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Demand-Aware Network Designs of Bounded Degree

Chen Avin Kaushik Mondal Stefan Schmid

Abstract Traditionally, networks such as datacenter

interconnects are designed to optimize worst-case per-

formance under arbitrary traffic patterns. Such network

designs can however be far from optimal when consider-

ing the actual workloads and traffic patterns which they

serve. This insight led to the development of demand-

aware datacenter interconnects which can be reconfig-

ured depending on the workload.

Motivated by these trends, this paper initiates the

algorithmic study of demand-aware networks (DANs),

and in particular the design of bounded-degree net-

works. The inputs to the network design problem are a

discrete communication request distribution, D, defined

over communicating pairs from the node set V , and a

bound, ∆, on the maximum degree. In turn, our ob-

jective is to design an (undirected) demand-aware net-

work N = (V,E) of bounded-degree ∆, which provides

short routing paths between frequently communicating

nodes distributed across N . In particular, the designed

network should minimize the expected path length on N

(with respect to D), which is a basic measure of the

efficiency of the network.

We derive a general lower bound based on the en-

tropy of the communication pattern D, and present

asymptotically optimal demand-aware network design

algorithms for important distribution families, such as

sparse distributions and distributions of locally bounded

doubling dimensions.

Chen Avin and Kaushik Mondal
Communication Systems Engineering Department
Ben Gurion University of the Negev, Israel
E-mail: avin@cse.bgu.ac.il, kaushikmondal85@gmail.com

Stefan Schmid
Faculty of Computer Science
University of Vienna, Austria
E-mail: stefan schmid@univie.ac.at

1 Introduction

The problem studied in this paper is motivated by the

advent of more flexible datacenter interconnects, such

as ProjecToR [29,31]. These interconnects aim to over-

come a fundamental drawback of traditional datacenter

network designs: the fact that network designers must

decide in advance on how much capacity to provision

between electrical packet switches, e.g., between Top-

of-Rack (ToR) switches in datacenters. This leads to

an undesirable tradeoff [42]: either capacity is over-

provisioned and therefore the interconnect expensive

(e.g., a fat-tree provides full-bisection bandwidth), or

one may risk congestion, resulting in a poor cloud appli-

cation performance. Accordingly, systems such as Pro-

jecToR provide a reconfigurable interconnect, allowing

to establish links flexibly and in a demand-aware man-

ner. For example, direct links or at least short commu-

nication paths can be established between frequently

communicating ToR switches. Such links can be im-

plemented using a bounded number of lasers, mirrors,

and photodetectors per node [31]. First experiments

with this technology demonstrated promising results:

although the interconnecting networks is of bounded

degree, short routing paths can be provided between

communicating nodes.

The problem of designing demand-aware networks is

a fundamental one, and finds interesting applications in

many distributed and networked systems. For example,

while many peer-to-peer overlay networks today are de-

signed towards optimizing the worst-case performance

(e.g., minimal diameter and/or degree), it is an in-

triguing question whether the “hard instances” actually

show up in real life, and whether better topologies can

be designed if we are given more information about the

actual communication patterns these networks serve in

practice.
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While the problem is natural, surprisingly little is

known today about the design of demand-aware net-

works. At the same time, as we will show in this paper,

the design of demand-aware networks is related to sev-

eral classic combinatorial problems.

Our vision is reminiscent in spirit to the question

posed by Sleator and Tarjan over 30 years ago in the

context of binary search trees [19,44]: While there is an

inherent lower bound of Ω(log n) for accessing an arbi-

trary element in a binary search tree, can we do better

on some “easier” instances? The authors identified the

entropy to be a natural metric to measure the perfor-

mance under actual demand patterns. We will provide

evidence in this paper that the entropy, in a slightly dif-

ferent flavor, also plays a crucial role in the context of

network designs, establishing an interesting connection.

1.1 The Problem: Bounded Network Design

We consider the following network design problem,

henceforth referred to as the Bounded Network Design

problem, short BND. We consider a set of n nodes (e.g.,

top-of-rack switches, servers, peers) V = {1, . . . , n} in-

teracting according to a certain communication pattern.

The pattern is modelled by D, a discrete distribution

over communication requests defined over V × V . We

represent this distribution using a communication ma-

trix MD[p(i, j)]n×n where the (i, j) entry indicates the

communication frequency, p(i, j), from the (communi-

cation) source i to the (communication) destination j.

The matrix is normalized, i.e.,
∑
ij p(i, j) = 1. More-

over, we can interpret the distribution D as a weighted

directed demand graph GD, defined over the same set

of nodes V : A directed edge (u, v) ∈ E(GD) exists iff

p(u, v) > 0. We set the edge weight to the communica-

tion probability: w(i, j) = p(i, j).

In turn, our objective is to design an unweighted,

undirected Demand-Aware Network (DAN) defined over

the set of nodes V and the distribution D, henceforth

denoted as N(D) or just N when D is clear from the

context. The objective is that N(D) optimally serves

the communication requests from D under the con-

straint that N must be chosen from a certain family of

desired topologies N . In particular, we are interested in

sparse networks (i.e., having a linear number of edges)

with bounded degree ∆ (i.e., nodes have a small number

of lasers [31]), and we denote the family of ∆-bounded

degree graphs by N∆.

Note that the designed network can be seen as

“hosting” the served communication pattern, i.e., the

demand graph is embedded on the designed network.

Accordingly, we will sometimes refer to the demand

graph as the guest network and to the designed net-

work as the host network.

Our objective is to minimize the expected path

length [2,3,41] of the designed host network N ∈ N :

For u, v ∈ V (N), let dN (u, v) denote the shortest path

between u and v inN . Given a distributionD over V×V
and a graph N over V , the Expected Path Length (EPL)

of route requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
∑

(u,v)∈D

p(u, v) · dN (u, v)

Since routing across the host network usually occurs

along shortest paths, the expected path length captures

the average hop-count of a route (e.g., latency incurred

or energy consumed along the way).

Succinctly, the Bounded Network Design (BND)

problem is to minimize the expected path length and is

defined as follows:

Definition 1 (Bounded Network Design) Given a

communication distribution, D and a maximum degree

∆, find a host graph N ∈ N∆ that minimizes the ex-

pected path length:

BND(D, ∆) = min
N∈N∆

EPL(D, N)

See Fig. 1 for an example of these definitions.

1.2 Our Contributions

This paper initiates the study of a fundamental prob-

lem: the design of demand-aware communication net-

works. While our work is motivated by recent trends

in datacenter network designs, our model is natural
and finds applications in many distributed and net-

worked systems (e.g., peer-to-peer overlays). The main

contribution of this paper is to establish an interest-

ing connection of the network design problem to the

conditional entropy of the communication matrix. In

particular, we present a lower bound on the expected

path length of a network with maximum degree ∆

which is proportional to the conditional entropy of D,

H∆(X | Y ) + H∆(Y | X) where X,Y are the ran-

dom variables describing the marginal distribution of

the sources and destinations respectively in the given

communication matrix and ∆ is the base of the loga-

rithm used for calculating the entropy. While this lower

bound can be as high as log∆ n, for many distributions

it can be much lower (even constant). Our main results

are presented in Theorem 4 which proves a matching

upper bound for the case when D is a sparse distribu-

tion. It is important to note the real datacenters traffic

shows evidence that the demand distributions are in-

deed sparse [40,31]. Additionally Theorem 6 proves a
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Fig. 1 Example of the bounded network design problem. (a) A given demand distribution D (which in this case is symmetric).
(b) The demand graph GD (with non-normalized weights). Nodes 1 and 3 have a degree more than 3. (c) An optimal solution
DAN N with ∆ = 3. In this case, the solution is not a subgraph but contains auxiliary edges (e.g., {5, 6}), and EPL(D, N) = 1.16
while H(X | Y ) = 1.02 (the Shannon entropy to the base 3 is H(X) = 1.61).

matching upper bound for the case when D is a regular

and uniform (but maybe dense) distribution of a locally

bounded doubling dimension. Also in these two cases

the conditional entropy could range from a constant

and up to log n. At the heart of our technical contribu-

tion is a novel technique to transform a low-distortion

network of maximum degree ∆ to a low-degree network

whose maximum degree equals the average degree of the

original network, while maintaining an expected path

length in the order of the conditional entropy. More-

over, we show an interesting reduction of uniform and

regular distributions to graph spanners in Theorem 5.

1.3 Paper Organization

The remainder of this paper is organized as follows. We

discuss related work in Section 2 and introduce some

preliminaries in Section 3. We derive lower bounds in

Section 4 and present algorithms to design networks for

sparse distributions resp. regular and uniform distribu-

tions in Section 5 resp. Section 6. We conclude our work

and outline directions for future research in Section 7.

For ease of presentation, we defer some technical details

to the Appendix.

2 Related Work

Our work is motivated by the recent trends away

from traditional fat-tree datacenter interconnects to-

ward more demand-optimized and even adjustable net-

works [42,31,43]. There are several interesting perspec-

tives on our problem. Accordingly we divide this section

and discuss the existing literature on the related algo-

rithmic problems.

Embedding Problems. The first one arises when try-

ing to gain some intuition about the problem complex-

ity. If ∆ = n, the problem is simple: the demand (or

guest) graph GD itself can be used as the host graph or

DAN N ∈ N∆, providing an ideal expected path length

1. If a sparse host graph is desired, a star topology could

be used as a DAN to provide an expected path length of

at most 2. At the other end of the spectrum, if ∆ = 2

(and the host network is required to be connected) the

DAN N must be a line or a ring graph. However, the

problem of how to embed a graph on the linear chain

or the ring such that the expected path length is mini-

mized, is already NP-hard: the problem is essentially a

Minimum Linear Arrangment (MinLA) problem [12,22,

26]. One perspective to see our contribution is that in

this paper, we are interested in what happens between

these extremes, for other values of ∆, in particular for

a constant ∆ which guarantees that our host network

will be sparse, i.e., has a linear number of edges. In con-

trast to the general arrangement problem which asks

for an embedding of the guest graph on a specific and

given host graph, in our network design problem we

are free to choose the best host graph from a given fam-

ily of graphs (i.e., bounded degree graphs). One might

wonder: does this flexibility make the problem easier?

Existing works on low maximum resp. low average de-

gree networks, e.g., in the context of publish/subscribe

overlays [13,34,35], do not provide formal performance

guarantees.

Optimal Spanning Trees. Spanning trees [32] and

more generally, linear (resp. sparse) spanners have been

studied intensively in the literature [16]. When effi-
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cient communication from/to a single node is required,

an optimal spanning tree, i.e., a shortest-path (span-

ning) tree rooted at that node, can be computed using

standard shortest path algorithms. Similarly, the well-

known Prim and Kruskal algorithms can be used to

efficiently compute the optimal spanning tree in terms

of the overall link weights: a Minimum Spanning Tree

(MST). However, neither the shortest path spanning

tree nor the minimum spanning tree provide any guar-

antee on the path length between arbitrary network

nodes as well as on the maximum degree of a node

in the tree. This still holds for spanning tree versions

which aim to jointly optimize the quality of the shortest

path tree and the minimum spanning tree. Also, on the

negative side, Johnson et al. [30] have shown that find-

ing an optimal spanning tree (sum of shortest paths)

over all possible pairs is NP-complete.

Spanners. The bounded network designs studied in

this paper are not restricted to trees, and accordingly,

are related to more general (sparse) graph spanners

which open another perspective on our work. Graph

spanners aim to maintain distances of the original

graph, while using less edges: a kind of “graph com-

pression”. Peleg et al. [36] study subgraph spanners for

both general graphs as well as of some special graphs,

e.g., chordal graphs; these designs aim to ensure a low

distortion between all possible pairs. Additive spanners

provide low distortion guarantees between all communi-

cation pairs; however, such graphs are far from linear [1,

8,15,21,46].

But in contrast to these classic spanner prob-

lems which are primarily concerned with minimizing

the worst-case distortion (resp. the average distortion)

among all node pairs, we are only interested in the lo-

cal distortion. Namely, we aim to find a good “span-

ner” which preserves locality of neighborhoods, i.e., 1-

hop neighborhoods in the demand graph. An inter-

esting result is by Pettie [39] who studied so-called

(α, β)-spanners, considering a general distortion func-

tion f with respect to the original distance d; however,

no analysis is provided for the 1-hop case f(1). An-

other interesting related work is by Chan et al. [9] who

study constructions of linear spanners (not necessarily

subgraphs) providing a constant distortion on average.

However, in their model, a small fraction of the pairs

can have a large distortion, i.e., not all the pairs must

have constant distortion. In particular, in the construc-

tion in [9], the one-hop neighbors can have an arbitrary

distortion.

Second, unlike classic spanner problems but similar

to geometric (metric) spanners, the designed network

N does not have to be a subgraph and may include

edges which do not exist in the demand network GD,

i.e., 0-entries in the corresponding communication ma-

trix MD. We refer the corresponding edges as auxil-

iary edges (a.k.a. shortcut edges [33]). Meyerson and

Tagiku [33] allow for 0-edges (beyond the subgraph)

to improve the weighted average shortest path distance

among all possible node pairs. It is easy to see that aux-

iliary edges can indeed be required to compute optimal

network designs, and yield strictly lower communica-

tion costs than subgraph spanners (e.g. Fig. 1).

Third, in contrast to the frequently studied sparse

graph spanner problem variants, we require that nodes

in the designed network are of degree at most ∆. For

example, although chordal graphs have a constant span-

ner [36], it is difficult to transform arbitrary graphs into

chordal graph without increasing the degree [14]. Simi-

larly, it is known that hypercubes have a constant span-

ner [37], but it is difficult to embed arbitrary graphs

into hypercubes. See also the related results on trees

[48] and graphs of bounded tree width [27].

Finally, we are not aware of any work studying the

relationship between spanners and entropy. This makes

our model fundamentally different from existing models

studied in the literature.

Demand-Aware Networks. Our vision of demand-

optimized or even self-adjusting networks is similar in

spirit to splay trees, the innovative self-adjusting binary

search tree datastructures introduced by Sleator and

Tarjan [44] over 30 years ago, as well as their variants

(e.g., tango trees [20] and multisplay trees [47]). How-

ever, in such datastructures, requests always originate

from the root. In contrast, in a communication net-

work, requests occur between source-destination pairs.

We have recently made a first step toward generalizing

self-adjusting splay trees to networks, and called the re-

sulting self-adjusting networks SplayNets [41] resp. DiS-

playNets [38] (the latter is a distributed version). How-

ever, SplayNets and DiSplayNets are limited to binary

search trees (resp. multiple binary search trees [3]). In

contrast to SplayNets, however, we in this paper do

not impose any search structure on the tree but allow

for arbitrary routing; moreover, we consider arbitrary

bounded-degree graphs (beyond trees). Demand-aware

networks are also studied in the context of wide-area

networks [29], and also first scalable self-adjusting net-

works are emerging [28], however, without providing

strong formal guarantees. Avin et al. [4] recently also

designed robust and sparse network topologies where

the expected path lengths are proportional to the en-

tropy, using a coding approach, however, without con-

sidering bounds on the degree.

Information and Coding Theory. The fact that our

matrix represents a distribution provides some interest-

ing structure. In particular, it leads us to another con-
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nection, namely to information and coding theory. It is

known that the expected path length in binary search

trees [44] is upper bounded by the entropy H(X), over

the (empirical) distribution of accessed elements X in

the data structure. For tree-based network designs pro-

viding local routing [3,41], the entropy of the distri-

bution, H(X|Y ) + H(Y |X), is a lower bound on the

expected path length [41], where X, Y are the random

variables distributed according to the marginal distri-

bution of the sources and destinations in D. In the cur-

rent work we extend this line of research by studying

more general distributions and a larger family of host

networks.

Other. Finally, we note that researchers have devel-

oped (and are still developing) different definitions of

graph entropy [18], also interpreting communication

matrices as graphs. However, to the best of our knowl-

edge, none of these existing definitions matches our

needs, which is why we in this paper preferred to use the

notion of conditional entropy as our complexity mea-

sure.

Bibliographic Note. A first version of this paper was

presented at DISC 2017 [5]. Recently, at INFOCOM

2019 [6], we showed that some of the algorithms and

tools developed in the current paper can also be used to

design demand-aware networks which not only provide

short routes but also low load. Finally, for more details

on our perspective in general and the connection be-

tween self-adjusting datastructures and self-adjusting

networks, we refer the reader to our recent editorial ar-

ticle in SIGCOMM CCR [7].

3 Preliminaries

We start with some notation about D. Let D[i, j] or

p(i, j) denote the probability that source i routes to

destination j. Let p(i) denote the probability that i is

a source, i.e., p(i) =
∑
j p(i, j). Similarly let q(j) de-

note the probability that j is a destination. Let X,Y

be random variables describing the marginal distribu-

tion of the sources and destinations in D, respectively.

Let
−→
D [i] denote the normalized i’th row of D, that is,

the probability distribution of destinations given that

the source is i. Similarly let
←−
D [j] denote the normalized

j’th column of D, that is the probability distribution of

sources given that the destination is j. Let Yi and Xj

be random variables that are distributed according to−→
D [i] and

←−
D [j], respectively. We say that D is regular if

GD is a regular graph (both in terms of in and out de-

grees). We say that D is uniform if for every D[i, j] > 0,

D[i, j] = 1
m and m is the number of edges in GD. We

say that D is symmetric if D[i, j] = D[j, i].

We will show that a natural measure to assess the

quality of a designed network relates to the entropy of

the communication pattern. For a discrete random vari-

able X with possible values {x1, . . . , xn}, the entropy

H(X) of X is defined as

H(X) =

n∑
i=1

p(xi) log2

1

p(xi)
(1)

where p(xi) is the probability that X takes the value xi.

Note that, 0 · log2
1
0 is considered as 0. If p̄ is a discrete

distribution vector (i.e., pi ≥ 0 and
∑
i pi = 1), then

we may write H(p̄) or H(p1, p2, . . . , pn) to denote the

entropy of a random variable that is distributed accord-

ing to p̄. If p̄ is the uniform distribution with support s

(s being the number of places in the distribution with

pi > 0, i.e., pi = 1/s), then H(p̄) = log s.

Using the decomposition (a.k.a. grouping) prop-

erties of entropy the following relations are well-

known [17]:

H(p1, p2, p3, . . . , pm) ≥ H(p1 + p2, p3, . . . , pm) (2)

H(p1, p2, . . . , pm) ≥ (1− p1)H(
p2

1− p1
, . . . ,

pm
1− p1

)

(3)

For a joint distribution over X,Y , the joint entropy is

defined as

H(X,Y ) =
∑
i,j

p(xi, yj) log2

1

p(xi, yj)
(4)

Also recall the definition of the conditional entropy

H(X|Y ):

H(X|Y ) =
∑
i,j

p(xi, yj) log2

1

p(xi | yj)

=
∑
j

p(yj)
∑
i

p(xi | yj) log2

1

p(xi | yj)

=

n∑
j=1

p(yj)H(X|Y = yj) (5)

For X and Y defined as above from D we also have

H(X|Y ) =

n∑
j=1

p(yj)H(X|Y = yj)

=

n∑
j=1

q(j)H(
←−
D [j]) =

n∑
j=1

q(j)H(Xj) (6)

H(Y |X) is defined similarly and we note that it may

be the case that H(X|Y ) 6= H(Y |X). We may simply

write H for the entropy if the purpose is given by the

context. By default, we will denote by H the entropy
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computed using the binary logarithm; if a different log-

arithmic basis ∆ is used to compute the entropy, we

will explicitly write H∆.

We recall the definition of a graph spanner. Given

a graph G = (V,E), a subgraph G′ = (V,E′) is a t-

spanner of G if for every u, v ∈ V , t·dG(u, v) ≥ dG′(u, v)

and t is the distortion of the spanner. We say that G′ =

(V,E′) is a graph metric t-spanner if it is not a subgraph

ofG, i.e., it may have additional edges that are not inG.

4 A Lower Bound

We now establish an interesting connection to infor-

mation theory and show that the conditional entropy

serves as a natural metric for bounded network designs.

In particular, we prove that the expected path length

BND(D, ∆) in any demand-aware bounded network de-

sign, is at least in the order of the conditional entropy.

Formally:

Theorem 1 Consider the joint frequency distributions

D. Let X, Y be the random variables distributed ac-

cording to the marginal distribution of the sources and

destinations in D, respectively. Then

BND(D, ∆) ≥ Ω(max(H∆(Y |X), H∆(X|Y ))

Before delving into the proof, let EPL(p̄, T ) denote

the expected path length in a tree T from the root to

its nodes where the expectation is over a distribution

p̄. That is EPL(p̄, T ) =
∑
i pidT (root, i). We recall the

following well-known theorem:

Theorem 2 ([32], restated.) Let H(p̄) be the entropy

of the frequency distribution p̄ = (p1, p2, . . . , pn). Let

T be an optimal binary search tree built for the above

frequency distribution. Then

EPL(p̄, T ) ≥ 1

log 3
H(p̄)

Namely, the entropy H(p̄), is a lower bound on the ex-

pected path length from the root to the nodes in the

tree. Note that, the proof of Theorem 2 in [32] holds for

any optimal binary tree T , not necessarily a search tree.

For higher degree graphs, we can extend the result:

Lemma 1 Let H∆(p̄) be the entropy (calculated using

the logarithm of base ∆) of frequency distribution p̄ =

(p1, p2, . . . , pn). Let T be an optimal ∆-ary tree built for

the above frequency distribution. Then, EPL(p̄, T )+1 ≥
1

log(∆+1)H∆(p̄).

Proof The proof almost directly follows from the proof

of Theorem 2 in [32], by extending properties of bi-

nary trees to ∆-ary trees. Let T be any ∆-ary tree over

the probability p̄ (with nodes 1, 2, . . . n). To each node

which has less than ∆− 1 children in T , add leaves to

make the number of its children ∆. Call this tree T ′.

There would be n(∆−1)+1 leaves in T ′. This can easily

be shown by induction on the number of internal nodes.

The frequency to access the internal nodes of T ′ remains

p̄. The frequency to access the leaves will be p̄′ = 0̄,

namely p′j = 0 for all leaves j = 1, 2, ..., n(∆ − 1) + 1.

Let bi, aj be the distances of the internal nodes and

the leaves respectively, from the root. The expected

path length to reach nodes in T ′ from the root would

be
∑
pibi +

∑
p′jaj =

∑
pibi which is EPL(p̄, T ). We

now define:

L =

n∑
i=1

(∆+ 1)−(bi+1) +

n(∆−1)+1∑
j=1

(∆+ 1)−aj

Using induction, it can be easily shown that L = 1 and

hence logL = 0. Define,

f ′i = (∆+ 1)−(bi+1) for 1 ≤ i ≤ n

and

f ′′j = (∆+ 1)−aj for 1 ≤ j ≤ n(∆− 1) + 1

So,
∑n
i=1 f

′
i +

∑n(∆−1)+1
j=1 f ′′j = 1 and conse-

quently {f ′1, ...f ′n, f ′′1 , ...f ′′n(∆−1)+1} is a distribution.

Recall Gibbs’ inequality [17] which states that∑
pi log 1/pi ≤

∑
pi log 1/fi for any distribution p̄ and

f̄ . Therefore:

H∆(p̄) =
∑

pi log 1/pi

=
∑

pi log 1/pi +
∑

p′j log 1/p′j

≤
∑

pi log 1/f ′i +
∑

p′j log 1/f ′′j

=
∑

pi log(∆+ 1)(bi+1) +
∑

p′j log(∆+ 1)aj

= log(∆+ 1)(
∑

pi(bi + 1) +
∑

p′jaj)

= log(∆+ 1)(EPL(p̄, T ) + 1)

We now prove the lower bound.

Proof (Proof of Theorem 1) The proof idea is to view

any network as the union of n optimal trees, one for

each individual node. While the resulting network may

violate the degree requirement, it constitutes a valid

lower bound. So we start by finding an optimal struc-

ture for each source node i, according to all its commu-

nication destinations
−→
D [i]: We construct n ∆-ary trees,

and let T i∆ be the optimal tree for source node i built

using
−→
D [i]. From Lemma 1, we have:

EPL(
−→
D [i], T i∆) =

n∑
j=1

p(j|i)dT i∆(i, j) = Ω(H∆(Y | X = i))
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where EPL(
−→
D [i], T i∆) denotes the expected path length

of T i∆ given
−→
D [i] and dT i∆ denotes the shortest path

in T i∆. Now consider any bounded degree network N∆
and compare it to the forest T made up of n trees

T 1
∆, T

2
∆, . . . , T

n
∆. Then,

EPL(D, N∆) =

n∑
i=1

p(i) · EPL(
−→
D [i], N∆)

≥
n∑
i=1

p(i) · EPL(
−→
D [i], T i∆)

≥
n∑
i=1

p(i) ·H∆(Y | X = i) = Ω(H∆(Y |X))

Similarly we can consider a set of trees optimized to-

ward the incoming communication of node j,
←−
D [j], and

the marginal destination probability. We show:

EPL(D, N∆) ≥ Ω(H∆(X | Y ))

Hence the theorem follows.

5 Network Design for Sparse Distributions

We now present families of distributions which enable

DANs that match the lower bound. Our approach will

be based on replacing neighborhoods with near optimal

binary (or ∆-ary) trees. Following the lower bound of

Lemma 1, it is easy to show a matching upper bound

(for a constant ∆).

Lemma 2 Let p̄ be a probability distribution on a set

of node destinations (sources) V, and let u be a single

source (destination) node. Then one can design a tree

T with u as a root node with degree one, connected to

a ∆-ary tree over V such that the expected path length

from u to all destinations (or from all sources to u) is:

EPL(p̄, T ) =
∑
i

pi · dT (u, i) ≤ H∆(p̄) + 1 (7)

Proof The proof follows by designing a Huffman ∆-

ary code over p̄ (with expected code length less than

H∆(p̄)+1 [17]) and using it to build a rooted∆-ary tree.

While the nodes in the Huffman code are tree leaves,

we can move them up to become internal nodes, which

only improves the expected path length.

5.1 Tree Distributions

A most fundamental class of distributions for which we

can construct optimal network designs is based on trees.

Theorem 3 Let D be a communication request distri-

bution such that GD is a tree (i.e., ignoring the edge

direction, GD forms a tree). Let X, Y be the random

variables of the sources and destinations in D, respec-

tively. Then, it is possible to generate a DAN N with

maximum degree 8, such that

EPL(D, N) ≤ H(Y | X) +H(X | Y ) + 2

This is asymptotically optimal.

Proof We generate N as follows. Consider an arbitrary

node as the root of the tree GD, call this tree TD, and

consider the parent-child relationship implied by the

root. Let π(i) denote the parent of node i. Let −→ci de-

note the communication distribution from vi to its chil-

dren (not including its single parent) and
−→
D [i] denote

the communication distribution from i to its neighbors

(children and parent). Let pπi =
−→
D [i][π(i)] denote the

corresponding entry in
−→
D [i] for the parent of i. Since

−→
D [i] is the normalized i-th row of the given matrix, so,

pπi p(i) in D was the corresponding entry of pπi in
−→
D [i].

From entropy Eq. (3), we have the following,

(1− pπi )H(−→ci ) ≤ H(
−→
D [i]) (8)

Similarly we define ←−ci and
←−
D [i] as the communication

distribution to vi, from its children and neighbors re-

spectively. Also we define qπi as the corresponding entry

in
←−
D [i] for the parent of i similarly as above. We have

the following equation similar to Eq. (8),

(1− qπi )H(←−ci ) ≤ H(
←−
D [i]) (9)

The construction has two phases. In the first phase

we replace outgoing edges. For each node i replace the

edges between i and its children with a binary tree ac-

cording to −→ci and the method of [32] (or Lemma 2 for

a general ∆) for creating a near optimal binary tree.

Let
−→
B i denote this tree and recall that EPL(−→ci ,

−→
B i) ≤

H(−→ci ) + 1. Note that every node i may appear in at

most two trees
−→
B i and

−→
B π(i); in

−→
B i its degree is one

and in
−→
B π(i) its degree is at most 3, so degree of each

node is at most 4 after this phase.

In the second phase we take care of the remaining

incoming edges from children to parents. For each node

i replace the edges from its children to it with a binary

tree according to←−ci and the method of [32] for creating

a near optimal binary tree. Let
←−
B i denote this tree and

recall that EPL(←−ci ,
←−
B i) ≤ H(←−ci ) + 1. Note that every

node i may appear in at most two trees
←−
B i and

←−
B π(i);

in
←−
B i i’s degree is one and in

←−
B π(i) i’s degree is at most

3. Thus, degree of each node is increased by at most 4

in this phase.
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Now we bound EPL(D, N) by bounding the ex-

pected path lengths in the corresponding binary trees

of each node, first considering all edges from parent to

children and then all edges from children to parent. Let

p(i) and q(i) denote the probabilities that node i will be

a source and a destination of a communication request,

respectively. The analysis is given in Table 1.

As we construct a network with degree bound 8, ac-

cording to Theorem 1, for any network N ′ of degree 8,

EPL(D, N ′) ≥ Ω(max(H8(Y |X), H8(X|Y )). Without

loss of generality, let H8(Y |X) be the maximum. Note

that, H8(Y |X) = H(Y |X)/ log2 8 = H(Y |X)/3. Con-

sidering these, we now have, EPL(D, N) ≤ 2H(Y |X) +

2 = 6H8(Y |X) + 2. This matches asymptotically with

our lower bound in Theorem 1.

5.2 General Sparse Distributions

Asymptotically optimal demand-aware networks can

even be designed for general sparse distributions.

Theorem 4 Let D be a communication request distri-

bution where ∆avg is the average degree in GD (so the

number of edges m =
∆avg·n

2 ). Let X, Y be the random

variables of the sources and destinations in D, respec-

tively. Then, it is possible to generate a DAN N with

maximum degree 12∆avg, such that

EPL(D, N) ≤ H(Y | X) +H(X | Y ) + 3 (10)

This is asymptotically optimal when ∆avg is a constant.

Proof Recall that GD (for short G) is a directed graph
and define in-degree and out-degree in the canonical

way. Let the (undirected) degree of a node, be the sum

of its in-degree and out-degree and denote the average

degree as ∆avg. Denote the n/2 nodes with the lowest

degree in G as low degree nodes and the rest as high

degree nodes. Note that each low degree node has a

degree at most 2∆avg and both its in-degree and out-

degree must be low. A node with out-degree (in-degree)

larger than 2∆avg is called a high out-degree (high in-

degree) node (some high degree nodes are neither high

in-degree nor high out-degree).

The construction of N will be done in two phases.

In the first phase, we consider only (directed) edges

(u, v) from a high out-degree u and a high in-degree

node v. We subdivide each such edge with two edges

that connect u to v via a helping low degree node `,

i.e., removing the directed edge (u, v) and adding the

edges (u, `) and (v, `). Note that there are at most m

such edges, so we can distribute the help between low

degree nodes in such a way that each low degree node

helps at most ∆avg such edges. Call the resulting graph

G′.

Look at Fig. 2 for more clarification. There are edges

from high out-degree node vh to several high in-degree

nodes v1, v2, ..., vi, vi+1, ..., vm. Let l1 be a low degree

neighbor of v1. We discard the edge v1vh and add the

edge vhl1 instead. This decreases the number of high

degree neighbors of both v1, vh by 1 and increases the

degree of the low degree node l1 by 1. Similarly, we use

low degree node lk for vi+1vh. It also may be the case

that the degree of the low degree node is increased by

2 for helping one such edge. As an example, we dis-

card the edge v2vh and join it via a low degree node

l2. Since l2 was not a neighbor of any of v2, vh in the

original graph, its degree is increased by 2 here. Simi-

larly we use l2 for vivh, and lk for vmvh. Later we show

that although the degrees of the low degree nodes are

increasing, they remain bounded.

Accordingly, we also create a new matrix D′ which,

initially, is identical to D. Let a low degree node which

helps edge (u, v) be denoted by `huv. Then for each (u, v)

and `huv as above we set

p′(u, v) = 0

p′(u, `huv) = p(u, `huv) + p(u, v)

p′(`huv, v) = p(`huv, v) + p(u, v)

(11)

Note that D′ is not a distribution matrix anymore,

as the sum of all the entries is more than one, but it has

the following property: for each high out-degree node u

and high in-degree node v, we have

p′(u) = p(u) and q′(v) = q(v) (12)

Moreover, using Eq. (2),

H(
−→
D′[u]) ≤ H(

−→
D [u]) and H(

←−
D′[v]) ≤ H(

←−
D [v]) (13)

In the second phase, we construct N from G′. Con-

sider each node u with high out-degree and create a

nearly optimal binary tree
−→
B u according to

−→
D′[u] using

the method of [32]. Add an edge from u to the root

of
−→
B u and delete all the out-edges from u from G′.

Similarly consider each node v with high in-degree and

create a nearly optimal binary tree
←−
B v according to←−

D′[v] using the method of [32]. Add an edge from v to

the root of
←−
B v and delete all the in-edges of v from G′.

This completes the construction of N .

We first bound the maximum degree in N . First

consider a low degree node `huv, helping an edge (u, v),

i.e., u is high out-degree and v is high in-degree. So `huv
is part of both u’s and v’s binary tree, hence `huv’s degree
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EPL(D, N) ≤
∑

(u,v)∈D

p(u, v)dN (u, v)

=
∑

(π(i),i)∈TD

p(π(i), i)dN (π(i), i) +
∑

(i,π(i))∈TD

p(i, π(i))dN (i, π(i))

=
n∑
j=1

(p(j)− pπj p(j))EPL(−→cj ,
−→
B j) +

n∑
j=1

(q(j)− qπj q(j))EPL(←−cj ,
←−
B j)

=
n∑
j=1

p(j)(1− pπj )(H(−→cj ) + 1) +
n∑
j=1

q(j)(1− qπj )(H(←−cj ) + 1) (Using Lemma 2)

≤
n∑
j=1

p(j)(H(
−→
D [j]) + 1) +

n∑
j=1

q(j)(H(
←−
D [j]) + 1) (Using Eq. (8) and Eq. (9))

=
n∑
j=1

p(j)H(
−→
D [j]) +

n∑
j=1

q(j)H(
←−
D [j]) + 2

= H(Y | X) +H(X | Y ) + 2 (Using Eq. (6))

Table 1 Analysis of expected path lengths for tree network

l1

l2

vh

v1

v2

vi

vi+1

vm

lk

l1

l2

vh

v1

v2

vi

vi+1

vm

lk

(a) (b)

Fig. 2 (a) High out-degree node vh in G has several edges to high in-degree neighbors. (b) vh has only low degree neighbors,
after using low degree helping nodes

increases by at most 6 (two times degree 3 for being an

internal node). Note that `huv needs to help at most∆avg

edges itself. For each of these ∆avg edges, `huv’s degree

will be at most 6, resulting in a degree of 6∆avg. Since

`huv’s degree was at most 2∆avg, in the worst case, `huv
was associated with 2∆avg high in-degree or out-degree

nodes, i.e., `huv will be present in all these 2∆avg trees,

which results in another 6∆avg increase of the degree for

`huv. In total, `huv’s degree is 12∆avg. If a node h has both

high out-degree and high in-degree, then its degree will

be two: h is connected to the root of the tree created

of its out-edges and to the root of the tree created of

its in-edges. If a node u is only a high out-degree node,

its degree in N is bounded by 6∆avg + 1 (and similarly

for a node u which is only a high in-degree node). If a

node is a high degree node but neither high out-degree

nor high in-degree, then its degree in N remains same

as the original (originally it was up to 4∆avg in G′). We

now bound EPL(D, N). Recall that from Lemma 2 and

Eq. (13), we have,

EPL(
−→
D′[u],

−→
B u) ≤ H(Y | X = u) + 1

EPL(
←−
D′[v],

←−
B v) ≤ H(X | Y = v) + 1

(14)

For each request (u, v) in D there are two possibili-

ties for the route on N : either the edge (u, v) ∈ N is a

direct route, or the route goes via
−→
B u or

←−
B v, or both.

Let O and I be the set of high out-degree and in-degree

nodes, respectively. The analysis of the expected path

length is shown in Table 2.

As we construct a network with degree

bound 12∆avg, according to Theorem 1, for
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any network N ′ of above degree, EPL(D, N ′) ≥
Ω(max(H12∆avg

(Y |X), H12∆avg
(X|Y )) Without loss

of generality, let H12∆avg
(Y |X) be the maximum.

Recall that, H12∆avg(Y |X) = H(Y |X)/ log2 12∆avg.

Considering these, we now have, EPL(D, N) ≤
2H(Y |X) + 3 = 2 log2 12∆avgH8(Y |X) + 3. This

matches asymptotically our lower bound in Theorem 1

when ∆avg is constant.

6 Regular and Uniform Distributions

Another large family of distributions for which demand-

aware networks can be designed are regular and uniform

distributions D. While it is easy to see that both con-

ditions can be relaxed such that the supported distri-

butions can be “nearly regular” and “nearly uniform”,

for ease of presentation, we keep the conditions strict

in what follows.

We first establish an interesting connection to span-

ners. As we will see, this connection will provide a

simple and powerful technique to design a wide range

of demand-aware networks meeting the conditional en-

tropy lower bound.

Theorem 5 Let D be an arbitrary (possibly dense) r-

regular and uniform request distribution. It holds that

if we can find a constant and sparse (i.e., constant dis-

tortion, linear sized) spanner of degree at most r for

GD, we can design a constant degree DAN N providing

an expected path length of

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (15)

This is asymptotically optimal.

In other words, for regular and uniform distribu-

tions, the network design problem boils down to find-

ing a constant1 sparse spanner: as we will see, we can

automatically transform this spanner into an efficient

network (which may contain auxiliary edges). The re-

mainder of this section is devoted to the proof of the

theorem.

Assume that D is r-regular and uniform. Recall

that in this case H(Y | X) = H(X | Y ) = log r, so

BND(D, ∆) ≥ Ω(H(Y | X)) where ∆ is a constant. We

now describe how to transform a constant sparse (but

potentially irregular) spanner for GD into a constant-

degree host network N with EPL(D, N) ≤ O(log r).

This will be done using a similar degree reduction tech-

nique as discussed earlier (in the proof of Theorem 4).

1 To be precise, a spanner with constant average distortion
will be sufficient (see Appendix for details). However, for sim-
plicity, we leave it as a constant spanner.

Lemma 3 Let G be a graph of maximum degree ∆max

and an average degree ∆avg. Then, we can construct

a graph G′ with maximum degree 8∆avg which is a

graph metric log∆max-spanner of G, i.e., dG′(u, v) ≤
2 log∆max · dG(u, v).

Proof Let us call the n/2 nodes with the lowest degree

in G the low degree nodes and the remaining nodes high

degree nodes. By the pigeon hole principle, each low de-

gree node has a degree at most 2∆avg. The construction

of G′ proceeds in two phases. In the first phase we take

every edge between high degree nodes u, v and subdi-

vide it with two edges that connect u to v via a helping

low degree node `, i.e., removing the edge (u, v) and

adding the edges (u, `) and (v, `). Note that there are

at most m edges connecting high degree nodes so we

can distribute the help between low degree nodes such

that each low degree node helps to at most ∆avg such

edges.

In the second phase we consider each high degree

node u and replace the set of edges between u and its

neighbors, Γ (u), with a balanced binary tree that con-

nects u as the root and Γ (u) as remaining nodes of the

tree. Denote as Bu this tree and note that the height of

Bu is at most log(|Γ (u)|+ 1). We leave edges between

low degree nodes as in G.

Let us analyze the degrees in G′. Since every high

degree node u in G′ only connects to low degree nodes,

it is only a member of Bu and its degree reduces to

2 in G′. Now consider a low degree node `: for each

edge (u, v) it helps, ` participates in Bu and Bv. Hence,

its degree increases by at most 6 in G′ compared to

G. Overall, for helping high degree nodes, the degree

of ` can increase by 6∆avg. Together with its original

neighbors from G, the degree of ` in G′ can be at most

8∆avg.

Next consider the distortion of G′. The distortion

between neighboring low degree nodes is one. The dis-

tortion between neighboring high degree nodes is at

most twice log∆max and the distortion between a neigh-

boring high and low degree is at most log∆max.

So, dG′(u, v) ≤ 2 log∆max · dG(u, v) for all u, v in

G′.

We will apply Lemma 3 to prove Theorem 5.

Proof (Proof of Theorem 5) Let S be a constant and

sparse spanner of GD (S could be either a subgraph

or a metric spanner of max degree asymptotically not

larger than GD) of degree at most r. Lemma 3 then

tells us how to transform S to a DAN N of degree ∆avg.

Since S is a constant spanner there is a constant c such

that,

EPL(D, S) =
∑

(u,v)∈D

p(u, v) · dS(u, v) = c (16)
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EPL(D, N) =
∑

(u,v)∈D

p(u, v)dN (u, v)

=
∑
u/∈O

∑
v/∈I

p(u, v) +
∑
u/∈O

∑
v∈I

p(u, v)dN (u, v) +
∑
u∈O

∑
v∈I

p(u, v)dN (u, v) +
∑
u∈O

∑
v/∈I

p(u, v)dN (u, v)

(sum over all possible pairs)

=
∑
u/∈O

∑
v/∈I

p(u, v) +
∑
u/∈O

∑
v∈I

p(u, v)dN (u, v) +
∑
u∈O

∑
v∈I

p(u, v)
[
dN (u, `huv) + dN (`huv , v)

]
+
∑
u∈O

∑
v/∈I

p(u, v)dN (u, v)

(path between u, v in N goes via `huv when u is high out-degree and v is high in-degree)

=
∑
u/∈O

∑
v/∈I

p(u, v) +

∑
u/∈O

∑
v∈I

p(u, v)dN (u, v) +
∑
u∈O

∑
v∈I

p(u, v)dN (`huv , v)

+

∑
u∈O

∑
v∈I

p(u, v)dN (u, `huv) +
∑
u∈O

∑
v/∈I

p(u, v)dN (u, v)


(rearrangement of terms)

=
∑
u/∈O

∑
v/∈I

p(u, v) +
∑
u∈V

∑
v∈I

p′(u, v)dN (u, v) +
∑
u∈O

∑
v∈V

p′(u, v)dN (u, v) (Using Eq. (11))

=
∑
u/∈O

∑
v/∈I

p(u, v) +
∑
v∈I

q′(v)
∑
u∈V

q′(u|v)dN (u, v) +
∑
u∈O

p′(u)
∑
v∈V

p′(v|u)dN (u, v)

(w.r.t. marginal distribution of v ∈ I and u ∈ O)

≤ 1 +
∑
v∈I

q′(v)EPL(
←−
D′[v],

←−
B v) +

∑
u∈O

p′(u)EPL(
−→
D′[u],

−→
Bu)

(dN (u, v) is the distance between u, v in the corresponding nearly optimal tree built during phase 2 of construction of N)

= 1 +
∑
v∈I

q(v)EPL(
←−
D′[v],

←−
B v) +

∑
u∈O

p(u)EPL(
−→
D′[u],

−→
Bu) (Using Eq. (12))

≤ H(Y | X) +H(X | Y ) + 3 (Using Eq. (14))

Table 2 Analysis of expected path lengths for arbitrary sparse network

Since S has maximum degree r, according to Lemma 3,

it has a graph metric spanner N such that, the distance

of any source-destination pair of G(D) in N is at most

2 log r times their distance in S. Hence:

EPL(D, N) =
∑

(u,v)∈D

p(u, v) · dN (u, v)

≤
∑

(u,v)∈D

p(u, v) · dS(u, v) · 2 log r

≤ log r · EPL(D, S) = O(log r)

= O(H(Y | X))

The last equality holds since D is r-regular and uni-

form. The bound is asymptotically optimal when ∆ is

a constant: it matches our lower bound in Theorem 1.

Theorem 5 allows us to simplify the design of asymp-

totically optimal networks for uniform and regular dis-

tributions D where GD has a constant sparse spanner.

In particular, the approach can be used to design opti-

mal networks for the following large families of distri-

butions which are known to have a constant and sparse

graph spanners.

Corollary 1 Let D describe a uniform and regular

communication request distribution. Then, it is possi-

ble to generate a constant degree DAN N such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (17)

in the following scenarios:

– If, for a constant c ≥ 1, GD has a minimum degree

∆ ≥ n 1
c .2

– If GD forms a hypercube with n log n edges.

– If GD forms a (possibly dense) chordal graph.

Proof We prove the claims in turn.

Case GD has a minimum degree ∆ ≥ n 1
c : For this

distribution D, we have, H∆(Y | X) = H∆(X | Y ) ≥
1
c log∆ n. Create a ∆-ary tree N with the nodes of GD.

Then,

EPL(D, N) =
∑

(u,v)∈D

p(u, v) · dN (u, v)

≤
∑

(u,v)∈D

p(u, v) · 2 log∆ n

≤ 2 log∆ n

≤ 2c ·H∆(Y | X)

2 In this case the constant in the O notation depends lin-
early on c.
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Case hypercube. Follows directly from Theorem 5

and the fact that hypercubes admit a sparse 3-

spanner [37], allowing us to design a O(log log n)

(metric) spanner of bounded degree.

Case chordal graphs. Follows from Theorem 5 and

the fact that chordal graphs have a constant sparse

spanner [36].

We round off our study of uniform and regular dis-

tributions by considering one more interesting family

of (possibly very dense) distributions: distributions D
which describe a bounded and local doubling dimen-

sion, note that this family is more general than the

standard bounded doubling dimension graphs which are

sparse.

First, recall that a metric space (V, d) has a con-

stant doubling dimension if and only if there exists a

constant λ such that every ball of radius r in V can be

covered by λ balls of half the radius r/2, for all r ≥ 1. In

general, the smallest λ which satisfies this property for

a metric space is called doubling constant and log2 λ is

called the doubling dimension [11,23,24,25]. A metric

space is called bounded (a.k.a. constant or low) dou-

bling dimension if λ is a constant. There has been a

wide range of work on spanners for bounded doubling

dimension metrics [10,11,24,25]. However, if the met-

ric is imposed by a graph metric (via shortest paths)

then a bounded doubling dimension implies that the

graph is nearly regular, of bounded (constant) degree

and sparse. Theorem 4 already solved the case of sparse

GD, even for non-uniform and irregular distributions.

In the following, however, we are interested in a

more general notion of doubling dimension, which al-

lows a higher density, unbounded degree: we call it

locally-bounded doubling dimension:

Definition 2 (Locally-Bounded Doubling Di-

mension (LDD)) GD implied by the distribution D
has a locally-bounded doubling dimension if and only if

there exists a constant λ such that the 2-hop neighbors

of any node u are covered by at most λ 1-hop neigh-

bors. Formally, for each u ∈ V , there exists a set of

nodes y1, y2, ...yλ, such that:

B(u, 2) ⊆
λ⋃
i=1

B(yi, 1)

where B(u, r) are the set of nodes that are at distance

at most r-hops from u in GD.

Clearly, every bounded doubling dimension graph

is also of locally-bounded doubling dimension, but the

converse is not true. In particular, the latter enables

graphs which could be dense, with unbound degree, and

possibly with irregularity of degree.

In the remainder of this section, we will prove the

following theorem.

Theorem 6 Let D describe a uniform and regular

communication request distribution of locally-bounded

doubling dimension. Then it is possible to design a con-

stant degree DAN N such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (18)

This is asymptotically optimal.

Proof Again, our proof strategy is to employ Theo-

rem 5. Accordingly, we show that a constant sparse

spanner exists for locally-bounded doubling dimension

networks. In particular, we will design this spanner

based on an ε-net construction. We first recall the def-

inition of ε-nets [11].

Definition 3 (ε-net) A subset V ′ of V is an ε-net for

a graph G = (V,E) if it satisfies the following two con-

ditions:

1. for every u, v ∈ V ′, dG(u, v) > ε

2. for each w ∈ V , there exists at least one u ∈ V ′ such

that, dG(u,w) ≤ ε

Let GD = (V,E) be a locally-bounded doubling di-

mension network. We now first construct a spanner S′

of GD which is a subgraph of GD, using the following

(ε = 2)-net: we sort all nodes according to decreas-

ing (remaining) degrees, and iteratively select the high-

degree nodes into the 2-net one-by-one and remove their

2-neighborhoods. Clearly, after this process, each node

is either part of the 2-net or has a 2-net node at dis-

tance at most 2-hops, and we have computed a legal

2-net.

To form the spanner S, we next arbitrarily match

each node u not in the 2-net to one of its nearest 2-

net nodes v, and select the edges along a shortest path

from u to v into the spanner S. This results in a forest of

connected components (2-layered stars). We call these

connected components clusters and the corresponding

nodes in the 2-net cluster heads. We denote the cluster

associated to the net node u by Cl(u) and the corre-

sponding cluster head, i.e., the net node by C(u).

We next connect the connected clusters to each

other, in a sparse manner. Towards this end, we connect

each pair of clusters, with an arbitrary single edge, if

they contain at least one pair of communicating nodes

in GD. We can claim the following.

Lemma 4 S is a constant and sparse spanner of GD
(with distortion 9) .
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Proof Let (u, v) be an edge in GD and u ∈ Cl(u),

v ∈ Cl(v). By construction, there are nodes x ∈ Cl(u)

and y ∈ Cl(v) that are connected by an edge in S, and

hence there is a path u,C(u), x, y, C(v), v in S. There-

fore, dS(u, v) ≤ dS(u,C(u)) + dS(C(u), x) + dS(x, y) +

dS(y, C(v)) + dS(C(v), v) ≤ 9.

The spanner is also sparse: in a nutshell, due to the

2-net properties, we know that the distance between

communicating cluster heads is at most 5: since in a

locally doubling dimension graph the number of cluster

heads at distance 5 is bounded, only a small number of

neighboring clusters will communicate. More formally,

after associating each node to some unique cluster, we

have a linear number of edges in the spanner. Next we

bound the number of outgoing edges from each cluster.

Let (u, v) be such an edge where u ∈ Cl(u), v ∈ Cl(v).

Let the cluster heads of Cl(u) and Cl(v) be i and j,

respectively. By construction i and j are at most at

distance 5 in GD, i.e., dGD (i, j) ≤ 5. So, if we can bound

the number of 2-net nodes which lie within 5 hops from

some net node i, it will give us a bound on the number

of edges which we add between Cl(u) and other clusters.

According to Definition 2, all the two hop neighbors of

i can be covered within one hop neighbors of λ nodes,

where λ is the corresponding doubling constant. If we

consider two hop neighbors of all these λ many nodes,

they cover all the 3 hop neighbors of i. To cover the 2

hop neighbors of each of these nodes, we again require

one hop neighbors of λ nodes. So, to cover all 3 hop

neighbors of i, we require at most λ2 one hop neighbors.

Inductively, by repeating this argument, we require one

hop neighbors of at most λ4 nodes to cover all the 5

hop neighbors of i. Since we constructed a 2-net, each

of these λ4 balls with radius one contains at most one 2-
net node. Hence there are at most λ4 2-net nodes which

are at a distance 5 hops or less from i. Consequently,

there are at most λ4 inter-cluster edges associated to

some cluster Cl(u), or cluster head i. Since there can

not be more than linear number of clusters, hence the

number of edges in S′ is also linear.

Using Lemma 4 we can directly use Theorem 5 and

conclude the proof of Theorem 6.

In fact, it turns out that if we consider a met-

ric spanner, and by using auxiliary edges, we can im-

prove the above distortion and construct better con-

stant sparse spanner S′. The idea is to add inter-cluster

edges only between the cluster heads. This will reduce

the distortion to 5 while keeping the same number of

total edges. The degree of each node in S′ will increase

by at most a constant, λ4. Adjusting Theorem 5 respec-

tively to support metric spanners (and only a subgraph

spanner) will enable us to use S′ instead of S.

7 Conclusion

This paper initiated the study of a fundamental net-

work design problem. While our work is motivated in

particular by emerging technologies for more flexible

datacenter interconnects as well as by peer-to-peer over-

lays, we believe that our model is very natural and of

interest beyond this specific application domain consid-

ered in this paper. For example, the design of a sparse,

bounded-degree and distance-preserving network can

also be understood from the perspective of graph spar-

sification [45]: the designed network can be seen as a

compact representation of the original network.

The subject of bounded network design offers sev-

eral interesting avenues for future research. In particu-

lar, while we presented asymptotically optimal network

design algorithms for a wide range of distributions and

while we believe that the entropy is the right measure

to assess network designs, there remain several (dense)

distributions for which the quest for optimal network

designs remains open, perhaps also requiring us to ex-

plore alternative flavors of graph entropy.
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Appendix

We first discuss different types of distortions on spanners and
then show that actually Theorem 5 requires a weaker condi-
tion than having a constant sparse spanner.

A Notions of Distortion

In the spanner problem, the goal is to find a sparse sub-
graph S = (V,E′) of G, i.e., E′ ⊆ E with |E′| ≤ O(n) which
approximately preserves the distances of G despite having less
edges. Usually, the following notion of average distortion [9]
is considered and referred to as the all-pairs distortion:

Definition 4 (All-Pairs Distortion (APD)) The average
all-pairs distortion on a spanner S of a graph G is

APD(G,S) =
1(
n
2

) ∑
{u,v}∈(V2 )

dS(u, v)

dG(u, v)

We in this paper are only interested in preserving dis-
tances between communicating neighbors in G, henceforth de-
fined as the neighborhood distortion:

Definition 5 (Neighborhood Distortion (ND)) The aver-
age neighborhood distortion on a spanner S of a graph G
(with m edges) is,

ND(G,S) = 1
|E(G)|

∑
{u,v}∈E(G)

dS(u,v)
dG(u,v)

= 1
m

∑
{u,v}∈E(G) dS(u, v)

Next we claim that these two notions of distortion are in-
deed different, that is, low all-pairs distortion does not imply
a low neighborhood distortion; and vice versa.

Claim There is a family of graphs Gn and a corresponding
family of spanners Sn (where n is the size of the graph and
Sn is a spanner of Gn) where

lim
n→∞

APD(Gn, Sn)

ND(Gn, Sn)
=∞ (19)

Claim There is a family of graphs Gn and a corresponding
family of spanners Sn (where n is the size of the graph and
Sn is a spanner of Gn) where

lim
n→∞

ND(Gn, Sn)

APD(Gn, Sn)
=∞ (20)

We will show this by examples. First consider Fig. 3 (a).
There is a Θ(

√
n)-sized clique in the center, and each of those

clique nodes is associated with a line containing Θ(
√
n) nodes.

To compute the optimal tree spanner with maximum de-
gree ∆, we turn the clique nodes into a ∆-regular tree of
diameter Θ(log∆

√
n) = O(log∆ n). The nodes remain con-

nected with the corresponding lines. The asymptotic distor-
tion w.r.t. Definition 5 is:

n · log∆ n+ n · 1
n

= Θ(log∆ n)

Now we discuss all-pair distortion on the same spanner for
this graph. Consider any two nodes which belong to different
lines, but are also a member of the clique. Their distance in
the spanner may become log

√
n. So, according to Definition 4,

dS(u, v)/dG(u, v) is equal to 1
2

logn. Now we provide an upper
bound on the number of such pairs ϕ whose distance can be
up to O(logn) times their earlier distance. Consider all the
nodes on all the lines which are within distance logn from the
corresponding clique node. On the original graph, distances
between any two such nodes were in the range [1, 2 logn +
1]. The number of such node pairs is n log2 n. Clearly, ϕ <

n log2 n. Now consider any node on a line which is at least
at a distance (1 + logn) from the corresponding clique node
on the line. The distance from this node to any other node
on any other line was at least (2 + logn). On the spanner,
this distance can be at most 1 + 2 logn. So, for all such node
pairs, dS(u, v)/dG(u, v) < 2. Hence, according to Definition 4,
all pair distortion becomes constant, as stated in the following
expression.

n log2 n · logn+ (n2 − n log2 n) · 2
n2

= Θ(1)

Now look at Fig. 3 (b). There is a star of size n/ logn in
the center, and each of the n/ logn nodes is associated with a
clique of size logn. Thus, in total, there are n logn edges. To
compute a tree spanner of degree ∆ = logn, we replace the
cliques consisting of logn nodes with stars of size logn nodes;
the star of n/ logn nodes in the center is transformed into a ∆-
regular tree whose diameter is Θ(logn/ log logn). Then each
tree node is associated with the root of the star corresponding
to its associated clique. This tree spanner contains auxiliary
edges too. Then, the asymptotic distortion w.r.t. Definition 5
is:

n
logn

log2 n+ n
logn

· logn
log logn

n logn
= O(1)

In contrast, the distortion w.r.t. Definition 4 is
Ω(logn/ log logn) since all pairs from the two different
cliques now suffer a distortion of Θ(logn/ log logn), and
there are O(n2) such pairs.

Corollary 2 Theorem 5 holds even if there exists a sparse span-
ner S with constant neighborhood distortion instead of having a

constant spanner.

Proof If the request distribution D is uniform, i.e., p(i, j) =
1/m for all the m non-zero entries of the matrix MD , then
from Definition 5 and from our objective function,

EPL(D, S) = ND(G,S)

Hence ND(G,S) is constant, which implies that EPL(D, S) is
also constant i.e., Eq. 16 holds if ND(G,S) is constant.
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K√
n

line of
√
n nodes

star of n
log n nodes

Klog n

(a) (b)

Fig. 3 (a) Different distortions on tree spanner w.r.t. different definitions. (b) Different distortion on tree network design (with
auxiliary edges) w.r.t. different definitions
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