and let D(I) be the number of

desaturation events that occurred when Bmawas executed on I. By
Lemmas 2.2 and 2.3, we immediately obtain that cost(Bma,I) ≤
12 · (b + 1) · (1 + ℓmax/α) · cost(Opt,I) + 4 · |V 2 | · (α + ℓmax),
i.e., the competitive ratio is at most 12 · (b + 1) · (1 + ℓmax/α) =
O((1 + ℓmax/α) · b). □

3 LOWER BOUND

Theorem 3.1. The competitive ratio of any deterministic algorithm

Det is at least b.

Proof. Let our graph be a star of b+2 nodesv0,v1, . . . ,vb ,vb+1
and non-reconfigurable edge set

F = { (v0,v1), (v0,v2), . . . , (v0,vb+1) } .

Each edge of F has length 1. We start with any matching that

connects v0 to b leaves. At any time, the adversary chooses vi
which is not currently matched with v0, and requests a node pair

(v0,vi) for α times. These α requests constitute one chunk.

For each chunk, Det pays at least α : either for modifying the

matching or for bypassing all α requests. An offline algorithm

Off (that knows the entire input sequence) could however make

a smarter selection of an edge to remove from the matching: Off

chooses the one which is not going to be requested in the nearest

b rounds. Hence, Off pays at most α · ⌈k/b⌉ for k chunks of the

Technical Report, 2020, Vienna, Austria Marcin Bienkowski, David Fuchssteiner, Jan Marcinkowski, and Stefan Schmid

input. For growing k , the ratio between the costs of Det and Off

becomes arbitrarily close to b, and hence the lemma follows. □

4 SIMULATIONS

In order to complement our theoretical contribution and analytical

results on the competitive ratio in the worst case, we conducted

extensive simulations, evaluating our algorithms on real-world

traffic traces. In the following, we report on our main results.

4.1 Methodology

All our algorithms are implemented in Python (3.7.3), using the

graph library NetworkX (2.3.2). All simulations were conducted on

a machine with two Intel Xeon E5-2697V3 processors with 2.6 GHz,

128 GB RAM, and 14 cores each.

Our simulations are based on the following workloads:

• Facebook [48]: We use the batch processing trace (Hadoop)

from one of Facebook datacenters, as well as traces from one

of Facebook’s database clusters.

• Microsoft [24]: This data set is simply a probability distribu-

tion, describing the rack-to-rack communication (a traffic

matrix). In order to generate a trace, we sample from this

distribution i.i.d. Hence, this trace does not contain any tem-

poral structure by design (e.g., is not bursty) [5]. However, it

is known that it contains significant spatial structure (i.e., is

skewed).

• pFabric [3]: This is a synthetic trace and we run the NS2

simulation script obtained from the authors of the paper to

generate a trace.

In order to evaluate our algorithm, we are comparing four differ-

ent scenarios in our simulations:

• Oblivious: The network topology is fixed and not optimized

towards the workload by adding reconfigurable links.

• Static: The network topology is enhanced with an optimal

static b-matching, computed with the perfect knowledge of

the workload ahead of time.

• Online BMA: The online algorithm described in this paper.

• LRU BMA: Like online BMA, however, the cache is now

managed according to a least-recently used (LRU) strategy.

In other words, when a link needs to be cached and the cache

is full, the least recently used link in the cache is evicted.

For all simulations, we assume a Clos-like datacenter topol-

ogy [2], connecting 100 servers (leaf nodes of the Clos topology).

In addition, the number of requests for each of our simulations de-

pends on the actual trace, therefore the simulations on the Facebook

cluster have a slightly different amount of requests than e.g., the

Microsoft trace data. Each test run was performed with six different

request counts. The simulations were repeated 5 times, each time

with a different subset of the whole data set to account for certain

variance in the data; the presented results are averaged over these

simulation runs. We evaluated our algorithms with several values

for b ∈ {4, 8, 12} and α = 6. Note that for larger b, less traffic will

be routed over the static network, given our cost function. Given

this, and the fact that reconfigurable links require space, we will be

particularly interested in relatively small values of b: only a small

fraction of all possible n ∗ (n − 1) links is actually used. Evaluat-

ing the effectiveness of small values for b is hence not only more

interesting, but also more realistic.

4.2 Results

In order to study to which extent the Online BMA algorithm can

leverage the temporal locality available in traffic traces, we first

consider the effectiveness of the link cache, as a microbenchmark.

Figure 1 shows a comparison of the hit ratio of Facebook’s database

traces (left), pFabric traces (right) and Microsoft traces. We can

observe that in the case of the pFabric and Microsoft traces, a

relatively high hit ratio is obtained after a short warm-up period,

especially if a least-recently-used (LRU BMA) caching strategy is

used. We can also observe that our online algorithm performs better

under the pFabric andMicrosoft traces, which is expected: empirical

studies have already shown that these traces feature more structure

than the batch processing traces [5]. We also find that the results

naturally depend on the cache size, see Figure 2 (left). An important

remark is, that the degree b need to be understood relative to the

total number of switch ports, i.e., similar results are obtained for

relatively larger b values.

It is interesting to compare the results of our online algorithms to

demand-oblivious topologies as well as to static topologies. Figure 2

gives a comprehensive overview of our algorithms performance in

terms of route lengths (left and right plot) and also regarding the

cache hit ratio (middle plot) for different cache sizes for the Face-

book Hadoop cluster. Notably, Figure 2 (left and middle plot) gives

insights into our algorithm’s performance over all 5 test runs, illus-

trating the average result, as well as the maximum and minimum

result (shaded areas).

As expected,Oblivious always performs worse than Static,Online

BMA and LRU BMA. We further observe that the performance of

Online BMA comes close to the performance of Static, which knows

the demands ahead of time (but is fixed). We expect that under

longer request sequences, when larger shifts in the communication

patterns are likely to appear, the online approach will outperform

the static offline algorithm. To investigate this, however, the publicly

available traffic traces are not sufficient.

While the Microsoft trace does not contain temporal structure

as it is sampled i.i.d., it can still be exploited toward a more efficient

routing and yield a very high cache hit ratio, due to its spatial

structure, i.e., the skewed traffic matrix. See Figure 3.

In conclusion, while ourmain contribution in this paper concerns

the theoretical result, we observe that our online algorithm per-

forms fairly well under real-world workloads, even without further

optimizations (besides an improved cache eviction strategy).

5 RELATEDWORK

Reconfigurable networks based on optical circuit switches, 60 GHz

wireless, and free-space optics, have received much attention over

the last years [10, 20, 24, 35, 58]. It has been shown empirically

that reconfigurable networks can achieve a performance similar

to a demand-oblivious full-bisection bandwidth network at signifi-

cantly lower cost [10, 24]. Furthermore, the study of reconfigurable

networks is not limited to datacenters and interesting use cases

Online B-Matching Technical Report, 2020, Vienna, Austria

17k 35k 52k 70k 88k 105k 123k 140k
Requests

5

101

1.5×101

2×101

2.5×101

3×101

3.5×101

4×101

H
it

 R
at

io
 [

%
]

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)

17k 35k 52k 70k 88k 105k
Requests

8×101

8.2×101

8.4×101

8.6×101

8.8×101

9×101

H
it

 R
at

io
 [

%
]

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)

17k 35k 52k 70k 88k 105k 123k 140k 158k
Requests

7×101

7.5×101

8×101

8.5×101

9×101

9.5×101

H
it

 R
at

io
 [

%
]

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)

Figure 1: Left: Hit ratio for Facebook database cluster trace (with lower temporal locality), Middle: pFabric trace (with high temporal locality), Right: Microsoft trace
(with high spatial locality).

17k 35k 52k 70k 88k 105k 123k 140k
Requests

0

106

2×106

3×106

4×106

5×106

6×106

Ro
ut

in
g

Co
st

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)
Static (b: 4)
Static (b: 8)
Static (b: 12)
Oblivious

17k 35k 52k 70k 88k 105k 123k 140k
Requests

5

101

1.5×101

2×101

2.5×101

3×101

3.5×101

H
it

 R
at

io
 [

%
]

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)

5k 10k 20k 40k 80k 140k
Requests

0

106

2×106

3×106

4×106

5×106

6×106

Ro
ut

in
g

Co
st

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)
Static (b: 4)
Static (b: 8)
Static (b: 12)
Oblivious

Figure 2: Left and Right: Facebook Hadoop cluster: routing costs. Middle: Facebook Hadoop cluster: hit ratio for different cache sizes.

also arise in the context of wide-area networks [28, 29] and over-

lays [47, 49].

Our paper is primarily concerned with the algorithmic problems

introduced by such technologies. In this regard, our paper is re-

lated to graph augmentation models, which consider the problem

of adding edges to a given graph, so that path lengths are reduced.

For example, Meyerson and Tagiku [43] study how to add “short-

cut edges” to minimize the average shortest path distances, Bilò

et al. [12] and Demaine and Zadimoghaddam [16] study how to

augment a network to reduce its diameter, and there are several

interesting results on how to add “ghost edges” to a graph such that

it becomes (more) “small world” [25, 45, 46]. However, these edge

additions can be optimized globally and in a biased manner, and

hence do not form a matching. In particular, it is impractical (and

does not scale) to add many flexible links per node in practice. An-

other line of related works considers the design of demand-aware

networks from scratch [6, 7, 27], ignoring the fixed topology which

is available in current architectures (and in the near future). In this

regard, the works by Foerster et al. [22] are more closely related

to our paper: the authors present algorithms that enhance a given

network with a matching to optimize the (weighted average) route

lengths. However, all the papers discussed in this paragraph so far

focus on the static problem variant and do not consider dynamic re-

configuration over time. Reconfigurable networks over time which

explicitly account for reconfiguration costs include Eclipse [54],

SplayNets [50] and Push-Down Trees [8], which however do not

provide a deterministic guarantee on the competitive ratio of the

online algorithm and in case of [8, 50] are also limited to tree net-

works.

In this paper, we initiated the study of an online version of the

dynamic b-matching problem. A polynomial-time algorithm for the

static version of this problem has already been presented over 30

years ago [4, 51], and the problem still receives attention today due

to its numerous applications, for example in settings where cus-

tomers in a market need to be matched to a cardinality-constrained

set of items, e.g., matching children to schools, reviewers to papers,

or donor organs to patients but also in protein structure alignment,

computer vision, estimating text similarity, VLSI design

Note that there is a line of papers studying (bipartite) online

matching variants [13, 15, 17, 18, 33, 37, 40, 44]. This problem at-

tracted significant attention in the last decade because of its con-

nection to online auctions and the famous AdWords problem [39].

Despite similarity in names (e.g., the bipartite (static) b-matching

Technical Report, 2020, Vienna, Austria Marcin Bienkowski, David Fuchssteiner, Jan Marcinkowski, and Stefan Schmid

17k 35k 52k 70k 88k 105k 123k 140k 158k
Requests

0

2×106

4×106

6×106

8×106

Ro
ut

in
g

Co
st

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)
Static (b: 4)
Static (b: 8)
Static (b: 12)
Oblivious

17k 35k 52k 70k 88k 105k 123k 140k 158k
Requests

7×101

7.5×101

8×101

8.5×101

9×101

9.5×101

H
it

 R
at

io
 [

%
]

LRU BMA (b: 4, : 6)
LRU BMA (b: 8, : 6)
LRU BMA (b: 12, : 6)
Online BMA (b: 4, : 6)
Online BMA (b: 8, : 6)
Online BMA (b: 12, : 6)

Figure 3: Left: Microsoft ProjecToR: routing costs. Right: Microsoft ProjecToR: hit ratio.

variant was considered in [31]), this model is fundamentally dif-

ferent from ours. That is, it considers bipartite graphs in which

nodes and (weighted) edges appear in time and the algorithm has

to choose a subset of edges being a matching. In our scenario, the

(non-bipartite) graph is given a priori, and the algorithm has to

maintain a dynamic matching. One way of looking at our scenario

is to consider the case where edges weights can change over time

and the matching maintained by an algorithm needs to catch up

with such changes.

6 CONCLUSION

Motivated by emerging reconfigurable datacenter networks whose

topology can be dynamically optimized toward the workload, we

initiated the study of a fundamental problem, online b-matching.

In particular, we presented competitive online algorithms which

find an optimal trade-off between the benefits and costs of recon-

figuring the matching. While our main contribution concerns the

derived theoretical results (i.e., the competitive online algorithm

and the lower bound), we believe that our approach has several

interesting practical implications: in particular, our algorithm is

simple to implement, has a low runtime and, as we have shown,

performs fairly well also under different real-world workloads and

synthetic traffic traces.

Our work opens several interesting avenues for future research.

In particular, we have so far focused on deterministic algorithms,

and it would be interesting to explore randomized approaches; in

fact, our first investigations in this direction indicate that a similar

approach as the one presented in this paper may be challenging to

analyze in the randomized setting, due to the introduced dependen-

cies, and we conjecture that the problem is difficult. On the practical

side, it would be interesting to investigate specific reconfigurable

optical technologies as well as specific datacenter topologies (such

as Clos topologies) in more details, and tailor our algorithms and

develop distributed implementations for an optimal performance

in this case study.

REFERENCES

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis

of randomized paging algorithms. Theoretical Computer Science 234, 1–2 (2000),

203–218.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. In Proc. ACM SIGCOMM. 63–74.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-

center transport. ACM SIGCOMM Computer Communication Review 43, 4 (2013),

435–446.

[4] Richard P Anstee. 1987. A polynomial algorithm for b-matchings: an alternative

approach. Inform. Process. Lett. 24, 3 (1987), 153–157.

[5] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the

Complexity of Traffic Traces and Implications. In Proc. ACM SIGMETRICS.

[6] Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid. 2018. rDAN :

Toward robust demand-aware network designs. Inform. Process. Lett. 133 (2018),

5–9.

[7] Chen Avin, Kaushik Mondal, and Stefan Schmid. 2017. Demand-Aware Network

Designs of Bounded Degree. In Proc. Int. Symp. on Distributed Computing (DISC)

(LIPIcs), Vol. 91. 5:1–5:16.

[8] Chen Avin, KaushikMondal, and Stefan Schmid. 2018. Push-Down Trees: Optimal

Self-Adjusting Complete Trees. In arXiv.

[9] Chen Avin and Stefan Schmid. 2018. Toward demand-aware networking: a theory

for self-adjusting networks. ACM SIGCOMM Computer Communication Review

48, 5 (2018), 31–40.

[10] Navid Hamed Azimi, Zafar Ayyub Qazi, Himanshu Gupta, Vyas Sekar, Samir R.

Das, Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: a re-

configurable wireless data center fabric using free-space optics. In Proc. ACM

SIGCOMM. 319–330.

[11] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2010. Under-

standing data center traffic characteristics. ACM SIGCOMM Computer Communi-

cation Review 40, 1 (2010), 92–99.

[12] Davide Bilò, Luciano Gualà, and Guido Proietti. 2012. Improved approximabil-

ity and non-approximability results for graph diameter decreasing problems.

Theoretical Computer Science 417 (2012), 12–22.

[13] Benjamin Birnbaum and Claire Mathieu. 2008. On-line bipartite matching made

simple. SIGACT News 39, 1 (2008), 80–87.

[14] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive

Analysis. Cambridge University Press.

[15] Niv Buchbinder, Kamal Jain, and Joseph Naor. 2007. Online Primal-Dual Algo-

rithms for Maximizing Ad-Auctions Revenue. In Proc. 15th European Symp. on

Algorithms (ESA). 253–264.

[16] Erik D Demaine and Morteza Zadimoghaddam. 2010. Minimizing the diameter of

a network using shortcut edges. In Proc. Scandinavian Symposium and Workshops

on Algorithm Theory (SWAT). 420–431.

Online B-Matching Technical Report, 2020, Vienna, Austria

[17] Nikhil R. Devanur and Kamal Jain. 2012. Online matching with concave returns.

In Proc. 44th ACM Symp. on Theory of Computing (STOC). 137–144.

[18] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. 2013. Randomized

Primal-Dual analysis of RANKING for Online BiPartite Matching. In Proc. 24th

ACM-SIAM Symp. on Discrete Algorithms (SODA). 101–107.

[19] Leah Epstein, Csanád Imreh, Asaf Levin, and Judit Nagy-György. 2015. Online

File Caching with Rejection Penalties. Algorithmica 71, 2 (2015), 279–306.

[20] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali

Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular

data centers. In Proc. ACM SIGCOMM. 339–350.

[21] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,

and Neal E. Young. 1991. Competitive paging algorithms. Journal of Algorithms

12, 4 (1991), 685–699.

[22] Klaus-Tycho Foerster, Manya Ghobadi, and Stefan Schmid. 2018. Characteriz-

ing the algorithmic complexity of reconfigurable data center architectures. In

IEEE/ACM ANCS.

[23] Klaus-Tycho Foerster and Stefan Schmid. 2019. Survey of Reconfigurable Data

Center Networks: Enablers, Algorithms, Complexity. In SIGACT News.

[24] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel C. Kilper. 2016. ProjecToR: Agile Reconfigurable

Data Center Interconnect. In Proc. ACM SIGCOMM. 216–229.

[25] Andrew Gozzard, Max Ward, and Amitava Datta. 2018. Converting a network

into a small-world network: Fast algorithms for minimizing average path length

through link addition. Information Sciences 422 (2018), 282–289.

[26] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: a high performance,

server-centric network architecture for modular data centers. In Proc. ACM

SIGCOMM. 63–74.

[27] Sikder Huq and Sukumar Ghosh. 2017. Locally Self-Adjusting Skip Graphs. Proc.

IEEE 37th International Conference on Distributed Computing Systems (ICDCS)

(2017), 805–815.

[28] Su Jia, Xin Jin, Golnaz Ghasemiesfeh, Jiaxin Ding, and Jie Gao. 2017. Competitive

analysis for online scheduling in software-defined optical WAN. In INFOCOM.

1–9.

[29] Xin Jin, Yiran Li, Da Wei, Siming Li, Jie Gao, Lei Xu, Guangzhi Li, Wei Xu, and

Jennifer Rexford. 2016. Optimizing Bulk Transfers with Software-Defined Optical

WAN. In Proc. ACM SIGCOMM. 87–100.

[30] Christoforos Kachris and Ioannis Tomkos. 2012. A Survey on Optical Intercon-

nects for Data Centers. IEEE Communications Surveys and Tutorials 14, 4 (2012),

1021–1036.

[31] Bala Kalyanasundaram and Kirk R Pruhs. 2000. An optimal deterministic al-

gorithm for online b-matching. Theoretical Computer Science 233, 1-2 (2000),

319–325.

[32] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl. 2009. Flyways To De-

Congest Data Center Networks. In HotNets.

[33] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. 1990. An optimal

algorithm for on-line bipartite matching. In Proc. 22nd ACM Symp. on Theory of

Computing (STOC). 352–358.

[34] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.

2017. Beyond fat-trees without antennae, mirrors, and disco-balls. In Proc. ACM

SIGCOMM. 281–294.

[35] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.

Voelker, George Papen, Alex C. Snoeren, and George Porter. 2014. Circuit Switch-

ing Under the Radar with REACToR. In NSDI. 1–15.

[36] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas E. Anderson.

2013. F10: A Fault-Tolerant Engineered Network. In NSDI. 399–412.

[37] Mohammad Mahdian and Qiqi Yan. 2011. Online bipartite matching with random

arrivals: an approach based on strongly factor-revealing LPs. In Proc. 43rd ACM

Symp. on Theory of Computing (STOC). 597–606.

[38] Lyle A.McGeoch andDaniel D. Sleator. 1991. A Strongly Competitive Randomized

Paging Algorithm. Algorithmica 6, 6 (1991), 816–825.

[39] Aranyak Mehta. 2013. Online Matching and Ad Allocation. Foundations and

Trends in Theoretical Computer Science 8, 4 (2013), 265–368.

[40] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. 2007.

AdWords and generalized online matching. J. ACM 54, 5 (2007).

[41] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,

and George Porter. 2019. Expanding across time to deliver bandwidth efficiency

and low latency. arXiv preprint arXiv:1903.12307 (2019).

[42] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,

Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-complexity,

Optical Datacenter Network. In Proc. ACM SIGCOMM. 267–280.

[43] Adam Meyerson and Brian Tagiku. 2009. Minimizing average shortest path

distances via shortcut edge addition. In Proc. Int. Workshop on Approximation

Algorithms for Combinatorial Optimization (APPROX). 272–285.

[44] Joseph Naor and David Wajc. 2015. Near-Optimum Online Ad Allocation for

Targeted Advertising. In Proc. 16th ACM Conf. on Economics and Computation

(EC). 131–148.

[45] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. 2011. Suggesting

Ghost Edges for a Smaller World. In Proc. 20th ACM International Conference on

Information and Knowledge Management (CIKM). 2305–2308.

[46] Nikos Parotsidis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2015. Selecting

shortcuts for a smaller world. In Proc. SIAM International Conference on Data

Mining. 28–36.

[47] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker. 2002.

Topologically-Aware Overlay Construction and Server Selection. In INFOCOM.

1190–1199.

[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015.

Inside the social network’s (datacenter) network. In ACM SIGCOMM Computer

Communication Review, Vol. 45. 123–137.

[49] Christian Scheideler and Stefan Schmid. 2009. A Distributed and Oblivious Heap.

In ICALP (2) (Lecture Notes in Computer Science), Vol. 5556. 571–582.

[50] Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bern-

hard Haeupler, and Zvi Lotker. 2016. SplayNet: Towards Locally Self-Adjusting

Networks. IEEE/ACM Trans. Netw. 24, 3 (2016), 1421–1433.

[51] Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency.

Springer.

[52] Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. 2012.

Jellyfish: Networking Data Centers Randomly. In NSDI. 225–238.

[53] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update

and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[54] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath.

2016. Costly Circuits, Submodular Schedules and Approximate Carathéodory

Theorems. In SIGMETRICS. 75–88.

[55] Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen, and Jun

Zhu. 2018. Neural network meets DCN: Traffic-driven topology adaptation with

deep learning. Proceedings of the ACM on Measurement and Analysis of Computing

Systems 2, 2 (2018), 1–25.

[56] Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo, and Yongguang Zhang. 2009.

MDCube: a high performance network structure for modular data center inter-

connection. In CoNEXT. 25–36.

[57] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. A Survey on

Data Center Networking (DCN): Infrastructure and Operations. IEEE Communi-

cations Surveys and Tutorials 19, 1 (2017), 640–656.

[58] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,

Ben Y Zhao, and Haitao Zheng. 2012. Mirror mirror on the ceiling: Flexible

wireless links for data centers. ACM SIGCOMM Computer Communication Review

42, 4 (2012), 443–454.

	Abstract
	1 Introduction
	1.1 Motivation: Reconfigurable Datacenters
	1.2 Problem in a Nutshell
	1.3 Our Contributions
	1.4 Challenges, Technical Novelty, Scope
	1.5 Organization

	2 Algorithm BMA
	2.1 Algorithm Definition
	2.2 Maintaining Invariants
	2.3 Desaturation Events
	2.4 Competitive Ratio of Bma

	3 Lower Bound
	4 Simulations
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion
	References

