
Latte: Improving the Latency of
Transiently Consistent Network Update Schedules

Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

ABSTRACT
Emerging software-defined and programmable networking technolo-
gies enable more adaptive communication infrastructures. However,
leveraging these flexibilities and operating networks more adaptively
is challenging, as the underlying infrastructure remains a complex
distributed system that is a subject to delays, and as consistency
properties need to be preserved transiently, even during network
reconfiguration. Motivated by these challenges, we propose Latte,
an automated approach to minimize the latency of network update
schedules by avoiding unnecessary waiting times and exploiting con-
currency, while at the same time provably ensuring a wide range of
fundamental consistency properties like waypoint enforcement. To
enable automated reasoning about the performance and consistency
of software-defined networks during an update, we introduce the
model of timed-arc colored Petri nets: an extension of Petri nets
which allows us to account for time aspects in asynchronous net-
works, including characteristic timing behaviors, modeled as timed
and colored tokens. This novel formalism may be of independent
interest. Latte relies on an efficient translation of specific network
update problems into timed-arc colored Petri nets. We show that the
constructed nets can be analyzed efficiently via their unfolding into
existing timed-arc Petri nets. We integrate Latte into the state-of-the-
art model checking tool TAPAAL, and find that in many cases, we
are able to reduce the latency of network updates by 90% or more.

1 INTRODUCTION
Programmable and software-defined networks introduce great flexi-
bilities in how communication networks can be operated and opti-
mized over time. Especially, the possibility to quickly and program-
matically update configurations and routes, received much attention
over the last years [18]. Such reconfigurations can be used, e.g.,
to improve the performance of traffic engineering by dynamically
adjusting routes to the current demand and workload; other use cases
are related to an improved fault-tolerance, e.g., allowing for a fast
reaction to failures or supporting maintenance work [12].

However, while programmability is an enabler of more adap-
tive or even “self-driving” [16] communication networks, support-
ing such reconfigurations is highly non-trivial, for three reasons.
First, modern communication networks typically come with strin-
gent dependability guarantees, requiring consistency properties at
any time, i.e., transiently during reconfigurations. Second, although
software-defined networks provide a simple logically centralized
abstraction, the underlying network remains a complex distributed
system, where individual configuration updates are communicated
and realized asynchronously and may hence take effect at different
times. Third, updates should not only be implemented consistently
but also fast: a main promise of more adaptive networks. The major
Internet outage in Japan in 2017, which was due to an incorrect
routing table update [11], highlights the importance of transiently
correct reconfigurations more generally.

Existing consistent network update mechanisms in the literature
are often based on hand-crafted algorithms and either assume an
overly pessimistic model where the underlying network may be
arbitrarily asynchronous (e.g., [29, 31]), or an overly optimistic
model where updates can be timed precisely (e.g., [33, 44]). The
resulting update schedules are likely to be unnecessarily slow (in the
pessimistic model) or may be infeasible without specific hardware
(in the optimistic model). Yet another class of algorithms relies on
the modification of packet headers (e.g., to carry state information),
which however can introduce further overheads or incompatibilities
with existing protocols [38].

Our paper is motivated by the desire to automate the process
of designing consistent network update algorithms. In particular,
we believe that the future self-driving communication networks en-
visioned by the networking community require mechanisms that
provide formal correctness guarantees but also perform well, both in
theory (analytically) as well as in practice (in the “average case”).
We hence envision algorithms that automatically improve the latency
of network updates by removing unnecessary waiting times in up-
date schedules while accounting for possible differences in update
processing times: different packet types, such as VoIP, SSH, or VPN,
entail different forwarding times at switches [8], hence requiring
different waiting intervals; similarly, also the specific switch type
effects forwarding times.

We develop a fully automated approach to optimize the perfor-
mance of network update schedulers accounting for such possible
differences in the update time characteristics. In particular, we aim
to maximize update concurrency and minimize waiting times, while
ensuring transient consistency. Minimizing the update duration is
critical because the network may experience irregular behavior dur-
ing the update procedure. On the other hand, the computation of the
optimal update schedule is less time-critical as it occurs ahead of
time and does not influence the reliability of the network operation.
In our work, we support a wide range of per-packet consistency
properties such as:

• Waypoint enforcement: Each packet traverses a specific
waypoint (e.g., implementing a security-critical network func-
tion such as a firewall or intrusion detection system) during
the update. We also support the traversal of a sequence of
(ordered) waypoints as well as sets of (unordered) waypoints:
a relevant scenario in the context of service chaining [40].

• Loop freedom: A packet will never end up in a loop dur-
ing the update. We support both strong and weak loop-
freedom [28].

• Blacklist enforcement: A packet never traverses certain
blacklisted parts (see e.g. [21]) of the network.

• Blackhole freedom: A packet never encounters a black-
hole [31] where no forwarding is currently defined.

Our approach to synthesize such time-optimized and provably
correct update schedules relies on a novel application of automata

1

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

theory, and in particular Petri nets: a well-known formal frame-
work to model and reason about distributed and concurrent systems.
However, in order to account for timing aspects and in particular,
differences in update and processing times, we extend the traditional
Petri nets and introduce the notion of timed-arc colored Petri nets
(TACPN): Petri nets that account for timing issues and differences in
timing behaviors (encoded as colors). By encoding time in tokens,
TACPNs allow us to keep track of the time analytically.

We show that despite being more general and powerful, timed-
arc colored Petri nets can be analyzed efficiently, and we present a
reduction algorithm accordingly: we show how to unfold TACPNs
into timed-arc Petri nets without colors where efficient verifications
engines are already available [14]. The resulting solution can be
used to efficiently synthesize optimized update schedules, providing
correctness guarantees as well as significantly improved update
latency in practice.

1.1 Our Contributions
Our main contribution is Latte (Latency-aware transiently correct
updates), an automated optimization approach for the synthesis of
minimal delays between switch updates in order to ensure network
update schedules of minimal latency that provably maintain general
transient consistency properties. We achieve this by introducing a
novel notion of timed-arc colored Petri nets, for which we define
a formal syntax and semantics. Then we present an efficient ver-
ification algorithm by unfolding our timed-arc colored Petri nets
into existing timed-arc Petri nets, and prove that the two models are
timed bisimilar and hence preserve among others the consistency
(safety) properties of network updates. We integrate Latte into the
leading model checker TAPAAL [13] and report on our simulation
study based on real-world network topologies, which show that our
approach indeed results in significantly faster schedules.

As an independent contribution to the research community and to
ensure reproducibility, we make Latte publicly available as an open
source tool, including the integration of the modeling formalism into
the TAPAAL GUI in order to support the visualization and graphical
modelling of timed-arc colored Petri nets.

1.2 Organization
The remainder of this paper is organized as follows. We present a
formalization of the problem in Section 2 and introduce the notion of
the timed-arc colored Petri nets approach in Section 3. In Section 4,
we show how to efficiently solve the problem instances by reduction,
and report on our prototype and simulation results in Section 5.
After reviewing related work in Section 6, we conclude in Section 7.
Due to space limitation, some technical details are deferred to the
Appendix.

2 MODEL AND METRICS
In a nutshell, the network update problem asks for a schedule to
update a route from its initial path to an updated (final) path. The
routes are realized by the forwarding functions of switches (or syn-
onymously here: routers). The update schedule is implemented by
a (logically centralized) controller that communicates updates to
the switches. In particular, we are interested in update schemes that

do not require packet header rewriting. In order to improve perfor-
mance, updates are sent out by the controller in batches: due to the
asynchronous communication, the updates in one batch can take
effect in any order. Once the switches involved in a batch finish their
updates, the controller schedules the next batch of updates: either
immediately, or after a certain delay, as it may be required to ensure
consistency properties such as waypoint enforcement.

Ideally, in order to optimize update delays, the number of interac-
tions with the controller should be minimized and a single batch with
all updates scheduled at once. However, it is well-known that this
approach can yield various transient inconsistencies such as loops,
blackholes, or violations of waypoint enforcement policies [30, 31].
Accordingly, our goal is to automatically optimize the delays in
update schedules and to bundle as many updates to be issued con-
currently as possible, while guaranteeing consistency of the update.

More formally, we define the network update problem as a tuple
(S, 𝑆0, initial, final, 𝑋1 . . . 𝑋𝑘) where

• S is a finite set of switches,
• 𝑆0 ∈ S is an initial switch,
• initial : S ↩→ S is the initial partial forwarding function,
• final : S ↩→ S is the final partial forwarding function, and
• 𝑋1 . . . 𝑋𝑘 ⊆ (2S)∗ is a sequence of nonempty groups of

switches (batches) that are updated concurrently such that
the sets of switches 𝑋1, . . . , 𝑋𝑘 form a partitioning of the set
S, i.e. ∪𝑘

𝑖=1𝑋𝑖 = S and 𝑋𝑖 ∩ 𝑋 𝑗 = ∅ for all 𝑖 and 𝑗 where
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 .

A partial update 𝑋 ⊆ S is a subset of switches that are already
updated and respect the update sequence 𝑋1 . . . 𝑋𝑘 , meaning that
there exists a 𝑗 , 1 < 𝑗 ≤ 𝑘 , such that 𝑋 = ∪𝑗−1

𝑖=1𝑋𝑖 ∪𝑌 where 𝑌 ⊆ 𝑋 𝑗 .
The partial update hence models the effect of asynchrony where
only a subset of switches from the current batch have been updated
so far. Clearly, the empty set is a partial update (no switches are
updated yet) and the set of all switches is also a partial update (once
all switches are updated).

Any partial update 𝑋 defines the corresponding network trace
starting from the initial switch 𝑆0 as the maximal sequence of
switches 𝑆0𝑆1 . . . 𝑆𝑚 such that for every 𝑖, 0 ≤ 𝑖 < 𝑚, we have
either initial(𝑆𝑖) = 𝑆𝑖+1 for every 𝑆𝑖 ∉ 𝑋 , or final(𝑆𝑖) = 𝑆𝑖+1 for ev-
ery 𝑆𝑖 ∈ 𝑋 . By maximality we mean that if 𝑆𝑚 ∉ 𝑋 then initial(𝑆𝑚)
is undefined and if 𝑆𝑚 ∈ 𝑋 then final(𝑆𝑚) is undefined.

By Traces we denote the set of all network traces for all possible
partial updates. We can now ask several properties about the set
Traces such as:

• Waypoint enforcement. Given an end switch 𝑆end and a
waypoint switch 𝑆 , we want to guarantee that every trace
from Traces that starts in 𝑆0 and ends in 𝑆end contains also the
waypoint switch 𝑆 (or alternatively contains a subsequence of
a priory given ordered or unordered list of waypoint switches).

• Loop freedom. For strong loop-freedom, we require that any
switch appears at most once in any trace from Traces. In case
of weak loop-freedom, we demand this property only for
traces that end in an a priory selected end switch.

• Blacklist enforcement. Given a list of blacklisted switches,
we want to ensure that all traces from Traces never contain
any blacklisted switch.

2

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

𝑆0 𝑆1 𝑆2 𝑆3

Figure 1: Basic example of a network update problem

• Blackhole freedom. Given an end switch 𝑆end , we want to
guarantee that every trace from Traces always ends with the
switch 𝑆end .

Example 2.1. Let us formalize a basic network update problem
from the literature [28]: in this example we consider the network up-
date instance ({𝑆0, 𝑆1, 𝑆2, 𝑆3}, 𝑆0, initial, final, {𝑆1} · {𝑆0, 𝑆2} · {𝑆3})
where initial(𝑆0) = 𝑆1, initial(𝑆1) = 𝑆2, initial(𝑆2) = 𝑆3 and
final(𝑆0) = 𝑆2, final(𝑆1) = 𝑆3, final(𝑆2) = 𝑆1. The update prob-
lem is graphically depicted in Figure 1 where the solid lines cor-
respond to the initial forwarding function and the dashed lines to
the final function. The desired waypointing property is that each
packet that starts at 𝑆0 and leaves at 𝑆3 must visit the waypoint
𝑆1 (denoted by a filled circle in our figure). A possible partial up-
date is 𝑋 = {𝑆1, 𝑆2} which gives the network trace 𝑆0𝑆1𝑆3. An-
other partial update is 𝑋 = {𝑆0, 𝑆1} and the corresponding net-
work trace is 𝑆0𝑆2𝑆3. The set of all network traces can now be
constructed by enumerating all partial updates and realizing that
Traces = {𝑆0𝑆1𝑆2𝑆3, 𝑆0𝑆1𝑆3, 𝑆0𝑆2𝑆3, 𝑆0𝑆1𝑆3, 𝑆0𝑆2𝑆1𝑆3}. Clearly,
the waypoint enforcement property is violated: the set of traces
contains the sequence 𝑆0𝑆2𝑆3 that forwards a packet from 𝑆0 to 𝑆3
without visiting the waypoint 𝑆1.

Let us now consider that we want to perform a network update
according to the group of switches 𝑋1 . . . 𝑋𝑘 . In practical scenarios,
we first update all switches from the set 𝑋1 (without requiring any
specific order of updates) and then we wait for a sufficiently long
time before we start updating the switches from the group 𝑋2 (and
so on until all groups of switches are updated). Clearly, we must
guarantee that all switches from 𝑋1 finished their update before we
start updating switches from 𝑋2. This can be achieved by waiting for
the maximum update time of any switch from 𝑋1 plus the maximum
time a packet can travel in the network. After this delay, it is now
safe to update the switches from the group 𝑋2 and so on.

There exist different timing behaviors in software-defined net-
works which, if accounted for, may significantly improve the latency
of updates. However, the interaction between the timings of packet
forwarding and switch updates can be quite intricate, and hence, in
order to provide rigorous safety guarantees that enforce the absence
of certain undesirable traces during the network update, we need to
provide a formal framework accordingly. In particular, in the follow-
ing sections we provide a method for minimizing the latency of a
network update by using model checking techniques.

3 TIMED-ARC COLORED PETRI NETS
In order to automate the generation of fast network update schedules,
and in order to account for specific timing behavior (e.g., related to
packet processing or switch update time estimation), we suggest a
novel extension of the classic Petri nets model that is introduced in
this section.

Let us first introduce some preliminaries. The configuration (mark-
ing) of a Petri net [36] is generally determined by its tokens located
at places. In the timed-arc colored Petri net model that we introduce
in this section, tokens contain both the color information as well as
the timing information (their age taken from the domain of nonnega-
tive reals). We shall first define the P/T net and then add both color
and timining features. Let N0 be the set of natural numbers including
0 and let N∞0 be the set N0 together with the special infinity symbol
∞ such that 𝑛 < ∞ for any number 𝑛 ∈ N0.

A Petri net is a tuple 𝑁 = (𝑃,𝑇 ,𝑊 ,𝑊𝐼) where 𝑃 is a finite set
of places, 𝑇 is a finite set of transitions such that 𝑃 ∩ 𝑇 = ∅, 𝑊 :
(𝑃 × 𝑇) ∪ (𝑇 × 𝑃) → N0 is the weight function for the input arcs
from places to transitions and output arcs from transitions to places
and𝑊𝐼 : 𝑃 ×𝑇 → N∞0 is the inhibitor weight function that assigns
weights to inhibitor arcs from places to transitions.

A marking on a Petri net 𝑁 is a function 𝑀 : 𝑃 → N0 such
that 𝑀 (𝑝) denotes the number of tokens in the place 𝑝 ∈ 𝑃 . A
transition 𝑡 ∈ 𝑇 is enabled in a marking 𝑀 if𝑊 (𝑝, 𝑡) ≤ 𝑀 (𝑝) and
𝑊𝐼 (𝑝, 𝑡) > 𝑀 (𝑝) for all places 𝑝 ∈ 𝑃 . In other words, each input arc
must have enough tokens that can be consumed from the connected
place and all inhibitor arcs must be disabled. If a transition 𝑡 is
enabled in 𝑀 , it can fire and produce a marking 𝑀 ′ such that for all
places 𝑝 ∈ 𝑃 we have 𝑀 ′(𝑝) = 𝑀 (𝑝) −𝑊 (𝑝, 𝑡) +𝑊 (𝑡, 𝑝). We notice
that inhibitor arcs only influence the enabledness of a transition but
they do not participate in transition firing.

3.1 Color and Time Extension
We shall now describe the color and time extension of the basic Petri
net model that we use for modelling of network updates. We assume
a given (possibly infinite) set of colors 𝐶 such that every place 𝑝

in the net is assigned a finite subset of 𝐶 called the color type of 𝑝.
We also assume that with each place 𝑝 there is an associated age
invariant of the form 𝑐 ≤ 𝐼𝑐 , where 𝐼𝑐 ∈ N∞0 , for each color 𝑐 from
the color type of 𝑝.

A token in a timed-arc colored Petri net (TACPN) is then a triple
(𝑝, 𝑥, 𝑐) where 𝑝 is the location of the token, 𝑐 is a color from the
color type of 𝑝 and 𝑥 is the age of the token (initially all tokens are
of age 0) such that 𝑥 ≤ 𝐼𝑐 where 𝐼𝑐 is the upper bound of the age
invariant for the color 𝑐. A marking in TACPN is a multiset of tokens.
Transition enabledness in a given marking is now conditioned also
on the colors and ages of tokens in a marking, in addition to the
requirement on a number of tokens, as in the classical Petri net
model introduced above. We assume that each input arc from a place
𝑝 to a transition 𝑡 is annotated (for each color 𝑐 from the color type
of 𝑝) with the expressions 𝑐 → [𝑎, 𝑏] where [𝑎, 𝑏] is a time interval
such that 𝑎, 𝑏 ∈ N∞0 and 𝑎 ≤ 𝑏. The intuition is that the age of each
token of color 𝑐 that will be consumed during the transition firing
must belong to the interval [𝑎, 𝑏]. Moreover, every such input arc is
assigned an arc expression of the form 𝑛′1 (𝜏1) + . . . + 𝑛′

𝑘
(𝜏𝑘) where

𝑛1, . . . , 𝑛𝑘 ∈ N0 is the number of tokens of the color expressions
3

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

𝑝0

• ≤50

[Dot] #1

𝑝1

[PacketType]

∗ ≤25

𝑝2

[PacketType]

∗ ≤22

𝑝3

[Dot]

𝑝4

[Dot]

Enter Forward

Drop

External

Internal

1010

1′ (•)1′ (•)

1′ (•)1′ (•)
2′ (pck)2′ (pck) 1′ (pck)1′ (pck) 1′ (𝑝𝑐𝑘)1′ (𝑝𝑐𝑘)

1′ (𝑝𝑐𝑘)1′ (𝑝𝑐𝑘)

1′ (web)1′ (web)

1′ (•)1′ (•)

1′ (ssh) + 2′ (𝑣𝑝𝑛)1′ (ssh) + 2′ (𝑣𝑝𝑛)

3′ (•)3′ (•)

web → [10, 25]
∗ → [4, 6]

∗ → [25, 25]

ssh → [15, 22]
vpn → [18, 22]

web → [20, 22]

Color types:
Dot is {•}
PacketType is {ssh,web, vpn}

Variables:
pck of PacketType

Figure 2: Example of a Timed-Arc Colored Petri Net (TACPN)

𝜏1, . . . , 𝜏𝑘 to be consumed during the transition firing. For the purpose
of this paper, we assume that 𝜏𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , is either a concrete color
𝑐 or a variable that allows for a binding to any color from the color
type of 𝑝. Similarly, each output arc from a transition to a place is
also assigned an arc expression; however, output arcs do not contain
any time intervals as the age of newly produced tokens by transition
firing is reset to 0.

REMARK 1. In the general TACPN model we allow for more
complex color expressions that include also color products as well
as basic operations for color manipulation like e.g. color successor
and predecessor in case of cyclic color types. Moreover transitions
can contain guards that further restrict the transition firing. Similarly,
it is possible to preserve the age of tokens during transition firing by
means of transport arcs and to define urgent transitions that restrict
time delay whenever enabled. These features are not necessary
for modelling of the network updates and in order to simplify the
presentation, we do not define them in the present paper.

Example. Figure 2 shows a graphical representation of an TACPN
example. The net has five places 𝑝0, . . . , 𝑝4 denoted by circles and
each place has an associated color type in square parenthesis together
with the age invariants. For example the place 𝑝0 is of color type
Dot (classical Petri net token) and the age invariant says that a token
can reach age at most 50, after which the time cannot progress
anymore. Similarly, the color type of 𝑝1 is PacketType containing
three elements ssh, web and vpn. Each color element should have
defined its own age invariant, however, we abbreviate by the star
notation ∗ ≤ 25 the fact that all three colors share the same age
invariant. Places that do not have listed any age invariant, like 𝑝3
and 𝑝4, assume the default invariant ∗ ≤ ∞ that does not restrict the
possible time delays. Transitions in the net are denoted by rectangles
and represent events in the net (a packet entering a network, dropping
a packet, forwarding a packet to 𝑝2 and routing the packet: external
or internal traffic). Places and transitions are connected by arcs that
move tokens during transition firing. For example the transition
Enter will consume one token from 𝑝0, return the token back (while
resetting its age to 0) and producing two tokens with color type
PacketType into the place 𝑝1. Depending on the binding of the
variable pck to one of the three different colors in PacketType, the
two produced tokens can be of three different colors. Again, their age

is reset to 0. The input arc to the transition Enter does not contain any
interval, assuming the default interval [0,∞] that does not restrict
the age of the consumed token in any way. On the other hand, the arc
from 𝑝1 to Forward can only consume a token with color web of age
between 10 and 25 or with color ssh or vpn of age between 4 and 6
(here we again use the star notation). An arc can also consume more
than one token, like for example the arc from 𝑝2 to Internal that
requires one ssh token and two vpn tokens. The firing of Internal
consumes three such tokens of corresponding ages (ssh between 15
and 22 and vpn between 18 and 22) and produces three fresh tokens
of type Dot and with age 0. Finally, the arc with the circle-tip from
𝑝2 to Forward is an inhibitor arc of weight 10 which means that as
soon as the place 𝑝2 contains 10 or more tokens, it disables the firing
of the transition Forward.

We shall now define the behavior of TACPN that consists of a
nondeterministic choice between firing one of the currently enabled
transitions and a time delay where all tokens age by the same delay
(unless the delay is disabled by some age invariant). An example of
transition firings from the initial marking {(𝑝0, 0, •)} is shown below

{(𝑝0, 0, •)}
Enter−−−−→

{(𝑝0, 0, •), (𝑝1, 0,web), (𝑝1, 0,web)}
delay 20
−−−−−−−→

{(𝑝0, 20, •), (𝑝1, 20,web), (𝑝1, 20,web)}
Forward−−−−−−→

{(𝑝0, 20, •), (𝑝1, 20,web), (𝑝2, 0,web)}
delay 5
−−−−−−→

{(𝑝0, 25, •), (𝑝1, 25,web), (𝑝2, 5,web)}
Drop
−−−−→

{(𝑝0, 25, •), (𝑝2, 5,web)}
delay 16
−−−−−−−→

{(𝑝0, 41, •), (𝑝2, 21,web)}
External−−−−−−−→

{(𝑝0, 41, •), (𝑝3, 0, •)}
Enter−−−−→ . . .

where both when firing the transition Enter and Forward we use the
binding pck = web. We notice that once there is a token (𝑝1, 25,web)
in the net, the age invariant in place 𝑝1 disables the possibility of
time delay and transition firing becomes urgent (in our example we
decided to drop the token).

4

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

3.2 Tool Support for TACPN
The time-arc colored Petri nets underlying our consistent network
update framework need strong tool support in order to be applied
on real-world scenarios. For that purpose, we implemented and
integrated our model of TACPN in the GUI of the open source tool
TAPAAL [13]. This allows us to graphically draw the nets as well
as to answer reachability and CTL queries with atomic propositions
that consist of upper and lower bounds on the number of tokens
in different places of the net, and their Boolean combinations. We
also implemented unfolding of TACPN nets into plain timed-arc
Petri nets (where the only color type is Dot = {•}) by expanding
the number of places in order to model tokens of different colors.
The unfolding relies on the classical approach where color domains
are expanded into multiple places and we had to further extend this
unfolding technique to deal with the timing information and with
inhibitor arcs.

𝑝

B ≤ 8
∗ ≤ 10

(5,𝐺)

(2, 𝐵) (7, 𝐵)

𝑝′

∗ ≤10

(tt, 6)

𝑡

(𝑝, 𝑅)

≤10

(𝑝,𝐺)

≤10

5

(𝑝, 𝐵)

2 7

≤8

(𝑝, sum)

≤∞

0
0 0

(𝑝′,tt)

≤10

6

(𝑝′, ff)

≤10

(𝑝′, sum)

≤∞
0

(𝑡, 𝑏)

(2′ (𝑥) + 3′ (G))(2′ (𝑥) + 3′ (G))

4′ (ff)4′ (ff)

2 × [5, 9]2 × [5, 9]
3 × [4, 7]3 × [4, 7]

5 × [0,∞]5 × [0,∞]

44
44

unfold

R → [5, 9]
∗ → [4, 7]

for binding 𝑥 → R

Figure 3: Unfolding example

An example of the unfolding process is given in Figure 3 where
the color type of the place 𝑝 is {𝑅,𝐺, 𝐵} and it is unfolded into three
places (𝑝, 𝑅), (𝑝,𝐺) and (𝑝, 𝐵). The tokens of age and color (5,𝐺),
(2, 𝐵) and (7, 𝐵) are then placed in the corresponding unfolded places
while preserving their age. Similarly, the color type of the place 𝑝 ′

is {tt, ff }. The unfolding is given for the binding of the variable 𝑥

to the color 𝑅 and we also add a special place (𝑝, sum) where we
keep the accumulated number of tokens in the original place 𝑝 (for
the purpose of inhibitor arc tests). The resulting timed-arc Petri net
model can be proved to be timed bisimilar to the original net with
colors (for the full proof consult the appendix), hence preserving the
answers to (among others) reachability queries that we need for our
application. The unfolded net and query can then be verified using
existing verification engines of TAPAAL, both for the discrete [7] as
well as continuous [14] time.

4 TIME OPTIMAL SCHEDULE GENERATION
Given the concepts introduced above, we can now present our ap-
proach for generating fast update schedules, ensuring transient con-
sistency properties. In a nutshell, Latte translates a given network
update problem into a timed-arc colored Petri net in order to compute

how the delay between switch updates can be automatically mini-
mized, and updates batched, hence optimizing the overall network
update time. For ease of presentation, we demonstrate Latte on the
waypoint enforcement property in the following; at the end of this
section, we discuss how our approach can be generalized to other
types of safety properties.

4.1 Overview of Reduction to TACPN
Let us assume a given instance of a network update problem
(S, 𝑆0, initial, final, 𝑋1 . . . 𝑋𝑘). The input is automatically processed
by our translation algorithm that creates different types of net compo-
nents as well as a query for the verification. A conceptual overview
of the translation is displayed in Figure 4. The translation algorithm
works as follows.

1) We create time constraints based on packet input types and for
each packet type we create a color in the color type PckType.

2) We create the start and the end component representing the
start and end switches of the route.

3) For all switches, we create a separate switch component.
A special component is created for a waypoint switch that
remembers whether a packet passed through the switch.

4) For each switch we create an update component that uses a
timing interval for the duration of the update.

5) We create an initialization sequence for switch updates and
use the constants 𝐶1,𝐶2, . . . as the waiting delays before the
next switch update is initialized.

6) We create a TACPN query for verification and use the
bisection algorithm to minimize the constants 𝐶1,𝐶2, . . .
while still preserving the waypoint enforcement property.

The different components that we create share places. This is
denoted by the dotted circle around the place and the idea is that all
such shared places with the same name are merged together. We use
the colors to model the different timing behaviors of different packet
types, allowing us to use the timing information to calculate a safe
update delay given by the following expression:

slowest-switch-update+
#switches-on-the-route × slowest-hop

(1)

In this safe delay estimate we include the time for the slowest
switch update in order to make sure that all forwarding rules for all
switches from a given batch are fully updated before we proceed to
the next batch. But at the same time, we have to make sure that all
packets that can still be in transit (and could potentially use some of
the old forwarding rules), left the network. The second part hence
approximates the latency of the routing path by multiplying the
number of switches involved in the routing with the slowest packet
forwarding time.

4.2 Examples of Switch and Next-Hop Timing
While our formalization and approach is more general, in the follow-
ing, we will discuss some specific examples of packet and switch
update times. These examples will also serve us as case studies in
the evaluation.
Packet processing time. Different types of packets can occur with
different processing times. For example, the resulting latency can be

5

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

Network topology

Packet type

Initial & final configuration

Switch update sequence

Switch update time

Translation al-
gorithm

TACPN components

Verification
XML query

Start network
Switch
Waypoint
Update switch
Update sequence
End network
Constants 𝐶1,𝐶2, . . .

Update constants
𝐶1,𝐶2, . . .

TAPAAL
Minimal constants𝐶1,𝐶2, . . .

Figure 4: Overview of the translation algorithm

Packet type Size [Byte] Latency [𝜇𝑠 ± 0.5] Interval[𝜇𝑠]
VoIP [3] 218 2.2 [1, 3]
SSH [2] 312 2.1 [1, 3]

VPN [41] 1300 3.2 [2, 4]
Table 1: Network packet types and next-hop latency

Algorithm Min [ms] Max [ms] Interval[𝜇𝑠]
Optimal 0 2.5 [0, 250000]

Batch-ready 0.2 2.5 [20000, 250000]
No scheduler 0.5 2.5 [50000, 250000]
Table 2: Switch update times in FatTree topology

a function of packet size, as shown by Bauer et al. [8]: the authors
find that the latency for, e.g., a Pica8 P3297 switch [1] can vary by
0.5 𝜇𝑠 (difference between an upper and lower bound, see Figure 3
in [8]). In Table 1, we summarize the latency for some typical packet
types on Pica8 P3297 switch and show the latency interval that we
use in our experiments.
Switch update time estimation. The cumulative time for the switch
update (installation of a new set of forwarding rules) can also dif-
fer significantly depending on the hardware and the scheduler that
performs the update. For example, in Figure 5 from [35], the au-
thors show the cumulative distribution function of flow installation
for 1000 flows on a FatTree topology. In Table 2 we show the up-
date completion times for the different scheduling algorithms when
installing a batch of new forwarding rules and approximate them
by intervals. As an example, we use the timing interval with no
scheduler in our translation and experiments.

4.3 Translation Algorithm
We can now proceed to define the net components that are created
during the translation of a network update instance to a correspond-
ing TACPN.

Figure 5a creates an initial component that at any moment allows
to inject a packet into the network by firing the transition T0. De-
pending on the binding of the variable pck to either VPN, SSH or

VoIP, three different types of packets can be created and placed into
the place S0 that corresponds to activation of the initial switch 𝑆0.
The place S0 is a shared place, meaning that it is the same place as
the initial place for the component corresponding to the switch 𝑆0
from Figure 5c.

Figure 5b shows a component representing the update of a given
switch. One such component is created for each switch 𝑆 . The up-
date for the switch 𝑆 is initialized by placing a token to the place
StartUpdateS and the duration of the update is determined by the
update interval from Table 2 on the input arc to T1 and it is enforced
by the invariant ∗ ≤ Max. Once T1 is fired, it removes the token
from SInitialEnf and creates a token in SFinalEnf . These are shared
places that are used in the switch component to determine whether
the forwarding should be done according to the function initial (in
case the token is in SInitialEnf) or to the function final (in case the
token is moved to SFinalEnf).

Figure 5c is a component that executes the packet forwarding of
a given switch 𝑆 . Once a packet arrives to the shared place S, it is
forwarded either to the place SInitial assuming that there is a token in
SInitialEnf and initial(𝑆) = 𝑆Initial , or to the place SFinal in case that
the token is in SInitialEnf and final(𝑆) = 𝑆Final . The duration of such
packet forwarding is determined by its color (packet type) and the
associated forwarding interval from Table 1, while the age invariants
ensure that a packet cannot stay at a switch for more than the upper
bound of the forwarding interval.

Figure 5d models the execution of an update sequence of the
network according to the switch update groups 𝑋1, . . . , 𝑋𝑘 . We as-
sume that the ordering of the switches 𝑆1, . . . , 𝑆𝑛 respects this update
sequence such that the switches from the group 𝑋𝑖 always come
before the switches from the group 𝑋𝑖+1. The update sequence can
start at any time by firing the transition T1, which initiates the up-
date of the switch 𝑆1 by placing a token to the place StartUpdateS1.
At the same time a token of age 0 is placed into the place Step1
ensuring that the update of the switch 𝑆2 starts exactly after 𝐶1 units
of time. The remaining switch updates are chained in a similar way
such that the constants 𝐶1, . . . ,𝐶𝑛−1 determine the respective delays
between switch updates are initiated. The constants that separate
switch updates from the same update group will be set to 0, meaning
that all such updates are started at the same time. Switch updates

6

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

StartNetwork

[dot] •

S0

[pckType]

T0
1′ (pck)

1′ (dot)
∗ → [0,∞)

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

Color types:
pckType is {VPN , SSH ,VoIP }
dot is {•}

Variables:
pck is pckType

Constants:
vpnMax = 3, sshMax = 1, voipMax = 3

(a) Packet injection

StartUpdateS

[dot]

SFinalEnf

[dot]

SInitialEnf

[dot]•T

1′ (•)

1′ (•)
∗ → [Min,Max]

1′ (•)
∗ → [0,∞)

∗ ≤ Max

Constants:
Min = 50000
Max = 250000

(b) Update of a switch 𝑆

S

[pckType]

Sinitial

[pckType]

SInitialEnf

[dot]•

SFinalEnf

[dot]

Sfinal

[pckType]

T0

T1

1′ (•)1′ (•)

1′ (pck)

1′ (•) 1′ (•)

1′ (pck)

1′ (pck)
VPN → [vpnMin, vpnMax]
SSH → [sshMin, sshMax]

VoIP → [voipMin, voipMax]

1′ (pck)
VPN → [vpnMin, vpnMax]
SSH → [sshMin, sshMax]

VoIP → [voipMin, voipMax]

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

Constants:
vpnMin = 2
sshMin = 4
voipMin = 1
vpnMax = 3
sshMax = 1
voipMax = 3

(c) Component for switch 𝑆

StartUpdateSequence

[dot]
∗ ≤ ∞

•

Step1

[dot]
∗ ≤ 𝐶1

Step2

[dot]
∗ ≤ 𝐶2

Stepn−1

[dot]
∗ ≤ 𝐶𝑛−1

StartUpdateS2

[dot]
∗ ≤ Max

StartUpdateS1

[dot]
∗ ≤ Max

StartUpdateSn

[dot]
∗ ≤ Max

EndUpdate

[dot]
∗ ≤ ∞T1 T2 Tn

1′ (•) 1′ (•) 1′ (•)

1′ (•)

1′ (•)

1′ (•) 1′ (•)
1′ (•)

∗ → [C1,C1]
1′ (•)

∗ → [C2 ,C2]
1′ (•)

∗ → [Cn−1,Cn−1]
· · ·

Constants:
Max = 250000

(d) Initialization of update sequence for switches 𝑆1, 𝑆2 , · · · , 𝑆𝑛

Figure 5: Translation of update synthesis into TACPN

from different update groups must be separated by a delay that is
sufficiently long in order to guarantee that all previous switch up-
dates finished and there is no packet in the network that followed
some of the outdated forwarding rules—the delays are initially set
according to Equation 1.

Figure 6a shows a waypoint component for a switch 𝑆 . The
forwarding part of a waypoint switch is the same as for ordinary
switches; however, it is prefixed with firing either the transition T4
or T0. The purpose is to place a token to a place WaypointVisited
the first time the switch is used. This is enforced by the fact that T4
is disabled as long as WaypointVisited has no tokens. On the other
hand, once it contains a token, the transition T0 is now disabled

because of the inhibitor arc and we have to necessarily fire T4 that
keeps the token in WaypointVisited. This construction ensures that
our Petri net remains bounded even in case of cyclic behavior.

The general switch component can be simplified in case that both
the initial and final function return the same next-hop switch, as
shown in Figure 6b. Finally, in Figure 6c we add the component
for ending the packet forwarding once the last switch SwitchEnd
in the network routing is reached. Due to the invariant ∗ ≤ 0 we
enforce that the firing of the transition T0 is urgent and the place
EndNetwork gets marked without any time delay.

The general construction of the TACPN net that models the be-
havior of a network update problem is now finished. Once the update

7

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

S

[pckType] WaypointVisited [dot]

S′

[pckType]

Sinitial

[pckType]

SInitialEnf

[dot]•

SFinalEnf

[dot]

Sfinal

[pckType]

T0

T4

T1

T2

1′ (•)1

1′ (•) 1′ (•)
1′ (pck)

1′ (•) 1′ (•)

1′ (pck)

1′ (•)1′ (•)

1′ (pck)
∗ → [0,∞)

1′ (pck)
∗ → [0,∞) 1′ (pck)

1′ (pck)

1′ (pck)
VPN → [vpnMin, vpnMax]
SSH → [sshMin, sshMax]

VoIP → [voipMin, voipMax]

1′ (pck)
VPN → [vpnMin, vpnMax]
SSH → [sshMin, sshMax]

VoIP → [voipMin, voipMax]

∗ ≤ 0

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

VPN ≤ vpnMax
SSH ≤ sshMax
VoIP ≤ voipMax

Constants:
vpnMin = 2, sshMin = 4, voipMin = 1, vpnMax = 3, sshMax = 1, voipMax = 3

(a) Component for a waypoint switch 𝑆

S

[pckType]

S

[pckType]

T0
1′ (pck)

1′ (pck)
∗ → [0,∞)

VPN ≤ 𝑣𝑝𝑛𝑀𝑎𝑥

SSH ≤ sshMax
VoIP ≤ voipMax

VPN ≤ 𝑣𝑝𝑛𝑀𝑎𝑥

SSH ≤ sshMax
VoIP ≤ voipMax

(b) Component for a switch S with no updates

SwitchEnd

[pckType]

EndNetwork

[dot]

T0
1′ (•)

1′ (pck)
∗ → [0,∞)

∗ ≤ 0

(c) Component for finished packet forwarding

Figure 6: Continuation of update synthesis reduction

sequence is initiated, the switches are then updated with the de-
lays determined by the constants 𝐶1, . . . ,𝐶𝑛−1. At any moment a
packet (token) can be injected into the network and we execute
a network trace according to the current status of switch updates.
Once a waypoint is visited, we record this by placing a token into
WaypointVisited and we must guarantee that this place is marked
before the packet reaches the end switch and the routing is termi-
nated by placing a token into the place EndNetwork. Hence the
waypoint enforcement is expressed by the following reachability
query

AG (EndNetwork = 0 ∨ WaypointVisited ≥ 1)

claiming that during any execution of the net either the place
EndNetwork is still not marked (contains 0 tokens) or if this is
not the case then the place WaypointVisited must contain at least
one token.

Such a query can be automatically verified using our prototype
implementation in the tool TAPAAL [13] that loads the network
topology with forwarding tables and an update sequence and auto-
matically generates the corresponding timed-arc colored Petri net on
which it verifies the above mentioned query.

4.4 Minimization of Delay Points
In case the waypoint enforcement is satisfied, we are interested in
minimizing the delays given by the constants 𝐶1, . . . ,𝐶𝑛−1, without
breaking the waypointing property. We achieve this by sequentially

minimizing the constants (using the bisection method) until we find
the minimal constants that still satisfy waypoint enforcement. In
order to speedup the identification of updates that can be performed
concurrently, we start the bisection method by first setting each con-
stant to 0. As it is often the case that a large degree of concurrency
is possible during the updates, the bisection method hence becomes
computationally cheap as it only needs to perform the repeated bi-
section between the switch updates where a delay is necessary for
preserving the waypointing (typically less than two of such delay
points are necessary). As we demonstrate by the experiments in the
next section, this method scales even for larger update sequences
and allows us to significantly reduce the total update time on sev-
eral realistic network topologies. We conjecture that the sequential
optimization of the delays in our application actually produces the
shortest possible update sequence, however, the formal proof of this
claim is beyond the scope of this paper.

4.5 Other Consistency Properties
For the sake of presentation, we formally described the translation
to TACPN for the waypoint enforcement property. However, other
consistency properties can be easily verified by small modifications
of the translation.

• In order to optimize the update delays that preserve loop
freedom, we use for each switch the component for way-
point switch as given in Figure 6a where the weight of the

8

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

Figure 7: Screenshot from Latte Plugin for TAPAAL

inhibitor arc is 2 and the weights of the arcs connecting the
WaypointVisited place with T4 have weight 2 as well. To
verify strong loop freedom, we now ask the AG query (for
all reachable markings) requiring invariantly that the place
WaypointVisited for each switch 𝑆 in the network contains
at most one token. In order to verify weak loop freedom, we
require this property to hold only for execution traces that
include also the end switch.

• For blacklist enforcement, we simply put a token to a newly
created place each time a blacklist switch is visited and we
verify that invariantly this place contains no tokens.

• Blackhole freedom can be also verified by marking a newly
created place whenever a switch with undefined next-hop is
traversed and asking a query that makes sure that this place is
invariantly empty.

In practical applications, we are often interested in the combina-
tion of a number of consistency properties that should be invariantly
preserved in conjunction during the network update. As the consis-
tency properties can be, as argued above, expressed by the formulae
AG𝜑1, . . . ,AG𝜑𝑛 that invarianly postutale that the corresponding
properties 𝜑1, . . . , 𝜑𝑛 hold at any moment during the network update,
we can easily verify also the conjunction of these properties as the
formula AG(𝜑1 ∧ . . . ∧ 𝜑𝑛). The advantage is that there is only a
slight overhead when more properties are checked at the same time,
as we are exploring the state space of the Petri net only once, while
verifying all properties during this single search.

5 EVALUATION
In order to evaluate the performance achievable with our approach
and compare it to the state-of-the-art, we implemented a prototype
of Latte. In the following, we present our empirical results and
discuss our findings in a variety of network update instances.

5.1 Prototype and Experimental Setup
The novel model of TACPN defined earlier is fully integrated as
a plugin into the leading model checking tool TAPAAL (also in
the GUI) and we provide an efficient C++ implementation of the
unfolding algorithm for verification of TACPN. Our tool is now part
of the TAPAAL model checking suite and available as a beta-release
at http://tapaal.net/download/ in "Other Downloads", together with
an archive including all experiments needed to reproduce the results
presented in this section. The workflow of verifying network updates
is fully automated and depicted in the screenshots in Figure 7. First,
the user calls the Latte plugin in Tools menu, enters the paths to the
network topology file and update sequence file and the tool auto-
matically parses these files and produces the TACPN components.
Then it opens a dialog where the user can specify the packet types
together with their sizes in bytes the analysis should consider. The
verification is then initialized by executing "Run analysis".

In our evaluation, we use network topologies from the Topology
Zoo [26]. The initial and final configurations of the network as well
as the update sequence are generated by the tool NetSynth [32]. The
tool takes a network topology and creates one or more source and
destination pairs in the given topology. It also creates an initial and fi-
nal configuration and an update sequence that guarantees consistency.
In our evaluation, we focus on waypoint enforcement as a case study.
The update sequence generated by NetSynth contains the symbol
that requires a sufficiently long delay before the next switch gets
updated. NetSynth does not identify updates that can be performed
concurently, assuming that a safe delay point is inserted between
any switch updates. As explained earlier, our task is to minimize
these delays while still preserving the waypointing property. The
sizes of network topologies range from tens to a hundred of switches
(with the average network size of about 35 switches), however, we
do not report these sizes in the results as our verification algorithm
is only marginally dependant on the topology size. We instead report
as the scaling parameter the length of the update route as this is the
parameter that has the main influence on the performance of our
method.

The experiments are run on a 64-bit Ubuntu 18.04 laptop with 16
GB RAM and Intel Core i7-7700HQ CPU @ 2.80GHz x 8 with a
10 minute timeout.

5.2 Results
We are primarily interested in two metrics in our evaluation: the
runtime of our algorithm and the latency of the generated update
schedules. Our results are summarized in Table 3. The size of each
instance here is scaled by the route length, which is the sum of the
lengths of the packet routing before and after the update. Verification
time shows the total time needed to find the optimal delay constants
that separate switch updates. The default update time is computed by
replacing each delay symbol # produced by NetSynth with the safe
delay constant as computed by Equation 1. The optimized update
time is the sum of all delay constants computed by our algorithm as
described in Section 4.4.

We can see that within the 10 minute timeout, we are able to
compute the optimal update times for route lengths up to 16: over
90% improvement compared to the default update times. For the last
three instances our algorithm times out, meaning that the bisection

9

http://tapaal.net/download/

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

Network Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement [%]
TLex 4 0.74 3.58 0.25 92.30%

HiberniaIreland 5 1.02 6.05 0.28 95.50%
Harnet 6 1.42 9.08 0.28 96.97%

UniC 7 1.49 12.65 0.28 97.83%
Oxford 8 2.02 16.78 0.28 98.36%

Xeex 10 5.86 26.68 0.28 98.97%
Sunet 11 10.23 32.45 0.28 99.15%

SwitchL3 12 18.88 38.78 0.28 99.29%
Psinet 14 89.67 53.01 0.28 99.48%
Uunet 15 211.86 61.05 0.28 99.55%

Renater2010 16 480.52 69.58 0.28 99.60%
Missouri 25 timeout 171.05 67.10 60.77%
Syringa 35 timeout 336.05 295.35 12.11%

VtlWavenet2011 35 timeout 336.06 295.35 12.11%
Table 3: Experiments with update sequences generated by NetSynth

algorithm did not manage to find the optimal constants, however,
still achieving an improvement in the total update time. The reason
for the timeout is that the update sequences produced by NetSynth
actually allow to run all updates concurrently, meaning that all delay
constants can be set to 0. This creates a large number of switches
that update concurrently and we have to consider all (exponentially
many) interleavings of the updates in order to guarantee the waypoint
enforcement. On the other hand, as the tool NetSynth produces
disjoint update sequences, the fact that all updates can be concurrent
can be determined by exact static methods without the need of
running the actual verification. In the future work we will explore
the possibility of combining our method with static analysis in order
to further improve the performance in case of a large number of
concurrent updates.

We also explore (manually created) update sequences where a
concurrent update of all switches is not safe and some minimum
delays are necessary in order to guarantee waypointing. The results
are summarized in Table 4. We can observe the optimal update times
decrease but are still over 90% more efficient compared to the default
update times. Moreover, the concurrency is reduced significantly and
this is reflected by the improved verification times. The networks
like Missouri that has 67 switches and update sequence of length
10 can still be verified in a matter of seconds, due to the reduced
concurrency in the update batches.

In summary, we find that the proposed method of optimizing
the network update time while preserving waypoint enforcement
is feasible for a standard benchmark of network topologies and for
up to 16 concurrent switch updates. Even in the situations where
the state space explodes for a higher number of concurrent updates,
we are still able to reduce the total update time while preserving
consistency properties. We would like to emphasize that the critical
factor here is the actual optimized update time for the whole network,
which we often reduce below one second. The actual verification
time that computes the optimized update sequence ranges from
seconds to several minutes, however, as this is a pre-computation
performed offline, it is less critical and does not influence the network
performance: during the precomputation the network is stable as it
is still forwarding using the previously loaded configurations.

6 RELATED WORK
Motivated by the advent of software-defined and hence more adap-
tive communication networks, the consistent network update prob-
lem has received much attention over the last years, see the recent
survey [18] on the topic. The seminal work by Reitblatt et al. [38],
and many followup works (e.g., [9, 10, 19, 23, 24, 27, 34]), rely on
packet versions, ensuring a strong per-packet consistency. Mahajan
and Wattenhofer [31] initiated the study of fast network update al-
gorithms which do not require packet header rewriting, but which
rather update switches in batches to ensure basic consistency prop-
erties. Their approach has been refined in several followup works,
which presented various more efficient scheduling algorithms for
different properties, including loop-freedom [20, 29], waypoint en-
forcement [28, 30], and beyond [5, 15]. These approaches have in
common that they rely on clever algorithms developed for the spe-
cific problem. In contrast, we consider a more automated formal
method approach to optimize update schedules, with a main focus
on the timing aspects. In this regard, our paper is close in spirit
to the work by McClurg et al. [32] who consider the synthesis of
update schedules. Their work is on the synthesis of consistent net-
work updates and they introduce the command wait that represents
a delay that guarantees a safe flush of all packets that might follow
the outdated forwarding rules. The authors suggest a conservative
computation of such a delay based on the maximum hop count (sim-
ilarly as in our Equation 1), however, contrary to the main focus of
our work, they do not further study any optimization of such delays.

Existing work can be further classified regarding the assumptions
made regarding the synchronization model. While all approaches
above revolve around solutions for asynchronous communication net-
works where updates can take arbitrary time, there is also interesting
work on technologies that assume exact time updates in software-
defined networks [33, 44]. Our work is positioned in-between: we
exploit specific timing behaviors with uncertainty (represented by
time intervals) in order to reduce the update schedule while provid-
ing guarantees on consistency of the update. To this end, we do not
only avoid unnecessary waiting times but also support concurrent
updates whenever safe.

We are not the first to consider the application of Petri nets in the
context of software-defined networking: [39] presents a model which

10

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

Name Route length Verification time[s] Default update time [s] Optimized update time [s] Improvement [%]
HiberniaIreland 6 4.37 4.68 0.45 90.70%

Oxford 12 4.71 7.99 0.45 94.42%
SwitchL3 8 4.67 5.78 0.47 91.95%

Psinet 16 4.67 10.18 0.45 95.63%
Renater2010 7 4.23 5.23 0.45 91.48%

Missouri 10 5.14 6.88 0.45 93.53%
Ans 13 5.73 8.52 0.43 94.90%
Bics 13 6.20 12.65 0.44 96.56%

Globalcenter 14 7.63 17.88 0.45 97.51%
Geant2009 13 11.72 16.78 0.45 97.35%

Table 4: Experiments with update sequences that require nonzero delays

allows for performance prediction using queuing Petri nets, [6] stud-
ies fault-tolerant aspects, and [43] security aspects. These works
hence have a different focus. To the best of our knowledge, the
only work considering Petri nets for network updates is the parallel
work by Finkbeiner [17]. However, while their approach relies on
a powerful logic, it is different from ours in that it focuses on an
asynchronous model, and does not account for timing aspects. Fur-
thermore, the approach also supports the testing of update schedules,
not the synthesis of improved schedules. Conceptually, the paper
is also different from us in that it relies on classic Petri net theory,
while for our use case, we had to develop a novel extension of the
Petri net.

Around the same time as the work by McClurg et al. [32], Zhou
et al. [45] presented a customizable approach to provide consistency
properties in software-defined networks. The authors develop an
uncertainty network model and apply a greedy algorithm that for
each arriving update rule verifies if it can possibly break the consis-
tency of the network: if this is not the case then the update is applied
immediately, otherwise the rule is put on hold and processed at some
later time after some predefined delay. The unresolved updates are
usually handled using some fallback mechanism (like two-phase
update) and the experiments document a considerable speed up (up
to three times) in the duration of network update. Our work, on the
other hand, provides an exact (provably optimal) solution of mini-
mum switch update delays for a given update sequence and models
a high timing precision both for the switch updates as well as packet
transmission. We are not aware of other tools that allow to compute
the exact minimum delays between switch updates.

Finally, it remains to point out that there exists much work on
other notions of Petri nets accounting for time, most notably timed
Petri nets [37, 46]. However in these nets, timing is fixed to tran-
sitions, while in our proposed timed-arc colored Petri nets, timing
is related to tokens, which enables us to keep track of time for all
(dynamically created) tokens in the net. As a result, the modelling
capabilities of the two models are incomparable and in particular the
timed Petri net model does not allow us to keep track of the ages of
tokens (representing packets in our application)—a feature that is
essential for modelling of network updates. The most related model
of interval timed colored nets [42] associates, similarly to our model,
tokens with both time and color infomation. However, the model
uses an eager semantics that introduces priorities among transition
firings (transitions with smallest enabling times fire first) whereas
our model uses relative timing and allows for multiple enabledness

of transitions that is essential for our application domain. We are
not aware of any other work on Petri nets that combine both timing
associated to tokens where arcs contain timing intervals restricting
the ages of tokens they can consume (a feature essential for modeling
of network updates) together with colored information (that allows
us to account for multiple variants of packets in the network at the
same time). We believe that our Petri net model of TACPN is of
independent interest because other existing extensions of Petri nets
with time and color relay on radically different semantics.

7 CONCLUSION
Motivated by the emerging more adaptive communication networks,
we presented an automated approach to improve and speed up net-
work update schedules, while ensuring rigorous transient correctness
guarantees for a wide range of properties. Our approach relies on
formal methods and in particular, a novel generalization of Petri nets
which supports reasoning about different timing behaviors. We in-
troduced an efficient algorithm to construct and solve our timed-arc
colored Petri nets, presented an implementation in a state-of-the-
art model checking tool, and reported on experimental results. For
network topologies with up to 16 concurrent swich updates, we
were able to reduce the network update time from about a minute
to a fraction of a second and hence to significantly reduce the time
of possible routing irregularities during the network update. The
computation time needed to achieve this gain ranges from seconds
to minutes, which is very reasonable given the high complexity of
the task. Moreover, the network routing is not affected during the
computation of the update delays, and hence it is only the network
update duration that is critical for the network performance.

We understand our work as a first step and believe that it opens
several interesting directions for future research. In particular, it
will be interesting to generalize the synthesis algorithm further,
supporting the synthesis of arbitrary update schedules from scratch.
It will also be interesting to explore the use of our developed timed-
arc colored Petri nets in other application domains as well: we
believe that TACPN may be of independent interest and of use
in other contexts where different timing behaviors occur, e.g., in
transportation systems. In order to facilitate future research and
ensure reproducibility, we share our implementation as part of the
open source tool TAPAAL.

11

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

REFERENCES
[1] Pica8 p3297, 2014. - Data sheet. https://www.pica8.com/wp-

content/uploads/pica8-datasheet-48x1gbe-p3297.pdf (2014).
[2] Trisul network analytics, 2017. https://www.trisul.org/blog/analysing-

ssh/post.html.
[3] Dev io, 2018. https://dev.to/onmyway133/how-to-calculate-packet-size-in-voip–

54ac.
[4] L. Aceto, A. Ingolfsdottir, K.G. Larsen, and J. Srba. Reactive Systems: Modelling,

Specification and Verification. Cambridge University Press, 2007.
[5] Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wieder-

recht. Congestion-free rerouting of flows on dags. In 45th International Collo-
quium on Automata, Languages, and Programming (ICALP). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[6] Wael Hosny Fouad Aly and Yehia Kotb. Towards sdn fault tolerance using Petri-
nets. In 2018 28th International Telecommunication Networks and Applications
Conference (ITNAC), pages 1–3. IEEE, 2018.

[7] M. Andersen, H.G. Larsen, J. Srba, M.G. Sørensen, and J.H. Taankvist. Veri-
fication of liveness properties on closed timed-arc Petri nets. In Proceedings
of the 8th Annual Doctoral Workshop on Mathematical and Engineering Meth-
ods in Computer Science (MEMICS’12), volume 7721 of LNCS, pages 69–81.
Springer-Verlag, 2013.

[8] Simon Bauer, Daniel Raumer, Paul Emmerich, and Georg Carle. Behind the scenes:
what device benchmarks can tell us. In Proceedings of the Applied Networking
Research Workshop, pages 58–65. ACM, 2018.

[9] Sebastian Brandt, Klaus-Tycho Förster, and Roger Wattenhofer. On consistent
migration of flows in sdns. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9. IEEE, 2016.

[10] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A distributed
and robust sdn control plane for transactional network updates. In 2015 IEEE
conference on computer communications (INFOCOM), pages 190–198. IEEE,
2015.

[11] Richard Chirgwin. Google routing blunder sent japan’s internet dark on fri-
day. In https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_
japans_internet_dark/ , 2017.

[12] David Clark, Jennifer Rexford, and Amin Vahdat. A purpose-built global network:
Google’s move to sdn. Communications of the ACM, 2016.

[13] A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba.
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In
Proc. 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 492–497, 2012.

[14] A. David, L. Jacobsen, M. Jacobsen, and J. Srba. A forward reachability algo-
rithm for bounded timed-arc Petri nets. In Proceedings of the 7th International
Conference on Systems Software Verification (SSV’12), volume 102 of EPTCS,
pages 125–140. Open Publishing Association, 2012.

[15] Szymon Dudycz, Arne Ludwig, and Stefan Schmid. Can’t touch this: Consistent
network updates for multiple policies. In 2016 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pages 133–143.
IEEE, 2016.

[16] Nick Feamster and Jennifer Rexford. Why (and how) networks should run them-
selves. arXiv preprint arXiv:1710.11583, 2017.

[17] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Rüdiger
Olderog. Model checking data flows in concurrent network updates (full version).
arXiv preprint arXiv:1907.11061, 2019.

[18] K. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent software-defined
network updates. IEEE Communications Surveys Tutorials, 21(2):1435–1461,
2019.

[19] Klaus-Tycho Foerster. On the consistent migration of unsplittable flows: Upper
and lower complexity bounds. In 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA), pages 1–4. IEEE, 2017.

[20] Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer.
Local checkability, no strings attached:(a) cyclicity, reachability, loop free updates
in sdns. Theoretical Computer Science, 709:48–63, 2018.

[21] Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid,
Jiri Srba, and Marc Tom Thorgersen. P-rex: Fast verification of mpls networks with
multiple link failures. In Proc. 14th ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2018.

[22] Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical computer
science, 14(3):317–336, 1981.

[23] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling
of network updates. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 539–550. ACM, 2014.

[24] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McK-
eown, and Scott Whyte. Real time network policy checking using header space
analysis. In Presented as part of the 10th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 13), pages 99–111, 2013.

[25] Andreas H Klostergaard. Efficient unfolding and approximation of colored Petri
nets with inhibitor arcs, 2018. Master Thesis, Department of Computer Science,
Aalborg University.

[26] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Commu-
nications, 29(9):1765–1775, 2011.

[27] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. zupdate: Updating data center networks with zero loss. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 411–422. ACM,
2013.

[28] Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. Transiently
secure network updates. ACM SIGMETRICS Performance Evaluation Review,
44(1):273–284, 2016.

[29] Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-free
network updates: It’s good to relax! In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, pages 13–22. ACM, 2015.

[30] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. Good network
updates for bad packets: Waypoint enforcement beyond destination-based routing
policies. In Proc. 13th ACM Workshop on Hot Topics in Networks (HotNets),
page 15. ACM, 2014.

[31] Ratul Mahajan and Roger Wattenhofer. On consistent updates in software defined
networks. In Proc. 12th ACM Workshop on Hot Topics in Networks (HotNets),
page 20. ACM, 2013.

[32] Jedidiah McClurg, Hossein Hojjat, Pavol Černỳ, and Nate Foster. Efficient syn-
thesis of network updates. In Acm Sigplan Notices, volume 50, pages 196–207.
ACM, 2015.

[33] Tal Mizrahi and Yoram Moses. Time4: Time for sdn. IEEE Transactions on
Network and Service Management, 13(3):433–446, 2016.

[34] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software defined networks. In 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), pages 1–13, 2013.

[35] Peter Pereíni, Maciej Kuzniar, Marco Canini, and Dejan Kostić. Espres: transpar-
ent sdn update scheduling. In Proceedings of the third workshop on Hot topics in
software defined networking, pages 73–78. ACM, 2014.

[36] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Ham-
burg, 1962.

[37] Chander Ramchandani. Analysis of asynchronous concurrent systems by timed
petri nets. PhD thesis, Massachusetts Institute of Technology, 1973.

[38] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. ACM SIGCOMM Computer Communication
Review, 42(4):323–334, 2012.

[39] Piotr Rygielski, Marian Seliuchenko, and Samuel Kounev. Modeling and predic-
tion of software-defined networks performance using queueing petri nets. In Proc.
9th EAI International Conference on Simulation Tools and Techniques, pages
66–75. ICST (Institute for Computer Sciences, Social-Informatics and . . . , 2016.

[40] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle,
Mario Pickavet, and Piet Demeester. Network service chaining with optimized net-
work function embedding supporting service decompositions. Computer Networks,
93:492–505, 2015.

[41] Rishi Sinha, Christos Papadopoulos, and John Heidemann. Internet packet
size distributions: Some observations. Technical Report ISI-TR-2007-643,
USC/Information Sciences Institute, May 2007. Orignally released October 2005
as web page http://netweb.usc.edu/%7ersinha/pkt-sizes/.

[42] W. M. P. van der Aalst. Interval timed coloured Petri nets and their analysis. In
Application and Theory of Petri Nets (APTN’93), volume 691 of LNCS, pages
453–472. Springer, 1993.

[43] Linyuan Yao, Ping Dong, Tao Zheng, Hongke Zhang, Xiaojiang Du, and Mohsen
Guizani. Network security analyzing and modeling based on petri net and attack
tree for sdn. In 2016 International Conference on Computing, Networking and
Communications (ICNC), pages 1–5. IEEE, 2016.

[44] Jiaqi Zheng, Guihai Chen, Stefan Schmid, Haipeng Dai, and Jie Wu. Chronus:
Consistent data plane updates in timed sdns. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 319–327. IEEE,
2017.

[45] Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P Brighten Godfrey.
Enforcing customizable consistency properties in software-defined networks. In
Proc. 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 73–85, 2015.

[46] Wlodek M Zuberek. Timed Petri nets definitions, properties, and applications.
Microelectronics Reliability, 31(4):627–644, 1991.

12

https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

Appendix

A FORMAL DEFINITIONS OF TACPN
In the following, we formally define time-arc colored Petri nets, an
extension of the colored Petri net (CPN) [22] with timed-arcs. The
following definitions are based on [25]. We will start with some
preliminary definitions.

A finite multiset over a set 𝑆 is a collection of elements where
a finite number of those elements occur a finite number of times
in the multiset, formally a multiset b over the set S is a function
𝑏 : 𝑆 → N0. Here 𝑏 (𝑠) is the number of occurrences of the element
s in the multiset b.

The common representation of the multiset b is by a formal sum:∑
𝑠∈𝑆

𝑏 (𝑠)′(𝑠) .

We denote the empty multiset by ∅ and the set of all finite multisets
over S by B(𝑆). To ease the definition of multiset subtraction, we
define the function non-minus as:

non-minus(x, y) =

{
𝑥 − 𝑦 if 𝑥 − 𝑦 ≥ 0
0 otherwise

For multisets we define the following operations where 𝑏,𝑏1, 𝑏2 ∈
B(𝑆), 𝑠 ∈ 𝑆 , and 𝑛 ∈ N0

• 𝑠 ∈ 𝑏 iff 𝑏 (𝑠) > 0
• 𝑏1 ⊎ 𝑏2 =

∑
𝑠∈𝑆

(𝑏1 (𝑠) + 𝑏2 (𝑠))′(𝑠) (summation)

• 𝑛 ∗ 𝑏 =
∑
𝑠∈𝑆

(𝑛 · 𝑏 (𝑠))′(𝑠) (scalar-multiplication)

• 𝑏1 ⊆ 𝑏2 iff ∀𝑠 ∈ 𝑆 : 𝑏1 (𝑠) ≤ 𝑏2 (𝑠)
• 𝑏1 = 𝑏2 iff 𝑏1 ⊆ 𝑏2 ∧ 𝑏2 ⊆ 𝑏1
• |𝑏 | = ∑

𝑠∈𝑆
𝑏 (𝑠)

• 𝑏1 \ 𝑏2 =
∑
𝑠∈𝑆

(non-minus(𝑏1 (𝑠), 𝑏2 (𝑠)))′(𝑠)

A.1 Colors
In a colored Petri net, every token is valued with a color. The set of
all colors is defined as C. Every color is an element of a color type.
The set of all color types is defined as Σ ⊆ 2C. The colors of each
color type are distinct, i.e. ∀𝜎1, 𝜎2 ∈ Σ. 𝜎1 ∩ 𝜎2 = ∅. The color type
that a color belongs to is given by the function 𝑇𝑦𝑝𝑒C : C→ Σ.

Each color type is classified as one of the following:
Dots
The set containing only the dot color. It is denoted by {•}. The dot
color corresponds to tokens in a regular Petri net.
Cyclic enumerations
Is a set of elements represented as a sequence of non-repeating
elements, where the sequence determines successor and predecessor
elements.
Integers
Is a subset of Integer that contains integers. Any set of consecutive
integers, together with a successor function and predecessor
function. Is a cyclic enumeration only containing integers.
Product type

The Cartesian product of several color types.

A cyclic enumeration is a sequence, with length 𝑛, of non-
repeating elements, i.e 𝑆 = (𝑒0, 𝑒1, . . . , 𝑒𝑛). The successor function
and the predecessor function of a cyclic enumeration yields the suc-
cessor and predecessor of a given element in the enumeration and is
defined as:

𝑆𝑢𝑐𝑐 (𝑒𝑖) =
{
𝑒0 if 𝑖 = 𝑛

𝑒 (𝑖+1) otherwise

𝑃𝑟𝑒𝑑 (𝑒𝑖) =
{
𝑒𝑛 if 𝑖 = 0
𝑒 (𝑖−1) otherwise

Note that the enumeration is cyclic, meaning that the successor of the
last element in the sequence is the first element, i.e. 𝑆𝑢𝑐𝑐 (𝑒𝑛) = 𝑒0.
Likewise, the predecessor of the first element in the sequence is the
last element, i.e., 𝑃𝑟𝑒𝑑 (𝑒0) = 𝑒𝑛 .

A.2 Variables, Types and Bindings
Before describing expressions, we must first give a notion of vari-
ables, types and bindings. Variables are used to represent colors
and the set of all variables is denoted 𝑉𝑎𝑟 . Like with colors, each
variable has an associated color type. We define this with the type
function, 𝑇𝑦𝑝𝑒𝑉𝑎𝑟 : 𝑉𝑎𝑟 → Σ, that maps each variable to the color
type of that variable. Finally, variables can have a color bound to
them. A binding, 𝑏 : 𝑉𝑎𝑟 → C, binds each variable to a concrete
color such that ∀𝑣 ∈ 𝑉𝑎𝑟 . 𝑏 (𝑣) ∈ 𝑇𝑦𝑝𝑒𝑉𝑎𝑟 (𝑣), or in other words
the bounded color is in the color type of the variable. We denote a
binding 𝑏 as ⟨𝑣0 = 𝑐0, 𝑣1 = 𝑐1, . . . , 𝑣𝑘 = 𝑐𝑘 ⟩, if for all 𝑖 ∈ [0, 𝑘] we
have 𝑏 (𝑣𝑖) = 𝑐𝑖 . The set of all bindings is denoted by B.

A.3 Color Expressions
The color expression 𝜏 ∈ T is defined as:
𝜏 ::= 𝜇 | (𝜏, . . . 𝜏)
𝜇 ::= • | 𝑐 | 𝑣𝑎𝑟 | 𝜇 + + | 𝜇 − −

where 𝑐 ∈ C and 𝑣𝑎𝑟 ∈ 𝑉𝑎𝑟 .

A.3.1 Types. Color expressions also have a type, similar to vari-
ables, that is given by the function 𝑇𝑦𝑝𝑒T : T → Σ. The type of a
color expression corresponds to the color type of the constants and
variables within the expression. The 𝑇𝑦𝑝𝑒T1 function is defined as:

𝑇𝑦𝑝𝑒T ((𝜏1, 𝜏2, . . . , 𝜏𝑛)) =
𝑇𝑦𝑝𝑒T (𝜏1) ×𝑇𝑦𝑝𝑒T (𝜏2) × · · · ×𝑇𝑦𝑝𝑒T (𝜏𝑛)

𝑇𝑦𝑝𝑒T (•) = {•}
𝑇𝑦𝑝𝑒T (𝑐) = 𝑇𝑦𝑝𝑒C (𝑐)

𝑇𝑦𝑝𝑒T (𝑣𝑎𝑟) = 𝑇𝑦𝑝𝑒𝑉𝑎𝑟 (𝑣𝑎𝑟)
𝑇𝑦𝑝𝑒T (𝜇++) = 𝑇𝑦𝑝𝑒T (𝜇) = 𝑇𝑦𝑝𝑒T (𝜇−−)

1As a remark, we in our type system do not allow integers from two different ranges to
be compared. This however is allowed in our implementation.

13

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

A.3.2 Semantics. In order to evaluate the color expressions with
a given binding we define the function JK : T × B→ C.

DEFINITION 1. (Color semantics)
J(•)⟨𝑏⟩K = • (neutral-color)
J(𝑐)⟨𝑏⟩K = 𝑐 (constant)
J(𝑣𝑎𝑟)⟨. . . , 𝑣𝑎𝑟 = 𝑐, . . .⟩K = 𝑐 (variable)
J(𝜇++)⟨𝑏⟩K = Succ(J(𝜇)⟨𝑏⟩K) (successor)
J(𝜇−−)⟨𝑏⟩K = Pred (J(𝜇)⟨𝑏⟩K) (predecessor)
J((𝜏, . . . , 𝜏))⟨𝑏⟩K = (J(𝜏)⟨𝑏⟩K, . . . , J(𝜏)⟨𝑏⟩K) (product)

An example of a color expression could be (x, y + +) which de-
notes a product type of the variables x and y. Since both x and y
are variables we need to get the type for both of them which we use
the function TypeVar (𝑥) = [1, 3] and TypeVar (𝑦) = [5, 7]. Then the
color function color expression can be evaluated under the binding
J(𝑥,𝑦)⟨𝑥 = 1, 𝑦 = 6⟩K = (1, 7).

A.4 Guard Expressions
The set of all guard expressions is defined as Γ and has the following
syntax:

𝛾 ::= 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | ¬𝛾 | 𝛾1 ∧ 𝛾2 | 𝛾1 ∨ 𝛾2 | 𝛾1 → 𝛾2 | 𝛾1 ↔ 𝛾2 | 𝛾1
xor 𝛾2 | 𝜏1 ⊲⊳ 𝜏2
where 𝑇𝑦𝑝𝑒T (𝜏1) = 𝑇𝑦𝑝𝑒T (𝜏2) and ⊲⊳ denotes the comparison
operators <, ≤, >, ≥,=, and ≠.

A.4.1 Semantics. All guard expressions with a binding will
evaluate to a Boolean value either true or false. To evaluate the
guard expressions the function JK : Γ × B→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}

DEFINITION 2. (Guard semantics)
J(¬𝛾)⟨𝑏⟩K = ¬J(𝛾)⟨𝑏⟩K (negation)
J(𝛾1 ∨ 𝛾2)⟨𝑏⟩K = J(𝛾1)⟨𝑏⟩K ∨ J(𝛾2)⟨𝑏⟩K (disjunction)
J(𝛾1 ∧ 𝛾2)⟨𝑏⟩K = J(𝛾1)⟨𝑏⟩K ∧ J(𝛾2)⟨𝑏⟩K (conjunction)
J(𝛾1 → 𝛾2)⟨𝑏⟩K = J(𝛾1)⟨𝑏⟩K → J(𝛾2)⟨𝑏⟩K (implication)
J(𝛾1 ↔ 𝛾2)⟨𝑏⟩K = J(𝛾1)⟨𝑏⟩K ↔ J(𝛾2)⟨𝑏⟩K (biconditional)
J(𝛾1 xor 𝛾2)⟨𝑏⟩K = J(𝛾1)⟨𝑏⟩K xor J(𝛾2)⟨𝑏⟩K (exclusive-or)
J(𝜏1 ⊲⊳ 𝜏2)⟨𝑏⟩K = J(𝜏1)⟨𝑏⟩K ⊲⊳ J(𝜏2)⟨𝑏⟩K (comparison)

An example of a guard expression 𝛾 is (𝑎 ≤ 𝑏 ∧ 𝑏++ < 𝑐). If
TypeVar (a) = TypeVar (b) = TypeVar (𝑐) = [1, 5] then this guard
expression can be evaluated with a binding J𝛾 ⟨𝑎 = 1, 𝑏 = 2, 𝑐 =

4⟩K = true.

A.5 Arc Expressions
The set of all arc expressions is defined as Δ and has the following
syntax:

𝛿 ::= 𝑛′(𝜏) | 𝑛′(𝜎.𝑎𝑙𝑙) | 𝛿1 ⊎ 𝛿2 | 𝛿1 \ 𝛿2 | 𝑛 ∗ 𝛿

where 𝑛 ∈ N, 𝜏 is a color expression, 𝜎 is a color type and
TypeΔ (𝛿1) = TypeΔ (𝛿2) as defined next.

A.5.1 Types. Arc expressions, like color expressions, can also be
associated with a type, given by the function TypeΔ : Δ → Σ. The

type of an arc expression corresponds to the color type of the colors
within the expression. The TypeΔ function is defined as follows:

TypeΔ (𝑛′(𝜏)) = TypeT (𝜏)
TypeΔ (𝑛′(𝜎.𝑎𝑙𝑙)) = 𝜎

TypeΔ (𝛿1 ⊎ 𝛿2) if TypeΔ (𝛿1) = TypeΔ (𝛿2)
TypeΔ (𝛿1 \ 𝛿2) if TypeΔ (𝛿1) = TypeΔ (𝛿2)

TypeΔ (𝑛 ∗ 𝛿) = TypeΔ (𝛿)

A.5.2 Semantics. In order to evaluate the arc expressions we
define the function: JK : Δ × B→ C𝑀𝑆

DEFINITION 3. (Arc semantics)
J(𝑛′(𝜏))⟨𝑏⟩K = 𝑛′(J(𝜏)⟨𝑏⟩K) (number-of)
J(𝑛′(𝜎.𝑎𝑙𝑙))⟨𝑏⟩ = ∑

𝑐∈𝜎 J(𝑛′(𝑐))⟨𝑏⟩K (all)
J(𝛿1 ⊎ 𝛿2)⟨𝑏⟩K = J(𝛿1)⟨𝑏⟩K ⊎ J(𝛿2)⟨𝑏⟩K (addition)
J(𝛿1 \ 𝛿2)⟨𝑏⟩K = J(𝛿1)⟨𝑏⟩K \ J(𝛿2)⟨𝑏⟩K (subtraction)
J(𝑛 ∗ 𝛿)⟨𝑏⟩K = 𝑛 ∗ J(𝛿)⟨𝑏⟩K (scalar)

As an example, an arc expression 𝛿 is defined as 2′(x) + 1′(2).
The type of the variable is given as TypeVar (𝑥) = [1, 3], then it can
be evaluated under a binding where J𝛿 ⟨𝑥 = 3⟩K = 2′(3) + 1′(2).

Before introducing the TACPN, we will first define time intervals.

DEFINITION 4. (Time intervals)
We define the set of well-formed closed time intervals as:

I def
= {[𝑎, 𝑏] | 𝑎 ∈ N0, 𝑏 ∈ N∞0 , 𝑎 ≤ 𝑏}

and its subset Iinv used in assigning the age invariant defined as:

I𝑖𝑛𝑣 def
= {[0, 𝑏] | 𝑏 ∈ N∞0 }

A.6 TACPN Definition
We will now formally define TACPNs.

DEFINITION 5. (Timed-Arc Colored Petri Net)
A Timed-Arc Colored Petri Net (TACPN) is a 15-tuple
(𝑃,𝑇 ,𝑇urg, 𝐼𝐴,𝑂𝐴, 𝐼𝑁𝐴,𝑇𝐴, Σ,𝐶,𝐶𝐺,𝑊 ,𝑊𝐼 ,𝑊𝑇 ,𝑇𝐺, 𝐼) where

(1) 𝑃 is a finite set of places,
(2) 𝑇 is a finite set of transitions such that 𝑃 ∩𝑇 = ∅,
(3) 𝑇urg ⊆ 𝑇 is a finite set of urgent transitions,
(4) 𝐼𝐴 ⊆ 𝑃 ×𝑇 is a finite set of input arcs,
(5) 𝑂𝐴 ⊆ 𝑇 × 𝑃 is a finite set of output arcs,
(6) 𝐼𝑁𝐴 ⊆ 𝑃 ×𝑇 is a finite set of inhibitor arcs,
(7) 𝑇𝐴 ⊆ 𝑃 × 𝑇 × 𝑃 is a finite set of transport arcs such that

(𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴 ⇒ (𝑝, 𝑡) ∉ 𝐼𝐴 ∧ (𝑡, 𝑝 ′) ∉ 𝑂𝐴,
∀(𝑝, 𝑡, 𝑝 ′), (𝑝, 𝑡, 𝑝 ′′) ∈ 𝑇𝐴. 𝑝 ′ = 𝑝 ′′ and
∀(𝑝 ′, 𝑡, 𝑝), (𝑝 ′′, 𝑡, 𝑝) ∈ 𝑇𝐴. 𝑝 ′ = 𝑝 ′′,

(8) Σ is a finite set of color sets,
(9) 𝐶 : 𝑃 → Σ is a color function,

(10) 𝐶𝐺 : 𝑇 → Γ is a color guard.
(11) 𝑊 : 𝐼𝐴 ∪𝑂𝐴 → Δ is a finite set of arc expressions such that

TypeΔ (𝑊 ((𝑝, 𝑡))) = 𝑇𝑦𝑝𝑒Δ (𝑊 ((𝑡, 𝑝))) = 𝐶 (𝑝),
14

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

(12) 𝑊𝐼 : 𝐼𝑁𝐴 → N is a function assigning inhibitor weights to
inhibitor arcs

(13) 𝑊𝑇 : 𝑇𝐴 → N × T × T is a function assigning transport
weights to transport arcs that specifies a numeric weight, an
input color and an output color in that order, such that
𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′)) = (𝑛, 𝜏, 𝜏 ′) ⇒ (TypeT (𝜏) = 𝐶 (𝑝) ∧
TypeT (𝜏 ′) = 𝐶 (𝑝 ′)),

(14) 𝑇𝐺 : 𝐼𝐴 ∪𝑇𝐴 → (𝐶 → I) is a timed guard such that
∀𝑡 ∈ 𝑇urg, ∀𝑐 ∈ 𝐶. 𝑇𝐺 (𝑝, 𝑡) (𝑐) = 𝑇𝐺 (𝑝, 𝑡, 𝑝 ′) (𝑐) = [0,∞],

(15) 𝐼 : 𝑃 → (𝐶 → Iinv) is a function assigning age invariants
to each color of a place.

In point 14) we use the notation (𝐶 → I) to express that each
color of a color type got its own time guard, and in 15) we use
(𝐶 → Iinv) to express that each color got its own invariant. Since
we are able to express time guards and invariants for all colors, we
use * as a graphical notation to express that if a color does not have
a specified time guard or interval, it will have the one expressed with
*.

Before we present the formal semantics for the model we intro-
duce some notation.
Let 𝑁 = (𝑃,𝑇 ,𝑇𝑢𝑟𝑔, 𝐼𝐴,𝑂𝐴, 𝐼𝑁𝐴,𝑇𝐴, Σ,𝐶,𝐶𝐺,𝑊 ,𝑊𝐼 ,𝑊𝑇 ,𝑇𝐺, 𝐼) be
a TACPN. We define

•𝑦
def
= {𝑧 ∈ 𝑃∪𝑇 | (𝑧,𝑦) ∈ 𝐼𝐴∪𝑂𝐴∨(𝑧,𝑦, _) ∈ 𝑇𝐴∨(_, 𝑧,𝑦) ∈ 𝑇𝐴}

as the preset of a transition or place y. The postset of y is defined
as:

𝑦•
def
= {𝑧 ∈ 𝑃∪𝑇 | (𝑦, 𝑧) ∈ 𝐼𝐴∪𝑂𝐴∨(𝑦, 𝑧, _) ∈ 𝑇𝐴∨(_, 𝑦, 𝑧) ∈ 𝑇𝐴}

We will also define the set of bindings that satisfy the color guard
of a given transition 𝑡 as

𝐵(𝑡)def
= {𝑏 ∈ B | 𝐶𝐺 (𝑡)⟨𝑏⟩}

A.7 Markings
Markings decorate a Petri-net with tokens. Let 𝑁 be a TACPN. A
marking 𝑀 on 𝑁 is a function 𝑀 : 𝑃 → B(R≥0 × C), such that
∀𝑝. if (𝑑, 𝑐) ∈ 𝑀 (𝑝) then 𝑑 ∈ 𝐼 (𝑝) (𝑐). We write (𝑝, 𝑥, 𝑐) to denote
a token at a place 𝑝, with age 𝑥 ∈ R≥0 and color 𝑐 ∈ C. The set
of all markings in a net 𝑁 is denoted M(𝑁). We define the size
of a marking as |𝑀 | = ∑

𝑝∈𝑃 |𝑀 (𝑝) |. A marked TACPN (𝑁,𝑀0) is
then defined as a TACPN together with an initial marking 𝑀0 where
∀(𝑝, 𝑥, 𝑐) ∈ 𝑀0 . 𝑥 = 0.

To ease further definitions, we define how to strip either time or
colors from our markings. We define two functions denoted with
subscript, one function nc, that strips colors from a marking 𝑀 ,
defined as:

𝑀𝑛𝑐 (𝑝) (𝑥) =
∑

𝑐 ∈ 𝐶 (𝑝)
𝑀 (𝑝) (𝑥, 𝑐)

and a second function nt, that strips time from a marking 𝑀 ,
defined as:

𝑀𝑛𝑡 (𝑝) (𝑐) =
∑

𝑥 ∈ R≥0
𝑀 (𝑝) (𝑥, 𝑐)

A.8 Enabledness & Semantics
With markings defined, we can now define enabledness and
transition firing. We will first define enabledness and transition
firing for colored timed-arc Petri nets.

DEFINITION 6. (Enabledness)
A transition 𝑡 ∈ 𝑇 is enabled under binding 𝑏 ∈ 𝐵(𝑡) in a marking
𝑀 by the markings 𝐼𝑛 and 𝑂𝑢𝑡 , denoted by 𝑀 ⊢ 𝑡 , if the following
conditions are satisfied:

𝐼𝑛 is a sub-marking of 𝑀 i.e.

∀𝑝 ∈ 𝑃 . 𝐼𝑛(𝑝) ⊆ 𝑀 (𝑝) (a)

𝐼𝑛 only has tokens in the preset of 𝑡 , while 𝑂𝑢𝑡 only has tokens in
the postset of 𝑡 i.e.

∀𝑝 ∉ •𝑡 . 𝐼𝑛(𝑝) = ∅ (b)
∀𝑝 ∉ 𝑡• . 𝑂𝑢𝑡 (𝑝) = ∅ (c)

For all input arcs expect the inhibitor arcs, the colors of the tokens
from In satisfy the arc expression evaluated under binding b.

∀(𝑝, 𝑡) ∈ 𝐼𝐴. 𝐼𝑛𝑛𝑡 (𝑝) =𝑊 (𝑝, 𝑡)⟨𝑏⟩ (d)

Similarly, the output tokens of an output arc have colors correspond-
ing to the expression of that arc evaluated under binding 𝑏.

∀(𝑡, 𝑝) ∈ 𝑂𝐴. 𝑂𝑢𝑡𝑛𝑡 (𝑝) =𝑊 (𝑡, 𝑝)⟨𝑏⟩ (e)

The input tokens of a transport arc must have the same color as
the input color of the transport weight evaluated under 𝑏, while the
color of the output tokens must match the output color. Additionally,
the number of input tokens must match the number of output tokens
which also matches the numeric weight of the transport weight. This
is captured by the following rule:

𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′)) =
(𝑛, 𝜏, 𝜏 ′) ⇒ (𝐼𝑛𝑛𝑡 (𝑝) = 𝑛(𝜏)⟨𝑏⟩ ∧𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) = 𝑛(𝜏 ′)⟨𝑏⟩) (f)
For all input arcs and transition arcs, for each color of all tokens

in 𝐼𝑛 have to satisfy the time guard for each color of the arc i.e.

∀(𝑝, 𝑥, 𝑐) ∈ 𝐼𝑛. (𝑝, 𝑡) ∈ 𝐼𝐴 ⇒ 𝑥 ∈ 𝑇𝐺 ((𝑝, 𝑡) (𝑐)) (g)

∀(𝑝, 𝑥, 𝑐) ∈ 𝐼𝑛. ∀𝑝 ′ ∈ 𝑡• . (𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴 ⇒ 𝑥 ∈ 𝑇𝐺 ((𝑝, 𝑡, 𝑝 ′) (𝑐))
(h)

All colors of all output tokens must satisfy the color invariants of
the output place i.e.

∀(𝑝, 𝑥, 𝑐) ∈ 𝑂𝑢𝑡 . 𝑥 ∈ 𝐼 (𝑝) (𝑐) (i)

For all output arcs, the age of the output token is 0 i.e.

∀(𝑝, 𝑥, 𝑐) ∈ 𝑂𝑢𝑡 . (𝑡, 𝑝) ∈ 𝑂𝐴 ⇒ 𝑥 = 0 (j)

For all transport arcs, the ages of the input tokens matches the
ages of the output tokens i.e.

∀(𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴. 𝐼𝑛𝑛𝑐 (𝑝) = 𝑂𝑢𝑡𝑛𝑐 (𝑝 ′) (k)

For all inhibitor arcs from place p to transition t, the number of
tokens in p have to be less than the inhibitor weight of the arc i.e.

∀𝑝 ∈ •𝑡 . (𝑝, 𝑡) ∈ 𝐼𝑁𝐴 ⇒ |𝑀 (𝑝) | <𝑊𝐼 (𝑝, 𝑡) (l)

15

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

S1

[PacketType] #1

Firewall

[Dot]

S1ToFirewall

1′ (𝑝𝑐𝑘)1′ (𝑝𝑐𝑘) 1′ (𝑝𝑐𝑘)1′ (𝑝𝑐𝑘)
∗ → [4, 6]

Color types:
PacketType is {SSH ,Web,Danger }

Variables:
pck is PacketType

Figure 8: Enabledness example of Figure 2

To give an example of a marked TACPN we have isolated the
part where the S1 sends packets to Firewall of Figure 2 as shown on
Figure 8, where we have the marking

𝑀 = {(S1, 5,𝑊 𝑒𝑏)}
here transition is enabled under the binding 𝑏 = ⟨pck =𝑊𝑒𝑏⟩ by

the markings
𝐼𝑛 = {(S1, 5,𝑊 𝑒𝑏)}

𝑂𝑢𝑡 = {(Firewall, 5,𝑊 𝑒𝑏)}

DEFINITION 7. Timed Transition System
The semantics of a marked TACPN (𝑁,𝑀0) is defined as a timed
transition system
J𝑁 K𝑠𝑒𝑚 = (M(𝑁), 𝑀0,→), where → : M(𝑁) ×𝑇 ∪R≥0 ×M(𝑁)
is the least transition relation generated by the following two rules:

Transition firing
If a transition 𝑡 ∈ 𝑇 under binding 𝑏 ∈ 𝐵(𝑡) is enabled in a marking
𝑀1 by the multisets of tokens 𝐼𝑛 and 𝑂𝑢𝑡 , it may fire, changing the
marking 𝑀1 to 𝑀2, where 𝑀2 is defined as:

𝑀2 = (𝑀1 \ 𝐼𝑛) ⊎𝑂𝑢𝑡

This gives rise to the transition relation (𝑀1, 𝑡, 𝑀2) ∈ →, denoted

by 𝑀1
𝑡−→ 𝑀2

Time delay
A marking 𝑀 can be delayed by a time duration 𝑑 ∈ R0 if the
following two conditions hold:

• The delayed tokens all satisfy the invariants of their respective
places, i.e.
∀(𝑝, 𝑥, 𝑐) ∈ 𝑀. 𝑥 + 𝑑 ∈ 𝐼 (𝑝) (𝑐)

• The duration is 0, if any urgent transitions are enabled, i.e.
∀𝑡 ∈ 𝑇𝑢𝑟𝑔 . 𝑀 ⊢ 𝑡 ⇒ 𝑑 = 0

Delaying a marking 𝑀1 by a duration 𝑑 results in a new marking
𝑀2 defined as:

𝑀2 (𝑝) = {(𝑝, 𝑥 + 𝑑, 𝑐) | (𝑝, 𝑥, 𝑐) ∈ 𝑀1 (𝑝)}
This gives rise to the transition relation (𝑀1, 𝑑, 𝑀2) ∈ →,

denoted by 𝑀1
𝑑−→ 𝑀2.

With the formal semantics defined, we with TACPN are able to
model networks, where we with the notation of colors are able to

represent the different packets, and with the notation of time, are
able to model the calculation time for each router, packet delays
for each packet type, the speed of each link in the network for each
packet type etc. In order to utilize existing techniques for TAPNs,
we provide a algorithm to unfold a given TACPN into a TAPN,
while preserving the behavior of the model. In this section we will
describe this unfolding following with a theorem of strongly timed
bisimulation, and lastly a proof of this theorem.

A.9 Timed-Arc Petri Net
A TAPN is a TACPN without colors. More specifically it is a
TACPN where the color sets only has the dots color type, defined as
follows:

DEFINITION 8. (Timed-Arc Petri Net) Let 𝑁 =

(𝑃,𝑇 ,𝑇𝑢𝑟𝑔, 𝐼𝐴,𝑂𝐴, 𝐼𝑁𝐴,𝑇𝐴, Σ,𝐶,𝐶𝐺,𝑊 ,𝑊𝐼 ,𝑊𝑇 ,𝑇𝐺, 𝐼) be a
TACPN. The TACPN 𝑁 is a TAPN iff Σ = {{•}}.
Because a TAPN has no colors, the components of the tuple related
to color can be simplified or removed as follows:

• Color sets, Σ, can be removed, since it is already defined.
• The color function, 𝐶, can be removed, since it always yields

the same color type.
• Color guards, 𝐶𝐺 , become trivial and can be removed, be-

cause only one binding can ever occur.
• Arc expressions,𝑊 , can only yield a number of tokens of the

same color, and can therefore be simplified to just give that
number.

• Transport weights,𝑊𝑇 , no longer needs an input color and an
output color and can be reduced to just the numeric weight.

• Since arc expressions, and transport weights now have the
same target set, they can be combined to a single weight
function,𝑊 , assigning numeric weights arcs.

A TAPN is therefore uniquely defined by the 11-tuple: 𝑇𝐴𝑃𝑁 =

(𝑃,𝑇 ,𝑇𝑢𝑟𝑔, 𝐼𝐴,𝑂𝐴, 𝐼𝑁𝐴,𝑇𝐴,𝑊 ,𝑊𝐼 ,𝑇𝐺, 𝐼).

A.10 Unfolding TACPN to Timed-Arc PN
In order to unfold a TACPN into TAPN that preserves the behavior
of the original net, we must be able to express the features of colors,
without actually having them. This subsection will explain how this
is achieved.

16

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

A.10.1 Places and tokens. In a TACPN, all places have an
associated color type. Additionally each token in the marking of
those places has a color. In order to distinguish between tokens
of different colors in the unfolded net, we need to make separate
places for each possible color, such that tokens of different colors
are in different places. We also add an extra place for each original
place that keeps track of the sum of tokens across all colors. This
sum place initially gets one token for each token at the place in
the original net. The number of tokens in the sum place will then
invariantly be the sum of tokens across the colors, i.e.

|𝑀 ((𝑝, sum)) | =
∑

𝑐∈𝐶 (𝑝)
|𝑀 ((𝑝, 𝑐)) |

As for time, the new places inherits the invariant corresponding to
the color invariant of the color they represent, except the sum which
has an [0,∞) invariant. If an invariant is not specified, the new place
will get the default invariant represented by the ∗. The age of the
tokens in sum is initially 0.

A.10.2 Transitions. In a TACPN, firing a transition can have
different outcomes depending on the given binding. In the unfolded
net, we separate these possible outcomes into individual transitions,
one for each possible binding that satisfy the color guard in the
original net.

𝑥 = 𝑦

⟨𝑥 → R, 𝑦 → R⟩

⟨𝑥 → G, 𝑦 → G⟩

⟨𝑥 → B, 𝑦 → B⟩

unfold

A.10.3 Input arcs and output arcs. In a TACPN, arcs are dec-
orated with arc expressions that when evaluated yields a multiset
of colors. In the unfolded net, we decompose the resulting multiset
into its individual colors and spread these as weights across multiple
arcs, one for each color present in the multiset. Additionally, we
add an arc to the sum place with a summed weight of the other arcs.
This ensures that the tokens in the sum gets updated accordingly
whenever a transition is fired. As for time, all arcs, except the one
connecting sum, inherit the time guard for the given color, with
similar reasoning as with invariants.

A.10.4 Transport arcs and inhibitor arcs. In a TACPN, trans-
port arcs transfer tokens between places, possibly changing their
color along the way. This translates well in the unfolded net, as we
simply add a transport arc between the specified colors. Akin to the
regular arcs, we also add regular arcs to the sum, that ensures it stays
updated. In a TACPN, an inhibitor arc could count the number of
tokens across colors, since they were all in the same place. However,
in the unfolded net, we chose to spread the tokens across multiple
places. This is why we need the sum place, as connecting the in-
hibitor arc to this place allows it to use the sum across the colors and
function as in the original net.

Given the above reasoning, we will now formally present the
unfolding.

DEFINITION 9. Unfolded TAPN of a TACPN
Let 𝑁 = (𝑃,𝑇 ,𝑇𝑢𝑟𝑔, 𝐼𝐴,𝑂𝐴, 𝐼𝑁𝐴,𝑇𝐴, Σ,𝐶,𝐶𝐺,𝑊 ,𝑊𝐼 ,𝑊𝑇 ,𝑇𝐺, 𝐼)

be a TACPN. The unfolded TAPN of a given TACPN 𝑁 , is a 11-tuple,
𝑁 ′ = (𝑃 ′,𝑇 ′,𝑇 ′

𝑢𝑟𝑔, 𝐼𝐴
′,𝑂𝐴′, 𝐼𝑁𝐴′,𝑇𝐴′,𝑊 ′,𝑊 ′

𝐼
,𝑇𝐺 ′𝐼 ′) where

(1) 𝑃 ′ = {(𝑝, 𝑐) | 𝑝 ∈ 𝑃 ∧ 𝑐 ∈ 𝐶 (𝑝)} ∪ {(𝑝, sum) | 𝑝 ∈ 𝑃}

(2) 𝑇 ′ = {(𝑡, 𝑏) | 𝑡 ∈ 𝑇 ∧ 𝑏 ∈ 𝐵(𝑡)}

(3) 𝑇 ′
𝑢𝑟𝑔 =

{
(𝑡, 𝑏) | 𝑡 ∈ 𝑇𝑢𝑟𝑔 ∧ (𝑡, 𝑏) ∈ 𝑇 ′}

(4) 𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏)) =𝑊 ((𝑝, 𝑡))⟨𝑏⟩(𝑐)

(5) 𝑊 ′((𝑝, sum), (𝑡, 𝑏)) ={
|𝑊 ((𝑝, 𝑡))⟨𝑏⟩| if (𝑝, 𝑡) ∈ 𝐼𝐴

𝑛 where𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′)) = (𝑛, 𝜏, 𝜏 ′) if (𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴

(6) 𝑊 ′((𝑡, 𝑏), (𝑝, 𝑐)) =𝑊 ((𝑡, 𝑝))⟨𝑏⟩(𝑐)

(7) 𝑊 ′((𝑡, 𝑏), (𝑝, sum)) ={
|𝑊 ((𝑡, 𝑝))⟨𝑏⟩| if (𝑡, 𝑝) ∈ 𝑂𝐴

𝑛 where𝑊𝑇 ((𝑝 ′, 𝑡, 𝑝)) = (𝑛, 𝜏, 𝜏 ′) if (𝑝 ′, 𝑡, 𝑝) ∈ 𝑇𝐴

(8) 𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏), (𝑝 ′, 𝑐 ′)) = 𝑛 where𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′)) =

(𝑛, 𝜏, 𝜏 ′)

(9) 𝑊 ′
𝐼
((𝑝, sum), (𝑡, 𝑏)) =𝑊𝐼 ((𝑝, 𝑡))⟨𝑏⟩(𝑐)

(10) 𝐼𝐴′ = {((𝑝, 𝑐), (𝑡, 𝑏)) | (𝑝, 𝑡) ∈ 𝐼𝐴∧
(𝑝, 𝑐) ∈ 𝑃 ′ ∧ (𝑡, 𝑏) ∈ 𝑇 ′ ∧𝑊 ′(((𝑝, 𝑐), (𝑡, 𝑏))) > 0}∪
{((𝑝, sum), (𝑡, 𝑏)) | (𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴 ∧ (𝑡, 𝑏) ∈ 𝑇 ′}

(11) 𝑂𝐴′ = {((𝑡, 𝑏), (𝑝, 𝑐)) | (𝑡, 𝑝) ∈ 𝑂𝐴∧
(𝑝, 𝑐) ∈ 𝑃 ′ ∧ (𝑡, 𝑏) ∈ 𝑇 ′ ∧𝑊 ′(((𝑡, 𝑏), (𝑝, 𝑐))) > 0} ∪
{((𝑡, 𝑏), (𝑝, sum)) | (𝑝 ′, 𝑡, 𝑝) ∈ 𝑇𝐴 ∧ (𝑡, 𝑏) ∈ 𝑇 ′}

(12) 𝐼𝑁𝐴′ = {((𝑝, sum), (𝑡, 𝑏)) | (𝑝, 𝑡) ∈ 𝐼𝑁𝐴 ∧ (𝑡, 𝑏) ∈ 𝑇 ′}

(13) 𝑇𝐴′ = {((𝑝, 𝑐), (𝑡, 𝑏), (𝑝 ′, 𝑐 ′)) | (𝑝, 𝑡, 𝑝 ′) ∈ 𝑇𝐴∧
(𝑡, 𝑏) ∈ 𝑇 ′ ∧𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′))⟨𝑏⟩ = (𝑛, 𝑐, 𝑐 ′)}

(14) 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) = 𝑇𝐺 ((𝑝, 𝑡) (𝑐))

(15) 𝑇𝐺 ′((𝑝, sum), (𝑡, 𝑏)) = [0,∞]

(16) 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏), (𝑝 ′, 𝑐 ′)) = 𝑇𝐺 ((𝑝, 𝑡, 𝑝 ′) (𝑐))

(17) 𝐼 ′((𝑝, 𝑐)) = 𝐼 (𝑝) (𝑐)

(18) 𝐼 ′((𝑝, sum)) = [0,∞]

To ease understanding of Definition 9 we use Figure 9 and 10
to explain. P ′ on Figure 9 contaions the four places (p, R), (p,G)
(p, B), and (p, sum) where T ′ is the new transition. The weight of
the arcs is transferred, so since the binding of x on Figure 9 is R we
have weight 2 on on the arc from (p, R) to transition (t, b), whereas
the arc from (p, sum) will get the sum of all the weights.

Input and output arcs are only created if we have a binding so
on Figure 9 we do not have a binding of B, and therefore we do not
create a input arc form (p, B) to the transition, or an output arc to
(p, tt).

Time guards and invariant are transferred from the colors to
the places represented the colors, in the unfolded net, expect for
the sum place which always gets a [0,∞] time guard and ≤ ∞
invariant.

17

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

p

B ≤ 8
∗ ≤ 10

(5,G)

(2,B)(7,B)

p′

∗ ≤10

(𝑡𝑡, 6)

t

(p, R)

≤10

(p,G)

≤10

5

(p, B)

2 7

≤8

(p, sum)

≤∞

0
0 0

(p′,tt)

≤10

6

(p′, ff)

≤10

(p′, sum)

≤∞
0

(t, b)

(2′ (x) + 3′ (G))(2′ (x) + 3′ (G))

4′ (ff)4′ (ff)

2 × [5, 9]2 × [5, 9] 3 × [4, 7]3 × [4, 7] 5 × [0,∞]5 × [0,∞]

44
44

unfold

R → [5, 9]
∗ → [4, 7]

where 𝑏 = ⟨𝑥 → R⟩

Figure 9: Example of unfolding of a timed-arc colored Petri net

p

B ≤ 8
∗ ≤ 10

(5,G)

(2,B)(7,B)

p′

∗ ≤10

(𝑡𝑡, 6)

t

(p, R)

≤10

(p,G)

≤10

5

(p, B)

2 7

≤8

(p, sum)

≤∞

0
0 0

(p′,tt)

≤10

6

(p′, ff)

≤10

(p′, sum)

≤∞
0

(t, b)

3′ (G)3′ (G) 55

3′ (tt)3′ (tt)

3 × [2, 6]3 × [2, 6] 3 × [0,∞]3 × [0,∞]
55

33 33

unfold

G → [2, 6]
∗ → [6, 10]

Figure 10: Timed-arc colored Petri net unfolding example with transport and inhibitor arc

We will now define the marking unfolding between the folded
TACPN and the unfolded TAPN.

DEFINITION 10. Marking unfolding
Let 𝑀 be a marking in a TACPN 𝑁 and let 𝑁 ′ be the correspond-

ing unfolded TAPN. The corresponding unfolded marking is given
by the function unfold : M(𝑁) → M(𝑁 ′) defined as:

unfold (𝑀) ((𝑝, 𝑐)) (𝑥) =


|𝑀 (𝑝) | if 𝑐 = sum ∧ 𝑥 = 0
0 if 𝑐 = sum ∧ 𝑥 ≠ 0
𝑀 (𝑝) ((𝑥, 𝑐)) otherwise

The initial marking 𝑀0 of the unfolded net is defined as
unfold (𝑀0) since we for each place (𝑝, 𝑐) in the unfolded net cre-
ates a token for each token with color 𝑐 in place 𝑝 in the folded net.
In place (𝑝, sum) we as mentioned creates a token for each token at
the place in the original net.

A.11 Unfolding equivalence
Before we show the equivalence between the folded TACPN and the
unfolded TAPN, we first define an equivalence between unfolded
TAPNs. As a consequence of our unfolding, the ages of the tokens in
the sum places can never be exposed to a time guard or an invariant,
rendering these ages obsolete. Therefore, if two markings only differ
in the age of the tokens in the sum places, then these markings are

bisimilar. We will now define strong timed bisimulation which is
based upon definition from [4].

DEFINITION 11. Strong timed bisimulation
A binary relation R over the set of markings of a Petri net is a strong
timed bisimulation iff whenever 𝑀1 R 𝑀2 where a is a action and d
is a time delay:

• 𝑀1
𝑎−→ 𝑀 ′

1 then ∃ 𝑀2
𝑎−→ 𝑀 ′

2 such that 𝑀 ′
1 R 𝑀 ′

2;

• 𝑀2
𝑎−→ 𝑀 ′

2 then ∃ 𝑀1
𝑎−→ 𝑀 ′

1 such that 𝑀 ′
1 R 𝑀 ′

2;

• 𝑀1
𝑑−→ 𝑀 ′

1 then ∃ 𝑀2
𝑑−→ 𝑀 ′

2 such that 𝑀 ′
1 R 𝑀 ′

2;

• 𝑀2
𝑑−→ 𝑀 ′

2 then ∃ 𝑀1
𝑑−→ 𝑀 ′

1 such that 𝑀 ′
1 R 𝑀 ′

2;
Two markings M and M ′ are strongly timed bisimilar written

M ∼ M ′ iff there is a strong timed bisimulation that relates them.

As a consequence of our unfolding, the ages of tokens in of
the sum place will grow, but never be exposed to a time guard or
invariant. We therefore present Lemma A.1 that if two markings
only differ in the ages of tokens in place sum then they are up to
strong timed bisimular.

18

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

LEMMA A.1. Let 𝑀 and 𝑀 ′ be two markings in the unfolded
net. If M (p, c) = M ′(p, c) for all 𝑝, and 𝑐 where 𝑐 ≠ sum and
|M (p, sum) | = |M ′(p, sum) | then 𝑀 ∼ 𝑀 ′.

Finally, we finish with our main theorem stating that the original
and unfolded nets are strongly timed bisimilar.

THEOREM A.2. Let 𝑀 be a marking in a TACPN 𝑁 . The
corresponding unfolded marking unfold (𝑀) is strongly timed
bisimilar with 𝑀 , i.e. unfold (𝑀) ∼ 𝑀 .

19

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

A.12 Proof of Theorem A.2
To prove that 𝑀 and unfold (𝑀) are strongly timed bisimilar, we need to prove the following four statements:

(1) 𝑀1
𝑡−→ 𝑀2 under binding 𝑏 implies unfold (𝑀1)

(𝑡,𝑏)
−−−−→ unfold (𝑀2).

(2) unfold (𝑀1)
(𝑡,𝑏)
−−−−→ M ′ implies 𝑀1

𝑡−→ 𝑀2 under binding 𝑏 where M ′ = unfold (𝑀2).
(3) 𝑀1

𝑑−→ 𝑀2 implies unfold (𝑀1)
𝑑−→ 𝑀 ′ such that 𝑀 ′ ∼ unfold (𝑀2).

(4) unfold (𝑀1)
𝑑−→ M ′ implies 𝑀1

𝑑−→ 𝑀2 where M ′ ∼ unfold (𝑀2).

For statement 3) and 4) both 𝑀 ′ and unfold (𝑀2) are makring in the unfolded net, and they are up to bisimilar by Lemma A.1 if they only differ
in the age of tokens in place sum. The remainder of this proof will work through each of these statements.

A.12.1 𝑀1
𝑡−→ 𝑀2 under binding 𝑏 implies unfold (𝑀1)

(𝑡, 𝑏)
−−−−→ unfold (𝑀2). By the definition of transition firing, we have that 𝑀1 enables t

under binding b by the markings In and Out that satisfy Definition 6. We will show that unfold (𝑀1) enables (𝑡, 𝑏) by the markings In′ and
Out ′ which is defined as:

In′ def
= unfold (𝐼𝑛)

Out ′ def
= unfold (𝑂𝑢𝑡)

From the definition of enabledness we have twelve conditions, (a) through (l), and for each condition we will show that if In and Out satisfy
the condition, then In′ and Out ′ must also satisfy the condition in the unfolded net N ′.

Condition a) By definition 𝐼𝑛′(𝑝, 𝑐) (𝑥) = unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥). We want to show that 𝐼𝑛′ is a sub-marking of unfold (𝑀1). Assume that
for all 𝑝 ∈ 𝑃 . 𝐼𝑛(𝑝) ⊆ 𝑀1 (𝑝) . We want to show that for any (p, c) ∈ P ′.In′((p, c), (x)) ≤ unfold (𝑀1) ((𝑝, 𝑐) (𝑥)) for all x. To show
this we have three cases.

• Let 𝑐 = sum ∧ 𝑥 = 0
unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 1

|𝐼𝑛(𝑝) | ≤ by 𝐼𝑛(𝑝) ⊆ 𝑀1 (𝑝)

|𝑀1 (𝑝) | = by Definition 10 case 1

unfold (𝑀1) ((𝑝, 𝑐)) (𝑥)

• Let 𝑐 = sum ∧ 𝑥 ≠ 0
unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

0 = by Definition 10 case 2

unfold (𝑀1) ((𝑝, 𝑐)) (𝑥)

• Otherwise 𝑐 ≠ sum
unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3

𝐼𝑛(𝑝) (𝑥, 𝑐) ≤ by 𝐼𝑛(𝑝) ⊆ 𝑀1 (𝑝)

𝑀1 (𝑝) (𝑥, 𝑐) = by Definition 10 case 3

unfold (𝑀1) ((𝑝, 𝑐)) (𝑥)

Condition b) We want to show that 𝐼𝑛′ only got tokens of the preset of t. Assume that for all 𝑝 ∉ •𝑡 . 𝐼𝑛(𝑝) = ∅. We want to show that for
any (p, c) ∉ • (𝑡, 𝑏). 𝐼𝑛′((𝑝, 𝑐)) (𝑥) = 0 for all x. To show this we have three cases.

• Let 𝑐 = sum ∧ 𝑥 = 0
20

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 1

|In(𝑝) | = by Definition 9 case 10 & 4 and 𝑝 ∉ •𝑡 . 𝐼𝑛(𝑝) = ∅

0

• Let 𝑐 = sum ∧ 𝑥 ≠ 0
unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

0

• Otherwise 𝑐 ≠ sum
unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3

𝐼𝑛(𝑝) (𝑥, 𝑐) = by Definition 9 case 10 & 4 and by 𝑝 ∉ •𝑡 . 𝐼𝑛(𝑝) = ∅

0

Condition c) By definition 𝑂𝑢𝑡 ′(𝑝, 𝑐) (𝑥) = unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥). We want to show that 𝑂𝑢𝑡 ′ only got tokens of the postset of t. Assume
that for all 𝑝 ∉ 𝑡• . 𝑂𝑢𝑡 (𝑝) = ∅. We want to show that for any (p, c) ∉ (𝑡, 𝑏)• . 𝑂𝑢𝑡 ′((𝑝, 𝑐)) (𝑥) = 0 for all x. To show this we have three
cases.

• Let 𝑐 = sum ∧ 𝑥 = 0
unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥) = by Definition 10 case 1

|𝑂𝑢𝑡 (𝑝) | = by Definition 9 case 11 & 6 and 𝑝 ∉ 𝑡• . 𝑂𝑢𝑡 (𝑝) = ∅

0

• Let 𝑐 = sum ∧ 𝑥 ≠ 0
unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

0

• Otherwise 𝑐 ≠ sum
unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3

𝑂𝑢𝑡 (𝑝) (𝑥, 𝑐) = by Definition 9 case 11 & 6 and 𝑝 ∉ 𝑡• . 𝑂𝑢𝑡 (𝑝) = ∅

0

Condition d) For all input arcs all tokens in 𝐼𝑛′ have to satisfy the arc expression evaluated under the binding. By defini-
tion 𝐼𝑛′𝑛𝑡 (𝑝, 𝑐) (𝑥) = unfold (𝐼𝑛𝑛𝑡) (𝑝, 𝑐) (𝑥). Assume that ∀(𝑝, 𝑡) ∈ 𝐼𝐴. 𝐼𝑛𝑛𝑡 (𝑝) = 𝑊 (𝑝, 𝑡)⟨𝑏⟩. We want to show that
∀((𝑝, 𝑐), (𝑡, 𝑏)) ∈ 𝐼𝐴′. 𝐼𝑛′𝑛𝑡 ((𝑝, 𝑐)) =𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏)) for all 𝑐 ∈ 𝐶. To show this we have two cases.

• Let 𝑐 = sum ∧ 𝑥 = 0
(unfold (𝐼𝑛))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

unfold (𝐼𝑛(𝑝, 𝑐)) (0) = by Definition 10 case 1

|𝐼𝑛(𝑝) | = by ∀(𝑝, 𝑡) ∈ 𝐼𝐴. 𝐼𝑛𝑛𝑡 (𝑝) =𝑊 (𝑝, 𝑡)⟨𝑏⟩

|𝑊 (𝑝, 𝑡)⟨𝑏⟩| = by Definition 9 case 5

𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏))

• Otherwise 𝑐 ≠ sum
21

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

(unfold (𝐼𝑛))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3∑
𝑥 ∈ R≥0

𝐼𝑛(𝑝) (𝑥, 𝑐) = by definition of function nt

𝐼𝑛𝑛𝑡 (𝑝) (𝑐) = by ∀(𝑝, 𝑡) ∈ 𝐼𝐴. 𝐼𝑛𝑛𝑡 (𝑝) =𝑊 (𝑝, 𝑡)⟨𝑏⟩

𝑊 ((𝑝, 𝑡))⟨𝑏⟩(𝑐) = by Definition 9 case 4

𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏))

Condition e) For all output arcs all tokens in 𝑂𝑢𝑡 ′ have to satisfy the arc expression evaluated under the binding. By definition
𝑂𝑢𝑡 ′𝑛𝑡 (𝑝, 𝑐) (𝑥) = unfold (𝑂𝑢𝑡𝑛𝑡) (𝑝, 𝑐) (𝑥). Assume that ∀(𝑡, 𝑝) ∈ 𝑂𝐴. 𝑂𝑢𝑡𝑛𝑡 (𝑝) = 𝑊 (𝑡, 𝑝)⟨𝑏⟩. We want to show that
∀((𝑡, 𝑏), (𝑝, 𝑐)) ∈ 𝑂𝐴′. 𝑂𝑢𝑡 ′𝑛𝑡 ((𝑝, 𝑐)) =𝑊 ′((𝑡, 𝑏), (𝑝, 𝑐)) for all 𝑐 ∈ 𝐶. To show this we have two cases.

• Let 𝑐 = sum ∧ 𝑥 = 0
(unfold (𝑂𝑢𝑡))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

unfold (𝑂𝑢𝑡 (𝑝, 𝑐)) (0) = by Definition 10 case 1

|𝑂𝑢𝑡 (𝑝) | = by ∀(𝑡, 𝑝) ∈ 𝑂𝐴. 𝑂𝑢𝑡𝑛𝑡 (𝑝) =𝑊 (𝑡, 𝑝)⟨𝑏⟩

|𝑊 ((𝑝, 𝑡))⟨𝑏⟩| = by Definition 9 case 7

𝑊 ′((𝑡, 𝑏), (𝑝, 𝑐))

• Otherwise 𝑐 ≠ sum
(unfold (𝑂𝑢𝑡))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝑂𝑢𝑡) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3∑
𝑥 ∈ R≥0

𝑂𝑢𝑡 (𝑝) (𝑥, 𝑐) = by definition of function nt

𝑂𝑢𝑡𝑛𝑡 (𝑝) (𝑐) = by ∀(𝑝, 𝑡) ∈ 𝐼𝐴. 𝑂𝑢𝑡𝑛𝑡 (𝑝) =𝑊 (𝑝, 𝑡)⟨𝑏⟩

𝑊 ((𝑡, 𝑝))⟨𝑏⟩(𝑐) = by Definition 9 case 6

𝑊 ′((𝑡, 𝑏), (𝑝, 𝑐))

Condition f) The number of tokens in 𝐼𝑛′ have to match the number of tokens in 𝑂𝑢𝑡 ′ and have the same numeric weight of the
transport weight. Assume that 𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′)) = (𝑛, 𝜏, 𝜏 ′) ⇒ (𝐼𝑛𝑛𝑡 (𝑝) = 𝑛(𝜏)⟨𝑏⟩ ∧ 𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) = 𝑛(𝜏 ′)⟨𝑏⟩). We want to show
𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏), (𝑝 ′, 𝑐 ′)) = 𝑛 ⇒ (𝐼𝑛′𝑛𝑡 ((𝑝, 𝑐)) = 𝑛 ∧𝑂𝑢𝑡 ′𝑛𝑡 ((𝑝 ′, 𝑐 ′)) = 𝑛) for all 𝑐 ∈ 𝐶. To show this we have two cases.

• Let 𝑐 = sum ∧ 𝑥 = 0.
Let𝑊 ′((𝑝, 𝑐), (𝑡, 𝑏), (𝑝 ′, 𝑐 ′)) = 𝑛. By Definition 9 case 8 we know that𝑊𝑇 ((𝑝, 𝑡, 𝑝 ′) = (𝑛, 𝜏, 𝜏 ′) which by our assumption we
know that 𝐼𝑛𝑛𝑡 (𝑝) = 𝑛(𝜏)⟨𝑏⟩ and 𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) = 𝑛(𝜏 ′)⟨𝑏⟩.
Now we show that 𝐼𝑛′𝑛𝑡 (𝑝, 𝑐) = 𝑛.

𝐼𝑛′𝑛𝑡 (𝑝, 𝑐) = by definition of unfold

(unfold (𝐼𝑛))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 2

22

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

unfold (𝐼𝑛(𝑝, 𝑐)) (0) = by Definition 10 case 1

|𝐼𝑛(𝑝) | = by 𝐼𝑛𝑛𝑡 (𝑝) = 𝑛(𝜏)⟨𝑏⟩

𝑛

Now we show that 𝑂𝑢𝑡 ′𝑛𝑡 (𝑝 ′, 𝑐 ′) = 𝑛.

𝑂𝑢𝑡 ′𝑛𝑡 (𝑝 ′, 𝑐 ′) = by definition of unfold

(unfold (𝑂𝑢𝑡))𝑛𝑡 (𝑝 ′, 𝑐 ′) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝑂𝑢𝑡) (𝑝 ′, 𝑐 ′) (𝑥) = by Definition 10 case 2

unfold (𝑂𝑢𝑡 (𝑝 ′, 𝑐 ′)) (0) = by Definition 10 case 1

|𝑂𝑢𝑡 (𝑝 ′) | = by 𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) = 𝑛(𝜏 ′)⟨𝑏⟩

𝑛

• Otherwise let 𝑐 ≠ sum

Now we show that 𝐼𝑛′𝑛𝑡 (𝑝, 𝑐) = 𝑛.

𝐼𝑛′𝑛𝑡 (𝑝, 𝑐) = by definition of unfold

(unfold (𝐼𝑛))𝑛𝑡 (𝑝, 𝑐) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝐼𝑛) (𝑝, 𝑐) (𝑥) = by Definition 10 case 3∑
𝑥 ∈ R≥0

𝐼𝑛(𝑝) (𝑐) = by definition of function nt

𝐼𝑛𝑛𝑡 (𝑝) (𝑐) = by 𝐼𝑛𝑛𝑡 (𝑝) = 𝑛(𝜏)⟨𝑏⟩

𝑛

Now we show that 𝑂𝑢𝑡 ′𝑛𝑡 (𝑝 ′, 𝑐 ′) = 𝑛.

𝑂𝑢𝑡 ′𝑛𝑡 (𝑝 ′, 𝑐 ′) = by definition of unfold

(unfold (𝑂𝑢𝑡))𝑛𝑡 (𝑝 ′, 𝑐 ′) = by definition of function nt∑
𝑥 ∈ R≥0

unfold (𝑂𝑢𝑡) (𝑝 ′, 𝑐 ′) (𝑥) = by Definition 10 case 3

∑
𝑥 ∈ R≥0

𝑂𝑢𝑡 (𝑝 ′) (𝑐 ′) = by definition of function nt

𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) (𝑐 ′) = by 𝑂𝑢𝑡𝑛𝑡 (𝑝 ′) = 𝑛(𝜏 ′)⟨𝑏⟩

𝑛

Condition g) For all input arcs all tokens in In′ have to satisfy the time guard on the arc.
Assume that ∀(𝑝, 𝑥, 𝑐) ∈ 𝐼𝑛. (𝑝, 𝑡) ∈ 𝐼𝐴 ⇒ 𝑥 ∈ 𝑇𝐺 ((𝑝, 𝑡) (𝑐)). We want to show ∀((𝑝, 𝑐), 𝑥) ∈ 𝐼𝑛′. ((𝑝, 𝑐), (𝑡, 𝑏)) ∈ 𝐼𝐴′ ⇒ 𝑥 ∈
𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) for all x. To show this we have two cases.

• Let 𝑐 = sum
By Definition 9 case 15 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) = [0,∞) therefore 𝑥 ∈ 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) for any 𝑥 ∈ R≥0.

• Otherwise let 𝑐 ≠ sum
23

PERFORMANCE’20, , Under Submission Niels Christensen, Mark Glavind, Jiří Srba, Stefan Schmid

Assume 𝑥 ∈ 𝑇𝐺 ((𝑝, 𝑡) (𝑐)).

By Definition 9 case 14 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) = 𝑇𝐺 ((𝑝, 𝑡) (𝑐)) therefore 𝑥 ∈ 𝑇𝐺 ′((𝑝, 𝑐), (𝑡, 𝑏)) for any 𝑥 ∈ R≥0.

Since the conditions h-k describes the age of the tokens, time guards, or invariants of places we have only shown Condition g), since
the age of tokens, the time guards, or the invariants will be overtaken from TACPN.

Condition l) For all inhibitor arcs from place p to transition t, the number of tokens in place (𝑝, sum) has to be less than the weight of the
inhibitor arc.
Assume ∀𝑝 ∈ •𝑡 . (𝑝, 𝑡) ∈ 𝐼𝑁𝐴 ⇒ |𝑀 (𝑝) | <𝑊𝐼 (𝑝, 𝑡).
We want to show ∀(𝑝, 𝑐) ∈ • (𝑡, 𝑏) . ((𝑝, sum), (𝑡, 𝑏)) ∈ 𝐼𝑁𝐴′ ⇒ |unfold (M (p, sum)) | <𝑊 ′

𝐼
((𝑝, sum), (𝑡, 𝑏)).

Let ((𝑝, sum), (𝑡, 𝑏)) ∈ 𝐼𝑁𝐴′. By Definition 9 case 11 there is (𝑝, 𝑡) ∈ 𝐼𝑁𝐴.

By assumption then |𝑀 (𝑝) | <𝑊𝐼 (𝑝, 𝑡).

By Definition 9 case 9 then𝑊 ′
𝐼
((𝑝, sum), (𝑡, 𝑏)) =𝑊𝐼 ((𝑝, 𝑡))⟨𝑏⟩(𝑐).

By Definition 10 case 1 then |unfold (M (p, sum)) | = |𝑀 (𝑝) |

By assumption then |𝑀 (𝑝) | <𝑊𝐼 (𝑝, 𝑡)

therefore |unfold (M (p, sum)) | <𝑊 ′
𝐼
((𝑝, sum), (𝑡, 𝑏)).

Now we have shown that transition (𝑡, 𝑏) is enabled in unfold (𝑀1) by the markings In′ and Out ′, but we still need to show
that firing transition (t, b) yields unfold (𝑀2). To do this, we notice that the function unfold preserves the multiset operations e.g.
unfold (𝑀1 ⊎𝑀2) = unfold (𝑀1) ⊎ unfold (𝑀2) and unfold (𝑀1 \𝑀2) = unfold (𝑀1) \ unfold (𝑀2).

From the definition of transition firing we have that 𝑀2 = (𝑀1 \ 𝐼𝑛) ⊎𝑂𝑢𝑡 . Since unfold preserves the multiset operations from Definition
10 we get that unfold (𝑀2) = (unfold (𝑀1) \ In′) ⊎ Out ′. Therefore firing a transition (t, b) in N ′ will change the marking from unfold (𝑀1) to
unfold (𝑀2) where:

unfold (𝑀2) = (unfold (𝑀1) \ In′) ⊎ Out ′ (1)

Therefore we have shown that firing transition (𝑡, 𝑏) yields unfold (𝑀2) by the markings In′ and Out ′.

A.12.2 unfold (𝑀1)
(𝑡,𝑏)
−−−−→ M ′ implies 𝑀1

𝑡−→ 𝑀2 under binding 𝑏 where M ′ = unfold (𝑀2). By the definition of transition firing, we have
that unfold (M1) enables (t, b) by the markings In′ and Out ′ that satisfy Definition 6. We will show that 𝑀1 enables t by the markings 𝐼𝑛 and
𝑂𝑢𝑡 . We will do this is in the same way as the previous statement.

Condition a) Assume that for all (𝑝, 𝑐) ∈ 𝑃 ′. 𝐼𝑛′((𝑝, 𝑐), (𝑥)) ≤ unfold (M1 (p, c) (x)). We want to show that for any 𝑝 ∈ 𝑃 . 𝐼𝑛(𝑝) ⊆ 𝑀1 (𝑝)
for all (𝑥, 𝑐).
Let (𝑥, 𝑐) ∈ 𝐼𝑛(𝑝). We want to show (𝑥, 𝑐) ∈ 𝑀1 (𝑝) for all (𝑥, 𝑐).

Let (𝑥, 𝑐) ∈ 𝐼𝑛(𝑝) then 0 < 𝐼𝑛(𝑝) (𝑥, 𝑐)

0 < In(p) (x, c) = by Definition 10 case 3

unfold (In) (p, c) (x) ≤ by 𝐼𝑛′((𝑝, 𝑐), (𝑥)) ≤ unfold (M1 (p, c) (x))

unfold (M1) (p, c) (x) = by Definition 10 case 3

M1 (𝑝) (𝑥, 𝑐) then (𝑥, 𝑐) ∈ M1 (𝑝)

Condition b-l) Can be done in same manner as Condition a) and is therefore not shown.
24

Improved Update Scheduling with Latte PERFORMANCE’20, , Under Submission

A.12.3 𝑀1
𝑑−→ 𝑀2 implies unfold (𝑀1)

𝑑−→ 𝑀 ′ such that 𝑀 ′ ∼ unfold (𝑀2). From the definition of time delay we have that 𝑀1 can be
delayed by a time duration 𝑑 ∈ R≥0 if the following two conditions hold:

• The delayed tokens all satisfy the invariants of their respective places, i.e.
∀(𝑝, 𝑥, 𝑐) ∈ 𝑀1 . 𝑥 + 𝑑 ∈ 𝐼 (𝑝) (𝑐)

• The duration is 0, if any urgent transitions are enabled, i.e.
∀𝑡 ∈ 𝑇𝑢𝑟𝑔 . 𝑀1 ⊢ 𝑡 ⇒ 𝑑 = 0

Since the unfolding creates tokens with preserved ages at places with preserved invariants, the first condition is also preserved except for
sum. From Definition 9, case 18, we know that the invariant for place sum is [0, ∞].

When proving the first statement, it is shown that unfold (𝑀1) only enables a transition if 𝑀1 does. Therefore unfold (𝑀1) could not enable
any urgent transition while 𝑀1 does not. If however 𝑀1 does enable an urgent transition, then the duration must be 0. Thus, the second condition
is also preserved. Now we have shown that if 𝑀1 can delay by 𝑑, then unfold (𝑀1) can delay by 𝑑, but we still need to show that this yields
unfold (𝑀2). This can be achieved by showing that the unfolding preserves delaying, i.e. delaying before unfolding yields the same result as
delaying after unfolding. By Lemma A.1 we know that the markings unfold (𝑀1), unfold𝑀2 in the same unfolded net are strong timed bisimilar,

thus proves that 𝑀1
𝑑−→ 𝑀2 implies unfold (𝑀1)

𝑑−→ 𝑀 ′ such that 𝑀 ′ ∼ unfold (𝑀2).

A.12.4 unfold (𝑀1)
𝑑−→ M ′ implies 𝑀1

𝑑−→ 𝑀2 where M ′ ∼ unfold (𝑀2). This can be proven in a similar fashion to the previous statement.
■

25

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Model and Metrics
	3 Timed-Arc Colored Petri Nets
	3.1 Color and Time Extension
	3.2 Tool Support for TACPN

	4 Time Optimal Schedule Generation
	4.1 Overview of Reduction to TACPN
	4.2 Examples of Switch and Next-Hop Timing
	4.3 Translation Algorithm
	4.4 Minimization of Delay Points
	4.5 Other Consistency Properties

	5 Evaluation
	5.1 Prototype and Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	References
	A Formal Definitions of TACPN
	A.1 Colors
	A.2 Variables, Types and Bindings
	A.3 Color Expressions
	A.4 Guard Expressions
	A.5 Arc Expressions
	A.6 TACPN Definition
	A.7 Markings
	A.8 Enabledness & Semantics
	A.9 Timed-Arc Petri Net
	A.10 Unfolding TACPN to Timed-Arc PN
	A.11 Unfolding equivalence
	A.12 Proof of Theorem A.2

